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Abstract: This paper presents the development of a nonlinear finite element analysis program for reinforced 
concrete structures, subject to monotonic loading, using thin flat shell finite elements. The element thickness 
is discretized in concrete and steel layers. It is adopted the Newton-Raphson method, considering a secant 
stiffness approach for the Material Nonlinear Analysis, based on the Modified Compression Field Model 
(MCFT), unlike the usual tangent stiffness approach. The original formulation was expanded to also consider 
the Geometric Nonlinear Analysis, through a Total Lagrangian Formulation. The program was validated 
through comparison with experimental results, for different structures. It was observed good agreement, 
besides adequate computational cost. 
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Resumo: O presente artigo apresenta o desenvolvimento de uma ferramenta para a análise não-linear de 
estruturas de concreto armado, sujeitas a carregamentos monotônicos, utilizando o elemento finito de cascas 
finas e planas, o qual, é discretizado, ao longo da sua espessura, em lamelas de concreto e camadas de aço. É 
utilizado o método de Newton-Raphson, adotando, na consideração da não-linearidade física, a rigidez secante 
do material, baseada no modelo do campo de compressão modificado, no lugar da abordagem via rigidez 
tangente. A formulação original do elemento foi expandida para considerar também a não-linearidade 
geométrica, através de uma formulação Lagrangiana total. A validação da ferramenta é via comparação com 
resultados experimentais da literatura, para diversas estruturas, onde pode ser observada boa aderência além 
de adequado custo computacional. 
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1 INTRODUCTION 
In reinforced concrete structures design, the civil engineer analyzes the real situation based on simplifying 

hypotheses, so that the structural models used in the analysis are sufficiently accurate and safe, but still having adequate 
simplicity, for use on project office. 

Besides that, the development of construction technology has allowed the achievement of complex structures, with 
large spans and highly slender elements. In these cases, some of usual simplifying hypotheses may no longer represent 
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the actual structural behavior, due to the increase of relevant nonlinear effects associated with the material response, 
such as concrete cracking (material nonlinearity) or large displacements (geometric nonlinearity). 

Fortunately, the modern computer has allowed the use of sophisticated structural models, once considered unfeasible 
for practical applications, to gain space in the market, including nonlinear finite element analysis (NL-FEA). It leads 
the technical community to a constant review of the structural models used, always seeking to associate a safe design 
with the productivity resulting from the most efficient technologies available. 

Several structural practical applications can be analyzed through shell models, such as: shear walls, shell roofs, 
water tanks or other storage structures. The analysis complexity and the computer development has been stimulating 
the search for numerical tools to solve this problem (shell finite elements). The challenge becomes greater when the 
structure material is reinforced concrete (RC), where the material behavior plays a crucial role in the construction 
response. Consequently, the material constitutive models are a determining point for a satisfactory analysis. Among the 
most common approaches for shell element formulation, one can mention degenerate shell elements, which are based 
on three-dimensional equilibrium equations, and shell elements developed by the superposition of membrane and plate 
elements. 

Following the first option, Luu et al. [1] proposed the CSMM-based shell element for reinforced concrete structures, 
for material nonlinear analysis (MNA). It uses the smeared crack theory Cyclic Softened Membrane Model (CSMM), 
created at the University of Houston. This 8-node degenerate shell element has 40 degrees of freedom (DOF): 3 
translations and 2 rotations per node, where each nodal rotation follows a specific nodal coordinate system. Its nonlinear 
analysis procedure uses a Newton-Raphson approach (tangent stiffness). 

Another notorious tool that also makes use of degenerate shell elements is VecTor4. This software considers both 
MNA and Geometric Nonlinear Analysis (GNA), through a Total Lagrangian Formulation (TLF). It was developed at 
the University of Toronto and its material model is based on the Modified Compression Field Theory (MCFT) [2], [3]. 
The VecTor4 quadrilateral 9-node shell element has 42 DOF: 3 translation (all nodes) and two rotations (only at the 
edge nodes). Again, the nodal rotations follow specific nodal coordinate systems, defined in each node. It is an element 
that combines in its formulation Langrangian and Serendipity shape functions, being therefore also called heterosis [4]. 
Its nonlinear analysis procedure differs from Luu et al. [1] and uses a direct secant stiffness approach. 

Following the other mentioned option in shell element development (superposing membrane and plate elements), 
Barrales [5] proposed a simple and efficient quadrilateral thin fat layered shell element (QTFLS), for MNA. This 4-
node element has 6 DOF per node (3 translations and 3 rotations). Its nonlinear analysis procedure also uses a Newton-
Raphson approach (tangent stiffness). An interesting point about this formulation is that, unlike degenerate shell 
elements, this element explicitly has the nodal in-plane rotation DOF (drilling). Therefore, it is not necessary to use 
nodal coordinate systems to assemble the elements rotation DOF. According to Silva and Horowitz [6], when modeling 
U-Shaped RC shear walls using degenerate elements, such as VecTor4, special attention is required in the rotations 
DOF compatibility, in the L-connection elements (through nodal coordinate systems). The Barrales [5] element requires 
only local and global coordinate systems, an attractive feature. As usual in RC Shell structures NL-FEA, all discussed 
elements have its thickness discretized in concrete and steel layers, to properly consider the internal stresses variation 
along the thickness. 

This paper expands the Barrales [5] QTFLS shell element formulation to consider both MNA and GNA, using a 
TLF [7]. The formulation is implemented in a NL-FEA program for RC structures, subject to monotonic loads. The 
element thickness is also discretized in concrete and steel layers. It is adopted the Newton-Raphson method, but 
considering a secant stiffness approach, using the basis of the Modified Compression Field Model (MCFT), unlike the 
original tangent stiffness approach. The program was validated through comparison with experimental and numerical 
results [1], [4], for different structures. It was observed good agreement, besides adequate computational cost. 

2 NONLINEAR FINITE ELEMENT PROCEDURE 
This section presents the material and geometric nonlinear finite element procedure used for analysis of reinforced 

concrete structures. 

2.1 Incremental-iterative procedure 
In nonlinear analysis, the set of equilibrium equations can be obtained through the principle of virtual works (PVW). 

Based on these equations, and discretizing the structure in finite elements, usually, the problem can be solved iteratively, 
using the Newton-Raphson method, Equation 1: 
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{𝑑𝑑}𝑛𝑛+1 = {𝑑𝑑}𝑛𝑛 + [𝐾𝐾𝐺𝐺]𝑛𝑛−1({𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒} − {𝐹𝐹𝑖𝑖𝑛𝑛𝑒𝑒}) (1) 

where the subscript 𝑛𝑛 indicates the iteration number where the parameter must be evaluated, {𝑑𝑑} is the global nodal 
displacements vector, {𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒} is the external forces vector, and [𝐾𝐾𝐺𝐺] and {𝐹𝐹𝑖𝑖𝑛𝑛𝑒𝑒} are, respectively, the tangent stiffness 
matrix and the internal forces vector that can be obtained through the corresponding elements contributions, [𝑘𝑘𝑒𝑒] and 
{𝑓𝑓𝑒𝑒}. The iterative process continues until a stopping criterion is met, such as: the iteration number exceeds the 
maximum value or, for a given tolerance 𝑡𝑡𝑡𝑡𝑡𝑡, the relative norm of the difference between the vectors {𝑑𝑑}𝑛𝑛+1 and {𝑑𝑑}𝑛𝑛, 
convergence criterion parameter 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒, is small enough, namely Equation 2. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 =  |{𝑑𝑑}𝑛𝑛+1−{𝑑𝑑}𝑛𝑛|
 |{𝑑𝑑}𝑛𝑛+1|

< 𝑡𝑡𝑡𝑡𝑡𝑡 (2) 

According to De Borst et al. [8], it is important to apply the external forces incrementally, otherwise, due to the material 
nonlinear behavior or numerical characteristics of the solution procedure, in very large load steps, it is possible to arise 
serious convergence problems or inappropriate results. Thus, the solution procedure adopted in this paper is called 
incremental-iterative, using a load control approach, where Equation 1 is applied iteratively in each incremental load 
step. 

Also, according to De Borst et al. [8], since the solution procedure tends to reach an equilibrium configuration, in 
most cases, which stiffness matrix was adopted in the iterative process is less relevant. Based on this and knowing the 
numerical stability, which is often observed in secant stiffness analysis, even though the convergence rate may be lower 
compared to tangent stiffness analysis [9], in this paper, it was used a secant stiffness approach, unlike Barrales [5] who 
adopted a tangent stiffness approach. 

2.2 Quadrilateral thin flat layered shell element - QTFLS 
In this paper, the Quadrilateral Thin Flat Layered Shell Element - QTFLS, proposed by Barrales [5] and 

Rojas et al. [10], was adopted. It is a combination of the Quadrilateral Layered Membrane Element with Drilling 
Degrees of Freedom (DOF) - QLMD [11], and the Discrete Kirchhoff Quadrilateral Element - DKQ [12], where the 
Kirchhoff's assumptions for thin plates are considered. Figure 1 represents this 4-nodes finite element, the discretization 
of the element thickness in layers and its 6 degrees of freedom per node: 2 in-plane translations, 1 in-plane rotation 
(drilling), 2 out-of-plane rotations and 1 translation perpendicular to the element plane. 

 
Figure 1. Quadrilateral Thin Flat Layered Shell Element - QTFLS [10] 
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In the QTFLS element, both the displacement and deformation fields are established through the superposition of 
membrane and plate behaviors. According to Barrales [5], this approach has the advantage of allowing different shape 
functions for each behavior. 

As usual in finite element analysis, the strain vector {ε} can be related to the element displacement vector {de} 
through the kinematic matrix [B′]. Equation 2 expands this relationship by superposing the linear membrane component 
{εm}, the linear plate component {εb0} and the nonlinear plate component �εbL�: 

{ε} = [𝐵𝐵′]{𝑑𝑑𝑒𝑒} = {𝜀𝜀𝑚𝑚} + {𝜀𝜀𝑏𝑏0} + {𝜀𝜀𝑏𝑏𝐿𝐿} = [𝐵𝐵𝑚𝑚]{𝑑𝑑𝑒𝑒𝑚𝑚} + 𝑧𝑧𝐿𝐿[𝐵𝐵𝑏𝑏0]{𝑑𝑑𝑒𝑒𝑏𝑏} + 1
2

[𝐵𝐵𝑏𝑏𝐿𝐿]{𝑑𝑑𝑒𝑒𝑏𝑏} (2) 

where [𝐵𝐵𝑚𝑚] and [𝐵𝐵𝑏𝑏0] are the kinematic matrices that represent the linear relationship between the membrane {𝑑𝑑𝑒𝑒𝑚𝑚} and 
plate {𝑑𝑑𝑒𝑒𝑏𝑏} element displacements and the corresponding strain component {𝜀𝜀𝑚𝑚} and {𝜀𝜀𝑏𝑏0}. On the other hand, the matrix 
[𝐵𝐵𝑏𝑏𝐿𝐿] is related to the consideration of the geometric nonlinearity of the problem, through the nonlinear plate strain 
component {𝜀𝜀𝑏𝑏𝐿𝐿}, discussed in section 2.5. The 𝑧𝑧𝐿𝐿 parameter refers to the layer 𝑧𝑧 local coordinate. The formulation of 
the matrices [𝐵𝐵𝑚𝑚], [𝐵𝐵𝑏𝑏0] and �𝐵𝐵𝑏𝑏L� are well-known in the technical community and its detailed development can be easily 
found in appropriate bibliographies [5], [10]–[13]. However, to contribute to the paper completeness, these parameters 
will be briefly discussed in the following subsections. 

2.3 Quadrilateral Layered Membrane Element with Drilling DOF – QLMD 
The QLMD membrane element uses a combination of linear shape functions, Equation 3, and cubic Hermite 

functions, Equation 4. This 4-node element has 3 degree of freedom per node (2 in-plane translations and 1 in-plane 
rotation, drilling). 

𝑀𝑀1(𝜂𝜂) = 1
2

(1 − 𝜂𝜂)   𝑀𝑀2(𝜂𝜂) = 1
2

(1 + 𝜂𝜂)  (3) 
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The membrane displacement field in natural coordinates (𝜉𝜉, 𝜂𝜂) is given by the following interpolation: 

�
𝑢𝑢𝑚𝑚
𝜈𝜈𝑚𝑚� = [𝑀𝑀𝑁𝑁](2×16)[𝑇𝑇𝑒𝑒](16×12){𝑑𝑑𝑒𝑒𝑚𝑚}(12×1) (5a) 
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 (5b) 
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[𝑇𝑇𝑒𝑒] = 1
2
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⎢
⎢
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 (5c) 

{𝑑𝑑𝑒𝑒𝑚𝑚} = {𝑢𝑢1 𝑣𝑣1 𝜃𝜃𝑧𝑧1 𝑢𝑢2 𝑣𝑣2 𝜃𝜃𝑧𝑧2 𝑢𝑢3 𝑣𝑣3 𝜃𝜃𝑧𝑧3 𝑢𝑢4 𝑣𝑣4 𝜃𝜃𝑧𝑧4}𝑇𝑇  (5d) 

where [MN] is a matrix defined by the shape functions in Equations 3 and 4 and [Tr] is a transformation matrix to 
ensure the compatibility between the rotation DOF, where 𝑥𝑥1 to 𝑥𝑥4 and 𝑦𝑦1 to 𝑦𝑦4 are the element nodes local coordinates. 
Thereby, the kinematic matrix [𝐵𝐵𝑚𝑚] can be obtained according to Equation 6, where [J]−1 represents the inverse of the 
Jacobian matrix [J](2×2), which relates, through bilinear shape functions, the natural (𝜉𝜉, 𝜂𝜂) and local (𝑥𝑥,𝑦𝑦) coordinate 
systems. The corresponding formulation can be found in finite elements introductory textbooks [14]. 
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𝜕𝜕𝜕𝜕𝜕𝜕2,𝑖𝑖
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

[𝑇𝑇𝑒𝑒]{𝑑𝑑𝑒𝑒𝑚𝑚}  (6) 

2.4 Discrete Kirchhoff Quadrilateral Element - DKQ 
According to Barrales [5], in the DKQ plate element, proposed by Batoz and Tahar [12], initially, the deflection 

and rotation fields are established independently, and later, they are related by applying the Kirchhoff's assumptions in 
a discrete manner on the element edges. For this purpose, it is adopted 8-node serendipity isoparametric element shape 
functions for the rotation fields, Equation 7, and cubic function for the deflections along the edges. 

𝜓𝜓𝑖𝑖(𝜉𝜉, 𝜂𝜂) = −1
4

(1 + 𝜉𝜉𝑖𝑖𝜉𝜉)(1 + 𝜂𝜂𝑖𝑖𝜂𝜂)(1 − 𝜉𝜉𝑖𝑖𝜉𝜉 − 𝜂𝜂𝑖𝑖𝜂𝜂) 𝑓𝑓𝑡𝑡𝑒𝑒 𝑖𝑖 = 1, 2, 3 𝑎𝑎𝑛𝑛𝑑𝑑 4  (7a) 

𝜓𝜓𝑘𝑘(𝜉𝜉, 𝜂𝜂) = 1
2

(1 − 𝜉𝜉2)(1 + 𝜂𝜂𝑘𝑘𝜂𝜂) 𝑓𝑓𝑡𝑡𝑒𝑒 𝑖𝑖 = 5 𝑎𝑎𝑛𝑛𝑑𝑑 6  (7b) 

𝜓𝜓𝑘𝑘(𝜉𝜉, 𝜂𝜂) = 1
2

(1 + 𝜉𝜉𝑘𝑘𝜉𝜉)(1 − 𝜂𝜂2) 𝑓𝑓𝑡𝑡𝑒𝑒 𝑖𝑖 = 7 𝑎𝑎𝑛𝑛𝑑𝑑 8  (7c) 

Although this shape functions are related to an 8-node element, in the DKQ element development, using: coordinate 
transformations, applying Kirchhoff's assumptions in a discrete manner on the element nodes, especially in nodes 5 to 
8, and other simplifications, it is possible to reduce the element node number to 4, even using the Equation 7 shape 
functions. Consequently, the DKQ is a 4-node element that has 3 degree of freedom per node (2 out-of-plane rotations 
and 1 translation perpendicular to the element plane). 
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According to Rojas et al. [10], the middle surface normal rotation field of the plate element, in natural coordinates 
(𝜉𝜉, 𝜂𝜂), is given by the following interpolation: 

�
𝛽𝛽𝑒𝑒
𝛽𝛽𝜕𝜕
� = [Ψ](2×12){𝑑𝑑𝑒𝑒𝑏𝑏}(12×1) (8a) 

[Ψ] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 3/2[𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑎𝑎5 − 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑎𝑎8] 3/2[𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑑𝑑5 − 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑑𝑑8]
 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑏𝑏5 + 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑏𝑏8 −𝜓𝜓1(𝜉𝜉, 𝜂𝜂) + 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑒𝑒5 + 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑒𝑒8 

𝜓𝜓1(𝜉𝜉, 𝜂𝜂) − 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑐𝑐5 − 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑐𝑐8  −𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑏𝑏5 − 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑏𝑏8 
3/2[𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑎𝑎6 − 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑎𝑎5] 3/2[𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑑𝑑6 − 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑑𝑑5]

 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑏𝑏6 + 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑏𝑏5 −𝜓𝜓2(𝜉𝜉, 𝜂𝜂) + 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑒𝑒6 + 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑒𝑒5 
𝜓𝜓2(𝜉𝜉, 𝜂𝜂) − 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑐𝑐6 − 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑐𝑐5  −𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑏𝑏6 − 𝜓𝜓5(𝜉𝜉, 𝜂𝜂)𝑏𝑏5 

 3/2[𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑎𝑎7 − 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑎𝑎6] 3/2[𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑑𝑑7 − 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑑𝑑6]
 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑏𝑏7 + 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑏𝑏6 −𝜓𝜓3(𝜉𝜉, 𝜂𝜂) + 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑒𝑒7 + 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑒𝑒6 

𝜓𝜓3(𝜉𝜉, 𝜂𝜂) − 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑐𝑐7 − 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑐𝑐6  −𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑏𝑏7 − 𝜓𝜓6(𝜉𝜉, 𝜂𝜂)𝑏𝑏6 
3/2[𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑎𝑎8 − 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑎𝑎7] 3/2[𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑑𝑑8 − 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑑𝑑7]

 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑏𝑏8 + 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑏𝑏7 −𝜓𝜓4(𝜉𝜉, 𝜂𝜂) + 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑒𝑒8 + 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑒𝑒7 
𝜓𝜓4(𝜉𝜉, 𝜂𝜂) − 𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑐𝑐8 − 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑐𝑐7  −𝜓𝜓8(𝜉𝜉, 𝜂𝜂)𝑏𝑏8 − 𝜓𝜓7(𝜉𝜉, 𝜂𝜂)𝑏𝑏7 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
𝑇𝑇

 (8b) 

{𝑑𝑑𝑒𝑒𝑏𝑏} = {𝑤𝑤1 𝜃𝜃𝑒𝑒1 𝜃𝜃𝜕𝜕1 𝑤𝑤2 𝜃𝜃𝑒𝑒2 𝜃𝜃𝜕𝜕2 𝑤𝑤3 𝜃𝜃𝑒𝑒3 𝜃𝜃𝜕𝜕3 𝑤𝑤4 𝜃𝜃𝑒𝑒4 𝜃𝜃𝜕𝜕4}𝑇𝑇 (8c) 

Table 1. Geometric coefficients. 

Coefficient Equation* 

𝑎𝑎𝑘𝑘 −
(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2 

𝑏𝑏𝑘𝑘 
3(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

4(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + 4(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2 

𝑐𝑐𝑘𝑘 
(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2/4 − (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2/2

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2  

𝑑𝑑𝑘𝑘 −
(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2 

𝑒𝑒𝑘𝑘 
−(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2/2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2/4

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2  

*The indexes (𝑘𝑘, 𝑖𝑖, 𝑗𝑗) can be related as (5,1,2), (6,2,3), (7,3,4) and (8,4,1). 

where [Ψ] is a matrix developed based on the discrete application of Kirchhoff's assumptions, and the geometric 
coefficients 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑐𝑐𝑘𝑘, 𝑑𝑑𝑘𝑘 and 𝑒𝑒𝑘𝑘 are functions of the element nodes local coordinates, Table 1. Thereby, the kinematic 
matrix [𝐵𝐵𝑏𝑏0] can be obtained according to Equation 9: 
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{𝜀𝜀𝑏𝑏0} = 𝑧𝑧𝐿𝐿

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝛽𝛽𝑥𝑥
𝜕𝜕𝑒𝑒
𝜕𝜕𝛽𝛽𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝛽𝛽𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛽𝛽𝑦𝑦
𝜕𝜕𝑒𝑒 ⎭
⎪
⎬

⎪
⎫

= 𝑧𝑧𝐿𝐿[𝐵𝐵𝑏𝑏0]{𝑑𝑑𝑒𝑒𝑏𝑏} = 𝑧𝑧𝐿𝐿 �
1 0 0 0
0 0 0 1
0 1 1 0

� �
[𝐽𝐽]−1 [0]
[0] [𝐽𝐽]−1

�

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕Ψ1,𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕Ψ1,𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕Ψ2,𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕Ψ2,𝑖𝑖
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

{𝑑𝑑𝑒𝑒𝑏𝑏}  (9) 

2.5 Geometric Nonlinearity 
In the present paper, the geometric nonlinearity is considered through a Total Lagrangian Formulation (TLF), where 

the problem is analyzed in terms of the structure undeformed configuration. The Von Karman's hypotheses for large 
deflections of plates are considered, as presented by Figueiras [7]: 
• The shell thickness 𝑡𝑡 is small compared to the other dimensions; 
• The shell transverse deflection 𝑤𝑤 is of the same order of magnitude as the thickness; 
• The slopes are small, |𝜕𝜕𝑤𝑤/𝜕𝜕𝑥𝑥| ≪ 1 and |𝜕𝜕𝑤𝑤/𝜕𝜕𝑦𝑦| ≪ 1; 
• The tangential displacements 𝑢𝑢 and 𝑣𝑣 are small enough to allow the nonlinear terms associated with these fields be 

disregarded; 
• All the strain vector components are small. 

Based on these hypotheses, the nonlinear plate strain component can be written as: 

{𝜀𝜀𝑏𝑏𝐿𝐿} =

⎩
⎪
⎨

⎪
⎧
1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒
�
2

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎭

⎪
⎬

⎪
⎫

= 1
2

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒

0

0 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒⎦
⎥
⎥
⎥
⎤

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = 1
2

[𝐴𝐴]{𝜃𝜃}  (10) 

where the vector {𝜃𝜃} with the derivatives of shell transverse deflection 𝑤𝑤 can be evaluated based on the element plate 
displacements {𝑑𝑑𝑒𝑒𝑚𝑚} and considering a bilinear interpolation in this field, as used in the Jacobian matrix [𝐽𝐽], Batoz and 
Tahar [12] and Rojas et al. [10], Equation 11: 

{𝜃𝜃} = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = [𝐽𝐽]−1 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = [𝐺𝐺](2×12){𝑑𝑑𝑒𝑒𝑏𝑏}(12×1)  (11) 

Based on the vector {𝜃𝜃} components, it is possible to assemble the matrix [𝐴𝐴]. Thereby, it is possible to note that these 
two elements depend on the nodal displacements {𝑑𝑑𝑒𝑒𝑏𝑏}, and the multiplication between them results in a nonlinear 
relationship between {𝜀𝜀𝑏𝑏𝐿𝐿} and {𝑑𝑑𝑒𝑒𝑏𝑏}. Calculating the variation of {𝜀𝜀𝑏𝑏𝐿𝐿} with respect to {𝑑𝑑𝑒𝑒𝑚𝑚} we obtain the matrix [𝐵𝐵𝑏𝑏𝐿𝐿]: 

𝜕𝜕{𝜀𝜀𝑏𝑏𝐿𝐿} = 1
2
𝜕𝜕([𝐴𝐴]){𝜃𝜃} + 1

2
[𝐴𝐴]𝜕𝜕({𝜃𝜃}) = [𝐴𝐴]𝜕𝜕({𝜃𝜃}) = [𝐴𝐴][𝐺𝐺]𝜕𝜕{𝑑𝑑𝑒𝑒𝑏𝑏} = [𝐵𝐵𝑏𝑏𝐿𝐿]𝜕𝜕{𝑑𝑑𝑒𝑒𝑏𝑏} (12) 

Unlike the matrices [𝐵𝐵𝑚𝑚], [𝐵𝐵𝑏𝑏0] and [𝐺𝐺] which remain constants through the analysis, the matrix [𝐵𝐵𝑏𝑏𝐿𝐿] depends on the 
nodal displacements {𝑑𝑑𝑒𝑒𝑏𝑏} and needs to be updated in each iteration. 
The incremental kinematic matrix [𝐵𝐵], which differs from the kinematic matrix [𝐵𝐵′] due to the problem linearization 
process, can be written as: 

[𝐵𝐵](3×24) = �[𝐵𝐵𝑚𝑚](3×12) 𝑧𝑧𝐿𝐿[𝐵𝐵𝑏𝑏0](3×12) + [𝐵𝐵𝑏𝑏𝐿𝐿](3×12)� (13) 
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2.6 Element stiffness matrix 
Through the Total Lagrangian Formulation, the element stiffness matrix [𝑘𝑘𝑒𝑒] is defined by two components [𝑘𝑘𝑒𝑒𝐿𝐿] 

and [𝑘𝑘𝑒𝑒𝜎𝜎] which consider, respectively, the large displacements and the stresses acting on the structure: 

[𝑘𝑘𝑒𝑒]  = [𝑘𝑘𝑒𝑒𝐿𝐿] + [𝑘𝑘𝑒𝑒𝜎𝜎] = ∫ [𝐵𝐵]𝑇𝑇[𝐷𝐷][𝐵𝐵]𝑑𝑑𝑉𝑉𝑒𝑒 + 
𝑉𝑉𝑒𝑒

∫ [𝐺𝐺]𝑇𝑇[𝑀𝑀][𝐺𝐺]𝑑𝑑𝑉𝑉𝑒𝑒
 
𝑉𝑉𝑒𝑒

 (14) 

where [𝐷𝐷] is the material tangent stiffness matrix, being adopted in its place, in this paper, the material secant stiffness 
matrix, and [𝑀𝑀] is a matrix defined according to the acting stresses. 

The element volume 𝑉𝑉𝑒𝑒 integrals are evaluated numerically. In the element plane, it is adopted the Gauss 
quadrature [14]. As the shell thickness is discretized in 𝑛𝑛𝑐𝑐 concrete layers and 𝑛𝑛𝑠𝑠 steel layers, in the integral along the 
thickness, it is used a mixed approach between the presented by Zhang et al. [15], [16], Barrales [5] and Vasilescu [13], 
which considers the sum of each layer individual contribution. 

Thereby, using Equations 13 and 14, the matrix [𝑘𝑘𝑒𝑒𝐿𝐿] is evaluated as: 

[𝑘𝑘𝑒𝑒𝐿𝐿] = ∑ 𝑝𝑝𝑘𝑘|[𝐽𝐽]𝑘𝑘|�∑ �
[𝑘𝑘𝑐𝑐.𝑚𝑚𝑚𝑚

𝐿𝐿 ]𝑘𝑘,𝑖𝑖 [𝑘𝑘𝑐𝑐.𝑚𝑚𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑖𝑖

[𝑘𝑘𝑐𝑐𝑏𝑏𝑚𝑚𝐿𝐿 ]𝑘𝑘,𝑖𝑖 [𝑘𝑘𝑐𝑐.𝑏𝑏𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑖𝑖

�𝑛𝑛𝑐𝑐
𝑖𝑖=1 + ∑ �

[𝑘𝑘𝑠𝑠.𝑚𝑚𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 [𝑘𝑘𝑠𝑠.𝑚𝑚𝑏𝑏

𝐿𝐿 ]𝑘𝑘,𝑗𝑗

[𝑘𝑘𝑠𝑠.𝑏𝑏𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 [𝑘𝑘𝑠𝑠.𝑏𝑏𝑏𝑏

𝐿𝐿 ]𝑘𝑘,𝑗𝑗
�𝑛𝑛𝑠𝑠

𝑗𝑗=1 �𝑛𝑛𝑔𝑔
𝑘𝑘=1  (15) 

The parameters 𝑝𝑝𝑘𝑘 and |[𝐽𝐽]𝑘𝑘| represent, respectively, the integration weights of the 𝑛𝑛𝑔𝑔 Gauss points, and the determinant 
of the corresponding Jacobian matrix [𝐽𝐽]𝑘𝑘. 
The concrete layers contributions to the [𝑘𝑘𝑒𝑒𝐿𝐿] matrix, evaluated for each 𝑘𝑘 Gauss point and each 𝑖𝑖 concrete layer, are 
given by: 

[𝑘𝑘𝑐𝑐.𝑚𝑚𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑖𝑖 = 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑚𝑚

0 ]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑚𝑚0 ]𝑖𝑖 (16a) 

[𝑘𝑘𝑐𝑐.𝑚𝑚𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑖𝑖 = 𝑧𝑧𝑐𝑐2𝑖𝑖[𝐵𝐵𝑚𝑚

0 ]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏0]𝑖𝑖 + 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑚𝑚
0 ]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏𝐿𝐿]𝑖𝑖 (16b) 

[𝑘𝑘𝑐𝑐.𝑏𝑏𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑖𝑖 = 𝑧𝑧𝑐𝑐2𝑖𝑖[𝐵𝐵𝑏𝑏

0]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑚𝑚0 ]𝑖𝑖 + 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑚𝑚
𝐿𝐿 ]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑚𝑚0 ]𝑖𝑖 (16c) 

[𝑘𝑘𝑐𝑐.𝑏𝑏𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑖𝑖 = 𝑧𝑧𝑐𝑐3𝑖𝑖[𝐵𝐵𝑏𝑏

0]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏0]𝑖𝑖 + 𝑧𝑧𝑐𝑐2𝑖𝑖[𝐵𝐵𝑏𝑏
0]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏𝐿𝐿]𝑖𝑖 + 𝑧𝑧𝑐𝑐2𝑖𝑖[𝐵𝐵𝑏𝑏

𝐿𝐿]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏0]𝑖𝑖 + 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑏𝑏
𝐿𝐿]𝑖𝑖𝑇𝑇[𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐵𝐵𝑏𝑏𝐿𝐿]𝑖𝑖

 
 (16d) 

The parameter [𝐷𝐷𝑐𝑐]𝑘𝑘,𝑖𝑖 is the material secant stiffness matrix, evaluated at the 𝑖𝑖 concrete layer in the 𝑘𝑘 Gauss points, 
discussed in section 3. The terms 𝑧𝑧𝑐𝑐1𝑖𝑖, 𝑧𝑧𝑐𝑐2𝑖𝑖 and 𝑧𝑧𝑐𝑐3𝑖𝑖 arise from the numerical integration of the layer coordinate 
parameter 𝑧𝑧𝐿𝐿 in the matrices [𝐵𝐵𝑏𝑏0], component of [𝐵𝐵] matrix, and are calculated in a discrete way, for each concrete 
layer, as shown in Equation 17, where 𝑧𝑧𝑐𝑐𝑖𝑖

𝑒𝑒𝑡𝑡𝑡𝑡 and 𝑧𝑧𝑐𝑐𝑖𝑖
𝑏𝑏𝑡𝑡𝑒𝑒 represent, respectively, the analyzed layer top and bottom 

coordinates. 

𝑧𝑧𝑐𝑐1𝑖𝑖 = �𝑧𝑧𝑐𝑐𝑖𝑖
𝑒𝑒𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑐𝑐𝑖𝑖

𝑏𝑏𝑡𝑡𝑒𝑒� (17a) 

𝑧𝑧𝑐𝑐2𝑖𝑖 = 1
2
��𝑧𝑧𝑐𝑐𝑖𝑖

𝑒𝑒𝑡𝑡𝑡𝑡�
2
− �𝑧𝑧𝑐𝑐𝑖𝑖

𝑏𝑏𝑡𝑡𝑒𝑒�2� (17b) 

𝑧𝑧𝑐𝑐3𝑖𝑖 = 1
3
��𝑧𝑧𝑐𝑐𝑖𝑖

𝑒𝑒𝑡𝑡𝑡𝑡�
3
− �𝑧𝑧𝑐𝑐𝑖𝑖

𝑏𝑏𝑡𝑡𝑒𝑒�3� (17c) 

The steel layers contributions to the [𝑘𝑘𝑒𝑒𝐿𝐿] matrix, evaluated for each 𝑘𝑘 Gauss point and each 𝑗𝑗 steel layer, are given by: 



J. R. B. Silva and B. Horowitz 

Rev. IBRACON Estrut. Mater., vol. 15, no. 4, e15407, 2022 9/22 

[𝑘𝑘𝑠𝑠.𝑚𝑚𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 = 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗 (18a) 

[𝑘𝑘𝑠𝑠.𝑚𝑚𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 = 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑗𝑗 + 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑗𝑗 (18b) 

[𝑘𝑘𝑠𝑠.𝑏𝑏𝑚𝑚
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 = 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗 + 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑚𝑚𝐿𝐿 ]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑚𝑚0 ]𝑗𝑗 (18c) 

[𝑘𝑘𝑠𝑠.𝑏𝑏𝑏𝑏
𝐿𝐿 ]𝑘𝑘,𝑗𝑗 = 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗

2[𝐵𝐵𝑏𝑏0]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑗𝑗 + 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑗𝑗 +
 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑗𝑗 + 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑗𝑗𝑇𝑇[𝐷𝐷𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑗𝑗

 (18d) 

The parameter [𝐷𝐷𝑠𝑠]𝑘𝑘,𝑖𝑖 is the material secant stiffness matrix, evaluated at the 𝑗𝑗 steel layer in the 𝑘𝑘 Gauss points, also 
discussed in section 3. The variable 𝑧𝑧𝑠𝑠 refers to the position of the 𝑗𝑗 steel layer axis. On the other hand, 𝑡𝑡𝑠𝑠𝑗𝑗 and 𝜌𝜌𝑠𝑠𝑗𝑗 are 
the corresponding layer thickness and reinforcement ratio. 
Similarly, the matrix [𝑘𝑘𝑒𝑒𝜎𝜎] can be defined numerically as: 

[𝑘𝑘𝑒𝑒𝜎𝜎] = ∫ [𝐺𝐺]𝑇𝑇[𝑀𝑀][𝐺𝐺]𝑑𝑑𝑉𝑉 
𝑉𝑉 = �

[0](12×12) [0](12×12)

[0](12×12) ∑ 𝑡𝑡𝑘𝑘|[𝐽𝐽]𝑘𝑘|�∑ [𝑘𝑘𝑐𝑐𝜎𝜎]𝑘𝑘,𝑖𝑖
𝑛𝑛𝑐𝑐
𝑖𝑖=1 +∑ [𝑘𝑘𝑠𝑠𝜎𝜎]𝑘𝑘,𝑗𝑗

𝑛𝑛𝑠𝑠
𝑗𝑗=1 �

𝑛𝑛𝑔𝑔
𝑘𝑘=1

� (19a) 

[𝑘𝑘𝑐𝑐𝜎𝜎]𝑘𝑘,𝑖𝑖 = [𝐺𝐺]𝑖𝑖𝑇𝑇[𝑀𝑀𝑐𝑐]𝑘𝑘,𝑖𝑖[𝐺𝐺]𝑖𝑖 = 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐺𝐺]𝑖𝑖𝑇𝑇 �
𝜎𝜎𝑒𝑒𝑒𝑒𝑐𝑐 𝑖𝑖 𝜏𝜏𝑒𝑒𝜕𝜕𝑐𝑐 𝑖𝑖
𝜏𝜏𝑒𝑒𝜕𝜕𝑐𝑐 𝑖𝑖

𝜎𝜎𝜕𝜕𝜕𝜕𝑐𝑐 𝑖𝑖
� [𝐺𝐺]𝑖𝑖 (19b) 

[𝑘𝑘𝑠𝑠𝜎𝜎]𝑘𝑘,𝑗𝑗 = [𝐺𝐺]𝑗𝑗𝑇𝑇[𝑀𝑀𝑠𝑠]𝑘𝑘,𝑗𝑗[𝐺𝐺]𝑗𝑗 = 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐺𝐺]𝑗𝑗𝑇𝑇 �
𝜎𝜎𝑒𝑒𝑒𝑒𝑠𝑠 𝑗𝑗 𝜏𝜏𝑒𝑒𝜕𝜕𝑠𝑠 𝑗𝑗

𝜏𝜏𝑒𝑒𝜕𝜕𝑠𝑠 𝑗𝑗
𝜎𝜎𝜕𝜕𝜕𝜕𝑠𝑠 𝑗𝑗

� [𝐺𝐺]𝑗𝑗 (19c) 

where 𝜎𝜎𝑒𝑒𝑒𝑒, 𝜎𝜎𝜕𝜕𝜕𝜕 and 𝜏𝜏𝑒𝑒𝜕𝜕 represent the stresses acting on the concrete and steel layers. Note that the matrix [𝑘𝑘𝑒𝑒𝜎𝜎] 
contributes to [𝑘𝑘𝑒𝑒] only in the region associated with the plate degrees of freedom, a consequence of considering 
nonlinear deformations only in the nonlinear plate strain component {𝜀𝜀𝑏𝑏𝐿𝐿}. 

2.7 Internal forces vector 
The internal forces vector {𝐹𝐹𝑖𝑖𝑛𝑛𝑒𝑒} unlike the external forces vector {𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒} is not constant. It depends on the structure 

nodal displacement vector {𝑑𝑑} and must be updated at each iteration. The corresponding element contribution {𝑓𝑓𝑒𝑒} can 
be defined by Equation 20a and calculated numerically by Equation 20b. 

{𝑓𝑓𝑒𝑒} = ∫ [𝐵𝐵]𝑇𝑇{𝜎𝜎}𝑑𝑑𝑉𝑉𝑒𝑒
 
𝑉𝑉𝑒𝑒

= ∫ [𝐵𝐵]𝑇𝑇 �
𝜎𝜎𝑒𝑒𝑒𝑒
𝜎𝜎𝜕𝜕𝜕𝜕
𝜏𝜏𝑒𝑒𝜕𝜕

� 𝑑𝑑𝑉𝑉𝑒𝑒
 
𝑉𝑉𝑒𝑒

 (20a) 

{𝑓𝑓𝑒𝑒} = ∑ 𝑝𝑝𝑘𝑘|[𝐽𝐽]𝑘𝑘|�∑ [𝐵𝐵𝑐𝑐]𝑘𝑘,𝑖𝑖
𝑇𝑇 �

𝜎𝜎𝑒𝑒𝑒𝑒𝑐𝑐 𝑖𝑖
𝜎𝜎𝜕𝜕𝜕𝜕𝑐𝑐 𝑖𝑖
𝜏𝜏𝑒𝑒𝜕𝜕𝑐𝑐 𝑖𝑖

�𝑛𝑛𝑐𝑐
𝑖𝑖=1 + ∑ [𝐵𝐵𝑠𝑠]𝑘𝑘,𝑗𝑗

𝑇𝑇 �

𝜎𝜎𝑒𝑒𝑒𝑒𝑠𝑠 𝑗𝑗

𝜎𝜎𝜕𝜕𝜕𝜕𝑠𝑠 𝑗𝑗

𝜏𝜏𝑒𝑒𝜕𝜕𝑠𝑠 𝑗𝑗

�𝑛𝑛𝑠𝑠
𝑗𝑗=1 �𝑛𝑛𝑔𝑔

𝑘𝑘=1  (20b) 

where the matrices [𝐵𝐵𝑐𝑐]𝑘𝑘,𝑖𝑖 and [𝐵𝐵𝑠𝑠]𝑘𝑘,𝑗𝑗 can be calculated as: 

[𝐵𝐵𝑐𝑐]𝑘𝑘,𝑖𝑖 = �𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑚𝑚]𝑘𝑘 𝑧𝑧𝑐𝑐2𝑖𝑖[𝐵𝐵𝑏𝑏
0]𝑘𝑘 + 𝑧𝑧𝑐𝑐1𝑖𝑖[𝐵𝐵𝑏𝑏

𝐿𝐿]𝑘𝑘� (21a) 
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[𝐵𝐵𝑠𝑠]𝑘𝑘,𝑗𝑗 = �𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑚𝑚]𝑘𝑘 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗𝑧𝑧𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏0]𝑘𝑘 + 𝜌𝜌𝑠𝑠𝑗𝑗𝑡𝑡𝑠𝑠𝑗𝑗[𝐵𝐵𝑏𝑏𝐿𝐿]𝑘𝑘� (21b) 

2.8 Program implementation 
The program was developed using a simple imperative concept with repetition statements, to perform the necessary 

calculations on all elements and Gaussian points, as well as for each load step. It is possible to apply the presented 
formulation using other strategies, such as the Object-Oriented Programming (OOP) to ensure greater code reusability. 

Figure 2 details the implemented program. As this figure illustrates, in the first load step first iteration, the concrete 
constitutive matrix can be initialized based on a linear-elastic model, Equation. (4.22), where υ0 is the initial Poisson 
ratio and Ec is the Modulus of elasticity of concrete. 

[𝐷𝐷𝑙𝑙𝑖𝑖𝑛𝑛𝑒𝑒𝑙𝑙𝑙𝑙] = 𝐸𝐸𝑐𝑐
1−𝜐𝜐02

�
1 𝜐𝜐0 0
𝜐𝜐0 1 0
0 0 1−𝜐𝜐0

2

� (22) 

3 MATERIAL CONSTITUTIVE MODELS 
This section presents, in a concise way, the material constitutive models implemented in the developed 

computational program, since they are known formulations and widely discussed in the technical literature [2] [3], [17]. 
In addition, this section also details the formulation of the concrete [𝐷𝐷𝑐𝑐] and steel [𝐷𝐷𝑠𝑠] layers secant stiffness matrices, 
according to Vecchio [3]. In this study, the cracked concrete, despite its evident discrete nature, is modeled as a 
homogeneous orthotropic material, through the concept of mean stress and strain evaluated in regions containing several 
cracks, following the basis of the Modified Compression Field Theory (MCFT) [2]. 

3.1 Concrete in compression 
Concrete in compression is modeled using a combination between the well-known Hognestad parabola, 

Equation 23, for both pre-peak and post-peak behavior, and the Vecchio 1992-A model (e1/e2- Form) [17], which 
through the softening coefficient 𝛽𝛽𝑑𝑑, models the material strength loss due to transversal tension, Equation 24. 

𝜎𝜎𝑐𝑐𝑐𝑐 = �
−𝑓𝑓𝑡𝑡 �2 �

𝜀𝜀𝑐𝑐𝑐𝑐
𝜀𝜀𝑝𝑝
� − �𝜀𝜀𝑐𝑐𝑐𝑐

𝜀𝜀𝑝𝑝
�
2
� , 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑐𝑐𝑐𝑐| < 2�𝜀𝜀𝑡𝑡�

 0, 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑐𝑐𝑐𝑐| < 2�𝜀𝜀𝑡𝑡�
 (23) 

𝑓𝑓𝑡𝑡 = 𝛽𝛽𝑑𝑑𝑓𝑓𝑐𝑐 (24a) 

𝜀𝜀𝑡𝑡 = 𝛽𝛽𝑑𝑑𝜀𝜀0 (24b) 

𝛽𝛽𝑑𝑑 = 1
1+𝐶𝐶𝑠𝑠𝐶𝐶𝑑𝑑

≤ 1 (24c) 

𝐶𝐶𝑑𝑑 = �
 0, 𝑖𝑖𝑓𝑓 min (−𝜀𝜀𝑐𝑐1/𝜀𝜀𝑐𝑐2, 400) ≥ 0.28

0.35[min (−𝜀𝜀𝑐𝑐1/𝜀𝜀𝑐𝑐2, 400) − 0.28]0.80, 𝑖𝑖𝑓𝑓 min (−𝜀𝜀𝑐𝑐1/𝜀𝜀𝑐𝑐2, 400) ≥ 0.28 (24d) 

where 𝜎𝜎𝑐𝑐𝑐𝑐 and 𝜀𝜀𝑐𝑐𝑐𝑐 are, respectively, the average compressive stress and strain. The variable 𝑓𝑓𝑐𝑐 is the cylinder 
compressive strength (at 28 days), and 𝜀𝜀0 is the corresponding peak strain. The factor 𝐶𝐶𝑑𝑑 represents the influence of the 
relationship between the principal tensile 𝜀𝜀𝑐𝑐1 and compression 𝜀𝜀𝑐𝑐2 strains in concrete. The factor 𝐶𝐶𝑠𝑠 is equal to 0.55 
when the slip deformations in the cracks are considered in the model (subsection 3.6), and 1.0 otherwise. 
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Figure 2. Nonlinear analysis procedure 

3.2 Concrete in tension 
The concrete tensile model is defined by two distinct behaviors: pre-cracking and post-cracking, Equation 25. 

According to Wong et al. [17], after cracking, the reinforced concrete leaves the linear-elastic behavior, and the concrete 
tensile stresses tend to zero, on the crack surface, while it can present considerable values, between cracks, due to steel 
interaction. The Modified Bentz 2003 tensile stiffening model can represent this behavior. Furthermore, according to 
Vecchio [3], the magnitude of the average principal tensile stress 𝜎𝜎𝑐𝑐𝑒𝑒 must be limited by the remaining steel resistant 
capacity 𝜎𝜎𝑐𝑐𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒. 

𝜎𝜎𝑐𝑐𝑒𝑒 = �
𝐸𝐸𝑐𝑐𝜀𝜀𝑐𝑐𝑒𝑒 , 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐𝑒𝑒 < 𝜀𝜀𝑐𝑐𝑙𝑙
𝑓𝑓𝑐𝑐𝑐𝑐

1+𝑐𝑐𝑡𝑡𝜀𝜀𝑐𝑐𝑡𝑡
, 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐𝑒𝑒 ≥ 𝜀𝜀𝑐𝑐𝑙𝑙

≤ 𝜎𝜎𝑐𝑐𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒 (25a) 

𝑐𝑐𝑒𝑒 = 2.2

4𝜌𝜌𝑥𝑥𝜙𝜙𝑥𝑥
|cos (𝜃𝜃−𝛼𝛼𝑥𝑥)|+4

𝜌𝜌𝑦𝑦
𝜙𝜙𝑦𝑦

�cos (𝜃𝜃−𝛼𝛼𝑦𝑦)�
 (25b) 
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𝜎𝜎𝑐𝑐𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒 = 𝜌𝜌𝑒𝑒(𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 − 𝑓𝑓𝑠𝑠𝑒𝑒)cos (𝜃𝜃 − 𝛼𝛼𝑒𝑒)2 + 𝜌𝜌𝜕𝜕(𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕 − 𝑓𝑓𝑠𝑠𝜕𝜕)cos (𝜃𝜃 − 𝛼𝛼𝜕𝜕)2 (25c) 

where 𝜀𝜀𝑐𝑐𝑒𝑒 is the concrete average principal tensile strain. The parameters 𝑓𝑓𝑐𝑐𝑙𝑙 and 𝜀𝜀𝑐𝑐𝑙𝑙 are, respectively, the crack stress 
and strain. The coefficient 𝑐𝑐𝑒𝑒 refers to the influence of the reinforcement on the stiffening, and it is obtained based on: 
the steel ratios 𝜌𝜌𝑒𝑒 and 𝜌𝜌𝜕𝜕; the reinforcement rebar nominal diameter 𝜙𝜙𝑒𝑒 and 𝜙𝜙𝜕𝜕; and the angles 𝜃𝜃, 𝛼𝛼𝑒𝑒 and 𝛼𝛼𝜕𝜕 that 
illustrate the principal system direction and the reinforcements orientation. The parameters 𝑓𝑓𝑠𝑠𝑒𝑒 and 𝑓𝑓𝑠𝑠𝜕𝜕 are the 
reinforcements average stresses, while 𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 and 𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕 represent these same parameters evaluated at the crack surface. 
The Modulus of elasticity of concrete 𝐸𝐸𝑐𝑐 illustrates the ratio between 𝑓𝑓𝑐𝑐𝑙𝑙 and 𝜀𝜀𝑐𝑐𝑙𝑙, and can be estimated as 2𝑓𝑓𝑐𝑐/|𝜀𝜀0|. 

When the reinforcement properties are directly assigned to the finite element, like in reinforced concrete membranes 
analysis programs [18], for example, the application of equation Equation  25 is direct. However, in the present study, 
the thickness of the shell element is discretized in layers and the constitutive model must be applied separately in each 
one. In this case, it is necessary to define which reinforcement parameters should be considered in each concrete layer. 
Hrynyk [4] presented a solution to this problem, based on CEB-FIP [19], which consists in defining a rebar tensile 
stiffening influence area equal to 7.5 times the rebar diameter. Thus, the concrete layers located within the rebar 
influence area are considered stiffened by this reinforcement. However, it is important to note that this evaluation must 
be done for all concrete layer-steel layer combinations, where a concrete layer could be stiffened by more than one steel 
layer (or none). Therefore, it is possible to see that the adoption of this criterion in the tensile stiffening model, along 
the shell thickness, tends to obtain a more realistic structural response. In the concrete layer plane state analysis, the 
principal stresses σc1 and σc2 can be evaluated with either the tensile model, Equation 25, or the compression model, 
Equation 23, depending on the layer plane state: biaxial tension, biaxial compression or tension-compression state. 

3.3 Steel in tension or compression 
In this paper, two steel constitutive models were implemented, both for tension and compression: a simple perfect 

elastic-plastic curve, Equation 26, and a bilinear curve that considers the material hardening after it reaches the yield 
condition, Equation 27. 

𝑓𝑓𝑠𝑠 = �
 𝑓𝑓𝑦𝑦
𝜀𝜀𝑠𝑠𝑦𝑦
𝜀𝜀𝑠𝑠, 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑠𝑠| < 𝜀𝜀𝑠𝑠𝜕𝜕

𝑓𝑓𝜕𝜕𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝜀𝜀𝑠𝑠), 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑠𝑠| ≥ 𝜀𝜀𝑠𝑠𝜕𝜕
 (26) 

𝑓𝑓𝑠𝑠 = �
 𝑓𝑓𝑠𝑠𝑦𝑦
𝜀𝜀𝑠𝑠𝑦𝑦
𝜀𝜀𝑠𝑠, 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑠𝑠| < 𝜀𝜀𝑠𝑠𝜕𝜕

�𝑓𝑓𝜕𝜕 + 𝑓𝑓𝑢𝑢−𝑓𝑓𝑦𝑦
𝜀𝜀𝑠𝑠𝑢𝑢−𝜀𝜀𝑠𝑠𝑦𝑦

(𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑠𝑠𝜕𝜕)� 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝜀𝜀𝑠𝑠), 𝑖𝑖𝑓𝑓 |𝜀𝜀𝑠𝑠| ≥ 𝜀𝜀𝑠𝑠𝜕𝜕
 (27) 

where 𝑓𝑓𝜕𝜕 and 𝜀𝜀𝑠𝑠𝜕𝜕 are the yield stress and strain and 𝑓𝑓𝑠𝑠 and 𝜀𝜀𝑠𝑠 are the reinforcement average stress and strain. The 
parameters 𝑓𝑓𝑢𝑢 and 𝜀𝜀𝑠𝑠𝑢𝑢 are the corresponding steel ultimate stress and strain. The second model was implemented to 
allow the program to capture the post-yielding behavior, in the Polak shells problem, subsection 4.2. 

3.4 Concrete confinement 
Unlike the concrete softening effect, section 3.1, when this material is submitted to a biaxial (or triaxial) 

compression state, there is a confinement effect that tends to increase its resistant capacity. In the present study, this 
was modeled in a similar way to what was presented by Silva [18], based on the work of Vecchio [20], 
Kupfer et al. [21], Richart et al. [22] and Wong et al. [17], using the enhancement factors 𝐾𝐾𝑐𝑐1 and 𝐾𝐾𝑐𝑐2: 

𝐾𝐾𝑐𝑐1(𝜎𝜎𝑐𝑐2) = 1 + 0.92 �− 𝜎𝜎𝑐𝑐2
𝑓𝑓𝑐𝑐
� − 0.76 �− 𝜎𝜎𝑐𝑐2

𝑓𝑓𝑐𝑐
�
2

+ 4.1 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠
𝑓𝑓𝑐𝑐

 (28a) 

𝐾𝐾𝑐𝑐2(𝜎𝜎𝑐𝑐1) = 1 + 0.92 �− 𝜎𝜎𝑐𝑐1
𝑓𝑓𝑐𝑐
� − 0.76 �− 𝜎𝜎𝑐𝑐1

𝑓𝑓𝑐𝑐
�
2

+ 4.1 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠
𝑓𝑓𝑐𝑐

 (28b) 
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where 𝜌𝜌𝑠𝑠𝑧𝑧 and 𝑓𝑓𝑠𝑠𝑧𝑧 are the reinforcement ratio and its stress in the out-of-plane direction. The stress 𝑓𝑓𝑠𝑠𝑧𝑧 can be evaluated 
by applying the concrete strain in the corresponding direction 𝜀𝜀𝑐𝑐𝑧𝑧 in the steel constitutive model. In this paper, this 
strain is calculated in a simplified way regardless of whether the reinforcement yields or not as: 

𝜀𝜀𝑐𝑐𝑧𝑧 = 𝐸𝐸𝑐𝑐𝑛𝑛
𝐸𝐸𝑐𝑐𝑛𝑛+𝜌𝜌𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠

(−𝑣𝑣12𝜀𝜀𝑐𝑐2 − 𝑣𝑣21𝜀𝜀𝑐𝑐1) (29) 

where 𝐸𝐸𝑐𝑐𝑛𝑛 and 𝐸𝐸𝑠𝑠𝑧𝑧 are the concrete and steel modulus of elasticity in the out-of-plane direction, where 𝐸𝐸𝑐𝑐𝑛𝑛 is considered 
equal to |2𝑓𝑓𝑐𝑐/𝜀𝜀0|. The parameter 𝑣𝑣12 represents the Poisson ratio that relates the strain in the 1-direction due to the 
stress in 2-direction [20]. The parameter 𝑣𝑣21 is defined similarly. The model adopted for calculating the Poisson 
coefficients 𝑣𝑣12 and 𝑣𝑣21 is detailed in the following subsection. The factors 𝐾𝐾𝑐𝑐1 and 𝐾𝐾𝑐𝑐2 are used to determine the peak 
stress and strain in the principal system (1-2): 

𝑓𝑓𝑡𝑡1 = 𝐾𝐾𝑐𝑐1𝑓𝑓𝑐𝑐 (30a) 

𝑓𝑓𝑡𝑡2 = 𝐾𝐾𝑐𝑐2𝑓𝑓𝑐𝑐 (30b) 

𝜀𝜀𝑡𝑡1 = (3𝐾𝐾𝑐𝑐1 − 2)𝜀𝜀0 (31a) 

𝜀𝜀𝑡𝑡2 = (3𝐾𝐾𝑐𝑐2 − 2)𝜀𝜀0 (31b) 

The peak stresses and strains can be used to calculate the concrete average principal compressive stresses. Analyzing 
the set of equations described in this subsection, it is possible to see the evaluation of the concrete behavior in biaxial 
compression as a nonlinear system of equations with two equations and two variables: 

𝑓𝑓(𝜎𝜎𝑐𝑐1,𝜎𝜎𝑐𝑐2) = �
𝜎𝜎𝑐𝑐1 − 𝜎𝜎𝑐𝑐𝑐𝑐(𝑓𝑓𝑡𝑡1, 𝜀𝜀𝑡𝑡1, 𝜀𝜀𝑐𝑐1)
𝜎𝜎𝑐𝑐2 − 𝜎𝜎𝑐𝑐𝑐𝑐(𝑓𝑓𝑡𝑡2, 𝜀𝜀𝑡𝑡2, 𝜀𝜀𝑐𝑐2)� = �00� (32) 

This solution strategy was implemented in the developed program, where optimization functions from SciPy [23] 
scientific computational library were applied. It was observed good results, in addition to an adequate convergence, 
even applying a simple initial estimate for the solution (coordinate system origin). 

3.5 Poisson ratio and lateral strains 
According to Vecchio [20], lateral strains related to the Poisson ratio can be relevant for the reinforced concrete 

structures behavior, especially near failure. The Equation 33 represents the Poisson ratio model adopted in this paper. 
This model, in addition to considering the initial Poisson ratio 𝑣𝑣0 increase, also disregards this parameter when the 
concrete presents, in the transverse direction, a principal tensile strain greater than the cracking strain 𝜀𝜀𝑐𝑐𝑙𝑙. 

𝑣𝑣12 =

⎩
⎪
⎨

⎪
⎧

 0, 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐2 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝜀𝜀𝑐𝑐2 ≥ 𝜀𝜀𝑐𝑐𝑙𝑙
 𝑣𝑣0, 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐2 ≥ 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝜀𝜀𝑐𝑐2 < 𝜀𝜀𝑐𝑐𝑙𝑙

 𝑣𝑣0, 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐2 < 0 𝑎𝑎𝑛𝑛𝑑𝑑 |𝜀𝜀𝑐𝑐2| < |𝜀𝜀0|/2

𝑣𝑣0 �1 + 1.5 �2𝜀𝜀𝑐𝑐2
𝜀𝜀0

− 1�
2
� ≯ 0.5, 𝑖𝑖𝑓𝑓 𝜀𝜀𝑐𝑐2 < 0 𝑎𝑎𝑛𝑛𝑑𝑑 |𝜀𝜀𝑐𝑐2| ≥ |𝜀𝜀0|/2

 (33) 

The concrete principal lateral strain in 1-direction 𝜀𝜀𝑐𝑐01 is given by Equation 34. It is important to note that the 
corresponding strain in 2-direction 𝜀𝜀𝑐𝑐02 and its Poisson ratio 𝑣𝑣21 can be obtained through Equations 33 and (34) 
switching the indexes. 
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𝜀𝜀𝑐𝑐01 = −𝑣𝑣21𝜀𝜀𝑐𝑐2 (34) 

The concrete principal lateral strain vector {𝜀𝜀𝑐𝑐01−2} can be transformed to the corresponding cartesian system vector 
{𝜀𝜀𝑐𝑐0 }, Equation 35, using the rotation matrix [𝑇𝑇], Equation 36. 

{𝜀𝜀𝑐𝑐0 } = [𝑇𝑇(−𝜃𝜃)]{𝜀𝜀𝑐𝑐01−2} = [𝑇𝑇(−𝜃𝜃)]{𝜀𝜀𝑐𝑐01 𝜀𝜀𝑐𝑐02 0}𝑇𝑇 (35) 

[𝑇𝑇(𝜃𝜃)] = �
cos (𝜃𝜃)2 sin (𝜃𝜃)2 cos (𝜃𝜃)sin (𝜃𝜃)
sin (𝜃𝜃)2 cos (𝜃𝜃)2 −cos (𝜃𝜃)sin (𝜃𝜃)

−2cos (𝜃𝜃)sin (𝜃𝜃) 2cos (𝜃𝜃)sin (𝜃𝜃) cos (𝜃𝜃)2 − sin (𝜃𝜃)2
� (36) 

3.6 Slip strain model 
The Disturbed Stress Field Model (DSFM) is an extension of the well-known Modified Compression Field Theory 

(MCFT) [2], which admits disagreements between the stress and strain principal systems, through the consideration of 
crack slip strains. The DSFM was proposed by Vecchio [3] to solve some MCFT drawbacks in calculate the strength 
and stiffness of high or low reinforcement ratio elements. 

The crack surface shear stress 𝑣𝑣𝑐𝑐 can be evaluated applying equilibrium in the reinforced concrete element: 

𝑣𝑣𝑐𝑐 = 𝜌𝜌𝑒𝑒(𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 − 𝑓𝑓𝑠𝑠𝑒𝑒) cos(𝜃𝜃 − 𝛼𝛼𝑒𝑒) sin(𝜃𝜃 − 𝛼𝛼𝑒𝑒) + 𝜌𝜌𝜕𝜕�𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕 − 𝑓𝑓𝑠𝑠𝜕𝜕� cos�𝜃𝜃 − 𝛼𝛼𝜕𝜕� sin�𝜃𝜃 − 𝛼𝛼𝜕𝜕� (37) 

According to Vecchio [3] due to this shear stress there is a rigid body local slip along the crack (slip displacement 𝛿𝛿𝑠𝑠) 
which causes slip strains {𝜀𝜀𝑠𝑠}. These strains must be considered in the model additionally to the principal strains related 
to the material constitutive response. According to Vecchio [3], the displacement 𝛿𝛿𝑠𝑠 can be calculated as: 

𝛿𝛿𝑠𝑠 = 𝑣𝑣𝑐𝑐
1.8𝜕𝜕𝑐𝑐𝑐𝑐−0.8+(0.234𝜕𝜕𝑐𝑐𝑐𝑐−0.707−0.20)𝑓𝑓𝑐𝑐𝑐𝑐

 (38) 

where 𝑤𝑤𝑐𝑐𝑙𝑙  represents the average crack width, which can be estimated from the average crack spacing 𝑠𝑠𝑐𝑐𝑙𝑙 , Equation 
39, based on the nominal crack spacings in x and y (𝑠𝑠𝑒𝑒 = 𝑠𝑠𝜕𝜕 = 50𝑚𝑚𝑚𝑚). 

𝑤𝑤𝑐𝑐𝑙𝑙 = 𝜀𝜀𝑐𝑐1𝑠𝑠𝑐𝑐𝑙𝑙 = 𝜀𝜀𝑐𝑐1
1

sin(𝜃𝜃)/𝑠𝑠𝑥𝑥+cos(𝜃𝜃)/𝑠𝑠𝑦𝑦
 (39) 

When the average crack width is greater than or equal to 5 mm, the concrete principal compressive stress 𝜎𝜎𝑐𝑐2 is 
considered equal to zero. The parameter 𝑓𝑓𝑐𝑐𝑐𝑐 is cubic compressive strength, adopted as: 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐/0.85. The crack slip 
shear strain 𝛾𝛾𝑠𝑠 is evaluated as the ratio between 𝛿𝛿𝑠𝑠 and 𝑠𝑠𝑐𝑐𝑙𝑙. 
Based on Mohr's circle coordinate transformations, the slip strain vector in the Cartesian system {𝜀𝜀𝑠𝑠} can be written as: 

{𝜀𝜀𝑠𝑠}  = 𝛾𝛾𝑠𝑠 �
−0.5 sin(2𝜃𝜃)
0.5 sin(2𝜃𝜃)

cos(2𝜃𝜃)
� (40) 

The formulation described above represents an overview of the slip strain vector {𝜀𝜀𝑠𝑠} calculation procedure. However, 
it is important to present some additional details about the shear stresses along the crack surfaces 𝑣𝑣𝑐𝑐. Although this 
parameter can be obtained by Equation 37, according to Silva [18], it should be limited to the maximum shear stress 
that can be resisted on the crack by aggregate interlock, Equation 41. 
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𝑣𝑣𝑐𝑐 ≤ 𝑣𝑣𝑐𝑐𝑚𝑚𝑙𝑙𝑒𝑒 = 0.18�𝑓𝑓𝑐𝑐
0.31+24𝜕𝜕𝑐𝑐𝑐𝑐/(𝑙𝑙𝑔𝑔+26)

 (41) 

where 𝑎𝑎𝑔𝑔 is the aggregate size (adopted as 25mm). Furthermore, according to Equation 37, to evaluate the shear stress 𝑣𝑣𝑐𝑐 
it is previously necessary to calculate the reinforcement stresses in the crack surface 𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 and 𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕. Although these 
parameters can be easily obtained using the steel constitutive models, section 3.3, the evaluation of the corresponding steel 
strains, in the crack surface, 𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 and 𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕, necessary to obtain these stresses, is not immediate. Through the reinforced 
concrete element equilibrium in the crack surface, there is a steel stress (and strain) increment, due to the concrete tensile 
stress absence. Thus, Vecchio [3] proposes that the steel strains, in the cracks 𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 and 𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕, should be determined through 
the sum of the corresponding average strain 𝜀𝜀𝑠𝑠𝑒𝑒 and 𝜀𝜀𝑠𝑠𝜕𝜕 and the local incremental strain contribution in 1-direction, Δ𝜀𝜀1𝑐𝑐𝑙𝑙: 

𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 = 𝜀𝜀𝑠𝑠𝑒𝑒 + Δ𝜀𝜀1𝑐𝑐𝑙𝑙cos (𝜃𝜃 − 𝛼𝛼𝑒𝑒)2 (42a) 

𝜀𝜀𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕 = 𝜀𝜀𝑠𝑠𝜕𝜕 + Δ𝜀𝜀1𝑐𝑐𝑙𝑙cos (𝜃𝜃 − 𝛼𝛼𝜕𝜕)2 (42b) 

Thus, considering the concrete in tension and steel constitutive models presented and the formulation described above, 
it is possible to formulate a nonlinear equation whose solution is the incremental strain Δ𝜀𝜀1𝑐𝑐𝑙𝑙, Equation 43. Again, it 
was used SciPy [23] scientific computing library optimization functions. 

𝑓𝑓(Δ𝜀𝜀1𝑐𝑐𝑙𝑙) = 𝜎𝜎𝑐𝑐1 − 𝜌𝜌𝑒𝑒(𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝑒𝑒 − 𝑓𝑓𝑠𝑠𝑒𝑒) cos(𝜃𝜃 − 𝛼𝛼𝑒𝑒)2 − 𝜌𝜌𝜕𝜕�𝑓𝑓𝑠𝑠𝑐𝑐𝑙𝑙𝜕𝜕 − 𝑓𝑓𝑠𝑠𝜕𝜕� cos�𝜃𝜃 − 𝛼𝛼𝜕𝜕�
2 = 0 (43) 

Finally, it is important to note that the slip theory is only applied to cracked concrete. Thus, it must be verified whether 
the concrete principal tensile strain 𝜀𝜀𝑐𝑐1 is greater than the crack strain 𝜀𝜀𝑐𝑐𝑙𝑙. Otherwise, the slip strain vector {𝜀𝜀𝑠𝑠} can be 
computed as a null vector. 

3.7 Material secant stiffness matrices 
In the previous subsections, it was presented the lateral strain vector {𝜀𝜀𝑐𝑐0 } and the slip strain vector {𝜀𝜀𝑠𝑠} calculation 

procedure. In order to ensure the concrete secant stiffness matrix symmetry and the associated benefits, according to 
Vecchio [3] and Silva [18], the concrete total strain vector {𝜀𝜀} is defined by three distinct components: {𝜀𝜀𝑐𝑐}, {𝜀𝜀𝑐𝑐0 } and 
{𝜀𝜀𝑠𝑠}, where, {𝜀𝜀𝑐𝑐} represents the elastic strains due to stress, which can be evaluated, as: 

{𝜀𝜀𝑐𝑐} = {𝜀𝜀} − {𝜀𝜀𝑐𝑐0 } − {𝜀𝜀𝑠𝑠} = {𝜀𝜀𝑐𝑐𝑒𝑒 𝜀𝜀𝑐𝑐𝜕𝜕 𝛾𝛾𝑐𝑐𝑒𝑒𝜕𝜕}𝑇𝑇 (44) 

Once the vector {𝜀𝜀𝑐𝑐} are obtained, it is possible to estimate the inclination of the principal strains 𝜃𝜃, Equation 45, and 
the concrete principal strains: 

𝜃𝜃 = 0.5𝑡𝑡𝑎𝑎𝑛𝑛−1 � 𝛾𝛾𝑐𝑐𝑥𝑥𝑦𝑦
𝜀𝜀𝑐𝑐𝑥𝑥−𝜀𝜀𝑐𝑐𝑦𝑦

� (45) 

𝜀𝜀𝑐𝑐1, 𝜀𝜀𝑐𝑐2 = 𝜀𝜀𝑐𝑐𝑥𝑥+𝜀𝜀𝑐𝑐𝑦𝑦
2

± 1
2�(𝜀𝜀𝑐𝑐𝑒𝑒 − 𝜀𝜀𝑐𝑐𝜕𝜕)2 + 𝛾𝛾𝑐𝑐𝑒𝑒𝜕𝜕2 (46) 

Through Equations 44 and (46) and the models presented in the previous subsections, it is possible to see the nonlinear 
relationship between the vectors {𝜀𝜀𝑐𝑐}, {𝜀𝜀𝑐𝑐0 } and {𝜀𝜀𝑠𝑠}. In the present paper, this problem was solved iteratively, as 
illustrated in Figure 3. In the cracked reinforced concrete element, the concrete stress vector {𝜎𝜎𝑐𝑐} can be related to the 
corresponding strain vector {𝜀𝜀𝑐𝑐} as: 

{𝜎𝜎𝑐𝑐}  = [𝐷𝐷𝑐𝑐]{𝜀𝜀𝑐𝑐} (47) 
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where the concrete layer secant stiffness matrix [𝐷𝐷𝑐𝑐] in the Cartesian system is obtained by a coordinate transformation 
of the corresponding matrix in the principal system [𝐷𝐷𝑐𝑐1−2], which is defined based on the concrete secant moduli 𝐸𝐸�𝑐𝑐1 
and 𝐸𝐸�𝑐𝑐2, Equations 48 and 49. 

[𝐷𝐷𝑐𝑐]  = [𝑇𝑇(𝜃𝜃)]𝑇𝑇[𝐷𝐷𝑐𝑐1−2][𝑇𝑇(𝜃𝜃)] = [𝑇𝑇(𝜃𝜃)]𝑇𝑇 �

𝐸𝐸�𝑐𝑐1 0 0
0 𝐸𝐸�𝑐𝑐2 0
0 0 𝐸𝐸�𝑐𝑐1𝐸𝐸�𝑐𝑐2

𝐸𝐸�𝑐𝑐1+𝐸𝐸�𝑐𝑐2

� [𝑇𝑇(𝜃𝜃)] (48) 

𝐸𝐸�𝑐𝑐1 = 𝜎𝜎𝑐𝑐1/𝜀𝜀𝑐𝑐1 𝐸𝐸�𝑐𝑐2 = 𝜎𝜎𝑐𝑐2/𝜀𝜀𝑐𝑐2 (49) 

 
Figure 3. Concrete layer secant constitutive model 
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Figure 4. Reinforcement layer secant constitutive model 

Like Equation 48, the steel secant stiffness matrix [𝐷𝐷𝑠𝑠] (in 𝑥𝑥 or 𝑦𝑦-direction) can be calculated as shown in 
Equation 50. 

[𝐷𝐷𝑠𝑠]  = [𝑇𝑇(𝛼𝛼𝑠𝑠)]𝑇𝑇[𝐷𝐷𝑠𝑠′][𝑇𝑇(𝛼𝛼𝑠𝑠)] = [𝑇𝑇(𝛼𝛼𝑠𝑠)]𝑇𝑇 �
𝑓𝑓𝑠𝑠/𝜀𝜀𝑠𝑠 0 0

0 0 0
0 0 0

� [𝑇𝑇(𝛼𝛼𝑠𝑠)] (50) 

where the angle 𝛼𝛼𝑠𝑠𝑗𝑗 represents the reinforcement direction. Finally, the reinforcement layer stress vector {𝜎𝜎𝑠𝑠} is 
calculated by: 

{𝜎𝜎𝑠𝑠}  = [𝑇𝑇(𝛼𝛼𝑠𝑠)]{𝜎𝜎𝑠𝑠′} = [𝑇𝑇(𝛼𝛼𝑠𝑠)]{𝑓𝑓𝑠𝑠 0 0}𝑇𝑇 (51) 

Figures 3 and 4 detail the constitutive models’ implementation in the developed computer program, to obtain the secant 
stiffness matrices [𝐷𝐷𝑐𝑐] and [𝐷𝐷𝑠𝑠], and the stress vectors {𝜎𝜎𝑐𝑐} and {𝜎𝜎𝑠𝑠}, on each layer. 

4 PROGRAM VALIDATION AND DISCUSSIONS 
This section presents the developed computer program validation through comparison with experimental and some 

numerical results [1], [4], available in the technical literature, for different structures. The load-displacement curves 
presented were created by the program, while the nodal displacements diagrams and the average internal forces 
diagrams, in the Gauss points, were obtained using the software Paraview [24], a Python module called PyEVTK [25] 
and additional codes written by the author, in the same language. Other useful structure diagrams for practical 
applications, like principal stresses, reinforcement stresses and crack pattern, are features that have not been 
implemented yet in the presented code. However, it can be done using the same approach mentioned above. In fact, 
any node or element property, in each load step, can be represented this way, in the program post-processor. 

4.1 Cervenka deep beam 
Initially, to evaluate the program performance in material nonlinear membrane problems, the deep beam W2 tested 

by Cervenka [26], Figure 5, was analyzed. All the plate degrees of freedom have been fixed. It was adopted 3 steel 
layers (2 horizontal and 1 vertical) to model the reinforcement, where its positions were defined according to the 
experiment. It was considered the steel perfect elasto-plastic model. The external load was applied using an initial load 
of 40 kN, in addition to 85 increments equal to 0.88 kN. The stopping criteria tolerance 𝑡𝑡𝑡𝑡𝑡𝑡, associated with the 
increment displacement criterion described in subsection 2.1, was equal to 1%, . Figure 5 illustrates the results obtained, 
using the problem symmetry. Figure 4 also shows a comparison between the obtained load-displacement curve (y-
displacement at the deep beam bottom midpoint), the experiment and a literature numerical response [27]. It was 
observed an adequate structural behavior and a good accuracy to the experimental data. The processing time was about 
6 minutes, using a processor: Intel Core i7-5500U CPU @ 2.40GHz. 
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Figure 5. Cervenka deep beam 

4.2 Polak shells 
To evaluate the program performance in material nonlinear plate and shell problems, three reinforced concrete shells 

(SM1, SM2 and SM3) tested by Polak and Vecchio [28] were analyzed. The specimens’ characteristics, in addition to 
the results obtained, in comparison with literature numerical solutions [1], [4], are illustrated in Figure 6. It was adopted 
4 steel layers (2 horizontal and 2 vertical), in addition to an out-of-plane reinforcement, to model the structures rebars, 
where its positions were defined according to the experiment. In all three cases, the load increments number was about 
90. The stopping criteria tolerance 𝑡𝑡𝑡𝑡𝑡𝑡 was equal to 1%, subsection 2.1. The finite element mesh used contains 8x8 
elements, and its thickness were discretized into 10 concrete layers. In the problem analysis, the program was not able 
to find a post-yielding equilibrated response, in less than 100 iterations (default maximum iterations number). However, 
during the study, it was observed that, considering the bilinear steel constitutive model, Equation 27, and disregarding 
the confinement (subsection 3.4) and slip strain models (subsection 3.6), consequently a simpler set of constitutive 
models, the tool found an equilibrated configuration, between 20 and 50 iterations. After these considerations, again, a 
good agreement was observed between the developed program and the experimental results. The total processing time 
was 15 minutes, where most of this time refer to the post-yielding behavior. 

4.3 Geometric nonlinear plates analysis 
Three rectangular linear-elastic plates, subjected to a uniform load 𝑞𝑞, presented by Figueiras [7], were analyzed to 

verify the geometric nonlinear model implemented. The plates span 𝑡𝑡 were equal to 6m and its thickness ℎ was assumed 
as 0.15m. The material elastic modulus 𝐸𝐸 and Poisson ratio were adopted, respectively, as 30𝑘𝑘𝑁𝑁/𝑚𝑚2 and 0.316. The 
difference between the three structures was the boundary conditions applied to the edges: clamped, simply supported 
(horizontally fixed) and simply supported (horizontally free). The finite element mesh used contains 6x6 elements, and 
its thickness were discretized into 10 concrete layers. In all three cases, the number of load increments was equal to 
100. The stopping criteria tolerance 𝑡𝑡𝑡𝑡𝑡𝑡 was equal to 10−5. Figure 7 shows the load parameter (𝑞𝑞. 𝑡𝑡4/𝐸𝐸.ℎ4) versus 
central displacement parameter (𝑤𝑤/ℎ) curves obtained in this study, where it is possible to observe good accuracy when 
compared with literature analytical [29] and numerically [7] solutions. The processing time was about 12 minutes. 
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Figure 6. Polak shells 
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Figure 7. Geometrically nonlinear plate analysis 

 
Figure 8. Slender shear wall 

4.4 Slender shear wall 
The last problem analyzed was a slender shear wall. The structure geometry was adapted from the 

literature [6], [30], [31] to reach a wall slenderness ratio equal to 90. It was considered both the material and the 
geometric nonlinearities The problem characteristics are illustrated in Figure 8. The thickness was discretized into 10 
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concrete layers. The shear wall is simply supported. The external loads were applied in 10 increments and stopping 
criteria tolerance 𝑡𝑡𝑡𝑡𝑡𝑡 was equal to 1%. The results obtained in the developed program were compared with VecTor 4 
structural analysis software in Figure 8c. The two tools obtained similar results. However, it is important to emphasize 
that a proper validation must be performed using experimental results. VecTor 4 was adopted as a reference given the 
lack slender shear walls test results, like Figure 7a. The total processing time was close to 10 minutes. 

5 CONCLUSIONS 
This paper presents the development of a nonlinear finite element analysis program for reinforced concrete 

structures, subject to monotonic loading, using thin flat shell finite elements QTFLS [5]. The material nonlinear analysis 
considered a secant stiffness approach, based on the Modified Compression Field Theory (MCFT) [2]. The element 
original formulation was expanded to also consider the problem geometric, through a Total Lagrangian Formulation [7]. 
Based on this study, the following was observed: 
• Reinforced concrete structures nonlinear analysis, based on the Newton-Raphson method, using the materials secant 

stiffness matrices and a Total Lagrangian Formulation can be considered an attractive approach, according to the 
results accuracy and the computational cost; 

• However, the fact that part of the formulation needed to be adjusted to the program be able to find a post-yielding 
equilibrated response, in some problems (subsections 4.2), shows the difficulty present in the development of a tool 
with wide range of potential applications, as also exposed by Figueira [7]. 

• The slender shear wall validation, subsection 4.4, indicates the necessity to conduct experimental programs for this 
type of structure, in order not only to obtain a better understanding of the construction behavior, but also to produce 
test data to enable the development of more accuracy computational tools. 
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