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Abstract  

Resumo

During the construction of bridges, cantilever roofs and eaves, assembling formworks and scaffold that will support the slabs is a point of difficulty 
in the construction phase. Therefore, it is relevant the study of the lattice joists which serve as self-supporting formwork, supporting its weight, 
the weight of the fresh concrete, the weight of workers and the weight of concreting equipment. The analysis of the bearing capacity of lattice 
joists subject to negative bending with base concrete opening enables checking the maximum span that each lattice truss model bears, either 
cantilevered or between continuous spans with reduced or no scaffold. The concrete opening enables the monolithism between the slab and its 
support. This paper presents the results of tests on lattice joist with concrete opening. By the results analysis, formulations for designing the spac-
ing between prop lines were found. The results are promising and indicate great possibilities of using lattice joists with concrete opening over the 
supports (beams), in order to optimize the slab shuttering.

Keywords: self-supporting, shuttering, negative bending, lattice joist, mini lattice panel, buckling.

Em construção de pontes, marquises e beirais, uma das dificuldades encontradas é a montagem de formas e escoramento que darão apoio à laje 
na fase construtiva. Portanto, apresentam-se relevantes os estudos de vigotas treliçadas que servem como formas autoportantes, suportando, 
além de seu peso, o peso do concreto fresco, de operários e equipamentos de concretagem. A análise da capacidade portante das vigotas treliça-
das sujeitas à flexão negativa com abertura no concreto da base, possibilita a verificação do vão máximo que cada modelo de armadura treliçada 
suporta em balanço ou entre vãos contínuos com reduzido ou nenhum escoramento. A abertura de concretagem possibilita o monolitismo entre 
a laje e o seu apoio. Neste artigo são apresentados os resultados de ensaios em vigotas treliçadas com abertura de concretagem na base. Com 
a análise dos resultados realizada foram encontradas as formulações que permitem o dimensionamento do espaçamento entre linhas de escora. 
Adianta-se que os resultados encontrados são promissores e indicam grandes possibilidades da utilização de vigotas treliçadas com abertura de 
concretagem sobre os apoios (vigas), com o objetivo de otimizar o cimbramento da laje.

Palavras-chave: autoportância, cimbramento, momento negativo, vigota treliçada, minipainel treliçado, flambagem.



1.	 Introduction

The manufacturing of lattice slabs started in Brazil after the imple-
mentation of the first electroplating machine, using steels grade 600. 
According to the Brazilian code ABNT NBR 14862 [1], lattice rein-
forcement is a precast element with a three-dimensional prismatic 
mold, made of two steel wires in the bottom and one steel wire in 
the top which form its lower and upper flanges, respectively. These 
elements are connected by electrofusion to two steel wires, called 
sinusoid (diagonal bars), following a regular 20 cm spacing, known 
as step and worldwide standardized. The lattice girders are identi-
fied for a TR code followed by two digits that represent its height in 
centimeters. The last three digits represent respectively the upper 
flange, sinusoid and lower flange diameters, in millimeters.
The code ABNT NBR 14859-1 [2] regulates the precast lattice joists 
fabrication (VT) with a base of concrete. The lattice girder partially 
embedded in the concrete base provides a light element easy to 
handle, requiring fewer shuttering components according to its self-
supporting capacity (SARTORI [3]). The joists can be reinforced or 
not, depending on its structural demand. These constructive ele-
ments are normalized according to ABNT NBR 14859-1 [2]; ABNT 
NBR 14859-2 [4]; ABNT NBR 14860-1 [5]; ABNT NBR 14860-2 [6]; 
ABNT NBR 14862 [1] and ABNT NBR 15696 [7], reporting to ABNT 
NBR 6118 [8]. Figure 1A illustrates a lattice joist cross section. The 
combination of two or more lattice girders comprises mini panels 
(Figure 1B) and lattice girder panels (Figura 1C).
Gaspar [10] concluded that the lattice joist bearing capacity dur-
ing the construction phase, considering sagging moments, is 
governed by the upper flange buckling. The upper flange is char-
acterized by its diameter and diagonal stiffness. As the vertical 

forces increase, the upper flange is progressively compressed in 
bending (sagging moment) possibly causing instability or buck-
ling. It is also argued that the shuttering assembly is necessary so 
that the structure doesn’t achieve its ultimate capacity, minimiz-
ing the elements stresses. Terni et al [11] developed researches 
using computer programs in order to analyze this behavior in the 
upper flanges. Sartorti et al [3] developed experimental studies 
with positive bending and shear in lattice joists subject to sagging 
moments, aiming to provide data about the calculation of spac-
ing between prop lines. It also aimed to obtain a more economic 
construction process, eliminating issues during the construction 
phase and ensuring security. The later authors concluded that 
the element ruin can also be characterized by its diagonal bars 
buckling – for joists with a height of 25 cm or more – besides the 
upper flange buckling, which is more frequent in joists with 20 cm 
height or less.
In another occasion, Sartorti et al [9] affirmed that the following 
situations shall be considered for a self-supporting structure cal-
culation in the ultimate limit state: the upper flange buckling due to 
sagging moments, the lower flange buckling due to hogging mo-
ments, the sinusoid shear buckling, failure for excessive plastic 
deformation of the tension bars and failure of the welded node due 
to shear. For the serviceability limit states, the calculation of this 
elements shall consider the analysis of its vertical displacements.
The assemblage of formwork and shuttering elements is a challenge 
during the construction of bridges and overpasses. Regarding to this 
issue, the use of lattice elements is an interesting solution whereas 
its concrete base works as a self-supporting formwork for the slabs. 
The reinforcement composing the lattice trusses helps bearing the 
forces acting in the structure in the serviceability state. The use of 
these latticed elements dispense the need of many transportation 
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Figure 1
Lattice girder joist and lattice girder panels (cross section scheme)
Source: Adapted from SARTORTI et al [9]
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equipment, making it easy to handle. This combination of factors 
results in sustainability and cost saving.
Self-supporting lattice slabs can be used usually in two different 
manners: simply supported, according to Figure 2A, or with discon-
tinuous concrete joists – particularly the joist located over the sup-
ports – making it possible a monolithic joining between the bridge 
girder and its deck, as shown in Figure 2B.
This research aimed to expand the knowledge concerning self-sup-
porting lattice joists, analyzing its behavior when subject to negative 
bending and concrete opening (discontinuous concreting) over the 
supports (Figure 2B). Therefore, the behavior of the steel bars from 
the lower flange and sinusoids were analyzed, measuring the maxi-
mum load bearing capacity of a lattice joist until the serviceability limit 
state of excessive deformation and the ultimate limit state of instability 
of any of the latticed components. It was determined the real effective 
buckling length necessary to the calculation of the maximum span 
either in cantilever or between supports with no shuttering.

2.	 Characteristics of the negative  
	 bending tests

This item describes the main characteristics of the experimental 
program. 

2.1	 Lattice joists

The models of lattice trusses used for the lattice joists are de-
scribed in Table 1 and its longitudinal and cross section are illus-
trated in Figures 1A and 3, respectively. For each truss height (6, 
8, 10, 12, 16, 20, 25 and 30 cm) there are nine models – three of 
them with 20 cm concreting interruption, three of them with 30 cm 
concreting interruption and other three with 40 cm concreting inter-
ruption, in a total of 72 lattice joists.
The concrete bases of the joists were cast using the ce-
ment type CP V-ARI, with a self-compacting concrete ratio of 

Figure 2
Usual kinds of mini panels used for bridge decks
Source: SARTORTI et al [9]

B

B

A

B

Table 1
Lattice reinforcement characteristics

Lattice reinforcement

Truss code Height (cm)
Diameter of the bars (mm)

Upper Sinusoid Lower
TR 06 644 6 6 4.2 4.2
TR 08 644 8 6 4.2 4.2
TR 10 644 10 6 4.2 4.2
TR 12 644 12 6 4.2 4.2
TR 16 745 16 7 4.2 5
TR 20 745 20 7 4.2 5
TR 25 756 25 7 5 6
TR 30 856 30 8 5 6
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1:1.526:2.589:0.555:0.375% that are in volume cement: fine 
sand: stone (type 0): water: superplasticizer, in volume. The 
base cross section has a width of 12 cm, a height of 3 cm and 
a length of 240 cm. For the 72 joists, 15 mixtures in a concrete 
mixer were necessary, regarding to the concrete mixer capacity. 
Three concrete cylinder tests were conducted for each mix of 
concrete, expect for the last one, where six concrete cylinders 
were taken for the determination of the dynamic modulus of 
elasticity and its characteristic bearing capacity under compres-
sion loads.

2.2	 Set-up of the bending tests

The bending tests were carried out at a concrete age of 50 days. 
The following equipment were used: servo-hydraulic universal 
testing machine (1000 kN capacity); dial indicators with a stroke 
of 50 mm and a precision of 0.01 mm; magnetic supports for the 
dial indicators; steel beam used as struts and wood elements used 
for loading.
The joists were positioned with its upper flange downwards and put 
above wooden supports which served as pinned supports located 

Figure 3
Longitudinal section of the lattice joists models with total length of 240 cm. The concrete opening in the 
central region in indicated
Source: Authors

Figure 4
Test set-up: positioning of joists, devices for bending test and dial indicators
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at 20 cm from the edges of the joist. These wood elements were 
supported over an I-shaped steel beam. For the distribution of the 
applied load in two points, two wood pieces were positioned in the 
edges right before the space where there was no concrete. Five 
centimeters is a usual value for the width of the bearings of footing 
under the lattice joists in real structures, what explains the choice 
of this value for the wood elements width. Vertical displacements 
due to the loading were measured by two dial indicators (R1 e R2) 
in the points of loading. The dial indicators were always positioned 
in the same region in different sides of the joists, according to 
Figure 4. Displacements due to the self-weight of the lattice joists 
were not measured. The test set-up is shown in Figure 4. 

3.	 Tests results

This item presents the results of concrete cylinder tests and nega-
tive bending tests. 

3.1	 Concrete specimens

The concrete cylinders for each concrete mixture were tested by 
the age of 50 days, measuring its Young’s modulus and compres-
sive strength. The Young’s modulus was measured by an acous-
tic emission non-destructive test. The cylinder is exposed to an 
impulse which measures the dynamic modulus of elasticity. The 

Sonelastic® equipment was used for this purpose. Its functioning 
is quite simple and the tests can be repeated many times as they 
are not destructive.
For better understanding this equipment functioning, the following 
steps can be idealized:
a) 	The weight and geometry of the specimens are measured and 

registered in the Sonelastic® computer program;
b) 	The specimen is positioned under the wires in the nodal points 

of flexional resonance – 0.224L from the edge of the specimen, 
where L is its length;

c) 	Using a pre-determined mass impactor, the specimen suffers 
an impact providing a sound;

d) 	The impact sound is recorded by an acoustic conventional re-
ceptor (microphone). Two natural frequencies (flexional and 
longitudinal) of the specimen are contained in the sound waves;

e) 	The computer program performs a Fast Fourier Transform (FFT) 
in order to identify the natural frequencies of the specimen;

f) 	 Equations from ASTM E1876-1 [12] are used for calculating the 
modulus of elasticity having the values of the natural frequencies. 
Emphasis is given for the fact that the modulus of elasticity is a 
unique property of the material. The difference between flexional 
and longitudinal frequencies exists only because of the way they 
are obtained. Figure 5 illustrates the set-up of the described test.

For more information about Sonelastic® it is recommended reading 
Sartorti [13]. 
The values obtained by this method are 20% to 40% higher than 
the ones obtained with static tests, according to Mehta and Mon-
teiro [14]. A great advantage observed from the dynamic tests is 
the small variability of results, in sharp contrast with the static tests. 
Figure 6 shows the results of dynamic elasticity modulus for each 
concrete mixture.
The axial compression test results are presented in Figure 7. Each 
specimen has a strength value cif . The mean value for all the 
specimens is cmf . Fusco [15] indicates an expression for calculat-
ing the characteristic strength of a tested concrete (Equation 1):

(1)
Where ckf  is the characteristic compressive concrete cylinder 
strength (by the age of 28 days), with 5% probability of being 

Figure 5
Sonelastic® test set-up: specimen positioning

Figure 6
Elasticity modulus test results for each concrete mixture



1371IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 6

 	 I. S. STORCH  |  J. G. S. DOBELIN  |  L. C. BATALHA  |  A. L. SARTORTI

unfavorably exceeded, cmf  is the mean concrete compressive 
strength, s  is the standard deviation obtained by  .δ= cms f , and 
δ  is the variance defined by Equation 2, with N = total number  
of specimens.

(2)

A variation of fck results between different concrete mixtures was 
observed, even when the same ratio was used for the mixes. A 
small number of cylinder specimens were available for each mix-
ture (equipment limitation), the high room temperature and the low 
air humidity are some of the reasons attributed by the authors to 
this variation. Therefore, the different range of time for molding the 
specimens shall have occasioned the loss of kneading water for 
the atmosphere, increasing the fck results variation. 

Figure 7
Results of fck and standard deviation for each concrete mixture

3.2	 Negative bending test results

Each of the bending tests resulted in a load versus vertical displace-
ment curve, as shown in Figure 8. There were obtained two impor-
tant parameters: the maximum joist load bearing capacity and the 
maximum load that corresponds to the maximum displacement. 

4.	 Analysis of results

The analysis of the lattice joists tests aims to define a real effective 
buckling length for the elements which failure during the test set-up 
(see Table 2). 
After defining the real effective length of joists, mini panels and 
trussed panels it is possible to use this results in designing situa-
tions, in cases when the structural element has a concrete opening 
and is subject to hogging moments in the opening region. Aiming 

Figure 8
Load versus vertical displacement for the VT 20-30-2 joist (lattice joist 10 cm height; concrete opening 
of 20 cm; second from the three samples tested under the same conditions)
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Table 2
Results for the negative bending tests (Part 1)

Modelo pp (kN) PD (kN) Ffailure (kN) Flimit (kN) Failure mode
VT 06 20 1 0.2085 0.036 1.5758 1.0606 Lower flange buckling
VT 06 20 2 0.2085 0.036 1.4242 1.0303 Lower flange buckling
VT 06 20 3 0.2150 0.036 1.4545 1.0303 Lower flange buckling
VT 06 30 1 0.1925 0.036 1.3333 1.0606 Lower flange buckling
VT 06 30 2 0.1935 0.036 1.3030 0.9697 Lower flange buckling
VT 06 30 3 0.1905 0.036 1.2727 0.9697 Lower flange buckling
VT 06 40 1 0.1905 0.036 1.2727 1.0909 Lower flange buckling
VT 06 40 2 0.1785 0.036 1.3636 1.0606 Lower flange buckling
VT 06 40 3 0.1850 0.036 1.0303 0.8485 Lower flange buckling
VT 08 20 1 0.2175 0.036 1.6667 1.4242 Lower flange buckling
VT 08 20 2 0.1990 0.036 1.6970 1.2121 Lower flange buckling
VT 08 20 3 0.2090 0.036 1.9394 1.4545 Lower flange buckling
VT 08 30 1 0.1970 0.036 1.3939 1.1818 Lower flange buckling
VT 08 30 2 0.1940 0.036 1.4242 1.2121 Lower flange buckling
VT 08 30 3 0.1775 0.036 1.3636 1.0909 Lower flange buckling
VT 08 40 1 0.1965 0.036 1.3939 1.2121 Lower flange buckling
VT 08 40 2 0.1815 0.036 1.1818 1.0606 Lower flange buckling
VT 08 40 3 0.1910 0.036 1.3030 1.0606 Lower flange buckling
VT 10 20 1 0.2200 0.036 1.7273 1.3636 Lower flange buckling
VT 10 20 2 0.2175 0.036 1.9091 1.3333 Lower flange buckling
VT 10 20 3 0.2085 0.036 1.6061 1.4545 Lower flange buckling
VT 10 30 1 0.2230 0.036 1.3636 1.2727 Lower flange buckling
VT 10 30 2 Not used due to data error
VT 10 30 3 0.2055 0.036 1.4242 1.2727 Lower flange buckling
VT 10 40 1 0.1940 0.036 1.2727 1.2121 Lower flange buckling
VT 10 40 2 0.1650 0.036 1.5152 1.4242 Lower flange buckling
VT 10 40 3 0.1955 0.036 1.3030 1.2424 Lower flange buckling
VT 12 20 1 0.1935 0.036 2.2121 1.6061 Lower flange buckling
VT 12 20 2 0.2000 0.036 2.0606 1.6364 Lower flange buckling
VT 12 20 3 0.1865 0.036 1.8788 1.6061 Lower flange buckling
VT 12 30 1 0.1935 0.036 1.3636 1.3636 Lower flange buckling
VT 12 30 2 0.1745 0.036 1.5455 1.5152 Lower flange buckling
VT 12 30 3 0.1880 0.036 1.7273 1.6364 Lower flange buckling
VT 12 40 1 0.1755 0.036 1.5455 1.3333 Lower flange buckling
VT 12 40 2 0.1940 0.036 1.2121 1.1515 Lower flange buckling
VT 12 40 3 0.1955 0.036 1.2121 1.1515 Lower flange buckling

Figure 9
Failure modes: (A) diagonal buckling; (B) lower flange buckling

A B
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to define the real effective length, the subsequent scheme for the 
tested lattice joists will be considered (Figure 10).
For the scheme, a  is a fixed dimension of 20 cm for all the present 

Table 2
Results for the negative bending tests (Part 2)

Modelo pp (kN) PD (kN) Ffailure (kN) Flimit (kN) Failure mode
VT 16 20 1 0.2110 0.036 4.1212 2.6364 Lower flange buckling
VT 16 20 2 0.2060 0.036 3.5758 2.2424 Lower flange buckling
VT 16 20 3 0.2140 0.036 3.8788 2.6061 Lower flange buckling
VT 16 30 1 0.2140 0.036 2.6061 2.1818 Lower flange buckling
VT 16 30 2 0.2255 0.036 2.3030 2.2424 Lower flange buckling
VT 16 30 3 0.2165 0.036 2.5455 2.3333 Lower flange buckling
VT 16 40 1 0.1990 0.036 2.1515 2.1515 Lower flange buckling
VT 16 40 2 0.2045 0.036 2.1818 2.1818 Lower flange buckling
VT 16 40 3 0.2060 0.036 2.2727 2.2727 Lower flange buckling
VT 20 20 1 0.2290 0.036 3.2727 2.2121 Lower flange buckling
VT 20 20 2 0.2325 0.036 3.0000 2.0909 Lower flange buckling
VT 20 20 3 0.2365 0.036 3.6667 2.1818 Lower flange buckling
VT 20 30 1 0.2005 0.036 3.0000 3.5758 Lower flange buckling
VT 20 30 2 0.1915 0.036 3.4242 2.6970 Lower flange buckling
VT 20 30 3 0.2115 0.036 2.9394 2.6667 Lower flange buckling
VT 20 40 1 0.1840 0.036 2.5455 2.3333 Lower flange buckling
VT 20 40 2 0.2055 0.036 2.2424 2.1212 Lower flange buckling
VT 20 40 3 0.1970 0.036 2.0606 1.8485 Lower flange buckling
VT 25 20 1 Not used due to data error
VT 25 20 2 0.2305 0.036 6.6970 2.5758 Diagonal buckling
VT 25 20 3 0.2365 0.036 6.9697 3.0909 Diagonal buckling
VT 25 30 1 0.2250 0.036 6.6667 3.0000 Lower flange buckling
VT 25 30 2 0.2225 0.036 4.9091 3.6364 Lower flange buckling
VT 25 30 3 0.2395 0.036 6.4545 2.7576 Lower flange buckling
VT 25 40 1 0.2240 0.036 4.8788 3.2727 Lower flange buckling
VT 25 40 2 0.2295 0.036 4.7879 3.4545 Lower flange buckling
VT 25 40 3 0.2300 0.036 4.9697 3.0000 Lower flange buckling
VT 30 20 1 0.2365 0.036 6.0606 3.5758 Diagonal buckling
VT 30 20 2 0.2325 0.036 6.3939 3.2727 Diagonal buckling
VT 30 20 3 0.2375 0.036 5.8788 3.5152 Diagonal buckling
VT 30 30 1 0.2435 0.036 6.3636 3.3030 Lower flange buckling
VT 30 30 2 0.2220 0.036 6.4242 3.6364 Lower flange buckling
VT 30 30 3 0.2170 0.036 6.3939 3.9091 Diagonal buckling
VT 30 40 1 0.2165 0.036 5.0000 3.4848 Lower flange buckling
VT 30 40 2 0.2160 0.036 4.9394 3.9394 Lower flange buckling
VT 30 40 3 0.2140 0.036 5.1818 4.0000 Lower flange buckling

pp – self weight; PD – test equipment weight; Flimit – equivalent load for a 4 mm displacement (ℓ/500); Ffailure – buckling load for any of the lattice joist 
elements or welded node rupture.

Figure 10
Static scheme of the tested lattice joists
Source: Authors

tests; v  b  is a measure dependent on c , and can be calculated 
by 120 0,5.= − −b a c ; c   is the concrete opening value, taken ei-
ther as 20, 30 or 40 cm in this research; pp  is the lattice joist self 
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weight action divided by 240 cm (Table 2); and P  is the applied 
load (Ffailure) added to the weight of the test equipment (PD) (Table 
2) divided by 2.
The maximum bending moment and shear force acting on each 
joist can be calculated for the scheme illustrated in Figure 10. The 
maximum values of the bending moment máxM  (middle joist span) 
and shear force máxV  (internally to any of the supports) can be 
calculated by Equations 3 and 4.

(3)	
	

(4)
The results analysis is divided into three groups. The first one com-
prises the joists that failure for buckling in the lower flange, in the 
concrete opening region. The second group comprises the joists 
in which the failure occurred by the diagonal buckling. Finally, the 
third one discusses the results regarding the deflections.

4.1	 Failure due to buckling of the lower flange

The maximum bending moment and internal forces in the truss are 
shown in Figure 11.
Where h  is the height of the truss; cR  is the compression force 
resulting in the lower flange; and tR  is the tension force resulting 
in the upper flange.
The value of cR  is determined by Equation 5.

(5)
As the lower flange is composed by 2 steel bars, the resulting com-
pression force acting in one of the bars ( cF ) in given by Equation 6.

(6)

Figure 11
Resulting internal forces and bending moment in the truss
Source: Authors

The Euler critical buckling load ( crP ) for compressed elements is 
determined by Equation 7.

(7)
where  is the elasticity modulus of the steel truss taken as 21000 
kN/cm²;  ,e theoreticall  is the theoretical effective length of the bar; 
and v ,φ infI is the gross moment of inertia of the lower flange 
(Equation 8).

(8)
where φinf  is the diameter of one lower flange steel bar.
The monolithism provided by the welding in the truss nodes and 
the fixity of the bars in the concrete base shall interfere in the com-
pressed elements effective buckling length. The lower flanges 
have theoretical effective lengths equal to 20, 30 and 40 cm – 
which refer to the concrete opening widths. If   equal to crP , it is 
possible to calculate the real effective length ( ,e reall ) of the truss 
element (Equation 9).

(9)

The results of ,e reall  for the lattice joists that failure for lower flange 
buckling are summarized in Table 3, where ‘Avrg’ is the abbrevia-
tion for Average.
The ratio between the real effective length and the theoretical ef-
fective length is smaller than 1. It indicates that there is some stiff-
ening in the lower truss bars possibly due to two reasons. One rea-
son is related to the truss nodes, regarding the fact that an electro 
welded truss doesn’t have fully pinned nodes, as it is considered 
in the classical mechanics. Another reason is related to the fixity of 
the lower bars to the concrete base of the joist. The lattice trusses 
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with a height of 25 and 30 cm did not achieve lower flange failure, 
when the concrete opening was only of 20 cm. For these cases, 
the failure occurs in the diagonals.

4.2	 Failure due to diagonal bars buckling

The maximum shear force in a lattice joist introduces compression 
stresses in its diagonals. The compression force (Q ) in a truss 
diagonal is given by Equation 10.

(10)

Table 3
Values of le,real for lattice joists with lower flange buckling failure

Model le,real
(cm)

le,theoret
(cm)

le,real
le,theoret

Avrg

VT 06 20 1 6.88 20 0.34
0.35VT 06 20 2 7.19 20 0.36

VT 06 20 3 7.12 20 0.36
VT 06 30 1 7.65 30 0.25

0.26VT 06 30 2 7.72 30 0.26
VT 06 30 3 7.81 30 0.26
VT 06 40 1 8.04 40 0.2

0.21VT 06 40 2 7.83 40 0.2
VT 06 40 3 8.82 40 0.22
VT 08 20 1 7.74 20 0.39

0.38VT 08 20 2 7.70 20 0.39
VT 08 20 3 7.24 20 0.36
VT 08 30 1 8.65 30 0.29

0.29VT 08 30 2 8.58 30 0.29
VT 08 30 3 8.78 30 0.29
VT 08 40 1 8.91 40 0.22

0.23VT 08 40 2 9.62 40 0.24
VT 08 40 3 9.19 40 0.23
VT 10 20 1 8.51 20 0.43

0.42VT 10 20 2 8.14 20 0.41
VT 10 20 3 8.81 20 0.44
VT 10 30 1 9.70 30 0.32

0.32VT 10 30 2 Discarded
VT 10 30 3 9.56 30 0.32
VT 10 40 1 10.38 40 0.26

0.25VT 10 40 2 9.68 40 0.24
VT 10 40 3 10.27 40 0.26
VT 12 20 1 8.38 20 0.42

0.43VT 12 20 2 8.64 20 0.43
VT 12 20 3 9.04 20 0.45
VT 12 30 1 10.71 30 0.36

0.34VT 12 30 2 10.18 30 0.34
VT 12 30 3 9.65 30 0.32
VT 12 40 1 10.49 40 0.26

0.28VT 12 40 2 11.61 40 0.29
VT 12 40 3 11.60 40 0.29

Model le,real
(cm)

le,theoret
(cm)

le,real
le,theoret

Avrg

VT 16 20 1 10.22 20 0.51
0.53VT 16 20 2 10.94 20 0.55

VT 16 20 3 10.51 20 0.53
VT 16 30 1 13.03 30 0.43

0.44VT 16 30 2 13.77 30 0.46
VT 16 30 3 13.17 30 0.44
VT 16 40 1 14.70 40 0.37

0.36VT 16 40 2 14.59 40 0.36
VT 16 40 3 14.32 40 0.36
VT 20 20 1 12.71 20 0.64

0.63VT 20 20 2 13.24 20 0.66
VT 20 20 3 12.04 20 0.60
VT 20 30 1 13.67 30 0.46

0.45VT 20 30 2 12.86 30 0.43
VT 20 30 3 13.78 30 0.46
VT 20 40 1 15.25 40 0.38

0.40VT 20 40 2 16.11 40 0.40
VT 20 40 3 16.77 40 0.42
VT 25 20 1

Not applicableVT 25 20 2
VT 25 20 3
VT 25 30 1 15.01 30 0.50

0.53VT 25 30 2 17.39 30 0.58
VT 25 30 3 15.23 30 0.51
VT 25 40 1 17.97 40 0.45

0.45VT 25 40 2 18.13 40 0.45
VT 25 40 3 17.81 40 0.45
VT 30 20 1

Not applicableVT 30 20 2
VT 30 20 3
VT 30 30 1 16.79 30 0.56

0.56VT 30 30 2 16.74 30 0.56
VT 30 30 3 16.78 30 0.56
VT 30 40 1 19.47 40 0.49

0.49VT 30 40 2 19.59 40 0.49
VT 30 40 3 19.14 40 0.48

where α  and β  are the truss angles, respectively defined by 
Equation 11 and 13:

(11)	
	

(12)
where h  is the height of the truss in centimeters; z  in the spacing 
between the two bars of the lower flanges, in centimeters, and is 
always the value of 9 cm for all the tested lattice joists.
When the compression force Q  is equal to the Euler critical  
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buckling load crP  (Equation 7), it is possible to obtain the real ef-
fective buckling length of the truss girder diagonals ( , ,e real dl ), given 
b Equation 13.

(13)

where ,φ digI is the moment of inertia of a diagonal bar (Equation 14).

(14)
where φdig  is the diameter of the diagonal steel bar.
The diagonal theoretical effective buckling length ( , ,e theoretical dl ) is 
determined by Equation 15, in centimeters.

(15)

From Equations 13 and 15 it is possible to calculate the ratio  

Table 4
Values of le,real for the lattice joists which presented a failure mode due to buckling of the diagonal bars

Model le,real,d
(cm)

le,theoret,d
(cm)

le,real,d
le,theoret,d

Avrg

VT 25 20 1 Discarded
0.40VT 25 20 2 10.99 27.30 0.40

VT 25 20 3 10.78 27.30 0.39
VT 25 30 1 11.02 27.30 0.40

0.43VT 25 30 2 12.77 27.30 0.47
VT 25 30 3 11.18 27.30 0.41
VT 25 40 1 12.81 27.30 0.47

0.47VT 25 40 2 12.92 27.30 0.47
VT 25 40 3 12.69 27.30 0.46

Model le,real,d
(cm)

le,theoret,d
(cm)

le,real,d
le,theoret,d

Avrg

VT 30 20 1 10.67 31.94 0.33
0.33VT 30 20 2 10.40 31.94 0.33

VT 30 20 3 10.82 31.94 0.34
VT 30 30 1 10.41 31.94 0.33

0.33VT 30 30 2 10.38 31.94 0.33
VT 30 30 3 10.41 31.94 0.32
VT 30 40 1 11.71 31.94 0.37

0.37VT 30 40 2 11.78 31.94 0.37
VT 30 40 3 11.52 31.94 0.36

Figure 12
Joist cross section
Source: Authors

between real and theoretical effective length. Results for the sam-
ples that failure of the lattice joist was due to buckling of the diago-
nals are presented in Table 4. The results are regarding to trusses 
with heights of 25 and 30 cm, as far as the failure mode described 
in this item only occurred for these geometry. For other values of 
height, the buckling of diagonal bars is not the predominant failure 
mode for the proposed test set-up.
The fixity of the welded nodes and the embedment of the diago-
nal bars in the joist concrete strongly reduce the effective buckling 
length of the diagonal bars.

4.3	 Deflection analysis

The deflection calculation is particularly complex in the step of 
analysis of results due to the composite cross section of the lattice 
joist – one of the section regions is composed by concrete and 
steel, while the other one is only composed by the steel truss bars. 
The moments of inertia are calculated separately for each region of 
the cross section mentioned above (Equations 16 to 22).
Properties of the transformed section

(16)

(17)

(18)

The parameters indicated in Equations 16 and 18 are shown in 
Figure 12: x  is the distance from the center of gravity position (of 
the transformed cross section) to the bottom face of the section; 
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HI  is moment of inertia of the transformed cross section; φBS  is 
the diameter of the upper flange bar; 
φBI  is the diameter of the lower flange bars; h  is the height of the 
lattice truss; nomc  is the concrete cover for the lower flange bars, 
always equal to 1.5 cm along this research; sb  is the width of the 
concrete joist base, always equal to 12.0 cm for the present tests; 

sh  is the height of the concrete, taken as 2.5 cm in this research; 
αe  is the ratio between the steel modulus of elasticity ( sE ) taken 
as 21000 kN/cm², and the concrete secant modulus of elasticity  
( csE ) given by Equation 19.

(19)
where ciE  is the tangent modulus of elasticity of the concrete; αi  
is a parameter  defined by Equation 20, which depends on the 
characteristic compressive concrete strength ( )ckf MPa . As men-
tioned before, the ciE  value is approximately 20% to 40% smaller 
than the dynamic elasticity modulus. In this article, the elasticity 
modulus values presented in Table 1 were reduced in 30% in order 
to correlate the dynamic and static modulus of elasticity. 

(20)
Properties of the section composed only for the steel truss bars

(21)

(22)

According to the Figure 13, the parameters used in Equations 21 
and 22 are: 1x  is the distance between the center of gravity of the 
section and its bottom base; SI  is the moment of inertia of the steel 
section; φBS  is the diameter of the upper flange bar; φBI  is the di-
ameter of the lower flange bars; h  is the height of the lattice truss.
Considering Figure 10, it is observed that for a e b segments the 
moment of inertia is equal to HI , whereas the moment of inertia 
is equal to sI  for segment c. The values for the experimental de-
flection are taken in the application load points (P). Therefore, the 
theoretical deflection value, analyzing the same point, is given by 
Equation 23.

(23)

Rewriting the expression, Equation 24 is obtained.

(24)

(25)
where ( ).cs H theoretical

E I  is the theoretical stiffness of the trans-
formed joist and ( ).s s theoretical

E I  is the theoretical stiffness of the 
lattice truss steel section. If Pa   is equal to the limit deflection lima , 
Equation 26 is obtained.

(26)

( ).cs H real
E I  is the mean stiffness of the testes joist that will be 

used for the deflection calculation. This stiffness is different from 
the theoretical stiffness due to the concrete cracking. Table 5 pres-
ents the results of the deflection values. It can be seen that the real 

Figure 13
Center of gravity position for the lattice truss 
steel elements 
Source: Authors
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stiffness ( ).cs H real
E I  is much smaller than the theoretical one. The 

discontinuity occasioned by the concrete opening and the concrete 
cracking explain this reduction. In the theoretical calculation, the 
value for the neutral axis position results in some point close to 
the concrete footing, indicating that concrete cracking is occurring.

5.	 Results applicability

As mentioned in item 1, during the assembly of a cantilever slab 
with concrete opening in the region right over the supports, there is 
a need of knowing the lattice joist strength during the construction 
phase. In this phase, the lattice joist will support itself the weight of 

the fresh concrete, of the workers and of the concreting equipment.
The failure modes visually observed in the tests were: lower flange 
buckling due to hogging moments and diagonal bars buckling due 
to shear forces. Besides this modes of failure, it can still occur the 
failure of the welded node due to shear forces.
When a joist, mini panel or panel is loaded and positioned over 
the supports, bending moments and shear loads will develop. For 
cases of sagging moments acting on the structure, the adequate 
equation can be found in Sartorti et al [3]. For cases of hogging 
moments acting on the structure in regions where a concrete open-
ing exists, the present article defines equations for calculating the 
resisting hogging moment and shear forces.

Table 5
Results of deflection values

Model Concrete 
mixture (Ecs.IH )real

(Ecs.IH )real
(Ecs.IH )theoret

Avrg

VT 06 20 1 14 155321.61 0.68
0.67VT 06 20 2 15 153670.84 0.67

VT 06 20 3 15 153898.86 0.67
VT 06 30 1 14 e 15 109085.05 0.48

0.47VT 06 30 2 14 106071.52 0.46
VT 06 30 3 14 106001.81 0.46
VT 06 40 1 14 81921.97 0.36

0.35VT 06 40 2 15 81117.07 0.36
VT 06 40 3 13 e 14 76077.79 0.33
VT 08 20 1 13 244466.56 0.64

0.63VT 08 20 2 13 225608.62 0.59
VT 08 20 3 13 246429.20 0.65
VT 08 30 1 13 163054.65 0.43

0.42VT 08 30 2 13 164707.40 0.43
VT 08 30 3 13 156758.64 0.41
VT 08 40 1 12 125388.10 0.33

0.32VT 08 40 2 12 118529.19 0.31
VT 08 40 3 12 118798.22 0.31
VT 10 20 1 8 292534.04 0.51

0.51VT 10 20 2 8 288632.99 0.50
VT 10 20 3 8 302612.31 0.53
VT 10 30 1 9 212033.91 0.37

0.36VT 10 30 2 9 Discarded
VT 10 30 3 9 211147.67 0.36
VT 10 40 1 10 159338.07 0.27

0.28VT 10 40 2 10 171124.24 0.29
VT 10 40 3 10 161330.79 0.28
VT 12 20 1 11 364945.36 0.44

0.45VT 12 20 2 11 e 12 369795.56 0.45
VT 12 20 3 12 364380.21 0.44
VT 12 30 1 11 252972.47 0.31

0.33VT 12 30 2 11 267979.65 0.33
VT 12 30 3 11 280947.89 0.34
VT 12 40 1 10 195258.00 0.24

0.23VT 12 40 2 10 e 11 180423.56 0.22
VT 12 40 3 10 180503.02 0.22

Model Concrete 
mixture (Ecs.IH )real

(Ecs.IH )real
(Ecs.IH )theoret

Avrg

VT 16 20 1 6 655614.76 0.35
0.34VT 16 20 2 6 580841.79 0.31

VT 16 20 3 6 650375.24 0.35
VT 16 30 1 7 450662.25 0.24

0.25VT 16 30 2 7 460356.94 0.25
VT 16 30 3 7 472568.42 0.25
VT 16 40 1 8 355565.70 0.19

0.19VT 16 40 2 8 359303.44 0.19
VT 16 40 3 7 369402.60 0.20
VT 20 20 1 5 622823.28 0.21

0.21VT 20 20 2 4 595495.63 0.20
VT 20 20 3 5 616838.05 0.21
VT 20 30 1 5 717295.38 0.24

0.21VT 20 30 2 5 580981.72 0.20
VT 20 30 3 5 577835.01 0.20
VT 20 40 1 6 419473.45 0.14

0.13VT 20 40 2 6 392026.70 0.13
VT 20 40 3 6 352356.85 0.12
VT 25 20 1 1 Discarded

0.18VT 25 20 2 1 757046.84 0.16
VT 25 20 3 1 885769.99 0.19
VT 25 30 1 1 702880.20 0.15

0.16VT 25 30 2 2 822666.67 0.18
VT 25 30 3 1 and 2 657050.13 0.14
VT 25 40 1 2 614253.09 0.13

0.13VT 25 40 2 2 641758.34 0.14
VT 25 40 3 2 573322.11 0.12
VT 30 20 1 3 1052186.65 0.13

0.12VT 30 20 2 3 972026.25 0.12
VT 30 20 3 3 1036486.34 0.12
VT 30 30 1 3 809006.88 0.10

0.10VT 30 30 2 3 876744.26 0.10
VT 30 30 3 4 932740.84 0.11
VT 30 40 1 4 857489.47 0.10

0.10VT 30 40 2 4 768769.84 0.09
VT 30 40 3 4 778578.07 0.09



1379IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 6

 	 I. S. STORCH  |  J. G. S. DOBELIN  |  L. C. BATALHA  |  A. L. SARTORTI

5.1	 Lower flange buckling due to hogging moments

The Equations 27 to 30 are deduced and based on the prior equa-
tions presented in this paper. The resisting bending moment (nega-
tive bending moment) is defined by Equation 29. 

(27)                                                        

(28)
                                                     

(29)
                                                  

(30)
Where CRP .  is the critical buckling load in the lower flange; h  is 
the height of the truss; sE  is the steel modulus of elasticity; ,φ infI  
is the moment of inertia of the lower bars cross section; ,e reall  is 
the real effective buckling length of the lower flange at the concrete 
opening; ,e theoricall  is the theoretical buckling effective length of the 
lower flange at the concrete opening – which can measure 20, 30 
or 40 cm;  Avrg  is the indicated in the last column of Table 3.
Structural safety is guaranteed when the following condition is sat-
isfied (Equation 31):

(31)

Where SdM  is the design bending moment.

5.2	 Diagonal bars buckling due to shear

The axial force (Q ) that compresses a diagonal bar is given by 
Equation 10. For obtaining Equation 32, the value of maxV  was 
replaced by the design shear force SdV , in Equation 10.

(32)
The axial critical buckling load ( ,CR DP ) of a diagonal bar is defined 
by Equations 33 and 34.

(33)                                                      

(34)
where sE  is the steel modulus of elasticity; ,φ digI  is the moment of 
inertia of the diagonal bar cross section; v is the real effective buck-
ling length of the diagonal bar; , ,e theorical dl  is the theoretical buckling 
effective length of the diagonal bar; Avrg  is the value indicated in 
the last column of Table 4.
Structural safety is guaranteed when the following condition is sat-
isfied (Equation 35):

(35)

5.3	 Failure of the welded node

The upper node shear force resistance (V ) shall meet the require-
ment of Equation 36, adapted from ABNT NBR 14862 [1].

(36)
where φBS  is the diameter of the upper flange bar; h  is the height 
of the truss; nodel  is the length between the truss nodes (defined as 
20 cm); SdV  is the design shear force in a transitory phase. Equa-
tion 37 shall be satisfied for safety guarantee.

(37)

5.4	 Displacements calculation

In the transitory phase, it is recommended a limit value for the 
maximum displacement of the lattice joist, given by the span value 
divided by 500 ( / 500l ). The stiffness values shall be calculated 
as indicated in Equation 38, using Equations 16 to 22.

(38)

where CSE  is the secant modulus of elasticity of the concrete; HI  
is the moment of inertia of the transformed section; Avrg  is the 
value indicated in the last column of Table 5.

6.	 Conclusions

In order to ease the construction of bridge decks, cantilever roofs and 
eaves, self-supporting lattice joists can be used working as formwork, 
capable of supporting its own weight, the fresh concrete weight and 
the weight workers and equipments in the construction phase. 
This paper aimed to study the lattice joists behavior under negative 
bending moments, in cases where there is a concrete opening in 
the region of joist supports, by carrying out laboratory tests.
For lattice joists with a height of 20 cm or less, the predominant 
failure mode was the buckling of the lower flanges of the truss. In 
the cases of joists 25 or 30 cm height, with opening of 20 cm of the 
concrete, the buckling of diagonal bars governed the failure of the 
lattice joist. For the same truss height, considering the opening of 
30 and 40 cm of the concrete, the lattice joist failure was governed 
by the lower flanges buckling.
The two mentioned modes of failure were analyzed separately for 
the calculation of the real effective buckling length. It was conclud-
ed that the diagonal and lower flange bars are stiffened by the elec-
tro welded truss nodes and by the fixity of the truss embedded in 
the concrete joist base. This results in a significant reduction of the 
effective buckling length. Disposing of the real effective buckling 
length, it is possible to calculate the maximum bending moments 
and shear forces resisted by the lattice joist. This values are quite 
important for the adequate design of the maximum cantilever span 
with no shuttering, or the maximum span between supports.
For the transition phase calculation, the stiffness value ( )EI  
needs to be calibrated. It was verified that ( . )CS H realE I .   is small-
er than the theoretical value, due to discontinuity of the concrete in 
the base of the joist, and concrete cracking.
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The equations for calculating resisting bending moments, shear 
strength and displacements are indicated in this paper. It is pos-
sible to define the maximum cantilever span or the maximum span 
between supports for a lattice joist with concrete opening, using 
the mentioned equation.
Studies about mini panels and latticed panels are recommended in 
order to check possible result variation. The present results show 
great load carrying capacity of the tested elements. It indicates that 
lattice joists with concrete opening shall be recommended for situ-
ations where monolithism between slabs and joists is desired, and 
less shuttering is needed, as expected in cases of bridge construc-
tion. It is important to emphasize that the present results cannot be 
extrapolated to models that were not tested, including other lattice 
joists with different geometry.
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