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Abstract

Short-term production plans are the basis for operational mine production sched-
ules. They concentrate on making long-term mine plans operationally feasible. It en-
sures a steady flow of product for meeting blending targets. Due to the quality varia-
tion of material, blend optimization is an uncertainty based optimization problem. 
There are different approaches toward uncertainty management and the current paper 
investigates a portfolio optimization model in order to minimize the risks in short-term 
plans. In this paper, a fuzzy linear programming model is formulated to provide a set 
of options for the mine plan. These blending options are treated as portfolios. Then a 
model for the optimal selection of a portfolio is introduced. The objective of the model 
is to maximize the expected return of the portfolio under constraints limiting its vari-
ance. The model is applied in a limestone mine complex.

Keywords: short-term planning, portfolio optimization, fuzzy linear program-
ming, uncertainty.
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1. Introduction

The strategic mine plan sets the 
overall objectives of a mining project. 
Mine planning is a multidisciplinary 
act and its aim is to develop the 
yearly extraction plan to meet some 
predefined goals (Morley et al. 1999; 
Dagdelen 2007). Mine-plans are 
classified into long-term, medium, 
short-term, and operational plans. 
Normally, these plans are organized 
such that the mining operation leads 
to the highest cash flow or net present 
value (Juarez et al. 2014; King 2014). 
These plans should consider the con-
straints on capacities, blending, block 
sequencing, reclamation requirements, 
pit slope, and any constraints that may 
exist on each particular mine site (Cac-
cetta and Hill 2003; Marques et al. 
2013; Badiozamani and Askari-Nasab 
2014). During the feasibility studies, 
the precise values of all the input pa-
rameters are not known. The normal 
practice is that, the input data such as 
geologic block model, grades, operat-
ing costs, commodity prices, recover-

ies and the operational constraints are 
all estimated using the data available 
at the time of planning. It is obvious 
that, as planning parameter changes, 
the production plan should be re-
optimized using updated data.

Uncertainty is defined as the 
difference between the amount of 
information required and the amount 
of available information to perform a 
task. The uncertainties are categorized 
into some environmental and system 
uncertainties (Mula et al. 2006). En-
vironmental or external uncertainty 
includes uncertainties beyond the 
production, such as supply and de-
mand uncertainty. System or internal 
uncertainty is related to those within 
the production process itself, such as 
operation yield uncertainty, quality 
uncertainty and failure of production 
system. In the case of mine planning, 
geologic, technological, market, 
political, and ecological factors are 
inherited with uncertainty. These un-
certainties highlight the importance 

of a risk-based mine planning by us-
ing new production-planning models 
(Osanloo et al. 2008; Newman et al. 
2010). For example, dynamic change 
of estimated ore and waste material 
due to spatial grade uncertainty chal-
lenges the finding of optimal mining 
plans (Godoy and Dimitrakopoulos 
2004;Azimi et al. 2013).

The simplest approach to manage 
and overcome uncertainties is to over-
design or over-plan. In this approach, 
excess capacity of those specified in 
the long-term plan is executed, so 
that the operation can survive pos-
sible changes in the future. While this 
approach is expensive and it increases 
the inventory costs, it reduces possible 
breakdown costs in the future. This 
strategy reduces the production risk. 
However, the question is: how much 
the over-design could reduce the pro-
duction risk? To answer this question, 
short-term planning is investigated as 
a portfolio optimization problem.

Short-term planning in open pit 
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mines is studied by many research-
ers. Smith (1998) presented a Mixed 
Integer Linear Programming (MILP) 
model for the purpose of annual mine 
planning. Smith and Dimitrakopoulos 
(1999) considered grade uncertainty in 
short term planning based on MILP 
models. Kumral and Dowd (2002) 
combined simulated annealing and 
Lagrangian parameterization for short 
term planning in non-metallic mines. 

Fioroni et al. (2008) optimized month-
ly schedules in open pit mines using a 
combination of linear programming 
and simulation. Gholamnejad (2008) 
optimized mining sequence using a 
binary Integer Programming (BIP) 
model and he incorporated differ-
ent sequencing options in the model. 
Souza et al. (2010) developed a hybrid 
heuristic algorithm for truck alloca-
tion in a multi pit iron-ore mine site 

to meet a recommended mining rate, 
while satisfying the quality require-
ments in order to minimize operating 
costs. Asad (2011) developed a heuris-
tic approach for short-range produc-
tion scheduling in a quarry. Eivazy 
and Askari-Nasab (2012) presented 
a model for short-term production 
scheduling (i.e. monthly plans), that 
aims to minimize mining costs while 
satisfying quality requirements. 

2. Constrained portfolio optimization

Assume that there are N risky assets, 
each has an expected return m

i
, and s

ij 
de-

notes the covariance of returns for assets 
i and j. In a portfolio, expected return 

is the weighted average of the expected 
returns of all assets. Moreover, the risk 
of a portfolio depends on the weights and 
the correlations of assets. The weights 

are equal to the proportions of the assets 
in the portfolio (xi). Then, the portfolio's 
expected return (E(m

p
)) and variance  

(Var(m
p 
) ) are calculated using Eq. (1)-(2).

( )E p i i

i N

x=μ μ  

( )Var p i j ij

i N j N

x x=μ  

(1)

(3)

(5)

(2)

(4)
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The aim of Portfolio Optimiza-
tion (PO) is to find the optimum way of 
investing a particular amount of money 
in these assets. In an optimum portfolio, 
the overall risk is minimized through 
diversification by investing in a variety 
of assets. For optimizing a portfolio, 

Markowitz (1952) presented the mean-
variance model. In this model, it is as-
sumed that the total return of a portfolio 
can be described using the mean and the 
variance (risk) of return of assets. The 
model is a convex quadratic program-
ming problem with a polynomial worst-

case complexity bound. It determines 
the proportion x

i
 of a given capital to be 

invested in asset i, such that the risk of 
the portfolio's return is minimized. In 
addition, it restricts the expected return 
of the portfolio to a given value. The 
Markowitz' model is as follows:

( )Min Var p i j ij

i N j N

x x=μ  

1i

i N

x
∈

=∑

( )Ei i p

i N

x
∈

=∑μ μ
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Where, E(m
p
) denotes the required level of 

expected return for the portfolio. Eq. (3) 
minimizes the variance (risk) associated 
with the portfolio while Eq. (4) ensures 
that the sum of assets' proportions in the 
portfolio is equal to one. Eq. (5) ensures 
that the portfolio has an expected return 
of E(m

p
) . Eq. (6) indicates that the propor-

tion of each asset is at least zero. With 
respect to Eq. (4) and (6), the maximum 
proportion of each asset is at most one.

According to PO model, a feasible 
portfolio is the one that the sum of assets' 
proportions is equal to one. A portfolio 
that minimizes the risk for a given level 
of return is called an efficient portfolio. 
The set of all efficient portfolios is called 

efficient frontier or simply the efficient 
envelope (Benninga, 2008). The portfolios 
located above the envelope are not feasible 
portfolios (Fig. 1). It means that the sum 
of assets' proportions is not equal to one. 
The portfolios located on and below the 
envelope are feasible portfolios, and those 
that are located on the envelope are fea-
sible and efficient portfolios. Let j (E(m

p
)) 

define the optimal value of the PO model 
as a function of E(m

p
). Let E(m

p
)min be the 

value of Σ m
i 
x

i
 at an optimal solution 

where the constraint (5) is removed, and  
let E(m

p
)max = MAX { m

1
, m

2
,..., m

n
}. Then 

j(E(m
p
)) on [ E(m

p
)min, E(m

p
)max ] interval 

represents the set of non-dominated port-
folios (i.e. envelope).

According to Markowitz, investors 
could eliminate exposure to risks of indi-
vidual stocks by choosing them such that 
they do not move the same way. In this 
respect, correlation coefficient measures 
the joint movements of two stocks. Risk-
averse investors want portfolios with a 
small variance and high expected return. 
By adding some realistic constraint to 
the PO model, the constrained model is 
obtained. In the modified model, assume 
that K assets should be held in the port-
folio. Furthermore, the portion x

i
 that is 

included in the portfolio should be limited 
within a given lower and upper bounds  
[ l

i 
, u

i
 ].These constraints are given in Eq. 

(7)-(9).

i N∈
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Figure 1
Efficient frontier and 

the different types of portfolios.

i
i N

y K
∈

=∑

,

(7)

(9)

(8)

The PO model defined by Eq. 
(3)-(5) and (7)-(9) is called the general 

form of portfolio optimization model 
(Fernandez and Gomez, 2007). This 

model is an integer quadratic program-
ming model.

3. PO application in mine planning

This paper addresses short-term 
planning in open pit mines. Long-term 
plans dedicate the strategies to reach 
the company's goals (the highest net 
present value, for instance). However, 
short-term plans are aimed to follow 
the strategies of long-term plan and to 
minimize the operating costs as much 
as possible. In a mining operation, ma-
terials are mined from different blocks, 
faces and benches, and hauled to some 
predetermined destinations based on 
their properties. Run of mine quality 
depends on the quality and quantity of 

the material mined from each face.
Material properties can vary con-

siderably even in a mining face. During 
feasibility studies, parameters such as 
grades, operating costs, commodity 
prices, recoveries and the operational 
constraints are all estimated based 
on the data available at the time of 
planning. These estimations and their 
uncertainties affect the mine-plan in 
reaching its predefined goals. Due to 
fluctuations in price, costs, and min-
ing recovery, each mining face can be 
considered as a risky asset. Then, ap-

plication of PO is efficient in reducing 
the risk of mine plan. Diversification 
of mineral production in a mining 
operation will decrease the risks of 
not achieving the production goals. 
In financial applications of PO model, 
one could assume a possibility of short 
sale. In this case, x

i 
will be changed 

into a free variable and Eq. (6) will be 
removed from the model. However, in 
mining applications, it is not logical 
to have a short sale. Thus, in this ap-
plication, the model is solved by short 
sale restriction.

4. Model development

In a mining system, the aim of 
mine-planner is to determine the optimum 
amount of material that should be mined 
from each face such that the customer 
(or the processing plant) is provided with 
a suitable quantity and quality of raw 
material. Short-term plans follow the 
objectives of the strategic and long-term 
plans. Normally, the objective function 
of a short-term planning model is to mini-
mize total mining costs by optimizing the 
amount of material that should be mined 
from each face.

Each mining face is considered as a 
risky asset. In that regard, by application 
of the model described in Eq. (3)-(5) and 
(7)-(9) the best configuration for the short-
term mining schedule is optimized. In this 
model, each mining face is configured by 
a mean return and a risk level. These two 

properties could be determined using the 
historical data in active mining faces. The 
other way to determine these properties is 
simulation. In this case, the mean return 
and a risk level of each mining face could 
be simulated using the available data at the 
time of planning. The PO model, given in 
Eq. (3)-(5) and (7)-(9), does not consider 
the operating constraints existing in the 
faces. The most important factors that af-
fect the mining schedule, that are inherited 
with uncertainty are the in-situ quality of 
mineable reserve, the capacities, the mining 
costs, and commodity price. The mining 
and processing recoveries are functions of 
chemical, physical and mechanical proper-
ties of the material in each face. In order 
to embed these constraints to the model, a 
Fuzzy Linear Programming (FLP) model 
is developed (Eq. 10-16). The notions used 

in the model are as follows: N is the set of 
mine sites, c

i
 is the average operating cost 

in site i, x
i
 is the decision variable and it 

determines the amount of material mined 
from site i , r

i
 is the recovery of material in 

site i , M
C
 is the minimum mining rate, M

i
 is 

the maximum possible mining rate in site 
i, PC is the feed rate required by the plant 
or the customer, g

i
 is the average grade of 

useful mineral in site i, q
i,k
 is the average 

grade of penalty element of impurity k in 
site i, G

min
 is the minimum acceptable grade 

of useful mineral, Q
i,max

 is the maximum 
acceptable grade of impurity k , and K is 
the number of impurities or the penalty 
elements in the mine complex.

Objective function: The objective 
function of the model is defined as mini-
mization of the total mining costs in the 
system (Eq. 10-16).
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˜

Capacity constraint: It ensures 
that the summation of the mined mate-
rial is equal or greater than the amount 

required by the plant (Eq. 11). In addi-
tion, it restricts the mining capacity in 
each mine site considering a possible 

and implementable mining capacity 
(Eq. 12).

(10)

(12)

(14)

(15)

(16)

(11)

(13)

i C

i N

x M
∈

≥∑

Quality constraint: Eq. (13) and (14) 
are the constraints required by the qual-
ity control. Eq. (13) ensures that the total 
amount of penalty elements in feed does not 

exceed the prescribed upper bounds. For ex-
ample, in the limestone case, the presence of 
Dolomite and Silica are unfavorable. These 
elements are assumed as penalty elements 

and are modeled using the Eq. (13). Con-
straint (14) ensures that the total amount of 
useful elements in the feed is always greater 
than the prescribed lower bounds.

˜ ˜ ˜

˜ ˜ ˜

Demand constraint: Eq. (15) ensures 
that total amount of final product produced 

in the mining complex is greater than the 
quantity required by the customers.

i i C

i N

r x P
∈

≥∑˜ ˜

Logical constraint: These constraints are embedded into the model by Eq. (16).

0,ix i N≥ ∀ ∈

The symbol ~ indicates fuzzy pa-
rameters in the model. These parameters 
are Bounded Fuzzy Numbers (BFN). The 
lower bound of BFN represents a risk-free 

value, and the upper bound represents a 
risky and possible value. The FLP model 
(Eq. 10-16) is a nonlinear programming 
model and it could be easily converted into 

a linear programming model. Here, a solu-
tion procedure presented by Carlsson and 
Korhonen (1986) is applied to determine 
the optimum solution of the FLP model.

5. Model verification

The models (Eq. (3)-(5) and (7)-
(9), Eq. 10-16) are tested using the data 
gathered from a limestone mine complex 
in Iran. There are five distinct mining 
areas, in which the quantity and quality 
of the mineable limestone are different 
from one another. In these mines, the 

limestone and dolomite beds are accom-
panied with cherty lenses. The limestone 
beds are Triassic light gray and regular 
bedded limestone. The limestone bed 
is located under a siliceous or cherty 
Limestone. This formation is covered by 
a dark color basaltic and some ferrugi-

nous layers. The beds have a dip of 50 to 
65 degrees. The thickness of limestone 
layers varies from 30 to 65 meters. Each 
mine is exploiting limestone from the 
outcrops of the beds.

These mines are producing lime-
stone for a soda ash plant. The plant is 

Figure 2 
Membership function 
of fuzzy sets in Face#1.
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producing sodium carbonate, which has 
many usages in industrial processes. The 
Quality Control (QC) office of the plant 
specifies the allowable quality of the 
feed. According to the QC requirements, 
the grade of CaCO3 should be more 
than 93.5%, and the grade of MgCO3 
and SiO2  in the feed should be less than 
3.5% and 3% respectively.

According to the data gathered 
from the mine sites, the characteristics of 
limestone mined from each mine site are 
modeled as fuzzy numbers. The mem-
bership function of the fuzzy data for the 
Face#1 is shown in Fig. 2. As the lower 
bound of each parameter represents a 
possible and implementable value, the 
minimum of the gathered data is thus 
selected as the lower bound. In case of 
positive parameters, such as ore grade 
(i.e. the percentage of CaCO3); the upper 
bound is selected to be the expected of 
the gathered data. However, in case of 

negative parameters such as the grade of 
penalty elements (i.e. the percentage of 
SiO2 and MgCO3 ), the upper and lower 
bounds are selected vice versa (Table 1).

The other parameter that governs 
the scheduling of the mine is the pos-
sible mining capacities in each mine site. 
In this case, the lower bound of fuzzy 
representation indicates the current 
mining capacity in each mine site. These 
values are determined based on some 
local factors including pit geometry, 
and the thickness of limestone beds. 
The upper bound is an optimistic pos-
sible mining rate in each site. This value 
is determined based on the maximum 
mining rate that is reported from each 
mine site (Table 1).

The plant requires limestone with 
a size distribution of 5-12 mm. The 
overall recovery of the material in the 
crushing unit depends on the mining op-
eration itself and the mechanical char-

acteristics of the limestone in each mine 
site. In this mine, following a blasting 
operation, the material is moved into a 
loading area by dozers and then loaded 
by excavators. The fragmentation of the 
limestone in each mine site is a function 
of blasting and dozing operations. The 
material is hauled to a crushing and 
blending unit from each mine site by 
trucks. The crushing unit is placed at 
a distance from each mine site (Fig. 3). 
According to the data and the experi-
ence of the mining crew, the overall 
recovery of the limestone mined from 
each mine face is also modeled using 
fuzzy numbers. The crushed material 
with the prescribed size distribution is 
fed into the soda ash plant. The cur-
rent capacity of the plant is 1500 tons 
of crushed limestone each day (equals 
45000 tons per month), and the nominal 
quality required by the plant is given 
in Table 1.

Face  CaCO
3
 (%) MgCO

3
SiO

2
 (%) Capacity 

(t/month) Recovery (%)

1 [88-93) [5.5-4.8) [3-2) [9500-10000) [50-55)

2 [89.8-93) [6.5-5.8) [3.8-1.5) [9500-10000) [50-55)

3 [93.5-96) [3.8-2.8) [3.5-1.4) [32000-33000) [55-62)

4 [90-96) [4.8-3) [1.9-0.5) [6500-8000) [65-75)

5 [89.7-95) [5.8-4) [3-2.2) [40000-41000) [60-70)

Plant [93.5,92.5) [3.5-3.6) [3-3.1) 45000 -
Table 1

Characteristics of material.

Figure 3
Map of the mines and plant locations.

These data are fuzzified considering 
a deviation of 1% for the ore grade and 
2% for the penalty elements from their 

nominal qualification requirements. After 
fuzzification of the planning parameters, 
the model in Eq. 10-16 is applicable to de-

termine the mining schedule. The model is 
programmed in "MatLab" and it is solved 
using the Simplex method.

6. Results and discussion

The model (given in Eq. (3)-(5) and 
(7)-(9)) is solved with and without short 
sale restriction. The solution where no 
short sale restriction is applied is named 
'Ideal-Solution' (IS). In addition, the solu-
tion where short sale restriction is applied 

is named 'Relaxed-Solution' (RS) because 
in this case operational constraints are not 
considered. Finally, the solution where all 
of the restrictions are applied is named 
'Constrained-Solution' (CS).All the solu-
tions and the corresponding envelopes 

are shown in Fig. 4. In this figure, each 
mining face is depicted by a mean return 
and a risk level. As presented, Face#3 has 
the lowest risk level, and Face#4 has the 
highest mean return compared with other 
faces. The configurations of mining faces 
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are determined using the gathered data 
and Monte Carlo simulation.

IS and RS results are the same for 
the cases where the mean-return is less 
than 65%. As the required mean-return 
increases in Eq. (5), the optimal portfolio 
determined by the IS and RS becomes 
different. It should be noted that in the 
case of this paper, the results of IS are not 

logical because IS results are generated 
without short sale restriction. However, 
these results present an upper limit for 
production planning. According to IS and 
RS results, it is possible to minimize the 
production risks to 13%. It means that, 
even with the strategy of over-design it 
is not possible to eliminate the risks. In 
fact, diversification of production risks is 

effective in minimizing the un-systematic 
risks. Based on the results, the return of 
the portfolio is 57%. According to the 
optimal portfolio, where the return is 
57% and the risk is 13%, the mining crew 
should extract material from all the faces. 
In this case, 17%, 17%, 37%, 15% and 
14% of material should be mined from 
Face#1 to Face#5 respectively.

Figure 4
Efficient envelope of the mining schedule.

In order to determine CS, the 
model given in Eq. 10-16 is applied. 
The optimized mining plans are given 
in Table 2. CS determines the opti-

mum mining schedule with respect 
to given membership functions. As 
the membership value increases, the 
BFNs in the FLP model tend to their 

risky values. Then, the mining crew 
should produce more material in order 
to minimize the overall risk of the 
mining operation.

Member-
ship of 

BFNs (%)

Mining schedule
Mining rate

x1 x2 x3 x4 x5

100 0 9500 32000 6500 30708 78708

90 0 9550 32100 6650 29358 77658

80 0 9600 32200 6800 28044 76644

70 0 9650 32300 6950 26763 75663

60 0 9700 32400 7100 25515 74715

50 0 9750 32500 7250 24298 73798

40 0 9800 32600 7400 23110 72910

30 0 9850 32700 7550 21951 72051

20 0 9900 32800 7700 20818 71218

10 0 9950 32900 7850 19711 70411

0 0 10000 33000 8000 18629 69629

Table 2
The optimal CS 
schedules (tons per month).

The CS results are all located below 
the IS and RS envelops, which means that 
the CS solutions are all feasible. According 
to the results, Face#2, Face#3 and Face#4 
are operating at their maximum nominal 
production rate in all the cases. When 
membership degree of BFNs decreases, 
then BFNs tend to their less risky values, 

and as a result, production rate at Face#5 
decreases. Face#5 should produce 30708 
and 18629 tons of limestone per month 
based on the presumed risk level. Con-
sidering the reserve characteristics in each 
mine site (Table 1), the reserve in Face#1 is 
low in quality compared with the others, 
and according to the results, the mining 

operation should be halted in this site. 
However, the mining costs in Face#1 and 
Face#2 are low compared with others and 
the model tends to exploit from these two 
sites to decrease the total mining costs. 
According to CS results, the lowest achiev-
able risk level in the mine is 16% and the 
corresponding mean return is 60%.
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7. Conclusion

In this paper, short-term produc-
tion scheduling in the presence of un-
certainty is optimized using two risk 
based mathematical models. Fuzzy linear 
programming is a useful tool for model-
ing and optimizing production plans in 
the presence of uncertainty. In addition, 
the problem of short-term production 
scheduling is investigated as a portfolio 
optimization problem. This approach 
suggests to the mine designer how the 
risk level of the production plan could 
be reduced. According to the models, 

the minimum achievable risk level is 
13%. The amount of risk is caused by 
the un-systematic risks (or market risks) 
involved in the mining operation.

The presented models are capable 
of determining variable scenarios for 
the mining schedule. Therefore, the 
mine planner by considering the degree 
of preciseness of planning parameters 
is able to select the optimum mining 
schedule from among the presented 
scenarios. Introducing uncertainty into 
the production-planning model has 

increased the total amount of material 
that should be mined. This means that, 
the mining operation pays for the cost of 
uncertainty by excess production (over-
design). As shown in the case study, in 
the case of full uncertainty, the mine 
system should produce about 78708 
tons of material in each month in order 
to satisfy the requirements of the plant. 
In the case of preciseness, however, the 
mining operation should be producing 
about 69629 tons of material, which is 
12% less than the full uncertainty case.
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