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Abstract: A numerical procedure is proposed for asymmetrical plastic shear diagrams in punching control 
perimeters. Asymmetrical diagrams occur for edge and corner columns and for internal columns with biaxial 
unbalanced moments. The procedure intends to support the use of NBR 6118, which covers asymmetrical 
shear distributions due to internal moments of edge and corner columns. The study of columns in different 
positions of the slab proves the robustness and numerical efficiency of the proposal. The practical application 
of the procedure is tested against Model Code 1990, Eurocode 2, NBR 6118, and with combinations of criteria 
from these codes. The estimated capacities are compared with experimental data from the literature. Eurocode 
2 initially presents better results, but this code does not consider moments with internal eccentricities in edge 
and corner columns. The Eurocode 2 evaluations are significantly improved by the inclusion of NBR 6118 
criteria that partially apply these moments, whose asymmetrical shear diagrams can be determined by the 
proposed procedure. 

Keywords: flat slabs, punching shear, unbalanced moments, plastic analysis. 

Resumo: Um procedimento numérico é proposto para diagramas plásticos de cisalhamento assimétricos em 
perímetros de controle de punção. Diagramas assimétricos ocorrem para pilares de borda e de canto e para 
pilares internos com momentos desbalanceados biaxiais. O procedimento visa auxiliar a utilização da NBR 
6118, que considera as distribuições assimétricas de cisalhamento associadas aos momentos internos de 
pilares de borda e de canto. O estudo de pilares em diferentes posições da laje comprova a robustez e a 
eficiência numérica da proposta. A aplicação prática do procedimento é testada com o Model Code 1990, o 
Eurocode 2, a NBR 6118 e com combinações de critérios desses códigos. As capacidades estimadas são 
comparadas com dados experimentais da literatura. O Eurocode 2 apresenta inicialmente melhores resultados, 
mas este código não considera os momentos com excentricidades internas em pilares de borda e de canto. As 
estimativas do Eurocode 2 são significativamente melhoradas pela inclusão de critérios da NBR 6118 que 
aplicam parcialmente esses momentos, cujos diagramas de cisalhamento assimétricos podem ser determinados 
pelo procedimento proposto. 
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1 INTRODUCTION 
The design of flat slabs is often controlled by the punching shear strength of the slab-column connections. Slab-

column connections are usually subjected to unbalanced moments that yield additional shear stresses and reduce the 
punching shear capacity. 
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Eurocode 2 [1] and the Brazilian code NBR 6118 [2] adopt the Model Code 90 [3] punching shear design model 
with modifications. In this work, these codes are referenced by the abbreviations EC2, NBR6118, and MC90, 
respectively. The MC90 model compares acting stresses with resisting stresses in control perimeters. 

Shear forces due to normal forces are assumed to be uniformly distributed along control perimeters or reduced 
control perimeters. Shear forces distributed due to unbalanced moments are considered fully plastic in both positive 
and negative directions. The positive and negative parts of the perimeter may show symmetry, but they are often 
asymmetrical. Plastic asymmetrical bending diagrams require nonlinear solutions. 

This paper proposes a numerical procedure for the determination of asymmetrical plastic shear diagrams in arbitrary 
control perimeters. The procedure is tested together with the empirical equations set forth in MC90, EC2, and 
NBR6118. The results are compared with experimental data from the literature. 

2 SELECTED RECOMMENDATIONS FROM THE CODES 
Research that influenced the design of the MC90 model is discussed by Regan [4] and Regan and Braestrup [5]. 

The ACI 318-19 [6] and Model Code 2010 [7] recommendations are not discussed here. ACI 318-19 adopts the linear 
elastic hypothesis proposed by di Stasio and van Buren [8]. Model Code 2010 verifies plastic distributions based on the 
Critical Shear Crack Theory (Muttoni [9] and Ruiz and Muttoni [10]). 

MC90, EC2, and NBR6118 verify the capacity of slabs without transverse reinforcement at Perimeter 1. Perimeter  1 
is at distance 2𝑑𝑑 from the column face, where 𝑑𝑑 is the effective depth of the slab. Considering elements without shear 
reinforcement, the punching strength of slabs at Perimeter 1 corresponds to the shear strengths of the linear members 
(FIB Bulletin 2 [11]). The three codes present equivalent expressions for design shear stresses 𝜏𝜏𝑅𝑅𝑅𝑅, whose parameters 
are determined using the respective partial safety factors for concrete 𝛾𝛾𝑐𝑐. 

Compressive stresses in concrete struts are verified at Perimeter 0, which is adjacent to the column. Although the 𝜏𝜏𝑅𝑅𝑅𝑅 
expressions are similar at Perimeter 0, MC90, EC2, and NBR6118 reduce the diagonal compressive capacity by different factors. 

Perimeter 𝑛𝑛 is tested when transverse reinforcement is required. The distance between this perimeter and the outer 
reinforcement contour is 𝑘𝑘𝑘𝑘. MC90 and NBR6118 use 𝑘𝑘 = 2, while EC2 uses 𝑘𝑘 = 1.5. The three codes define 
maximum stresses for transverse reinforcement but use different approaches. 

The differences between the codes are more significant in the control perimeters submitted to bending. The plastic 
diagrams of internal columns subjected to biaxial bending are asymmetrical. This issue is only addressed in EC2, which 
indicates an empirical solution. MC90 and EC2 ignore moments with internal eccentricity in edge and corner columns. 
NBR6118 partially includes internal moments of edge and corner columns when their eccentricities are greater than the 
eccentricities between the columns and the reduced control perimeters. 

3 PUNCHING SHEAR DESIGN WITH UNBALANCED MOMENTS 
Any evaluation of shear forces along a control perimeter must consider that the bending and torsional moments resist part of 

the unbalanced moment. The 𝐾𝐾 factor is defined as the fraction of the unbalanced moment that is resisted by shear forces. 
The moments transferred to the slab by bending and shear are experimentally investigated by Hanson and Hanson [12] 

on square columns. The ratios of unbalanced moments resisted by shear are analytically discussed by Mast [13] for internal 
columns (Figure 1). The corresponding 𝐾𝐾 factor is estimated by the elastic solution of a plate subjected to a concentrated 
moment. The plate is simply supported in the main direction and is infinite in the other direction (Girkmann [14]). The 𝐾𝐾 
factor can be defined as a function of the control perimeter shape in the region close to the column. 

Design 𝐾𝐾 values indicated in MC90 are compared with Mast’s [13] approximate elastic solution (Figure 1). The 
analytical values assume that lengths 𝑎𝑎 and 𝑏𝑏 vary between 𝐿𝐿/20 and 𝐿𝐿/5, where 𝐿𝐿 is the span between the columns. 
Figure 1 also shows the elastic distribution of shear forces along a square perimeter, where 𝑎𝑎 = 𝑏𝑏 = 𝐿𝐿/10. 

 
Figure 1. Unbalanced moment transfer in slab-column connections 
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Shear force distribution in reinforced concrete flat slabs has also been studied by nonlinear finite element analyses. 
Shu et al. [15] investigate internal columns without unbalanced moments in flat slabs without shear reinforcement. The 
shear force distributions along the control perimeters are determined by shell and solid nonlinear finite element models. 
The results show that reinforcement arrangement, cracking and nonlinear material behavior influence the shear force 
distribution. Laguta [16] uses a concrete damaged plasticity material model to describe the nonlinear behavior of the 
concrete and present a typical shear stress distribution at a control perimeter under combined vertical load and 
unbalanced moment. 

Normal force and bending moment are considered separately in the MC90 design model and produce distinct plastic 
shear force diagrams per unit length (Figure 2). The plastic shear forces related to normal force 𝐹𝐹 and bending moment 
𝑀𝑀 are respectively denoted by 𝑣𝑣𝐹𝐹 and 𝑣𝑣𝑀𝑀. 

 
Figure 2. Coordinate system, applied forces and moments, and distributed shear forces 

MC90 defines an effective normal force 𝐹𝐹𝑒𝑒𝑒𝑒, including the effect of unbalanced moment. The plastic diagrams for 
normal force 𝐹𝐹 and bending moment 𝑀𝑀 determine the effective force 𝐹𝐹𝑒𝑒𝑒𝑒. EC2 uses the same methodology, presented 
by coefficient 𝛽𝛽, such that 𝐹𝐹𝑒𝑒𝑒𝑒 = 𝛽𝛽𝛽𝛽. 

𝐹𝐹𝑒𝑒𝑒𝑒
𝑗𝑗  is here defined as the effective force that is calculated on Perimeter 𝑗𝑗. The following expressions apply: 

𝑣𝑣𝐹𝐹
𝑗𝑗 = 𝐹𝐹

𝑢𝑢𝑗𝑗
; 𝑣𝑣𝐹𝐹

∗𝑗𝑗 = 𝐹𝐹
𝑢𝑢∗𝑗𝑗

; 𝑣𝑣𝑀𝑀
𝑗𝑗 = 𝑀𝑀

𝑊𝑊𝑝𝑝
𝑗𝑗  (1) 

where 𝑊𝑊𝑝𝑝
𝑗𝑗 is the plastic modulus and 𝑢𝑢𝑗𝑗 is the developed length of Perimeter 𝑗𝑗. Reduced lengths 𝑢𝑢∗𝑗𝑗 are defined for 

edge and corner columns. Reduced lengths 𝑢𝑢∗𝑗𝑗 correspond to developed lengths 𝑢𝑢𝑗𝑗 in internal columns. 
The combined shear force per unit length 𝑣𝑣𝑀𝑀𝑀𝑀

𝑗𝑗  is expressed by 

𝑣𝑣𝑀𝑀𝑀𝑀
𝑗𝑗 = 𝑣𝑣𝐹𝐹

∗𝑗𝑗 + 𝑣𝑣𝑀𝑀
𝑗𝑗   (2) 

The effective force 𝐹𝐹𝑒𝑒𝑒𝑒
𝑗𝑗  on Perimeter 𝑗𝑗 is given by 

𝐹𝐹𝑒𝑒𝑒𝑒
𝑗𝑗 = 𝑣𝑣𝑀𝑀𝑀𝑀

𝑗𝑗

𝑣𝑣𝐹𝐹
𝑗𝑗 𝐹𝐹  (3) 

4 PLASTIC MODULUS FOR ASYMMETRICAL BENDING 
A numerical procedure is used to determine the plastic shear diagram and the plastic flexural modulus of an arbitrary 

perimeter, which is subjected to a bending moment 𝑀𝑀 about an oblique axis. 
𝑀𝑀𝑥𝑥 and 𝑀𝑀𝑦𝑦 are the vector components of bending moment 𝑀𝑀 about the 𝑥𝑥 − and 𝑦𝑦 −axes, respectively (Figure 3). 

 
Figure 3. Rotated coordinate system associated with the principal moments 
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4.1 Moments in the principal coordinate system 

Figure 3 presents the principal coordinate system 𝑥̄𝑥𝑦̄𝑦. The system is rotated from the 𝑥𝑥𝑥𝑥 coordinate system by an 
angle 𝛼𝛼, which is defined by 

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 = 𝑀𝑀𝑥𝑥

�𝑀𝑀𝑥𝑥
2+𝑀𝑀𝑦𝑦

2
; 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 = 𝑀𝑀𝑦𝑦

�𝑀𝑀𝑥𝑥
2+𝑀𝑀𝑦𝑦

2  (4) 

Considering 𝑥̄𝑥 = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 and 𝑦̄𝑦 = −𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼, the equilibrium conditions of the shear forces per unit 
length 𝑣𝑣 along the perimeter 𝑈𝑈 yield 

𝑀𝑀𝑥̄𝑥 = ∫ 𝑣𝑣𝑦̄𝑦𝑑𝑑𝑑𝑑𝑈𝑈 = ∫ 𝑣𝑣(−𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼)𝑑𝑑𝑑𝑑𝑈𝑈 = 𝑀𝑀𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑀𝑀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 = �𝑀𝑀𝑥𝑥
2 + 𝑀𝑀𝑦𝑦

2  (5) 

𝑀𝑀𝑦̄𝑦 = ∫ −𝑣𝑣𝑥̄𝑥𝑑𝑑𝑑𝑑𝑈𝑈 = ∫ −𝑣𝑣(𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼)𝑑𝑑𝑑𝑑𝑈𝑈 = −𝑀𝑀𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 + 𝑀𝑀𝑦𝑦 𝑐𝑐𝑜𝑜𝑠𝑠 𝛼𝛼 = 0  (6) 

where 𝑀𝑀𝑥̄𝑥 and 𝑀𝑀𝑦̄𝑦 are the moments about the 𝑥̄𝑥 − and 𝑦̄𝑦 −axes (Figure 3). 

4.2 Distribution of shear forces per unit length 

Shear forces 𝑣𝑣 = −𝑣𝑣𝑀𝑀 and 𝑣𝑣 = +𝑣𝑣𝑀𝑀 (Figure 2) are considered uniformly distributed along perimeter lengths 𝑈𝑈− 
and 𝑈𝑈+, respectively. The equilibrium conditions in the 𝑧𝑧 −direction and about the 𝑥𝑥 − and 𝑦𝑦 −axes lead to the 
following equations: 

∫ (−𝑣𝑣𝑀𝑀)𝑑𝑑𝑑𝑑 + ∫ (+𝑣𝑣𝑀𝑀)𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈− = 0  (7) 

𝑀𝑀𝑥̄𝑥 = ∫ (−𝑣𝑣𝑀𝑀)𝑦̄𝑦𝑑𝑑𝑑𝑑 + ∫ (+𝑣𝑣𝑀𝑀)𝑦̄𝑦𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈−   (8) 

𝑀𝑀𝑦̄𝑦 = −∫ (−𝑣𝑣𝑀𝑀)𝑥̄𝑥𝑑𝑑𝑑𝑑 − ∫ (+𝑣𝑣𝑀𝑀)𝑥̄𝑥𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈−   (9) 

Collecting like terms in Equations 7 to 9 yields 

∫ (−1)𝑑𝑑𝑑𝑑 + ∫ (+1)𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈− = 0  (10) 

𝑊𝑊𝑝𝑝𝑥̄𝑥 = ∫ (−1)𝑦̄𝑦𝑑𝑑𝑑𝑑 + ∫ (+1)𝑦̄𝑦𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈−   (11) 

𝑊𝑊𝑝𝑝𝑦̄𝑦 = −∫ (−1)𝑥̄𝑥𝑑𝑑𝑑𝑑 − ∫ (+1)𝑥̄𝑥𝑑𝑑𝑑𝑑𝑈𝑈+𝑈𝑈−   (12) 

where the plastic flexural moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥 and 𝑊𝑊𝑝𝑝𝑦̄𝑦 are 

𝑊𝑊𝑝𝑝𝑥̄𝑥 = 𝑀𝑀𝑥̄𝑥
𝑣𝑣𝑀𝑀

; 𝑊𝑊𝑝𝑝𝑦̄𝑦 = 𝑀𝑀𝑦̄𝑦

𝑣𝑣𝑀𝑀
  (13) 

A numerical algorithm establishes perimeter lengths 𝑈𝑈− and 𝑈𝑈+. 

4.3 Discretization and parametrization of the control perimeter 

The perimeter is divided into linear and arc segments for the application of the numerical procedure. 
The developed length of the control perimeter is defined as 𝑢𝑢. The numerical procedure demands that all segments have 

lengths less than the semi-perimeter 𝑢𝑢/2. This condition is satisfied by the division into segments shown in Figure 4. 
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Figure 4. Discretization of control perimeters into segments 𝑆𝑆𝑖𝑖 

The points that divide the segments are numbered from 1 to 𝑁𝑁. The control perimeter is parameterized according to 
the developed length 𝑠𝑠, where 𝑠𝑠1 = 0 at start point 1 and 𝑠𝑠𝑁𝑁 = 𝑢𝑢 at endpoint 𝑁𝑁 (Figure 5). 

 
Figure 5. Parameter 𝑠𝑠 and unit shear force distribution along the control perimeter 

This parameterization is valid for open and closed perimeters. Points 1 and 𝑁𝑁 are distinct for open perimeters but 
coincident for closed perimeters. 

Figure 5 also presents a flat diagram of unit shear forces per unit length. The longitudinal axis indicates parameter 
𝑠𝑠, which is the developed length from the origin (𝑠𝑠1 = 0). The unit shear forces change signs at points 𝐴𝐴 and 𝐵𝐵. The 
perimeter length of positive shear forces 𝑈𝑈+ is defined between points 𝐴𝐴 and 𝐵𝐵. The perimeter length of negative shear 
forces 𝑈𝑈− is defined in intervals 1 − 𝐴𝐴 and 𝐵𝐵 − 𝑁𝑁. 

Equation 10 shows that the developed lengths of the perimeter lengths 𝑈𝑈− and 𝑈𝑈+ are both equal to the semi-
perimeter 𝑢𝑢/2. 

4.4 Plastic flexural modulus 
The parameters 𝑠𝑠 of points 𝐴𝐴 and 𝐵𝐵 are defined as 𝑠𝑠𝐴𝐴 and 𝑠𝑠𝐵𝐵, respectively. Equation 10 is automatically respected 

by adopting the following 

𝑠𝑠𝐵𝐵 = 𝑠𝑠𝐴𝐴 + 𝑢𝑢
2
  (14) 

A parameter 𝑠𝑠𝐴𝐴 yields 𝑠𝑠𝐵𝐵 by Equation 14. Perimeter lengths 𝑈𝑈− and 𝑈𝑈+ are defined in Figure 5. The plastic flexural 
moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥(𝑠𝑠𝐴𝐴) and 𝑊𝑊𝑝𝑝𝑦̄𝑦(𝑠𝑠𝐴𝐴)are determined by Equations 11 and 12, respectively. 

The algorithm searches for a parameter 𝑠𝑠𝐴𝐴∗ that yields 𝑊𝑊𝑝𝑝𝑦̄𝑦(𝑠𝑠𝐴𝐴∗) ≃ 0. The solution 𝑠𝑠𝐴𝐴∗ yields a unit diagram 
proportional to the shear force diagram that satisfies Equations 5 and 6. 

The plastic flexural modulus 𝑊𝑊𝑝𝑝 and the shear force per unit length 𝑣𝑣𝑀𝑀 are given by 

𝑊𝑊𝑝𝑝 = �𝑊𝑊𝑝𝑝𝑥̄𝑥(𝑠𝑠𝐴𝐴∗)�  (15) 

𝑣𝑣𝑀𝑀 = 𝑀𝑀𝑥̄𝑥
𝑊𝑊𝑝𝑝

=
�𝑀𝑀𝑥𝑥

2+𝑀𝑀𝑦𝑦
2

𝑊𝑊𝑝𝑝
  (16) 

where 𝑣𝑣𝑀𝑀 is always positive. 
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If 𝑦̄𝑦 coordinates are always negative in 𝑈𝑈− and positive in 𝑈𝑈+, or always positive in 𝑈𝑈− and negative in 𝑈𝑈+, 
Equations 11 and 15 yield 

𝑊𝑊𝑝𝑝 = ∫ |𝑦̄𝑦|𝑑𝑑𝑑𝑑𝑈𝑈   (17) 

Equation 17 cannot be used in the general case, but it is valid for symmetrical perimeters about the 𝑥̄𝑥 − axis. It is 
applicable in specific cases, such as edge columns subjected to moments 𝑀𝑀𝑥̄𝑥 = 𝑀𝑀𝑥𝑥 (Figure 4). 

4.5 Partial integration of a same-sign length of a segment 
Changes in the sign of unit shear forces can occur in linear and arc segments. Equations 11 and 12 yield the plastic 

flexural moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥 and 𝑊𝑊𝑝𝑝𝑦̄𝑦 by integrating lengths with shear forces of the same sign. 
A segment’s start and end points are defined as 𝐼𝐼 and 𝐽𝐽, respectively (Figure 6). Points 𝑃𝑃 and 𝑄𝑄 determine a length 

with positive shear forces. 

 
Figure 6. Partial integration between points 𝑃𝑃 and 𝑄𝑄 

The variables associated with points 𝑃𝑃, 𝑄𝑄, 𝐼𝐼, and 𝐽𝐽 that are known are the parameters 𝑠𝑠𝐼𝐼, 𝑠𝑠𝐽𝐽, 𝑠𝑠𝑃𝑃, and 𝑠𝑠𝑄𝑄 and the 
coordinates 𝑥̄𝑥𝐼𝐼, 𝑦̄𝑦𝐼𝐼, 𝑥̄𝑥𝐽𝐽, and 𝑦̄𝑦𝐽𝐽. The dimensionless factors 𝜁𝜁𝐺𝐺𝐺𝐺 and 𝜁𝜁𝐺𝐺𝐺𝐺 of a generic point 𝐺𝐺 on the segment are defined by 

𝜁𝜁𝐺𝐺𝐺𝐺 = �𝑠𝑠𝐽𝐽−𝑠𝑠𝐺𝐺�
�𝑠𝑠𝐽𝐽−𝑠𝑠𝐼𝐼�

; 𝜁𝜁𝐺𝐺𝐺𝐺 = (𝑠𝑠𝐺𝐺−𝑠𝑠𝐼𝐼)
�𝑠𝑠𝐽𝐽−𝑠𝑠𝐼𝐼�

  (18) 

In the case of linear segments, 𝐻𝐻 is defined as the barycenter of 𝑃𝑃𝑃𝑃. The parameter 𝑠𝑠𝐻𝐻 and coordinates 𝑥̄𝑥𝐻𝐻 and 𝑦̄𝑦𝐻𝐻 
are equal to 

𝑠𝑠𝐻𝐻 = �𝑠𝑠𝑃𝑃+𝑠𝑠𝑄𝑄�
2

  (19) 

𝑥̄𝑥𝐻𝐻 = 𝜁𝜁𝐻𝐻𝐻𝐻𝑥̄𝑥𝐼𝐼 + 𝜁𝜁𝐻𝐻𝐻𝐻𝑥̄𝑥𝐽𝐽 ; 𝑦̄𝑦𝐻𝐻 = 𝜁𝜁𝐻𝐻𝐻𝐻𝑦̄𝑦𝐼𝐼 + 𝜁𝜁𝐻𝐻𝐻𝐻𝑦̄𝑦𝐽𝐽  (20) 

where 𝑊𝑊𝑝𝑝𝑥̄𝑥
𝑃𝑃𝑃𝑃 and 𝑊𝑊𝑝𝑝𝑦̄𝑦

𝑃𝑃𝑃𝑃 are the contributions of 𝑃𝑃𝑃𝑃 to the plastic moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥 and 𝑊𝑊𝑝𝑝𝑦̄𝑦. In linear segments, they are 
expressed by 

𝑊𝑊𝑝𝑝𝑥̄𝑥
𝑃𝑃𝑃𝑃 = 𝛥𝛥𝛥𝛥𝑦̄𝑦𝐻𝐻 ; 𝑊𝑊𝑝𝑝𝑦̄𝑦

𝑃𝑃𝑃𝑃 = −𝛥𝛥𝛥𝛥𝑥̄𝑥𝐻𝐻  (21) 

𝛥𝛥𝛥𝛥 = 𝑠𝑠𝑄𝑄 − 𝑠𝑠𝑃𝑃  (22) 

where 𝛥𝛥𝛥𝛥 is the length between 𝑃𝑃 and 𝑄𝑄. 
In arc segments, the following variables are also considered: angles 𝛼𝛼𝐼𝐼 and 𝛼𝛼𝐽𝐽 at points 𝐼𝐼 and 𝐽𝐽, coordinates 𝑥𝑥𝐶𝐶 and 

𝑦𝑦𝐶𝐶 of the center, and radius 𝑟𝑟. Angles 𝛼𝛼𝑃𝑃 and 𝛼𝛼𝑄𝑄 are interpolated by 

𝛼𝛼𝑃𝑃 = 𝜁𝜁𝑃𝑃𝑃𝑃𝛼𝛼𝐼𝐼 + 𝜁𝜁𝑃𝑃𝑃𝑃𝛼𝛼𝐽𝐽 ; 𝛼𝛼𝑄𝑄 = 𝜁𝜁𝑄𝑄𝑄𝑄𝛼𝛼𝐼𝐼 + 𝜁𝜁𝑄𝑄𝑄𝑄𝛼𝛼𝐽𝐽  (23) 

The following expressions yield the contributions of 𝑃𝑃𝑃𝑃 to the plastic moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥 and 𝑊𝑊𝑝𝑝𝑦̄𝑦 in arc segments: 

𝑊𝑊𝑝𝑝𝑥̄𝑥
𝑃𝑃𝑃𝑃 = � 1𝑦̄𝑦𝑑𝑑𝑑𝑑

𝛼𝛼𝑄𝑄

𝛼𝛼𝑃𝑃
= � 1(𝑦̄𝑦𝐶𝐶 + 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼)𝑟𝑟𝑟𝑟𝑟𝑟

𝛼𝛼𝑄𝑄

𝛼𝛼𝑃𝑃
= 𝛥𝛥𝛥𝛥𝑦̄𝑦𝐶𝐶 + 𝑟𝑟2�𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑄𝑄 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑃𝑃� 

𝑊𝑊𝑝𝑝𝑦̄𝑦
𝑃𝑃𝑃𝑃 = −∫ 1𝑥̄𝑥𝑑𝑑𝑑𝑑𝛼𝛼𝑄𝑄

𝛼𝛼𝑃𝑃
= −∫ 1(𝑥̄𝑥𝐶𝐶 + 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼)𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼𝑄𝑄

𝛼𝛼𝑃𝑃
= −𝛥𝛥𝛥𝛥𝑥̄𝑥𝐶𝐶 − 𝑟𝑟2�𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑄𝑄 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑃𝑃�  (24) 
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The developed length 𝛥𝛥𝛥𝛥 between 𝑃𝑃 and 𝑄𝑄 is 

𝛥𝛥𝛥𝛥 = 𝑟𝑟�𝛼𝛼𝑄𝑄 − 𝛼𝛼𝑃𝑃�  (25) 

4.6 Full segment integration 
Unit shear forces on lengths 𝑃𝑃𝑃𝑃 (Figure 6) can be positive or negative. Figure 7 discusses the positive and negative 

shear forces that should be considered during the complete integration of a segment 𝐼𝐼𝐼𝐼. 
Each segment cannot simultaneously contain points 𝐴𝐴 and 𝐵𝐵, since all segments have a developed length less than 

the semi-perimeter 𝑢𝑢/2. The discretization into segments shown in Figure 4 meets this requirement. 
Parameters 𝑠𝑠𝐴𝐴 and 𝑠𝑠𝐵𝐵 define segments 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵, which respectively contain points 𝐴𝐴 and 𝐵𝐵. 
Table 1 defines the coordinates 𝑠𝑠𝑃𝑃 and 𝑠𝑠𝑄𝑄 of each segment 𝑆𝑆 integration step, according to its location. Equations 21 and 24 

are established for a positive unit shear force. The effective signs of unit shear forces will be considered as indicated in the table. 

 
Figure 7. Unit shear force along the control perimeter 

Table 1. Integration of segment 𝐼𝐼𝐼𝐼 

Case Condition Segment parts sP sQ v 
1 S < SA 1 sI sJ -1 

2 S = SA 2 
sI sA -1 
sA sJ 1 

3 S < SB 1 sI sJ 1 

4 S = SB 2 
sI sB 1 
sB sJ -1 

5 S > SB 1 sI sJ -1 

5 IMPLEMENTATION AND EXAMPLES 
The previous steps define an iteration that yields the plastic flexural moduli 𝑊𝑊𝑝𝑝𝑥̄𝑥(𝑠𝑠𝐴𝐴) and 𝑊𝑊𝑝𝑝𝑦̄𝑦(𝑠𝑠𝐴𝐴) as a parameter 

function 𝑠𝑠𝐴𝐴. The parameter 𝑠𝑠𝐴𝐴∗ associated with 𝑊𝑊𝑝𝑝𝑦̄𝑦(𝑠𝑠𝐴𝐴∗) ≅ 0 gives the principal plastic modulus 𝑊𝑊𝑝𝑝 = �𝑊𝑊𝑝𝑝𝑥̄𝑥(𝑠𝑠𝐴𝐴∗)�, which 
depends on the direction of the applied bending moment 𝑀𝑀. The solution 𝑠𝑠𝐴𝐴∗ is searched for in the interval 0 ≤ 𝑠𝑠𝐴𝐴 < 𝑢𝑢

2
. 

As the computational cost of the procedure is low, the solution can be investigated by sequentially examining many 
values in the range. This process can be optimized by dividing the original interval into 𝑚𝑚 subintervals. The solution 
subinterval is identified by the change in the sign of 𝑊𝑊𝑝𝑝𝑥̄𝑥 at its endpoints, but the endpoints themselves should be 
previously verified as possible solutions. The solution subinterval is iteratively divided into 𝑚𝑚 subintervals until the 
required tolerance is reached. This work uses 𝑚𝑚 = 20. 
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Figure 8 shows examples of internal, reentrant corner, edge, and corner columns. All columns are subjected to 
unbalanced moments about an oblique 𝑥̄𝑥 −axis, which is rotated 60 degrees from the 𝑥𝑥 −axis, in the counterclockwise 
direction. Perimeter 1 unit shear diagrams are shown. 

 
Figure 8. Examples: asymmetrical diagrams of unit shear forces 

The sections of all the columns are 0.60 x 0.30 m, and all the slabs have 0.15 m effective depth. 
The signs of the shear forces change in the arc and linear segments. The shear force diagrams depend on the direction 

of the acting bending moment and do not show symmetry. 

6 COMPARISON WITH EXPERIMENTS IN THE LITERATURE 
Experimental results in the literature are analyzed using MC90, EC2, and NBR6118 together with the proposed 

procedure. 
Asymmetrical bending results can be compared with values usually accepted by these codes as the dataset also 

includes tests that yield symmetrical diagrams in bending. 
The formulas from the codes are used with 𝛾𝛾𝑓𝑓 = 𝛾𝛾𝑐𝑐 = 𝛾𝛾𝑠𝑠 = 1, where 𝛾𝛾𝑓𝑓 is the partial factor for actions. Parameters 

𝛾𝛾𝑐𝑐 and 𝛾𝛾𝑠𝑠 are the partial factors for concrete and reinforcing steel, respectively. 
Shear reinforcement arrangements are always distributed uniformly in the literature tests discussed in this work. 

Perimeter 𝑛𝑛 may be discontinuous since perimeter lengths with distances greater than 𝑑𝑑 to the nearest transverse 
reinforcement will not be considered. For uniformly distributed shear reinforcement, the effective shear force 𝑣𝑣𝑀𝑀𝑀𝑀,𝑒𝑒𝑒𝑒 is 
estimated by the following equation: 

𝑣𝑣𝑀𝑀𝑀𝑀,𝑒𝑒𝑒𝑒 = 𝑣𝑣𝑀𝑀𝑀𝑀
𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

 ≥ 𝑣𝑣𝑀𝑀𝑀𝑀  (26) 

The combined shear force 𝑣𝑣𝑀𝑀𝑀𝑀 for continuous perimeters is determined according to each code. The average spacing 
between transverse bars in the outer reinforcement contour is 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎. The maximum spacing 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚is defined as 2𝑑𝑑. 

Although the procedures in EC2 and NBR6118 are based on MC90, the differences between them significantly 
affect the results. The following code criteria are discussed in this work: 
a. Size effect (𝜉𝜉) 

In MC90, EC2, and NBR6118, design shear stress 𝜏𝜏𝑅𝑅𝑅𝑅 depends on the size effect parameter 𝜉𝜉 = 1 + �0.2m
𝑑𝑑

. EC2 

also assumes 𝜉𝜉 ≤ 2. 
b.  Reinforcement ratio for longitudinal reinforcement (𝜌𝜌) 

Design shear stress 𝜏𝜏𝑅𝑅𝑅𝑅 is also a function of the longitudinal reinforcement ratio 𝜌𝜌 = �𝜌𝜌𝑥𝑥𝜌𝜌𝑦𝑦 in MC90, EC2, and 
NBR6118. Parameters 𝜌𝜌𝑥𝑥 and 𝜌𝜌𝑦𝑦 are the ratios in the 𝑥𝑥 − and 𝑦𝑦 −directions, respectively. EC2 also assumes 𝜌𝜌 ≤ 0.02. 
c.  Effective design yield stress of shear reinforcement (𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦,𝑒𝑒𝑒𝑒) 
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All the codes limit the effective design yield stress of shear reinforcement 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦,𝑒𝑒𝑒𝑒. MC90 adopts 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦,𝑒𝑒𝑒𝑒 ≤ 300MPa. 
In EC2, the maximum value depends on the effective depth 𝑑𝑑 of the slab. NBR6118 defines different limits for 
connectors and stirrups depending on total depth ℎ. In this work, the NBR6118 formulation is adapted for effective 
depth 𝑑𝑑 = ℎ − 0.03m. 
d.  Distance between Perimeter n and the outer transverse reinforcement contour (𝑘𝑘𝑘𝑘) 

MC90 and NBR6118 establish the distance 𝑘𝑘𝑘𝑘 = 2𝑑𝑑 between Perimeter 𝑛𝑛 and the outer transverse reinforcement 
contour. EC2 assumes 𝑘𝑘𝑘𝑘 = 1.5𝑑𝑑. 
e.  Edge and corner column moments with internal eccentricity (𝑀𝑀∗) 

MC90 and EC2 do not consider moments with internal eccentricity in edge and corner columns. NBR6118 partially 
includes internal moments that are larger than 𝑀𝑀∗, which are the moments that can be resisted by eccentricities between 
columns and reduced control perimeters. 
f.  Perimeter 0 length on edge and corner columns (𝑢𝑢0∗) 

In edge and corner column connections, MC90 and EC2 assume a reduced length for Perimeter 0, which is here 
denoted as 𝑢𝑢0∗. NBR6118 does not assume a reduced length for Perimeter 0. 
g.  Effective normal force due to unbalanced moments (𝐹𝐹𝑒𝑒𝑒𝑒) 

𝐹𝐹𝑒𝑒𝑒𝑒
𝑗𝑗  is defined as the effective normal force that is calculated on a control Perimeter 𝑗𝑗. MC90 uses 𝐹𝐹𝑒𝑒𝑒𝑒1  and 𝐹𝐹𝑒𝑒𝑒𝑒𝑛𝑛  on 

Perimeters 1 and 𝑛𝑛, respectively, and reuses 𝐹𝐹𝑒𝑒𝑒𝑒1  on Perimeter 0. EC2 only calculates 𝐹𝐹𝑒𝑒𝑒𝑒1 , which is used as the effective 
normal force on all perimeters. Effective forces are not discussed in NBR6118. 
h.  Concrete strength reduction factor in diagonal compression (𝛼𝛼𝜃𝜃) 

The concrete stress in diagonal compression is limited to 𝛼𝛼𝜃𝜃𝛼𝛼𝑉𝑉𝑓𝑓𝑐𝑐𝑐𝑐 at Perimeter 0, where 𝑓𝑓𝑐𝑐𝑐𝑐 is the concrete design 
strength and 𝛼𝛼𝑉𝑉 = �1 − 𝑓𝑓𝑐𝑐𝑐𝑐

250MPa
�. The reduction factor 𝛼𝛼𝜃𝜃 is given as 0.30, 0.24, and 0.27 in MC90, EC2, and NBR6118, 

respectively. 
Ten combinations (C1 to C10) of eight criteria from the codes are presented in Table 2. Combinations C1 to C3 

correspond to MC90, EC2, and NBR6118, respectively. C4 to C10 investigate the response of different criteria a to h 
in EC2 and NBR6118. 

Table 2. Combinations of criteria from Model Code 90, Eurocode 2, and NBR 6118 
 Criteria from the codes    

Combinations 
of criteria 
from codes 

a b c d e f g h 
ψ ≥ 0.95 ψmean ψmin 

ξ ρ fywd,ef kd M* u0* Fef αθ 

C1 MC90 MC90 MC90 MC90 MC90 MC90 MC90 MC90 64% 1.06 0.12 
C2 EC2 EC2 EC2 EC2 EC2 EC2 EC2 EC2 94% 1.29 0.18 
C3 NBR 6118 NBR 6118 NBR 6118 NBR 6118 NBR 6118 NBR 6118 NBR 6118 NBR 6118 67% 1.14 0.71 
C4 EC2 EC2 EC2 EC2 NBR 6118 EC2 EC2 EC2 99% 1.42 0.92 
C5 EC2 EC2 NBR 6118 EC2 NBR 6118 EC2 EC2 EC2 99% 1.42 0.92 
C6 NBR 6118 NBR 6118 NBR 6118 EC2 NBR 6118 EC2 EC2 EC2 84% 1.20 0.71 
C7 EC2 EC2 NBR 6118 NBR 6118 NBR 6118 EC2 EC2 EC2 97% 1.39 0.89 
C8 EC2 EC2 NBR 6118 EC2 NBR 6118 NBR 6118 EC2 EC2 99% 1.42 0.92 
C9 EC2 EC2 NBR 6118 EC2 NBR 6118 EC2 MC90 EC2 98% 1.40 0.89 
C10 EC2 EC2 NBR 6118 EC2 NBR 6118 EC2 EC2 NBR 6118 98% 1.41 0.82 

C5 - Asym. EC2 EC2 NBR 6118 EC2 NBR 6118 EC2 EC2 EC2 100% 1.66 1.06 
MC90 = Model Code 90; EC2 = Eurocode 2; NBR = Norma Brasileira (Brazilian Code); ψ = ratio between the experimental and estimated capacities; ψmean 
= mean value of ψ ; ψmin = minimum value of ψ 

Ninety-four experiments of slab-column connections subjected to punching shear were compiled from the literature 
and their experimental capacity was compared with the theoretical capacity given by the combinations in Table 2. The 
dataset contains internal, reentrant corner, edge, and corner columns subjected to normal forces, with and without 
unbalanced moments. The tests include slabs without shear reinforcement. Transverse reinforcement is provided by 
shear studs. 
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Table 3. C5 results for experiments in Stamenkovic [17] and Stamenkovic and Chapman [18]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  np nr 
s0 sr fywk fywk,ef savg smax Crit. 

per. ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

V_I_1 INTERNAL 56 127 127 1.17 40.14 119.7 - - 119.7 - - - - - - - - - 1 1.36 
V_I1_1 INTERNAL 56 127 127 1.17 38.68 104.5 - - 104.5 - - - - - - - - - 1 1.20 
V_I2_1 INTERNAL 56 127 127 2.34 56.26 129.9 - - 129.9 - - - - - - - - - 1 1.10 
V_I_2 INTERNAL 56 127 127 1.17 27.54 117.4 - - 117.4 - - - - - - - - - 1 1.51 
V_Ir_1 INTERNAL 56 152 76 1.17 26.72 108.5 - - 108.5 - - - - - - - - - 1 1.48 
V_E_1 EDGE 56 127 127 1.17 30.47 74.7 - - 74.7 - - - - - - - - - 1 1.86 
V_C_1 CORNER 56 127 127 1.17 34.23 27.1 - - 27.1 - - - - - - - - - 1 1.30 
C_I_1 INTERNAL 56 127 127 1.17 38.27 84.5 - -7.3 120.6 - - - - - - - - - 1 1.39 
C_I_2 INTERNAL 56 127 127 1.17 31.53 62.3 - -10.5 114.0 - - - - - - - - - 1 1.41 
C_I_3 INTERNAL 56 127 127 1.17 27.13 33.8 - -13.6 101.1 - - - - - - - - - 1 1.31 
C_I_4 INTERNAL 56 127 127 1.17 26.67 20.9 - -16.7 103.1 - - - - - - - - - 1 1.34 
C_Ir_1 INTERNAL 56 152 76 1.17 24.03 85.7 - -7.3 127.0 - - - - - - - - - 1 1.79 
C_Ir_2 INTERNAL 56 152 76 1.17 31.06 67.3 - -10.9 128.6 - - - - - - - - - 1 1.66 
C_Ir_3 INTERNAL 56 152 76 1.17 30.36 39.9 - -15.7 128.6 - - - - - - - - - 1 1.68 
C_Ir_4 INTERNAL 56 152 76 1.17 28.25 21.6 - -16.8 116.5 - - - - - - - - - 1 1.56 
Ct_E_1 EDGE 56 127 127 1.17 29.60 45.8 4.9 - 59.6 - - - - - - - - - 1 1.50 
Ct_E_2 EDGE 56 127 127 1.17 30.18 34.9 5.7 - 51.1 - - - - - - - - - 1 1.28 
Ct_E_3 EDGE 56 127 127 1.17 29.65 23.5 9.4 - 50.1 - - - - - - - - - 1 1.26 
Ct_E_4 EDGE 56 127 127 1.17 31.06 12.9 10.1 - 41.6 - - - - - - - - - 1 1.03 
Cn_E_1 EDGE 56 127 127 1.17 32.70 73.2 - -5.6 73.2 - - - - - - - - - 1 1.78 
Cn_E_2 EDGE 56 127 127 1.17 27.54 54.7 - -9.2 76.4 - - - - - - - - - 1 1.97 
Cn_E_3 EDGE 56 127 127 1.17 28.89 24.9 - -10.1 85.5 - - - - - - - - - 1 2.17 
Cn_E_4 EDGE 56 127 127 1.17 29.19 10.9 - -8.8 75.7 - - - - - - - - - 1 1.91 
C_C_1 CORNER 56 127 127 1.17 32.35 24.9 - -6.2 56.7 - - - - - - - - - 1 2.78 
C_C_2 CORNER 56 127 127 1.17 30.06 15.9 - -6.4 60.0 - - - - - - - - - 1 3.01 
C_C_3 CORNER 56 127 127 1.17 27.43 8.0 - -6.2 59.6 - - - - - - - - - 1 3.08 
C_C_4 CORNER 56 127 127 1.17 32.53 3.6 - -5.6 55.1 - - - - - - - - - 1 2.69 

Table 4. C5 results for experiments in Ferreira [19] and Ferreira et al. [20]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  np nr 
s0 sr fywk fywk,ef savg smax Crit. 

per. ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

LC01 CIRCULAR 143 270 270 1.5 48.00 858.4 - - 858.4 0.79 6 10 70 100 573.0 363.0 436 286 n 1.06 
LC02 CIRCULAR 140 360 360 1.55 47.00 955.7 - - 955.7 0.79 6 10 70 100 573.0 360.0 465 280 n 1.25 
LC03 CIRCULAR 142 450 450 1.41 49.00 1076.8 - - 1076.8 0.79 6 10 70 100 573.0 362.0 493 284 n 1.41 
LC05 CIRCULAR 140 360 360 2.05 50.00 1117.5 - - 1117.5 0.79 6 10 70 100 573.0 360.0 465 280 n 1.32 
LC06 CIRCULAR 143 360 360 1.45 49.00 1077.9 - - 1077.9 0.79 6 10 70 100 573.0 363.0 465 286 n 1.36 
LC07 CIRCULAR 144 360 360 1.6 49.00 1110.4 - - 1110.4 0.79 7 10 55 80 573.0 364.0 442 288 n 1.31 
LC08 CIRCULAR 144 360 360 1.62 48.00 1058.9 - - 1058.9 0.79 6 12 70 100 573.0 364.0 387 288 n 1.06 

Table 5. C5 results for experiments in Ferreira [19] and Ferreira et al. [21]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  np nr 
s0 sr fywk fywk,ef savg smax Crit. 

per. ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

LS01 INTERNAL 145 300 300 1.54 48.00 1021.5 - - 1021.5 0.79 2 12 70 100 573.0 364.0 177 290 n 1.38 
LS02 INTERNAL 143 300 300 1.46 49.00 1127.5 - - 1127.5 0.79 4 12 70 100 573.0 363.0 278 286 n 1.14 
LS03 INTERNAL 145 300 300 1.54 50.00 698.5 - -189.0 1071.5 0.79 2 12 70 100 573.0 364.0 177 290 n 1.43 
LS04 INTERNAL 143 300 300 1.46 49.00 721.7 - -190.0 1099.9 0.79 4 12 70 100 573.0 363.0 278 286 n 1.12 
LS05 INTERNAL 143 300 300 1.58 50.00 779.0 - - 779.0 - - - - - - - - - 1 1.18 
LS06 INTERNAL 144 300 300 1.56 50.00 528.3 - -140.7 807.2 - - - - - - - - - 1 1.21 
LS07 INTERNAL 143 300 300 1.7 49.00 1196.8 - - 1196.8 1.23 4 12 70 100 530.0 363.0 280 286 n 1.15 
LS08 INTERNAL 144 300 300 1.68 48.00 934.1 - -190.9 1312.5 1.23 4 12 70 100 530.0 364.0 280 288 n 1.27 

Table 6. C5 results for experiments in Feliciano [22]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  np nr 
s0 sr fywk fywk,ef savg smax Crit. 

per. 
ψ 

(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 
L1 EDGE 152 300 300 0.75 45.10 293.0 - -87.8 293.0 - - - - - - - - - 1 1.06 
L2 EDGE 152 300 300 0.75 45.10 300.0 - - 300.0 - - - - - - - - - 1 1.09 
L3 EDGE 152 300 300 0.75 45.10 242.0 - 72.5 493.7 - - - - - - - - - 1 1.79 
L4 EDGE 152 300 300 0.75 45.10 198.0 - 79.0 472.1 - - - - - - - - - 1 1.72 
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Table 7. C5 results for experiments in Barbosa [23]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  
np nr 

s0 sr fywk fywk,ef savg smax Crit. 
per. 

ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

L01 REENTRANT 144 300 300 1.4 57.90 300.0 111.4 -111.4 624.7 - - - - - - - - - 1 1.23 
L02 REENTRANT 144 300 300 1.4 57.90 488.0 120.8 -120.8 840.2 0.5 3 10 70 100 587.0 364.0 231 288 n 1.25 
L03 REENTRANT 144 300 300 1.4 57.90 550.0 136.1 -136.1 946.9 0.78 4 10 70 100 562.0 364.0 282 288 n 1.22 
L04 REENTRANT 144 300 300 1.4 57.90 347.0 85.9 -85.9 597.4 - - - - - - - - - 1 1.18 

Table 8. C5 results for experiments in Oliveira [24]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  
np nr 

s0 sr fywk fywk,ef savg smax Crit. 
per. 

ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

LN01 INTERNAL 143 400 200 1.58 55.10 1084.0 - - 1084.0 0.5 3 14 70 100 573.0 363.0 201 286 n 1.17 
LN02 INTERNAL 143 400 200 1.58 53.80 1144.0 - - 1144.0 0.5 6 14 70 100 573.0 363.0 334 286 1 1.08 
LN03 INTERNAL 143 400 200 1.58 51.20 786.0 - - 786.0 - - - - - - - - - 1 1.18 
LN04 INTERNAL 143 400 200 1.58 55.50 966.0 - - 966.0 0.31 4 14 70 100 651.0 363.0 245 286 1 1.13 
LN05 INTERNAL 142 400 200 1.6 54.80 1143.0 - - 1143.0 1.23 5 14 70 100 602.0 362.0 290 284 n 0.97 
LS01 INTERNAL 143 400 200 1.58 53.60 425.0 - -114.0 673.9 - - - - - - - - - 1 0.99 
LS02 INTERNAL 144 400 200 1.56 53.90 763.0 - -218.0 1237.0 0.5 3 14 70 100 573.0 364.0 201 288 n 1.33 
LS03 INTERNAL 142 400 200 1.6 54.40 775.0 - -234.0 1287.9 0.5 6 14 70 100 573.0 362.0 334 284 1 1.23 
LS04 INTERNAL 143 400 200 1.58 51.30 712.0 - -183.0 1111.5 0.31 4 14 70 100 651.0 363.0 245 286 1 1.32 
LS05 INTERNAL 142 400 200 1.6 51.00 926.0 - -272.0 1522.2 1.23 5 14 70 100 602.0 362.0 290 284 n 1.32 
LS06 INTERNAL 143 400 200 1.58 53.00 904.0 - -252.0 1454.1 0.79 6 14 70 100 597.0 363.0 334 286 n 1.27 
LW01 INTERNAL 141 200 400 1.62 50.20 446.0 - -124.0 648.0 - - - - - - - - - 1 0.99 
LW02 INTERNAL 143 200 400 1.58 52.20 711.0 - -189.0 1016.0 0.5 3 14 70 100 573.0 363.0 201 286 n 1.11 
LW03 INTERNAL 142 200 400 1.6 51.50 733.0 - -195.0 1049.2 0.5 6 14 70 100 573.0 362.0 319 284 1 1.01 
LW04 INTERNAL 142 200 400 1.6 51.50 617.0 - -131.0 829.4 0.31 4 14 70 100 651.0 362.0 245 284 1 0.99 
LW05 INTERNAL 142 200 400 1.6 50.60 815.0 - -241.0 1205.8 1.23 5 14 70 100 602.0 362.0 290 284 n 1.05 

Table 9. C5 results for experiments in Trautwein et al. [25]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  
np nr 

s0 sr fywk fywk,ef savg smax Crit. 
per. 

ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

L1 INTERNAL 159 200 200 1.2 36.80 1050.0 - - 1050.0 1.25 11 16 35 60 500.0 375.0 300 318 0 1.10 
L4 INTERNAL 164 200 200 1.2 43.40 1038.0 - - 1038.0 2 11 16 35 60 500.0 379.0 300 328 0 0.92 
L9 INTERNAL 154 200 200 1.3 39.40 933.0 - - 933.0 0.8 11 16 35 60 500.0 371.0 300 308 0 0.95 

Table 10. C5 results for experiments in Albuquerque et al. [26] and Albuquerque [27]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  
np nr 

s0 sr fywk fywk,ef savg smax Crit. 
per. 

ψ 
(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 

L01 REENTRANT 148 300 300 2.07 48.00 325.0 114.9 -114.9 655.5 - - - - - - - - - 1 1.17 
L02 REENTRANT 148 300 300 2.07 48.00 513.0 127.7 -127.7 880.3 0.5 3 10 70 100 587.0 367.0 231 296 n 1.19 
L03 REENTRANT 145 300 300 2.17 48.00 575.0 141.9 -141.9 987.3 0.78 4 10 70 100 560.0 364.0 282 290 n 1.19 
L04 REENTRANT 147 300 300 2.1 48.00 372.0 91.8 -91.8 637.0 - - - - - - - - - 1 1.15 
L05 REENTRANT 143 300 300 0.91 44.00 250.0 89.1 -89.1 510.7 - - - - - - - - - 1 1.29 
L06 REENTRANT 145 300 300 0.88 44.00 282.0 68.4 -68.4 480.8 - - - - - - - - - 1 1.20 
L07 REENTRANT 141 300 300 1.35 44.00 358.0 88.3 -88.3 618.3 - - - - - - - - - 1 1.40 
L08 REENTRANT 146 300 300 1.27 44.00 345.0 84.7 -84.7 590.2 - - - - - - - - - 1 1.29 
L09 REENTRANT 148 300 300 2.08 43.00 550.0 135.7 -135.7 940.4 0.78 5 13 60 90 528.0 367.0 250 296 n 1.07 
L10 REENTRANT 148 300 300 2.08 43.00 500.0 176.1 -176.1 1006.5 0.78 5 10 70 90 528.0 367.0 334 296 n 1.28 
L11 REENTRANT 147 300 300 2.11 43.00 640.0 120.8 -120.8 988.7 0.78 5 10 70 90 528.0 366.0 334 294 n 1.27 
L12 REENTRANT 145 300 300 1.28 43.00 345.0 65.4 -65.4 535.0 - - - - - - - - - 1 1.19 
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Table 11. C5 results for experiments in Albuquerque [28] and Albuquerque et al. [29]. 

Exp. Case 
d cx cy ρ fck F Mx My 𝑭𝑭𝒆𝒆𝒆𝒆𝟏𝟏  𝑨𝑨𝒔𝒔𝒔𝒔

𝝓𝝓  np nr 
s0 sr fywk fywk,ef savg smax Crit. 

per. 
ψ 

(mm) (mm) (mm) (%) (MPa) (kN) (kNm) (kNm) (kN) (cm2) (mm) (mm) (MPa) (MPa) (mm) (mm) 
L1 EDGE 147 300 300 1 46.80 308.0 - -92.0 308.0 - - - - - - - - - 1 1.06 
L2 EDGE 146 300 300 1.25 44.70 315.0 - - 315.0 - - - - - - - - - 1 1.03 
L3 EDGE 146 300 300 1.25 45.10 256.0 - 77.0 527.2 - - - - - - - - - 1 1.72 
L4 EDGE 146 300 300 1.25 46.00 210.0 - 84.0 505.8 - - - - - - - - - 1 1.64 
L5 EDGE 146 300 300 1.25 51.40 374.0 - 37.0 504.3 - - - - - - - - - 1 1.58 
L6 EDGE 146 300 300 1.25 52.10 330.0 - 66.0 562.4 - - - - - - - - - 1 1.75 
L7 EDGE 146 300 300 1.52 50.00 288.0 - 115.0 693.0 - - - - - - - - - 1 2.05 
L8 EDGE 146 300 300 1.4 50.50 320.0 - 128.0 770.8 - - - - - - - - - 1 2.34 
L9 EDGE 146 300 300 1.25 57.60 489.0 - - 489.0 0.5 4 7 70 100 580.0 365.0 287 292 n 0.96 
L10 EDGE 146 300 300 1.52 59.30 445.0 - 89.0 758.4 0.5 4 7 70 100 580.0 365.0 287 292 n 1.39 
L11 EDGE 146 300 300 1.52 43.10 304.0 - 110.0 691.4 - - - - - - - - - 1 2.15 
L12 EDGE 146 300 300 1.52 43.60 347.0 - 55.0 540.7 - - - - - - - - - 1 1.68 
L13 EDGE 146 300 300 1.52 44.10 357.0 - 125.0 797.2 - - - - - - - - - 1 2.46 

Tables 3 to 11 present the results of all the experiments retrieved from the literature for the C5 combination. The 
sides of the columns are 𝑐𝑐𝑥𝑥 and 𝑐𝑐𝑦𝑦, respectively, in the 𝑥𝑥 − and 𝑦𝑦 −directions. Characteristic strength 𝑓𝑓𝑐𝑐𝑐𝑐 is substituted 
in the code equations by the as-tested compressive strength of concrete. Transverse reinforcement is arranged in 𝑛𝑛𝑝𝑝 
contours and 𝑛𝑛𝑟𝑟 rails. 𝐴𝐴𝑠𝑠𝑠𝑠

𝜙𝜙  is one bar area. The distance from the first reinforcement contour to the column and the 
distance between the reinforcement contours are denoted as 𝑠𝑠0 and 𝑠𝑠𝑟𝑟, respectively. 

The slab capacity is verified at Perimeters 0, 1, and 𝑛𝑛. The critical control perimeters are shown in Tables 3 to 11. 
The prediction ratio 𝜓𝜓 is the ratio between the experimental and estimated capacities, considering 𝛾𝛾𝑓𝑓 = 𝛾𝛾𝑐𝑐 = 𝛾𝛾𝑠𝑠 = 1. 

A brittle failure of a slab-column connection can cause the progressive collapse of the structure. Table 2 shows the 
percentages of experiments with 𝜓𝜓 ≥ 0.95 in each combination, which indicates the reliability of the combination. 
Table 2 also presents the mean and the minimum 𝜓𝜓 ratios of each combination, which are denoted as 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚, 
respectively. 

C1, C2, and C3 correspond to MC90, EC2, and NBR6118, respectively. Among them, C2 (EC2) gives the highest number 
of predictions with 𝜓𝜓 ≥ 0.95 (94%). C2 yields inadequate predictions in some cases. The minimum C2 prediction ratio 
(𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = 0.18) is associated with the corner column connection C_C_4 in Stamenkovic and Chapman [18], which is subjected 
to unbalanced moment. The normal force is relatively small. 

Combination C4 corresponds to EC2 with the moment approach proposed by NBR6118 for edge and corner columns 
(criteria e). Combinations C5 to C10 discuss the effect of replacing other criteria in C4. 

Combinations C4, C5, and C8 yield 𝜓𝜓 ≥ 0.95 for 99% of the dataset. The average and minimum prediction ratios 
are 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1.42 and 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = 0.92, respectively. The minimum prediction ratio is associated with the specimen L4 in 
Trautwein et al. [25], which fails at Perimeter 0 by diagonal compression in concrete. The moment criterion proposed 
by NBR6118 yields good capacity predictions for edge and corner column connections with internal eccentricities. 

Combinations C4 and C5 show that the criteria proposed by NBR6118 and EC2 for effective yield stress 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦,𝑒𝑒𝑒𝑒 
provide similar results. 

Combination C8 investigates the criterion f from NBR 6118, by which the effective length of Perimeter 0 is not 
reduced in edge and corner columns. New studies are needed as the current dataset does not contain failures due to 
diagonal compressive stresses in edge and corner column connections. 

Combinations C6, C7, and C10 show that criteria a (𝜉𝜉), b (𝜌𝜌), d (𝑘𝑘𝑘𝑘), and h (𝛼𝛼𝜃𝜃) from NBR6118 do not contribute 
to C5 predictions. 

Combinations C5 and C9 apply the effective forces 𝐹𝐹𝑒𝑒𝑒𝑒1  and 𝐹𝐹𝑒𝑒𝑒𝑒𝑛𝑛  at Perimeter 𝑛𝑛, as recommended by EC2 and MC90, 
respectively. They both yield similar predictions, but this conclusion is limited to the uniformly distributed 
reinforcement arrangements of the dataset. Non-uniform reinforcement distributions can change the effective 𝐹𝐹𝑒𝑒𝑒𝑒𝑛𝑛  
forces. Cross arrangements of shear reinforcement demand further investigation. 

The dataset contains 16 reentrant corner columns, five corner columns, and 18 edge columns yielding asymmetrical plastic 
shear diagrams. Row “C5-Asym.” of Table 2 discusses the results of combination C5 for the asymmetrical subset. Relations 
𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1.66 and 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 = 1.06 are considered adequate and compatible with the results of the complete set. 
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7 CONCLUSIONS 
A numerical procedure yields plastic diagrams of shear forces in arbitrary control perimeters subjected to 

asymmetrical bending. Examples of internal, reentrant corner, edge, and corner columns are subjected to unbalanced 
moments about an axis oblique to the principal axes. The proposed procedure is fast, robust, and accurate. 

Experimental results in the literature are compared to the MC90, EC2, and NBR6118 design methods, which are 
applied together with the proposed procedure. 

Although the recommendations in EC2 and NBR6118 are based on MC90, they contain some differences, which 
are discussed as they significantly affect the results. 

EC2 performed better than the other two codes. A similar conclusion is reported by Ferreira et al. [21] when 
comparing ACI, EC2 and Model Code 2010 [7]. However, some results of EC2 were not considered satisfactory, 
because this code disregards the moments of corner and edge columns with internal eccentricities. 

NBR6118 considers the portions of the unbalanced moments that exceed the moments that can be resisted by the 
eccentricities between columns and reduced control perimeters of corner and edge columns. The best performance is 
obtained by combining EC2 with the NBR6118 moment criterion. Ninety-nine percent of the dataset yields prediction 
to experimental results ratios greater than 0.95. All prediction to experimental rates are greater than 0.92. 

The prediction to experimental ratios of cases with symmetrical and asymmetrical plastic diagrams are compatible. 
Asymmetrical shear diagrams are found not only in edge and corner column connections but also in internal column 

connections. The proposed procedure considers the asymmetrical plastic diagrams that usually occur in all column 
connections due to biaxial bending. 

Connections of edge and corner columns, critical at Perimeter 0, and plastic shear diagrams, discontinuous due to 
cross-arranged reinforcement, are themes for future studies. 
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