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Introduction
The search for human brain templates and atlases has 

been progressing in the past decades. Initially, the most 
widely used atlases was one by Talairach and Tournoux 
(Talairach, 1988), being based on histology data from 
a single subject. Another example of well-known brain 
template is the cytoarchitectural map of the cortex 
by Brodmann’s map (Brodmann, 2005), which has 
been widely used for image registering, identifying, 
and reporting human cortical locations in a common 
coordinate system (Strotzer, 2009; Thottakara  et  al., 
2006; Zilles and Amunts, 2010). With the advances in 
MRI images, a human brain template was developed 

by the Montreal Neurological Institute (MNI) and the 
International Consortium of Brain Mapping (ICBM) 
(Evans et al., 2012; Mandal et al., 2012). These maps 
were created by a large number of T1-weighted MR 
images of normal subjects into a common template and 
are essentials as a target data for normalization-based 
group analyses (Evans et al., 2012; Smith et al., 2004).

Following these brain templates and the raising 
necessity to others MR imaging modalities, the Diffusion 
Tensor Imaging (DTI) was also intensively studied to 
add more possibilities for the white matter brain studies 
(Alves et al., 2012; Itagiba et al., 2010; Miraldi et al., 
2013; Rittner  et  al., 2014). In the past, the lack of 
white matter information is understandable due to a 
homogeneous appearance in conventional MRI, as well 
as in histology preparations (Hua et al., 2008; Mori et al., 
2008). However, with the advances in the DTI image 
acquisition and processing, the usage of quantitative 
brain maps such as fractional anisotropy (FA) and mean 
diffusivity (MD) proved as an important measure for 
many studies and in the clinical routine (Inglese and 
Bester, 2010; Kubicki et al., 2007; Pujol et al., 2015; 
Qiu et al., 2015; Shenton et al., 2012). In addition, in 
order to understand disease patterns (e.g., the lesion 
frequency in a specific white matter location) or to 
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correlate these anatomic abnormalities with functional 
deficits using group statistical analyses, a need for 
a standard DTI dataset was raised. For this purpose, 
some DTI templates were developed (Mori et al., 2009; 
2008; Oishi et al., 2009; Zhang et al., 2011), in which 
the Mori  et  al. (2008) standard (DTI-JHU-81) have 
been adopted as the common dataset for many studies.

Following the advances in DTI template reconstruction, 
the scientific community also provided several computational 
tools in order to apply DTI data on neurodegenerative 
diseases. Known examples of frameworks widely used 
by the community are the Tract-Based Spatial Statistics 
(TBSS) (Smith et al., 2006) and Tract Specific Analysis 
(TSA) (Zhang et al., 2010), which provide a computational 
analysis for group-based statistical comparison and 
are directly benefited with the DTI-JHU-81 template. 
However, even though the computational application and 
DTI regularization on neuroscience has been growing, 
a patient-specific approach was still lacking.

In this paper, we introduce a complementary DTI 
template for the widely used DTI-JHU-81 brain template 
(Mori et al., 2008), which aims to add the variability 
information on the mean DTI maps already provided in 
the classical DTI template offered by Mori et al. (2008). 
Our objective is to make available a useful information for 
statistical patient-specific analysis, that it is still lacking 
in the previous versions of the DTI-JHU-81 template.

Methods

DTI data

DTI data obtained from 131 normal subjects 
were used for the population-averaged template, 
where all the subjects were acquired at the Hospital 
das Clínicas at Ribeirão Preto (M: 70, F: 61, 
average age: 34.12 (18 – 45 years old, right-handed). 
The acquisition protocol was set on a 3.0T MRI scanner 
(Phillips, Achieva) with the following acquisitions 
parameters: single-shot echo-planar imaging sequence, 
parallel imaging factor of 2.0, matrix of 128 × 128, field 
of view of 240 × 240 mm (nominal resolution: 2.0 mm 
isotropic), transverse sections were acquired parallel 
to the anterior commissure-posterior commissure line 
(AC-PC), N=1 samples, and 72 sections covered the 
entire hemisphere and brainstem without gaps. Diffusion 
weighting images were encoded along 32 whole sphere 
independent orientations and the b-value was 1,000 s/mm2. 
The scanning time per dataset was approximately 4 minutes, 
which follows a reasonable data acquisition protocol 
in the clinical routine. The study was approved by the 
Ethics Committee of the Medicine School of Ribeirão 
Preto at the University of São Paulo.

Data preparation
In order to attenuate the subject motion and eddy-current 

induced image distortion, the raw diffusion-weighted 
images (DWIs) sequences were corrected using the 
recent EDDY method (Andersson and Sotiropoulos, 
2016). The average of all DWIs (aDWI) was calculated 
after the tensor normalization and registration procedure 
described in Zhang et al. (2010; 2011). The six elements 
of the diffusion tensor were calculated for each pixel with 
weighted least square reconstruction developed in DTIFIT 
toolkit (FMRIB’s Software Library) (Jenkinson et al., 
2012). After diagonalization, the eigenvalues and 
eigenvectors were used to reconstruct the quantitative 
DTI maps, namely fractional anisotropy (FA), mean 
diffusivity (MD), relative anisotropy (RA), and radial 
diffusivity (RD) as described in Equations 1, 2, 3 and 4.
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The DTI-JHU-81 brain template was used to drive our 
diffusion data to ICBM space (MNI152). These images 
were normalized using a hybrid registration approach, 
where an initial 12-mode affine transformation and 
a diffeomorphic elastic sequential registration were 
applied using the FLIRT and FNIRT registration 
tools (Jenkinson and Smith, 2001; Klein et al., 2009). 
A recent registration analysis showed that the hybrid 
approach adopted here results in optimum alignment 
(Klein et al., 2009; Sotiras et al., 2013), being useful for 
our data preparations steps. It is worth noting that the 
transformation matrices were also applied on the gradient 
tensors in order to rearrange the tensor information to 
the common space.

First, only the FA maps were used here due to better 
structural contrast, improving registration accuracy. 
After the registration procedure, the transformation 
matrices were then applied on each quantitative map 
(i.e. MD, RA and RD) in order to fit those maps to the 
ICBM space. Finally, after normalization, the image 
matrix and pixel resolution were interpolated to match 
those of the ICBM-152 (181 × 217 × 181 with 1 mm 
pixel resolution) using trilinear interpolation. To obtain 
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population-averaged data, the linearly transformed (trilinear 
interpolation) tensor fields from each individual were 
used to calculate the average and standard deviation (SD) 
maps by simple scalar calculation of tensor elements. 
The final result is a collection of DTI quantitative maps 
in ICBM space, informing the mean and SD intensity 
profile, being called as DTI-USP-131.

Evaluation of brain templates

A global brain template comparison was conducted 
regarding the DTI-JHU-81 brain template (comparison 
between the average maps), in which aims to evaluate 
the equivalence of our DTI maps and the DTI-JHU-81 
dataset. The mean absolute error (MAE) was calculated 
using a voxel-wise procedure as described in Equation 5, 
which informs the global error regarding the mean 
intensity value for each quantitative map. The MAE 
evaluation is also described for each white matter tract 
labeled in the Mori et al. (2008) brain atlas, which helps 
us to evaluate the intensity distortions in each white 
matter region.
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Where the absolute difference (absolute error) 
between JHUD  (DTI-JHU-81 template) and USPD  
(the DTI-USP-131 template) is calculated for each k 
white matter tract (Mori et al., 2008) (being kN  the total 
number of voxels belonging to the k white matter mask). 
In addition, with both mean values (from DTI-JHU-81 
and DTI-USP-131), it is possible to verify the statistical 
equivalence using a hypothesis test (two tailed one 
sample t-test, after Kolmogorov-Smirnov normality test). 
In other words, the DTI-USP-131 template is similar to 
DTI-JHU-81 if the null hypothesis is statistically true 
(assuming α=0.001).

Results
Figure  1 shows the quantitative diffusion maps 

obtained by DTI-USP-131, where it can be seen the 
registered DTI-derived maps in the ICBM space for mean 
and SD maps (rows A and B, respectively). The bottom 

Figure 1. Illustration of each quantitative maps obtained from the aDWI data, as described in section Data Preparation. The mean (A) and standard 
deviation (B) are given for the FA, MD, RA and RD maps. Row C shows the 3D representation for global white matter tracts (C) presented in our 
DTI template (DTI-USP-131).
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row of Figure 1 (C) illustrates a 3D representation of the 
densest fiber tracts presented in the brain white matter, 
which is an important representation that is not provided 
in the ICBM T1-based templates (Evans et al., 2012).

Regarding the MAE evaluation, Figure 2 illustrates 
the positioning of the DTI-JHU-81 white matter atlas 
overlaid with our mean and SD FA map. The FA was 
chosen only for simplicity and the same procedure 
could be visualized on the other quantitative maps 
(i.e. MD, RA, and RD). Using the local white matter tracts 
information, provided by the Mori et al. (2008) atlas, it is 

possible to calculate the local voxel intensity distortion 
and, with this approach, estimate the equivalence of our 
DTI maps in comparison with the DTI-JHU-81. Table 1 
summarizes the values obtained by the MAE approach.

Discussion
Initially, a brief explanation about technical details 

regarding DTI-USP-131 should be discussed. As seen 
in DTI Data subsection, the number of samples used in 
DTI imaging acquisition was set to N=1 due to clinical 

Figure 2. The DTI template (mean and standard deviation) with the DTI-JHU-81 atlas overlaid. In this representation is easy to see the alignment 
between the previous DTI white matter tracts (from DTI-JHU-81 (Mori et al., 2008)) and our populational quantitative maps. Here, it is illustrated 
only the FA map, however, the same results were obtained for the MD, RA, and RD maps.

Table 1. Summary results regarding the Mean Absolute Error (MAE) for the main white matter tract given by the Mori et al. (2008). The full table 
can be seen in the Supplementary data.

White Matter Tract Volume (cm3)
MAE

Mean Standard
Deviation

0H  hypothesis
(1 - p)

Genu of corpus callosum 8.85 0.053 0.033 0.945
Body of corpus callosum 13.71 0.103 0.047 0.985
Splenium of corpus callosum 12.72 0.116 0.045 0.993
Corticospinal tract (Right) 1.36 0.111 0.038 0.997
Cerebral peduncle (Right) 2.27 0.063 0.023 0.995
Anterior limb of internal capsule (Right) 3.13 0.041 0.026 0.941
Posterior limb of internal capsule (Right) 3.75 0.047 0.023 0.979
Posterior thalamic radiation (Right) 3.97 0.069 0.032 0.982
Sagittal stratum (Right) 2.22 0.052 0.022 0.989
External capsule (Right) 5.61 0.049 0.023 0.981
Cingulum (Right) 2.34 0.100 0.034 0.998
Hippocampus (Right) 1.23 0.078 0.040 0.974
Superior longitudinal fasciculus (Right) 6.60 0.073 0.029 0.993
Superior fronto-occipital fasciculus (Right) 0.50 0.070 0.030 0.989
Uncinate fasciculus (Right) 0.38 0.053 0.022 0.992
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requirements. However, as notice in the original paper 
of Mori et al. (2008), the number of samples was set 
to N=3 which decrease the global image noise level by 
successive averaging. Hence, our DTI template was 
compensated with more number of samples, where additional 
50 subjects were added. The reasoning for this additional 
number of subjects is based on the signal to noise ratio 
estimate in MRI acquisition, which is commonly adopted 
as a squared root function to N (Haacke et al., 1999), 
which ( )81 81. 3 140.29DTI JHUSNR − − ∝ ≈ . In order to reach 
an approximate image quality to DTI-JHU-81 template 
our dataset should get more subjects, where 

( )- -131 131. 1 131DTI USPSNR µ = . Therefore, our DTI template 
showed a similar image quality than what is noticed 
in Mori et al. (2008) template. Even though the SNR 
comparison showed a slightly lower value for our DTI 
template, the statistical equivalence was achieved as seen 
in Table 1, proving that DTI-USP-131 presents the same 
average level than what is described in DTI-JHU-81.

As seen in the results in Figures 1 and 2, the DTI 
maps reconstruct here presented the same stereotaxic 
anatomical population characteristics as denoted in 
the previous brain template (DTI-JHU-81) (Hua et al., 
2008; Mori et al., 2008). In more details, the results in 
Table 1 also affirms that the distortions presented in our 
DTI maps can be considered as a minimal disturbance, 
mainly due to the registration procedure that was adopted 
here. As noted, the MAE values for all the white matter 
tracts showed a stable estimate (MAE<0.116, p<0.001), 
which is in a reasonable error measure between our 
DTI-USP-131 template and the classical DTI-JHU-81 
approach. Furthermore, all the white matter tracts, 
given in the DTI-JHU-81 atlas, showed a statistical 
equivalence (p<0.001) when our DTI template is used, 
which means that our approach achieved a precise brain 
representation. Note in Table 1 that 0H  hypothesis was 
not refused for all the white matter tracts, proving that 
our DTI template maintains the same mean characteristics 
as the previous DTI-JHU-81 approach. Using these 
results, it is reasonable to use our SD maps for further 
statistical analysis, as seen in Figure 2.

The white matter structures that are appreciable 
in the DTI-USP-131 models represent reproducible 
structures among normal adults. Similarly to the 
Mori et al. (2008) approach, all prominent white matter 
tracts can be clearly identified in this averaged map 
(Figure 1 (C)) and the usage of the previous DTI manual 
atlas, provided by Mori et al. (2008), can be applied 
to our DTI-USP-131 brain templates. In other words, 
the manual labels can be overlaid on our DTI template 
without loss of precision, as illustrated in Figure  2. 
It worth remembering that the ICBM-152 template is 
based on T1-weighted images of 152 normal volunteers 
and the white matter anatomical representation is 

missed due to its homogeneous appearance contrast in 
T1 weighted images. However, while the ICBM-152 
template is useful for anatomical and functional MRI 
studies, it does not provide detailed information about 
white matter anatomy. The DTI-based atlas created in this 
study offers complementary information about the white 
matter anatomy in the same standardized coordinates.

For group analysis studies, the DTI-JHU-81 provides 
various types of images (e.g., diffusion-weighted, 
non-diffusion-weighted, and FA map) (Mori et al., 2009; 
2008), being useful as a template for brain normalization in 
the ICBM-152 coordinates. However, there is a limitation 
when one may need to use those maps in a statistical 
evaluation. In other words, the variability information was 
lacking in the previous Mori et al. (2008) dataset. For this 
reason, a complementary DTI maps were reconstructed 
in this study, where the populational standard deviation 
from healthy individuals was added in the same model 
presented in the DTI-JHU-81 approach. With this data 
format, it is possible to check the reproducibility and 
precision of quantitative DTI-related estimate, mainly 
in areas such as the uncinate fasciculus, the cingulum, 
a branch of the superior longitudinal fasciculus, and the 
subcortical white matter of the superior temporal gyrus can 
be clearly identified (Mori et al., 2008). The full analysis, 
for each white matter tract, is given as a supplementary 
dataset. In addition, as seen in Figure 2, the SD map often 
presents higher values on the white/gray matter tissues 
interface, which is valuable for evaluating more reliable 
reports in DTI studies. It is important to understand the 
data fluctuation and limitation for brain regions that 
still suffer from lack of precision in diffusion-weighted 
acquisition. Mori et al. (2008) was originally concerned 
to offer a DTI template based on the main white matter 
tracks in human brain, which is based on an averaged 
DTI signal. In general, the main contribution given by 
Mori et al. (2008) to the community was a set of manually 
delineated white matter probability masks that define the 
healthy human brain connectivity. Our DTI template is 
focused to address complementary statistical information 
to the DTI-JHU-81 template, offering a variability map 
to each DTI scalar image, e.g. FA, ADC, RA and RD, 
and then opening new statistical evaluation possibilities 
to neuroscience studies.

The DTI-USP-131 template proposed in this 
study should be interpreted as a statistical framework 
that could be applied to a patient-specific evaluation 
approach, where a voxel-wise statistical inference can 
be calculated over the entire brain volume. Hence, our 
strategy could be thought as a TBSS (Smith et al., 2006) 
or TSA (Zhang  et  al., 2010) computational tools 
generalization, which, in our case, offer a patient-specific 
evaluation instead of a group analysis. The main new 
possibility that is added with our DTI template is the 
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patient-specific evaluation on DTI data, which greatly 
improve the clinical evaluation, e.g. white matter 
variability in different neurodegenerative diseases, 
focal lesion disturbance in white matter areas, disease 
progression on tract-specific evaluation, automatic 
lesion detection approaches that relies on voxel-space 
evaluation, and other applications that need a precise 
white matter disturbance analysis on a single subject. 
Some practical examples of DTI-USP-131 usage can be 
commented, such as the brain surgical planning where 
the DTI image from a single patient should be analyzed 
in order to find the white matter fibers disturbance caused 
by the disease (Berman, 2009; Kim et al., 2013). Another 
application could be thought in longitudinal progression of 
neurodegenerative brain diseases (e.g. Multiple Sclerosis) 
that affects several white matter areas (Ganiler et al., 2014; 
Ontaneda et al., 2014).

In conclusion, complementary information for the 
DTI-JHU-81 template is given, where the variability 
(SD maps) were reconstructed for the most commonly 
used DTI quantitative maps, such as FA, MD, RA and 
RD. The proposed DTI-USP-131 template is a useful 
dataset for single subject evaluation, bringing more 
possibilities to surgical planning, neurodegenerative 
disease follow-up and general brain studies that rely on 
DTI data analysis. It worth to remembering that all the 
DTI maps provided here are already in the ICBM space 
that is useful for many statistical applications using this 
common space. Although there is no complementary 
computational toolkit offered in this study (for statistical 
evaluation purposes), the brain templates described here 
were made available on the web site (Senra and Murta, 
2017), which could be valuable for future statistical 
evaluations in DTI-related studies.
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