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Two-dimensional 
beams in rectangular 
coordinates using the radial 
point interpolation method
Abstract

The three-dimensional Theory of Elasticity equations lead to a complex solution 
for most problems in engineering. Therefore, the solutions are typically developed for 
reduced systems, usually symmetrical or two-dimensional. In this context, compu-
tational resources allow the reduction of these simplifications. The most recognized 
methods of algebraic approximation of the differential equations are the Finite Differ-
ences Method and the Finite Element Method (FEM). However, they have limitations 
in mesh generation and/or adaptation. As follows, Meshless Methods appear as an al-
ternative to these options. The present work uses the Radial Point Interpolation Meth-
od (RPIM) to evaluate the stress in two-dimensional beams in regions close to loading 
(Saint Venant’s Principle). Formulations based on the Fourier Series Theory and the 
RPIM are presented. Multiquadrics Radial Basis Functions were used to obtain the 
stiffness matrix. Two numerical examples demonstrate the validity of the RPIM for 
the proposed theme. The results were obtained from the formulations cited and the 
Finite Element Method for comparison.

Keywords: two-dimensional beams, Saint-Venant’s principle, Radial Point Inter-
polation Method, stress analysis.
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1. Introduction

The analytical solution to most 
problems of the Theory of Elasticity is 
difficult due to the complexity of the 
equations. Therefore, the resolutions are 
typically designed for reduced systems, 
usually symmetrical or two-dimensional 
(Saad, 2005).

In this way, the computational 
analysis has considerable relevance in 
the solution of these problems. The most 
known methods of numerical analysis 
are the Finite Differences Method and 
the Finite Element Method (FEM), the 
latter being the most used. However, 
it includes limitations, mainly in mesh 

generation and adaptation. In this man-
ner, Meshless Methods appear as a 
significant alternative to these options 
(Liu, 2010).

In the previous two decades, Mesh-
less Methods have been used in several 
engineering areas. Silva (2012) explored 
the application of the Element Free 
Galerkin (EFG) Method in physically 
non-linear static structures of reinforced 
concrete. Asprone et al. (2014) investi-
gate the Modified Finite Particle Method 
(MFPM) and propose modifications to 
it in the static and dynamic problems, 
both in the elastic range. Hu et al. (2014) 

developed a technique to condense the 
degrees of freedom to increase the com-
putational efficiency of the meshless 
methods in dynamic linear elastic analy-
sis. The equations of the Plane Theory 
of Elasticity can be applied to two cases 
of practical interest: plane stress and 
strain of thin plates under forces applied 
to their boundaries and acting in their 
planes. An important fact to be observed 
in the structure is the effect of loading in 
regions close to the point of application.

This effect is called the Saint-
Venant's Principle. It enunciates that two 
statically equivalent force systems acting 
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over a small portion Ps of the surface 
of a body produce (approximately) the 
same stress and displacement at a point 
sufficiently far from Ps in the body where 
the force systems act.

Relevant researches have been 
published about Saint-Venant's Theory. 
Genoese et al. (2014) examined a geo-
metrically nonlinear model for homo-
geneous and isotropic beams including 
non-uniform warping due to torsion and 
shear derived from the Saint-Venant's 
rod. Genoese et al. (2013) also presented 
an alternative linear model for thin-

walled section beams, whose formula-
tion is based on the Hellinger–Reissner 
Principle. Zhao et al. (2012) proposed 
an approach to investigate the Saint-
Venant's problem in graded beams with 
Young's Modulus varying exponentially 
in the axial direction and constant Pois-
son Ratio. Fatmi and Ghazouani (2011) 
suggested a higher-order composite 
beam theory, which can be viewed as an 
extension of the Saint-Venant's Theory. 
Petrolo and Casciaro (2004) investigated 
the use of the Saint-Venant's general rod 
theory for deriving the stiffness matrix in 

three-dimensional beam elements with a 
general cross-section.

The proposed research aims to 
demonstrate the Saint-Venant Principle 
for two-dimensional beams using the 
Radial Point Interpolation Method 
(RPIM). The formulations for RPIM 
and the analytical solution provided by 
the Fourier Series are presented. Two ex-
amples are demonstrated to validate the 
RPIM. The results are compared with 
the analytical solution and numerical 
solution of the Finite Element Method 
utilizing the SAP2000© software.

2. Two-dimensional beams in rectangular coordinates

2.1 Solution based on fourier series theory
The biharmonic equation for the stress functions in two-dimensional problems is given by:

where φ’=φ’(x,y) is the Airy Stress Func-
tion. A general solution may be found by 

Separation of Variables with Fourier Series 
(Saad, 2005). In cartesian coordinates:

In Eq. (2), X(x)=eαx and Y(y)=eβy. Replacing in Eq. (1):

The term in parentheses must be zero, leading to the following characteristic equation:
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zero root and general roots. In the 

case of zero root with β=0, there are 
3 additional roots (Eq. 6). For the 

case with α=0, the solution is given 
by Eq. (7):

where Ci, Ai, and A’i are arbitrary constants 
determined by boundary conditions. The 

complete solution is given by the superpo-
sition of Eqs. (6), (7) and (8). Substituting 

exponentials for equivalent trigonometric 
and hyperbolic forms:
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The applications of the Fourier 
solution method usually incorporate the 

Fourier series theory (Saad, 2005). A 
periodic function f(x) with period 2L can 

be represented on the interval (-L,L) by the 
Fourier trigonometric series:

These expressions can be simplified 
in some cases. If f(x) is an even function, 

f(x)=-f(x) and Eq. (13) reduces to the Fourier 
cosine series (Eqs. 16 and 17). If f(x) is an 

odd function, f(x)=-f(-x) and Eq. (13) reduces 
to the Fourier sine series (Eqs. 18 and 19):

2.2 Solution based on Radial Point Interpolation Method (RPIM)
The use of polynomials to create 

basis functions is advantageous for two 
reasons: simplicity and good numerical 
precision. Besides, shape functions of any 

order can be reproduced by increasing 
the number of interpolation points (field 
nodes). Among these advantages, the 
RPIM method of obtaining form functions 

avoids the occurrence of singularities in the 
moment matrix (Liu and Gu, 2005). The 
displacement approximation uh at a point 
of interest xT={x,y} is given by (Liu, 2010):

where R
i
 is the Radial Basis Function (RBF), 

a is a vector of unknown constants and n is 
the number of nodes in a support domain. 
The distance r between points x and xi is 

obtained by:
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Table 1 presents the four most 
often used forms of radial functions  

R
i
 (x). The parameters can be tuned for 

better performance.

Misra and Kumar (2013) point out 
that Multiquadrics radial basis functions 
(MQ-RBF) present advantages, such 
as easy implementation for structural 
analysis and reasonable results for a 
small number of field nodes. Besides, its 
implementation is highly suitable, and 

no connectivity is required for arbitrarily 
distributed nodes. The main idea in the 
MQ method is to create a coefficient 
matrix with a significant number of zero 
elements for reducing the computational 
costs (Fallah et al., 2019). Thus, MQ-
RBF was used in the present study. In 

Table 1, α
c
 is the dimensionless shape 

parameter, d
c
 is the characteristic length 

(usually the average nodal spacing for all 
the n nodes in the support domain) and 
q is an exponent parameter.

The interpolation at the point k has 
the form:

In the Eq. (25), d
s
 is the vector 

within the field nodal variables at the n 
local nodes and R

Q
 is the moment matrix 

of Radial Basis Functions:

which indicates symmetry of the matrix R
Q
.A unique solution for a is then obtained by:

Replacing Eq. (29) into (28):

Since the distance has no direction, then:

In matrix form, these n equations can be written as:
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Multiquadrics (MQ) R
i
 (x,y)=(ri

2+(α
c
 d

c
 )2 )q α

c
≥ 0, q

Gaussian (EXP) R
i
 (x,y) = exp (- cr

i
2)= exp {-c[(x-x

i
)2+(y-yi)

2]} C

Thin plate spline (TPS) R
i
 (x,y) = ri

η = [(x-xi)
2+(y-yi )

2 ]η Η

Logarithmic RBF R
i
 (r

i
)=r

i
η log(r

i
) Η

Table 1 - Radial Basis Functions and dimensionless shape parameters.
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and φ
k
 is the shape function for the nodek:
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In the Eq. (33), Sa
ik
 is the (i,k) element 

of the constant matrix R-1
Q
 in the support 

domain. The equilibrium equation for the 
problem can be put in matrix form as:

In the Eqs. (33) and (34), u is the 
displacements of field nodes, F is the global 
vector of forces, Fb is the global body force 

vector at the domain Ω, Ft is the global 
traction force vector at boundary domain 
Γ, b is the body force vector and t is the 

external traction force vector.
The global stiffness matrix K is 

defined as:

where K
IJ
 is the nodal stiffness matrix, B the 

strain matrix and D the matrix of elastic 
constants.

Liu and Gu (2005) demonstrate that 
the interpolation quality changes with the 
exponent q. However, the RPIM-MQ fails 
because of the singularity of the moment 

matrix for q=1.0, 2.0 and 3.0. According to 
the authors, the preferred value of parameter 
q is close to 1.0 or 2.0 (0.98, 1.03 or 1.99 
being recommended). The same authors ob-
served that the αc shape parameter has less 
influence than q(αc≥1.0 is recommended). 
Besides this, the average fitting errors of 

function values over the entire domain de-
creases when the number of interpolation 
points in the entire domain (N) increases.

The RPIM code was written in FOR-
TRAN language and divided into modules 
to make the management of the main pro-
gram easier.

In the present study,SAP2000© 
was used to obtain the solution by 
the Finite Element Method. Shell ele-

ments were used, and the number of 
elementsin each example was chosen 
so that their nodes matched the posi-

tions of the RPIM field nodes. The 
other data were the same as described 
in the examples.

The first example shows a beam 
subjected to two equal forces of 
P=1.2N (Fig. 1a) distant b from the 
middle section s-s (TIMOSHENKO 
and GOODIER, 1980). The beam 

has a height H=1.2m (c=0.6m), length 
L=4.8m (l=2.4m) and base B=1m. The 
YoungModulus is 200GPa and Pois-
son’s ratio 0.3. The number of field 
nodes is 891 to represent the domain 

(Fig. 1b) and 800 background cells for 
integrations with 2 Gauss points in 
each one. The parameters for the radial 
shape functions are αc=1.0, dc=2.0 and 
q=1.03.

3. Examples

3.1 Example 1: Beam under equidistant forces P
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(a) (b)

Figure 1 - Beam subjected to two equal forces P: (a) geometry; (b) model discretized in field nodes.

Figure 2 - Numerical and analytical shear stress for Example 1: (a) b/c=1/10; (b) b/c=1/5; (c) b/c=1/2; (d) b/c=∞.

The analytical solution was ob-
tained by Fourier Series Theory. Fig. 2a 
presents good agreement between the 
present study and the analytical result 
in the s-s cross-section. More significant 
variations can be observed in y=±1.2m. 
The stress at centroid (y=0.6m) is the 

same for all curves. In Fig. 2b, it can 
be seen that the shear stress at the ends 
obtained using FEM is closer to the 
analytical response. However, the region 
between y=0.2m and y=1.0m is better de-
scribed by RPIM, with asmall difference 
about Timoshenko and Goodier (1980).

The shear stress curve for the RPIM 
(Fig. 2c) shows consistency compared 
with Timoshenko (1980). The FEM 
demonstrates a small variation between 
y=0.36m to y=0.72m.Fig. 2d shows that 
the numerical responses differ from the 
analytical response for shear stress.

The second example refers to 
a cantilevered beam under forces 
N=1.8N and P=1.2N (Fig. 3a). This 

example is proposed by Saad (2005, 
p.192). The Airy Stress Function 
presented as an analytical solu-

tion of the problem (formulated in 
terms of the resulting force system) 
is given as:

3.2 Example 2: Cantilevered beam under axial and transverse load

2
22

3

434
3

),(' y
c

N

cc
P

yx += (39)

(a) (b)

(c) (d)



REM, Int. Eng. J., Ouro Preto, 73(1), 9-16, jan. mar. | 2020 15

William Luiz Fernandes  et al.

For the beam, 275 field nodes were 
used to represent the domain (Fig. 3b) and 
240 background cells for integrations, 
with 4 Gauss points in each one. The 

parameters for the radial shape functions 
are αc=1.0, dc=2.0, q=1.03. The beam has 
length L=4.8m, height H=1.2m (c=0.6m) 
and base B=1m. The Young Modulus is 

200GPa and Poisson’s ratio 0.3.
The stress functions in the plane for 

the problem are obtained by the differen-
tial relationships given in Eqs. (10) to (12):

32

2

2

3
2

),('

c

Pxy
c

N

y

yx
x ==

0
),('

2

2

==
x

yx
y

==
2

22

1
4
3),('

c

y
c
P

yx
yx

xy

(40)

(41)

(42)

Fig. 4 indicates the stresses. In 
x=4.6m (close to loading) both meth-
ods present great normal stresses at 
y=0.6m (centroid), since N and P were 

applied to the axis of the beam in the 
subsequent section (x=4.8m). The Airy 
Stress Function presents linear distribu-
tion as it does not consider the Saint-

Venant Principle. When x increases 
(Figs. 4b and 4c), the normal stress 
gradually shows proportionality with 
section height according to Eq. (40).  

Figure 4 - Numerical and analytical results for example 2: (a) normal stress at x=4.6m; 
(b) normal stress at x=4.2m; (c) normal stress at x=2.4m; (d) shear stress for all sections.

Figure 3 - Cantilevered beam under axial and transverse load: (a) geometry; (b) model discretized in field nodes.

(a) (b)

(a) (b)

(c) (d)
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This study presented the Radial 
Point Interpolation Method (RPIM) to 
evaluate the stress in two-dimensional 
beams. Formulations based on the Fou-
rier Series Theory and the RPIM were 
presented. The MQ Radial Basis Func-
tions were used. The numerical results 
using SAP2000 were also presented. The 
stress results for the RPIM end FEM 

were taken at the nodes and not at the 
Gauss points, which may have caused the 
difference in the analytical result. RPIM 
shape parameters are frequently difficult 
to determine, so they should be adjusted 
for each problem. Compared to FEM, the 
solution using RPIM provides satisfac-
tory results for two-dimensional beams. 
However, a more precise understanding of 

shape parameters is required. The authors 
recommend performing a similar study 
considering the values 0.98 and 1.99 for 
exponent q, varying the αc shape param-
eter and testing different values of N (field 
nodes). Besides, the authors recommend 
evaluating the influence of the number of 
elements (FEM) and the number of field 
nodes (RPIM) in the results.

4. Conclusions

In x=4.2m, RPIM and FEM are close 
to the analytical response, with RPIM 
showing small divergence at y=0.6m 
(~3Pa) and subsequent stress reduction 
(~2.4Pa). For both numerical results with 
the analytical response.

Fig. 4d shows the shear stresses. 
According to Equation (42), the results 
obtained from Airy Stress Function are 
independent of x in the section. The re-
sults obtained numerically consider the 
Saint-Venant Principle, and the curves 

gradually approximate the result of 
Saad (2005) when the section positionx 
decreases. It should be noted that the 
RPIM presents better convergence than 
the FEM in this case for the analytical re-
sponse (see curves x=4.6m and x=4.2m).

Received: 28 December 2018 - Accepted: 13 August 2019.

All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.


