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Abstract  

Resumo

This work deals with an improvement of an anisotropic damage model in order to analyze reinforced concrete structures submitted to reversal 
loading. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous media fol-
lowing the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, 
permanent strains and bimodularity induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing 
the rigidity in tension or compression regimes are introduced. However, the original model is not capable to simulate the influence of the previous 
damage processes in compression regimes. In order to avoid this problem, some conditions are introduced to simulate the damage unilateral 
effect. It has noted that the damage model is agreement with to micromechanical theory conditions when dealing to unilateral effect in concrete 
material. Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. These 
numerical applications show the good performance of the model and its potentialities to simulate practical problems in structural engineering.

Keywords: damage mechanics, unilateral effect, concrete structures, structural failure.

Este trabalho trata do aperfeiçoamento de um modelo dano anisótropo de modo a analisar estruturas em concreto armado submetidas à inversão 
de carregamento. O modelo constitutivo original é baseado nas hipóteses fundamentais de equivalência de energia entre meio real danificado e 
meio contínuo equivalente segundo os conceitos da Mecânica do Dano no Contínuo. O concreto é assumido como um meio inicialmente elástico 
e isótropo que passa a apresentar comportamento mecânico anisótropo, plástico e bimodular induzidos pelos processos de danificação. Com o 
intuito de se levar em conta a bimodularidade do meio, são propostos dois tensores de dano governando a rigidez em regimes de tração e de 
compressão. Entretanto, o modelo original não é capaz de simular a influência de processos prévios de danificação em regimes de compres-
são. Objetivando contornar este problema, algumas condições são introduzidas no modelo para simular o efeito unilateral causado pelo dano. 
Observa-se que o modelo de dano está de acordo com as condições obtidas da Teoria Micromecânica quando tratando do efeito unilateral em 
materiais frágeis, como o concreto. Finalmente, o modelo de dano proposto é aplicado na análise de estruturas de pórticos de concreto armado 
submetidas a cargas com inversão de sinal. Os resultados comprovam o bom desempenho do modelo e potencialidades para simular problemas 
práticos da Engenharia Estrutural.

Palavras-chave: mecânica do dano, efeito unilateral, estruturas de concreto, falha estrutural.
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1. Introduction

The Continuum Damage Mechanics (CDM) has already proved 
to be a suitable tool for simulating the material deterioration in 
equivalent continuous media due exclusively to microcracking 
process. In this work, for modeling the concrete behavior, it can 
be assumed that the concrete belongs to the category of ma-
terials which can be considered initially isotropic and unimodu-
lar presenting different behaviors in tension and compression 
when damaged. A formulation of constitutive laws for isotropic 
and anisotropic elastic materials presenting different behav-
iors in tension and compression under small deformations was 
proposed in Curnier [1] for two and three-dimensional cases. 
The authors have considered a bimodular hyperelastic materi-
al defining an elastic potential energy density W which must be 
once continuously differentiable (whole wise), but only piece-
wise twice continuously differentiable. In this way, the model 
is able to produce different response in tension and compres-
sion. Pituba [2] has extended that formulation in order to take 
into account the damage effects. Accordingly with, the bulk 
(λab) and shear (µa) moduli are considered as functions of the 
damage state, so that the stress-strain relationship would be 
influenced by damage variables. Moreover, the hypersurface 
g(ε, Di) adopted as the criterion for identification of the consti-
tutive responses in compression or tension would be also influ-
enced by the damage variables. Then, a damage constitutive 
model accounting for induced anisotropy and bimodular elastic 
response for the concrete was derived from Pituba [2] and its 
potentialities for 1D and 2D analyses are discussed in Pitu-
ba [3], Pituba and Fernandes [4], Pituba and Lacerda [5] and 
Pituba [6]. Besides, the simulations of experimental tests in 
uniaxial, biaxial and triaxial stress tests are reported in Pituba 
and Fernandes [4]. The original version of the damage model 
is bimodular in the sense that presents different elasticity ten-
sors in tension and compression. Thus, the model is potentially 
capable to simulate the stiffness recovery when the medium 
is submitted to a reversal loading that evidences the transi-
tion from predominant regimes of tension to compression, i. 
e., the so-called unilateral behavior of the damaged concrete. 
However, the model is not capable to simulate the influence of 
the previous damage processes in compression (diffuse dam-
age) when there is the transition from predominant regimes 
of compression to tension Comi [7]. From a micromechanics 
point of view this characteristic is due to the partial closure 
of micro-cracks loaded in compression which affect less the 
elasticity moduli in compression than in tension, Desmorat [8]. 
Therefore, to avoid this problem a new elasticity tensor is pro-
posed and some numerical analyses are performed to simulate 
practical problems in structural engineering.
Many different strategies are possible and have been proposed in 
the literature to model the stiffness recovery as described in Comi 
[7], Carol and Willam [9], Welemane and Comery [10], Bielski et 
al. [11], Liu [12] and Araújo and Proença [13]. For more details, 
in Bielski [11] is presented a summary of some formulations of 
models that take into account the unilateral effect of the damage 
process, such as: the use of fourth-rank projection operators for 
the decomposition of the stress and strain tensors into the posi-
tive and negative projections, besides the use of the generalized 
projection operators.

On the other hand, despite the progresses in the macroscopic model-
ing of the unilateral effect (in particular, the continuity problems that 
arise when the induced anisotropy is simultaneously described), this 
subject still remains as an open research field when it deals with in-
duced anisotropy damage models, even when the micromechanical 
theory has been used to justify the proposal of constitutive models 
dealing with cracked media, Welemane and Comery [10], Zhu [14], 
Zhu [15] and Pichler and Dormieux [16]. This can be noted even when 
dealing with more actual approaches based on multi-scale analysis 
procedures, Skarzynski and Tejchman [17] and Pituba and Souza 
Neto [18]. Indeed, this work intends to contribute to the modeling of 
damage unilateral effect applied to concrete structures. However, it 
must be noted that the proposed model is not capable to take into 
account the friction effects, namely blocking and dissipative sliding of 
closed microcrack lips. This feature can be discussed in future works.

2. Bi-dissipative plastic-damage model

2.1 Original proposal of Pituba and Fernandes [4]

The original damage model formulation Pituba and Fernandes [4] 
is built from the formalism presented in Pituba [2]. Moreover, the 
model respects the principle of energy equivalence between dam-
aged real medium and equivalent continuous medium established 
in the CDM. The damage model is briefly presented in this work. 
Initially, for dominant tension states, a damage tensor is proposed:

(1)
DT=f1(D1,D4,D5) )( AAÄ +

2f2(D4,D5) )]()[( AAAIIA Ä-Ä+Ä
-

-

-

-
 

where f1(D1, D4, D5) = D1 – 2 f2(D4, D5) and f2(D4, D5) = 1 – (1-D4) 
(1-D5). The variable D1 represents the damage in direction orthog-
onal to the transverse isotropy local plane of the material, while 
D4 is representative of the damage due to the sliding movement 
between the crack faces. The third damage variable, D5, is only 
activated if a previous compression state accompanied by damage 
has occurred. In Curnier [1], the tensor I is the second-order iden-
tity tensor and the tensor A, is formed by dyadic product of the unit 
vector perpendicular to the transverse isotropy plane for himself. 
Those products are given in Pituba [2]. For dominant compression 
states, it is proposed the other damage tensor:

(2)
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where *
1f (D2, D4, D5) = D2 – 2f3(D4, D5) ,f2(D3) = D3 and f3(D4,D5)=1–

(1-D4)(1-D5). Note that the compression damage tensor introduces 
two additional scalar variables in its composition: D2 and D3. The 
variable D2 (damage perpendicular to the transverse isotropy lo-
cal plane) reduces the Young’s modulus in that direction and in 
conjunction to D3 (that represents the damage in the transverse 
isotropy plane) degrades the Poisson’s ratio throughout the per-
pendicular planes to the one of transverse isotropy.
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On the other hand, the constitutive tensor is written as:
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The remaining parameters will only exist for no-null damage, 
evidencing the anisotropy and bimodularity induced by damage. 
Those parameters are given by:

(6)

)D,D(2)D(2)DD2)(2()D,D,D( 542112
2
110054122 m-l--m+l=l ++

10112 D)D( l=l+ ;   ])D1()D1(1[2)D,D( 2
5

2
40542 ---m=m

)(
)(

),())((),,,( 311

0

0
3212

2
2200543222 D

1
DD2DD22DDDD --- -

+--+= l
n

n
lmll ),( 542 DD2m-

)]D1)(D1()D1[()D,D( 32
2

303212 ----l=l- ; )DD2()D( 2
330311 -l=l-

As it can see, the constitutive model includes two damage tensors 
in order to take into account the bimodularity induced by damage 
in the concrete behavior. Therefore, it is necessary a criterion to 
define the tension and compression dominant states to indicate 
what damage tensor should be used.
The criterion has been extended in Pituba [2] in order to the actual 
damage state can influence on the hyperplane definition. There-
fore, the following relationship has been proposed:

(7)g(e,DT,DC) = N(DT,DC) . ee 

In Pituba and Fernandes [4], a particular form is adopted for the 
hypersurface in the strain space: a hyperplane g(ε) defined by the 
unit normal N (||N|| = 1) and characterized by its dependence of the 
strain and damage states. Accordingly with Eq. (7) and referring to 
general cases of loading, the following relationship has been pro-
posed for the hyperplane:

(8)g(e,DT,DC) = N(DT,DC) . ee  = g1(D1,D2) 
e
Ve  + g2(D1,D2) 

e
11e

where γ1(D1,D2) = {1+H(D2)[H(D1)-1]}η(D1)+{1+H(D1)[H(D2)-1]}
η(D2) and γ2(D1,D2) = D1+D2.
The Heaveside functions employed above are given by:

(9) H(Di) = 1   to   Di > 0;H(Di) = 0   to   Di = 0    (i = 1, 2)

The η(D1) and η(D2) functions are defined, respectively, for the tension 
and compression cases, assuming for the first one that there was no 
previous damage in compression affecting the present tension damage 
variable D1 and analogously, for the second one that has not had previ-
ous tension damage affecting variable D2. The proposed functions are:
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Note that if the damage process in the material is not activated (D1 = 
D2 = 0) the Eq. (8) recovers the equation proposed by Comi [7], thus 
the formulation satisfies the proposed condition of initially isotropic 
material. Already, if the material is totally damaged, D1 = D2 = 1 (η (D1) 
= η (D2) = 0) and γ2 = 2, the hyperplane g(ε) is coincident to the trans-
verse isotropy local plane of the material and, therefore, the normal 
vector to the hyperplane is given by the transverse isotropy tensor A.
On the other hand, due to anisotropy induced by damage, it is con-
venient to separate the damage criterion into two criteria: the first 
one is only used to indicate the beginning of the damage processes, 
or that the material is no longer isotropic; the second one is used 
for loading and unloading processes, when the material is already 
considered as transverse isotropic medium. This second criterion 
identifies if there is or not evolution of the damage variables. That 
division is justified by the difference between the complementary 
elastic strain energies of isotropic and transverse isotropic materials.
If there is damage evolution, i. e., when 0DT ≠  or 0DC ≠ , the 
evolution laws of the damage variables are written as associated vari-
ables functions. Considering just the case of monotonic loading, the 
evolution laws proposed for the scalar damage variables are resulting 
of fittings on experimental results. The general form proposed is:
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of energy equivalence, for the uniaxial point of view, for instance, 
the constitutive tensor is written as:

(13) 0EET = 2
2

2
1 )1()1( DD --  

The relationship above shows that in tension dominant states pre-
vailing prior to activation of damage in compression is possible to 
solve the problem discussed here. By analogy, under multiaxial 
stress states, it can be concluded that damage tensor in compres-
sion DC should compose the expression of the constitutive tensor 
in tension dominant states. Therefore, respecting the principle of 
equivalence of energy, the constitutive tensor is now written as:

(14)  )DI)(DI(E)DI)(DI(E CT0TCT ----=

where Ai, Bi and Y0i are parameters of the model that must be iden-
tified through the uniaxial tension and compression tests and bi-
axial compression tests.
When the damage process is activated, the formulation starts to 
involve the tensor A that depends on the normal to the transverse 
isotropy plane. Therefore, it is necessary to establish some rules 
to identify its location for an actual strain state. Initially, it is estab-
lished a general criterion for the existence of the transverse isot-
ropy plane. In Pituba and Fernandes [4] is proposed that the trans-
verse isotropy due to damage only arises if positive strain rates 
exist at least in one of the principal directions. After assuming such 
proposition as valid, some rules to identify its location are defined.

2.2 Discussion about the unilateral effect 
 in brittle materials

The original version of the damage model is bimodular, however it 
is necessary to take into account the diffuse damage generated in 
previous compression regimes when dealing with tension regimes. 
This problem can be solved by introduction of a new elasticity ten-
sor in tension dominant states. Therefore, respecting the principle 

Considering a matrix representation and assuming, for instance, that the transversal isotropy local plane is coincident to the 2–3 plane, 
the constitutive tensor ET may be described as follows:
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It can be noted that the equations (5) and (11) present different 
values for the shear moduli in compression and tension domi-
nant states, respectively. Therefore, this alternative formulation 
in order to take into account the diffuse damage does not re-
spect the Curnier´s condition about the tangential continuity. To 
avoid this problem, another expression for the damage tensor 
in compression dominant states *

CD  is proposed. This tensor is 
given by:

(16)*
CD =f1(D2,) )AA( Ä +f2(D3) )]AA()II[( Ä-Ä

-

where f1(D2) = D2 and f2(D3) = D3. It is important to observe that 
the damage tensor *

CD  provides the diffuse damage in previ-
ous compression states through the changing of the volumetric  
modulus, as proposed in Comi [7]. For simplicity, considering a 
matrix representation and assuming, for instance, that the trans-

versal isotropy local plane is coincident to the 2–3 plane, equation 
(16) is written as:
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Finally, taking into account the principle of energy equivalence, the 
constitutive tensor for tension dominant states is given by:
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Then, following the formalism presented in Pituba [2], the bidissipative anisotropy damage model taking into account the unilateral effect 
in brittle materials is written as:

Now, the parameters λij and µi are given by:

(19)
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The stress tensor is obtained from the gradient of the elastic potential, as follows:

The constitutive tensor is also obtained from the elastic potential, i. e.:

Taking into account the unilateral effect and assuming that direction 1 be perpendicular to the transverse isotropy local plane in the strain 
space, the complementary elastic energy of the damaged medium in tension dominant states is now expressed by:
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The variables associated to damage variables in tension with dam-
age activated in previous compression will also be modified, be-
cause they are obtained from the elastic potential (20). Therefore, 
the following relationships are valid:
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Note that only Y1 must to take into account the diffuse damage 
represented by D2 and D3. In this case, those damage variables 
are constants because there is no energy release rates during the 
damage evolution in tension dominant states related to D2 and D3.
In the case of tension dominant states without activation of dam-
age processes in previous compression, the original version of the 
damage model is recovered.
It can be verified that the unilateral damage model satisfies two 
basic requirements of this modeling kind:

The model does not produce spurious energy dissipation upon 
closed load paths which do not activate damage, Matallah and La 
Borderie [19].
The continuity of the stress-strain law across the tension-com-
pression interface is assured (hiperplano g(ε,DT,DC)), because the 
damage model is derived from the formulation proposed in Pituba 
[2], following the requirements of Curnier [1] and Welemane and 
Comery [10]. The continuity of the stress-strain law between two 
damage states imposes that the elastic potential must be once 
continuously differentiable (whole wise), but only piecewise twice 
continuously differentiable.
Accordingly with Curnier [1], other problem related to this kind of 
modeling concerns the loss of isotropy of the elasticity tensor in the 
transition through the tension-compression interface. The isotropy is 
preserved only if the interface is defined in the same group of sym-
metry of the elasticity tensor. In the proposed model the hyperplane 
and elasticity tensor belong to the group of isotropic material if there is 
not damage process. On the other hand, if there is activation of dam-
age processes, the hyperplane starts to present the symmetry of the 
transverse isotropic material as well as the elasticity tensor. Anyway, 
the model always preserves the isotropy of the elasticity tensor.

2.3 Damage model applied in framed RC structures

This work intends to show the capabilities of the modified dam-
age model to simulate the mechanical behavior of reinforced con-
crete structures submitted to reversal loading in possible practical  
situations of structural engineering. So, it is necessary that the 
model presents efficient numerical responses, i. e., numerical 
analyses with low computational cost and a few parameters of the 
model to be identified. Therefore, the one-dimensional version of 
the damage model has been implemented in a finite element code 
for bar structures analysis with finite layered elements in order to 
model the reinforced concrete framed structures. For the longitu-
dinal reinforcement bars, standard elastoplastic behavior is admit-
ted. In the transversal section, a certain layer can contain steel and 
concrete, see Fig. 01. A perfect adherence between materials is 
adopted and an equivalent elasticity modulus and inelastic strain 
are defined for each layer by using homogenization rule:

(34)  ( ) skskckskk ECECE +-= 1

(35)  ( ) pskskcinkskink CC eee +-= 1

where,
– Csk is the volumetric rate of steel in the layer N° k
– Esk is the elasticity modulus of steel in the layer N° k
– Eck is the elasticity modulus of concrete in the layer N° k
– εpsk is the plastic strain of steel in the layer N° k
– εink is the homogenized inelastic strain in the layer N° k
– εcink is the inelastic strain of concrete in the layer N° k
– Ek is the homogenized elasticity modulus in the layer N° k

Figure 1 – Finite layered element
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Considering the direction 1 as the longitudinal direction of the finite 
element, the formulation presented in the previous item is simpli-
fied and presented as follows:

(36) E  (e) := 
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The one-dimensional version of the model takes into account per-
manent strains induced by damage evolution. Assuming, for sim-

plicity, that the permanent strains are composed exclusively by vol-
umetric strains, as it has already been considered in Comi [7], and 
taking into account the unilateral effect, the evolution law results:
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Observe that β1 and β2 are parameters directly related to the evo-
lutions of permanent strains induced by damage in tension and 
in compression, respectively. The consideration of the permanent 
strains improves the capture of the transverse strains by the mod-
el, as it can see in Pituba and Fernandes [4]. Besides, the model 
predicts the change in sign of the volumetric strain.

3. Micromechanical theory

Although the damage model has been based on the macrome-
chanical behavior of the concrete, this item intends to show the 
strong connection between the model and the micromechanical 
theory. The description of the damage activation-deactivation pro-
cess as part of macroscopic modeling requires knowing when the 
transition between these two states of damage occur and how 
damage deactivation affect the elastic properties of the material, 
Welemane and Comery [10]. Moreover, there is a difficulty in rec-
ognizing tension and compression states in 3D micro-scale analy-
sis in order to adopt a differentiable Gibbs potential. It is noted 
that the formulation for bimodular anisotropic damaged media pro-
posed in Pituba [2] replies the first question (see Equation (7)). 
Besides, the continuity of the stress-strain law has been assured. 
In this context, this section aims to point out the influence of the 
opening-closure of microdefects on the elastic properties of the 
microcracked concrete.
Following Welemane and Comery [10], consider a RVE (represen-
tative volume element) of an homogeneous isotropic elastic linear 
matrix (Young modulus E0 and Poisson rate ν0) weakened by an ar-
ray of N randomly distributed flat penny-shaped microcracks (unit 
normal nk, radius ak), whose radii are very small in comparison with 

Figure 2 – Parallel microcracks on concrete 
submitted to uniaxial tension stress
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the size of the RVE. Assuming non-interaction among microcracks 
and sliding without friction of their lips, the free enthalpy of the mi-
crocracked medium is given by:

(46)
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The Heaviside function H depending on the normal stress to each 
microcrack is open ( 0k

n ≥σ ) or closed ( 0k
n <σ ).

Consider the simple case of a material weakened by a 
single array of parallel microcracks with unit normal n as in Fig. 
2 and parameter A = 16 ( ) ( )0

2
0 36/116A ν−ν−= . This case is interesting 

for the damage model proposed in this work because the effec-
tive medium exhibits the symmetry associated with the geometric 
shape of the microcracks with the privileged direction n (transverse 
isotropic material).
Then, the elastic moduli are fully determined by five independent 
coefficients E(n), E(t), ν(n,t), ν(t,k) and μ(n,t), for any vectors t and 
k forming with n an orthonormal basis of R3. Using Eq (46), it can 
be obtained the elastic moduli mentioned above.
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(50) ν(t,k) = ν0 
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In Welemane and Comery [10] are described some conclusions 
about eqs (47)-(51) that are useful for a discussion about the 
proposed model. In general way, a macroscopic approach of the  

unilateral effect in brittle materials should no longer be considered 
only by the single restoration of the Young modulus in the direction 
normal to closed microcracks. Therefore, based on micromechani-
cal observations, some important aspects related to unilateral ef-
fect of damage processes can be pointed out:
- The elastic moduli E(n) and Poisson ratio ν(n,t), related to nor-
mal direction to parallel microcracks, are affected by the evolution 
of the microdefects. In particular, those moduli recover their initial 
values (E0 and ν0) when the microcracks are closed.
- In the other hand, the shear modulus μ(n,t) remains the same 
when the microcracks are closed (partial deactivation of damage). 
This behavior is consistent with the hypothesis about tangential 
jump null of the constitutive tensor. However, the elastic moduli 
E(m), ν(m,p) and μ(m,p) related to directions with different orienta-
tions at principal axes (n,t and k) are partially recovered when the 
microcracks close.
The particular nature of the microdefects contribution allows ex-
tending these considerations for any of N microcracks with differ-
ent normal vectors. In this context, let us compare the damaged 
elastic moduli given by the proposed model to those ones given 
by the micromechanical equations. Then, considering Fig. 2 and 
assuming, for instance, that the transversal isotropy local plane is 
coincident with the 2-3 plane, the elastic moduli given by the pro-
posed model in dominant compression (subscript C) and in tension 
(subscript T) regimes are written as:
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The longitudinal elastic moduli in tension and in compression in 
the direction 1 depend on the dominant state, i. e., of the opening-
closure criterion. This is also valid for the Poisson ratio in the 12  
and 13 planes. On the other hand, the Poisson ratio in the  
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23 plane (transversal isotropy local plane) is not affected by the 
damage process. The shear moduli are not changed in the transi-
tion from the tension to compression regimes and vice-versa. Ob-
serve Eq. (54) and consider the transition from dominant tension 
regime (damage process in tension activated or not) to the com-
pression regime without previous compression. In this case one 
has: 03C2C3T2T EEEEE ==== . This result is in correspondence 
with the form described by (49). Indeed, the ( )23D1− coefficient 
is necessary to take into account the diffuse damage in previous 
compression when the current dominant state is tension.
Obviously, in general cases, when the damage process is activat-
ed, the formulation starts to involve the tensor A, which depends 
on the knowledge of the normal to the transverse isotropy plane, 

Pituba and Fernandes [4]. Therefore, the discussion about elastic 
moduli presented above is valid but that moduli are dependents of 
the tensor A, as described in item 2.1.
Finally, it is observed that despite the proposed model has mac-
romechanical motivations in the macroscopic behaviour of the 
concrete, the model assists to the requirements suggested by We-
lemane and Comery [10] for the micromechanical analysis of the 
unilateral effect in materials.

4. Numerical applications

Initially, the unilateral model is used in the simulation of an uni-
axial test in concrete specimens subject to reversal load in order 
to show the qualitative numerical response. Observe that the per-
manent strains are important in the definition of the hyperplane, in 
the sense that the total strains start to compose the criterion, Eq. 
(8). The initial stiffness recovery can be clearly observed taking 
into account permanent strain in the dominant tension regime. It is 
noted the contribution of the diffuse damage generated in previous 
compression regimes when dealing to tension regimes.

Figure 3 – Uniaxial test on concrete 
specimens submitted to reversal load

Figure 4 – Geometry, reinforcement 
details and loading history

Figure 5 – Parametric identification in uniaxial compression test – La Borderie's RC Beam
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4.1 Reinforced concrete beam with symmetric 
 reinforcement

This example deals with a test performed by La Borderie [20] and 
Matallah and La Borderie [19] that corresponds to a reinforced 
concrete beam in a configuration of three points cyclic flexion. The 
beam is subject to cyclic loading at the middle of the span. The 
concrete has elasticity modulus Ec = 31,800 MPa; the steel has Es 
= 210,000 MPa, yielding stress of 445 MPa and ultimate stress of 
540 MPa. In the experimental test, the beam is subjected to two 
loading cycles of amplitude, the first one is 1mm and the second 
one 2 mm (see Fig. 4). The beam geometry and its reinforcement 
distribution are illustrated in Fig. 4.
Figures 5 and 6 show the results of the parametric identification of 
the proposed damage model. The parameters used by La Borderie 
[20] were taken as reference in the simulation of uniaxial tension 
and compression tests. Table 1 presents the parameter values. It 
is important to note that the experimental tests do not present load-
ing/unloading paths to identify β1 and β2. Therefore, the param-
eters β1 and β2 have been adopted in order to obtain the perma-
nent strains evidenced by the numerical analysis of the concrete 
beam during the unloading process. This adoption has been made 
without interference in the value of the compression and tension 
strengths of the concrete.
In the numerical analysis, displacements increments have been 
enforced in the middle of the span. Using the advantage of sym-
metry, only half of the beam has been discretized into 20 finite ele-
ments. The transversal sections were divided into 16 layers where 
the reinforcement layers are located in the medium planes of the 
second and fifteenth layers. In Fig. 7 are shown the numerical and 
experimental responses of the vertical force and displacement in 
the middle of the span related to the first stage of the loading. It is 
noted the good precision of the numerical response.

Figure 6 – Parametric identification in uniaxial tension test – La Borderie's RC Beam

Table1 – Parameters for the proposed damage 
model – La Borderie’s RC Beam

Tension Compression

Y01 = 6.0x10-5 MPa Y02 = 3.0x10-3 MPa

A1 = -0.93 A2 = 1.50

B1 = 110 MPa-1 B2 = 10.01 MPa-1

β1 = 8x10-5 MPa β2 = 1.0x10-3 MPa

In the other hand, in the Fig. 8 is illustrated the global response 
of whole test. The results obtained by the model are satisfactory 
despite the limited parametric identification of the parameters re-
lated to permanent strains. The ultimate experimental loads related 
to the first and second cycles are obtained by the both analyses: 
when only damage processes are considered and the other one 
when permanent strains (b1 and b2) are taken into account too. 
However, the permanent strains in the unloading processes are 
only captured by the modelling with permanent strains, as expect-
ed. In general way, the model reproduces satisfactorily the cyclic 
behaviour of the beam.
Besides, the damage profile is also close to experimental test ob-
servations, see Matallah and La Borderie [19]. In Fig. 09 is shown 
the damage distribution in tension regimes at two points of the 
curve illustrated in Fig. 08. The first point is located at the end of 
the first loading and the second one is located in the end of the 
second loading (reversal loading). These distributions have shown 
the opening/closure cracks process. The first damage in tension 
zone (D1) occurs in the bottom of the beam. On the other hand, 
when the load is inverted, the damage in tension zone (D1) appears 
in the upper zone of the beam, but the D1 distribution in the bottom 
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of the beam remains the same, although there is no increasing 
of values. Therefore, the cracks previously open are now closed. 
Note that the damage processes in the compression regimes (D2) 
are not so important in this numerical application, according to ob-
servations in La Borderie [20]. It can be observed that the symmet-
ric arrangement of the reinforcement leads to an additional support 
to compression stresses in the concrete.

Figure 7 – Experimental and numerical responses - first loading

Figure 8 – Global response of the reinforced concrete beam

4.2 Reinforced concrete frame

This experimental test was originally performed by Vecchio and 
Emara [21] taking into account just proportional loading/unload-
ing, but without reversal loading. However, in this work, the rein-
forced concrete frame is submitted to loading/unloading and then 
a reversal loading is applied in order to show the potentialities of 
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the proposed model to simulate the collapse of frames in cyclic 
loading conditions.
The frame geometry and its reinforcement distribution are illustrat-
ed in Fig. 10. The concrete has the elasticity modulus Ec=30,400 
MPa and the steel has Es=192,500 MPa, yielding stress of 418 
MPa and ultimate stress of 596 MPa. For the mechanical behav-
iour of the reinforcement, a bilinear elastoplastic model has been 
adopted with a reduced elasticity modulus in the second branch 
(Es2=0.009 Es). Also, Table 2 contains the values for the concrete 
parameters as well as in the Fig. 11 is illustrated the parametric 
identification by fitting experimental curve on compression test 
given in Vecchio and Emara [21]. However, the parameters in ten-
sion regime have been obtained using the La Borderie´s model 
response given by Pituba [3].

Figure 9 – Damage distribution in tension (D ): a) End of first loading; 1

b) End of second loading (reversal loading)

Figure 10 – Geometry and reinforcement details of the frame

Two kinds of support conditions have been used for the numerical 
analyses. The first one, Case 1, considers the frame clamped on 
two columns. The second one, case 2, considers the frame with a 
support beam. The goal is to investigate the possible influence of 
the support conditions in the analyses performed here.
In the experimental test, initially it has been applied an axial load of 
700 kN at each column, which was maintained constant through-
out the test. The lateral force has been applied in increments up to 
the frame ultimate loading be achieved. In the numerical analysis 
originally performed by Pituba [3], displacements increments have 
been enforced in the application point of the horizontal force up to 
the frame ultimate load. In that work, it has been performed load-
ing and unloading trying to simulate the experimental behaviour of 
the frame. The numerical results were very satisfactory simulating 
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Table 2 – Parameters values of the proposed 
damage model – RC Frame

Tension Compression

Y01 = 0,72 x 10-4 MPa Y02 = 0,17 x 10-2 MPa

A1 = 49 A2 = 0,30

B1 = 6560 MPa-1 B2 = 5,13 MPa-1

β1 = 1 x 10-6 MPa β2 = 1 x 10-3 MPa

Figure 11 – Parametric identification: a) Uniaxial compression test; b) Uniaxial tension test

A B

Figure 12 – Mesh and Boundary conditions used for the analyses

the ultimate load as well as the 
residual strains.
For the Case 1, the frame has 
been discretized into 30 finite 
elements, 10 of which have 
been used in the discretization 
of each column and 5 in each 
beam. The transversal sections 
have been divided into 10 lay-
ers. For the Case 2, the same 
discretization for the Case 1 
has been used with addition of 
14 finite elements to model the 
support beam. In order to in-
vestigate the potentialities of the improvement of the damage mod-
el proposed in section 2.2, the framed structure has been analyzed 

attempting to perform an un-
loading of the horizontal force 
Q, including reversal loading. 
The goal is to observe the 
consistency of the qualitative 
response provided by the dam-
age model. The numerical and 
experimental responses are il-
lustrated in Fig. 13 for the both 
cases of support conditions, 
where the graphs represent 
the applied horizontal force 
versus horizontal displacement 
computed at the superior floor 

of the frame (see Fig. 10). Note that the numerical responses for 
the both support conditions are quite similar. In fact, the damage 
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model does not consider the concrete strength complementary 
mechanisms for the mechanical behaviour of the framed structure, 
such as: aggregate interlock and dowel action. Following Vecchio 
and Emara [21] and Nogueira et al. [22], the shear contribution is 
important for this structure leading to different numerical responses 
as evidenced in Nogueira et al. [22].
It can be noted the agreement between numerical and experimen-
tal responses during the unloading process. In fact, it evidences 
the good performance of the damage model to capture residual 
strains. In this stage, the loading capacity of the frame has been 
achieved and the damage level is high in most zones of the frame, 
as it can see in Figure 14 for the Case 1. Note that the figure pres-
ents the damage distribution related to tension regimes (D1) be-
cause the analysis has shown the importance of that variable. This 
is related to the concept of the damage model proposed in this 
work. It is possible to observe the evolution of the damage pro-
cesses within the stages displayed in Fig. 14.
Besides, in Fig. 13 the symmetric behaviour of the frame related to 
load capacity when the horizontal force Q is applied to right direc-
tion and then it has been changed to left direction. In the first case, 
the load level capacity is about 294.3 kN. On the other hand, the 
load level capacity is 286.6 kN for the second case. Note yet, the 
capability of the model to simulate the recovery of the load capacity 
when the first cycle of loading is complete.
There are some parts of the frame with high values of damage 
variable D1 that together with the yielding of the reinforcement 
bars contribute to concentrate damage-plastic zones like plastic 
joints. It can be observed these zones in first and second floor 
beam/column junctions and, mainly, in the supports of the frame. 
These observations are in agreement with described in Vecchio 
and Emara [21].

Figure 13 – Numerical and experimental results of reinforced concrete frame

4.3 Reinforced concrete beam with unsymmetrical 
 reinforcement

The third numerical application is about a reinforced concrete 
beam with unsymmetrical reinforcement. This numerical appli-
cation has been originally performed by Pituba and Lacerda [5], 
but only monotonic loading has been imposed to the beam in that 
work. The elastic parameters of the concrete are fc=25MPa and 
Ec=32.3MPa. For the reinforcement has been adopted Es= 205 
GPa, yielding stress 590 MPa and ultimate stress 750 MPa. The 
geometric characteristics of the beam are given in Figure 15. The 
loading is composed by two equal forces applied on the beam.
Table 3 presents the values of the parameters used in the analysis 
and adopted from Pituba and Lacerda [5], however in this work is 
considered the plastic strains generated by the damage model.
The structure has been discretized into 16 finite elements and the trans-
versal sections have been divided into 15 layers where 3 layers have 
been used to represent the reinforcement bars according with Fig. 15. 
The numerical and experimental responses are illustrated in Fig. 16.
In the first loading, it is noted that the numerical results are very close to 
the experimental ones evidencing a good quality response in the sense 
that captures the history of the mechanical behaviour of the structure. In 
this work, the numerical analysis continues with the unloading process 
about 110 kN, where the beam is quite damaged in tension zone (bot-
tom of the beam) and the reinforcement bars present evident yielding in 
the same zone, Pituba and Lacerda [5]. The value to start the unloading 
process (110 kN) has been adopted in order to overcome numerical 
problems related to high values of the damage variable in tension.
The unloading process modelled by the damage model pres-
ents very important qualitative results. The damage model can  
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Figure 14 – D  damage distribution: a) First loading (Q=59.3 kN); b) First loading (Q=75.6 kN); 1

c) First loading (Q=294.3 kN); d) Reversal loading (Q=-286.6 kN), see Fig. 12

Figure 15 – Geometry and reinforcement details

simulate a residual displacement when the reverse loading takes 
place. Furthermore, it is observed that due to the asymmetric ar-
rangement of the reinforcement, i. e., there is sufficient reinforce-
ment at the bottom to resist the tension stresses in the first load-
ing and insufficient reinforcement (2#6.3mm) on the upper zone to 
resist the tension stresses in that zone when the load is changed. 
In this situation, the structure experiences a damage process in 
tension very intense in the upper zone of the beam. Therefore, it 
is natural that the strength of the beam be much smaller than in 
the initial first loading. It can be observed that the concrete does 
not have strength to the applied force and only the reinforcement 
resists to tension stresses indicating a strong plastic strain.

5. Conclusions

In this work, an improvement of a damage model incorporating the capa-
bility to simulate the unilateral effect of the concrete has been presented.
This paper has shown that the proposed damage model assists 
to the requirements suggested by Welemane and Comery [10] for 
the micromechanical analysis of the unilateral effect in materials. 
Besides, the continuity of the stress-strain law across the tension-
compression interface has been assured and the model always 
preserves the isotropy of the elasticity tensor.
In order to validate the proposed model in practical situations, a 
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Table 3 – Parameter values of the proposed 
damage model – RC Beam

Tension Compression

Y01 = 6.0 x 10-5 MPa Y02 = 1.0 x 10-3 MPa

A1 = 0.3 A2 = 1.5

B1 = 195 MPa-1 B2 = 10.2 MPa-1

β1 = 5 x 10-5 MPa β2 = 3 x 10-4 MPa

simplified 1D version has been used. The 1D analysis has shown 
an efficient and practical employment in the simulation of the dam-
age processes in framed structures submitted to inverse loading, 
without numerical problems and low computational cost. Besides, 
the parametric identification is simple. In this case, the damage 
model could be used in estimative analyses of structures in prac-
tical situations, such as: numerical simulation of displacement in 
cracking concrete beams submitted to service loads, estimative of 
ultimate load capacity of frames and beams and collapse configu-
ration of reinforced concrete frames.
The obtained results encourage us to proceed in the improve-
ment of the model to deal with more complex phenomena in future 
works, e. g., blocking and dissipative sliding of closed microcracks 
lips, non-local version of the model and a more efficient paramet-
ric identification of β1 and β2, among others. Besides, the damage 
model can be improved with the consideration of the shear con-
tribution of the concrete for the mechanical behaviour of framed 
structures even using 1D modelling.
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