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Abstract: This paper deals with nonlinear analysis of deformability of monolithic beam-column connections 
for bending moments in framed reinforced concrete structures. Due to the simplicity, the connections 
deformability is considered by using an analytical model of moment-rotation curve. Material nonlinearity of 
the structural elements is considered by using the flexural stiffness obtained in moment-curvature relationship 
of the sections. The formulation of the analytical model to obtain the relative rotations between beam and 
column and the formulation to construct moment-curvature curves is deduced and presented to allow the 
computational implementation in structural analysis software. The numerical simulations carried out in this 
study indicated that even in the case of monolithic connections, taking into account the bending moment 
deformability of the connections leads to significantly better results than the hypothesis of fully rigid 
connections. 

Keywords: bending deformability, beam-column connections, nonlinear analysis, reinforced concrete 
structures, structural analysis. 

Resumo: Este trabalho trata da análise não linear da deformabilidade de ligações monolíticas viga-pilar de 
concreto armado devido ao momento fletor em estruturas reticuladas de concreto armado. Em função da 
simplicidade, a deformabilidade das ligações é considerada por meio de modelo analítico de curva momento-
rotação e a não-linearidade física dos elementos estruturais, por meio da rigidez à flexão obtida em relações 
momento-curvatura das seções. A formulação do modelo analítico para a obtenção das rotações relativas entre 
viga e pilar e a formulação relacionada com a geração das curvas momento-curvatura foram deduzidas e 
apresentadas, com o intuito de permitir a implementação desses modelos em rotinas computacionais. As 
simulações numéricas realizadas neste trabalho comprovaram que, mesmo em se tratando de ligações 
monolíticas, levar em conta a deformabilidade das ligações ao momento fletor conduz a resultados 
significativamente melhores que a hipótese de ligações perfeitamente rígidas. 

Palavras-chave: deformabilidade ao momento fletor, ligações viga-pilar, análise não linear, estruturas de 
concreto armado, análise estrutural. 
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1 INTRODUCTION 
In reinforced concrete structures, cracking of concrete, plastification of materials and bond-slip behavior between 

steel and concrete are responsible for the material nonlinear behavior of these structures. 
For Ultimate Limit State procedures in the design of frames structures for buildings, the material nonlinearity of 

structural elements in global analysis can be considered simply by flexural stiffness reductions of these elements for 
use in linear analysis, as recommended by NBR 6118 [1] and others international codes. Alternatively, in the need for 
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checking the design based on simplified linear analysis, nonlinear analysis can be employed with the use of moment-
curvature relationships of the sections. In this case, the framed structure is discretized, and the flexural stiffness of each 
section is calculated as a function of its moment-curvature relationship. 

The nonlinear effects that occur in beam-column connections of monolithic reinforced concrete structures - such as 
the slippage of flexural reinforcement of the beams in the joint region and the formation of flexural cracks at the beam 
extremity - induce the generation of relative rotations between the beam and the column. Thus, monolithic connections, 
strictly speaking, are not perfectly rigid under bending moment. Evidently, there is greater concern with the bending 
deformability in precast concrete structures. However, the consideration of bending deformability in monolithic 
connections brings benefits to the structural analysis justified by the greater precision in obtaining stresses and 
displacements - as shown in this paper. 

Due to the simplicity and the good results they can provide, analytical models are the most attractive way in design 
procedures to consider the effects of the slippage of the beam reinforcement inside the column and the effects induced 
by the flexural cracks at the beam extremity on the bending deformability. Examples of these models can be found in 
Paultre et al. [2], Sezen and Moehle [3], Sezen and Setzler [4], Kwak and Kim [5], Ferreira et al. [6], Alva et al. [7] and 
Alva and El Debs [8], the latter being emphasized in this study. 

The Alva and El Debs [8] model was proposed for exterior beam-column connections. Due to the formatting of the 
formulation, this model can be easily implemented in software programs for nonlinear analysis of frames that use 
moment-curvature relationships for the consideration of the material nonlinearity of structural elements. 

There are three central objectives of this paper, namely: 

• Complement the investigations on the efficiency of the model proposed by Alva and El Debs [8] to consider the 
bending deformability caused by the slippage of flexural reinforcement of the beams in the joint region; 

• Present an analytical formulation to obtain moment-curvature relationships of reinforced concrete rectangular 
sections, aiming to consider the material nonlinearity of beams and columns and the application of the analytical 
model proposed by Alva and El Debs [8] in nonlinear analysis of reinforced concrete frames; 

• Show the efficiency of the constitutive models employed for considering material nonlinearity of the structural 
elements (by moment-curvature relationships) and bending deformability in nonlinear analysis of framed reinforced 
concrete structures. 

2 PREVIOUS STUDIES 
Although there are numerous researches in the literature (especially international) on the behavior of monolithic 

beam-column connections, few studies that focus on analytical models for considering the deformability of connections 
subjected to bending moment are found. 

There are analytical models that exclusively consider the portion of rotation resulting from the slippage of the 
flexural reinforcement in the anchorage region, such as those found in Paultre et al. [2], Sezen and Moehle [3] and 
Sezen and Setzler [4]. Paultre et al. [2] used a tri-linear moment-rotation curve with points defined by the cracking of 
the concrete, yielding of the reinforcement and failure of the beam section. For the calculation of the rotations, the 
authors used a simplified distribution of bond stresses in the elastic and inelastic ranges (after reinforcement yielding). 
Sezen and Moehle [3] and Sezen and Setzler [4] proposed an analytical model applicable to the case of slippage of 
longitudinal tension reinforcement of columns (anchored in foundations) or beams (anchored in beam-column joints). 
As in Paultre et al. [2], Sezen and Moehle [3] and Sezen and Setzler [4] used a simplified distribution of bond stresses 
but proposed an additional simplification regarding the distribution of the axial strains of the reinforcement in the 
anchorage regions. 

Among the analytical models that consider both portions of relative rotations - those resulting from slippage of the 
flexural reinforcement inside the joint and those resulting from cracking at the beam extremity - the following models 
can be cited: Kwak and Kim [5], Ferreira et al. [6], Alva et al. [7] and Alva and El Debs [8]. Kwak and Kim [5] proposed 
an analytical model which accounts for the effects of relative rotations by reducing the flexural stiffness along the 
equivalent plastic length of the beams (extremities). The total rotation calculated by the model is associated with the 
slippage of flexural reinforcement of the beam inside the column added the rotation induced by the crack at the beam-
column interface. These rotations are obtained by solving the differential equations which represent the bond-slip 
behavior. The analytical models presented in Ferreira et al. [6], Alva et al. [7] and Alva and El Debs [8] take into 
account the two rotation portions, but consider that the slippage induced by flexural cracking occurs in a certain length 
of the beam extremity, associated with its effective depth. Ferreira, El Debs and Elliott [6] model was proposed for 
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connections between precast elements, being later extended to monolithic connections, as presented in Alva et al. [7]. 
Subsequently, Alva and El Debs [8] presented a specific analytical model for exterior beam-column monolithic 
connections. This model has the advantage of including in the formulation parameters not considered in Alva et al. [7], 
such as bond strength in the joint region and the diameter of the beam reinforcement bars, a parameter that influences 
the flexural crack widths in this member (beam). 

3 MODEL PROPOSED BY ALVA AND EL DEBS [8] 

Based on the conceptual model proposed by Ferreira et al. [6], Alva and El Debs [8] proposed a theoretical model 
which is capable of representing the bond-slip behavior of the reinforcement without the need for parameters from 
experimental tests. In addition, it can be easily implemented in software programs for structural analysis. In this model, 
it is assumed that the bending deformability is the result of two mechanisms, which produce relative rotations between 
the beam and the column (Figure 1): 

 
Figure 1. Deformation mechanisms: Alva and El Debs model [8] 

• Mechanism A: Relative rotations produced by the slippage of tensile reinforcement of the beam inside the column 
(joint region); 

• Mechanism B: Relative rotations produced by the cumulative effect of the slippage caused by flexural cracks formed 
along the plastic hinge length pL  (region where there is a greater concentration of cracks) 

The total beam-column rotation related to the bending deformability consists of the sum of the rotations caused by 
the two mechanisms (Equation 1): 

A Bθ θ θ= +  (1) 

where Aθ  is the rotation due to Mechanism A and Bθ  is the rotation due to Mechanism B. 

3.1 Mechanism A 

The contribution of Mechanism A is calculated through the model proposed by Sezen and Moehle [3], which 
assumes the distribution of bond and axial stresses of the steel bar as shown in Figure 2. Bond stresses are divided into 
two uniformly distributed portions: byτ  for the elastic range ( sε ≤ yε ) and buτ  for the inelastic range ( sε  > yε ). 
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Figure 2. Bond-slip model proposed by Sezen and Moehle [3]: (a) bond stress distribution; (b) axial stress distribution; (c) axial 

strain distribution. 

The values proposed by the authors are ,by c1 0 fτ =  and ,bu c0 5 fτ =  , where cf  is the concrete compressive strength 
in MPa. Thus, the slip ( s ) of the steel bar is obtained from the difference between the steel bar strain ( sε ) and the 
concrete strain ( cε ): 

( )x
s c0s dxε ε= −∫  (2) 

Disregarding the concrete strain (very small when compared with steel bar), solving the Equation 2 and applying 
the equilibrium equations, Sezen and Moehle [3] deduced Equations 3 and 4 for calculating the slip. 

Elastic range ( sε  ≤ yε ): 

s s

by

Øs
8

ε σ
τ

⋅ ⋅
=

⋅
 (3) 

Inelastic range ( sε  > yε ): 

( ) ( )y s s yy y

by bu

Ø ff Ø
s

8 8
ε ε σε

τ τ

+ ⋅ ⋅ −⋅ ⋅
= +

⋅ ⋅
 (4) 

where 
sε  is the steel bar axial strain; 

sσ  is the steel bar axial stress; 
Ø  is the steel bar diameter; 

yε  is the steel strain at yield strength; 

yf  is the steel yield strength of steel. 

Knowing the slip resulting from Mechanism A, it is possible to calculate the respective relative rotation between the 
beam and column elements: 
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A
s

d x
θ =

−
 (5) 

where d  is the effective depth of the beam and x  is the neutral axis depth of the beam. 
As a simplification, Alva and El Debs [8] suggest that constant values of neutral axis depth x  be used in each range. 

In the elastic range, the authors suggest the value IIx x=  corresponding to Stage II (cracked section), since this value 
becomes practically constant after crack stabilization. In the inelastic range, the authors suggest the value ux x=  
corresponding to the ultimate moment, since in Stage III there is a rapid stabilization of the x values between the 
yielding moment and the ultimate moment. 

3.2 Mechanism B 
The relative rotation related to Mechanism B is caused by the sum of the slips induced by the flexural cracks at the 

extremity of the beam next to the column along the length pL . As shown in Figure 3, cracks are supposed equally 
spaced ( Rs ) in Alva and El Debs [8] model. The corresponding slips is  are assumed equal to half the value of the crack 
width iw  . 

 s
w
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beam reinforcementcracks

 
Figure 3. Mechanism B: slips caused by flexural cracks - Alva and El Debs model [8] 

Therefore, the total rotation along the length pL  induced by a number of cracks n  is given by Equation 6. 

,n n
i i

B
i 1 i 1i i

s 0 5 w
d x d x

θ
= =

⋅
= =

− −
∑ ∑  (6) 

where 
ix  is the neutral axis depth at the section where the crack occurs (crack width: iw ). In this case, the simplification 

suggested by the authors can be used ( i IIx x=  or i ux x= ). 
Assuming small differences between the values of iw  along the length pL , it is possible to obtain a single crack 

opening value in that length by the Equation 7: 

( )R sm cmw s ε ε= ⋅ −  (7) 

where 
rs  is the crack spacing; 

sm cmε ε−  is the difference between the average reinforcement strain and the average concrete strain. 



G. Alva and A. Tsutake 

Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13515, 2020 6/21 

Again ignoring the strain of the concrete in tension and knowing that the spacing between cracks rs  allows the 
evaluation of the probable number of cracks along the length pL , Alva and El Debs [8] deduced the following 
expression for relative rotation resulting from Mechanism B: 

( ) ( ), ,sm
B p R p R

10 5 L s 0 5 L s
d x r
εθ  = ⋅ + ⋅ = ⋅ + ⋅ − 

 (8) 

where 
x  is the neutral axis depth, which can be simplified as suggestion of the authors ( IIx x=  or ux x= ); 

smε  is the average deformation in the reinforcement, considering the contribution of tensioned concrete (tension 
stiffening); 

/1 r  is the curvature of the beam section, considering the contribution of tensioned concrete (tension stiffening). 
Knowing the bending moment M  at the end of the beam, it is possible to find the axial stresses and strains in the 

reinforcement (Equations 3 and 4) and also the curvature /1 r  of Equation 8. Hence, the model proposed by Alva and 
El Debs [8] can be deduced, according to Equations 9 and 10. 

In the elastic range: M  ≤ yM  

2
1 2

1C M C
r

θ  = ⋅ + ⋅ 
 

 (9) 

In the inelastic range: yM  < M  ≤ uM  

2
1 y 2

1C M C
r

θ  = ⋅ + ⋅ 
 

 (10) 

where 
yM  is the beam yielding moment; 

uM  is the beam ultimate moment; 

1C  is the constant related to Mechanism A, given by Equation 11. 

( )1 2 2
s by s

ØC
8 E d x A zτ

=
⋅ ⋅ ⋅ − ⋅

 (11) 

sE  is the steel modulus of elasticity; 

sA  is the beam area of flexural reinforcement; 
z  is the lever arm between the tensile and compressive forces in the beam section; 

2C  is the constant related to Mechanism B, given by Equation 12. 

( ),2 p RC 0 5 L s= ⋅ +  (12) 

The spacing between cracks Rs  can be evaluated from codes expressions or from formulations found in literature. 
In this paper, the expression presented in Eurocode 2 [9] was used: 

. . .. 1 2 4
R 3

eff

k k ks k c
ρ

∅
= +  (13) 
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where 
∅  is the diameter of the beam steel reinforcement bars; 

1k  is a coefficient which considers for the bond properties of the reinforcement steel bars (equal to 0.8 for high-bond 
bars and equal to 1.6 for plain surface bars); 

2k = 0,5; 3k  = 3,4; 4k  = 0,425; 
c  is the concrete cover; 

,

s
eff

c eff

A
A

ρ =  

,c effA  is the effective tension area of concrete protected by the steel reinforcement bars along the height ,c effh , which 
assumes the lowest value between ( ),2 5 h d− , ( ) /h x 3−  or /h 2  (see Figure 4). 

L.N.

Section

h

x

c,eff

Ac,eff

Strain diagram  
Figure 4. Definition of effective area ,c effA  - Eurocode 2 [9] 

4 MOMENT-CURVATURE RELATIONS 
This item presents the analytical formulation for obtaining the moment-curvature relationships necessary to consider the 

material nonlinearity of the structural members (beam and column). It should be noted that the model proposed by Alva and El 
Debs [8] uses the curvature value at the beam end (next to the joint region) to calculate the relative rotation component resulting 
from flexural cracks (Mechanism B). Item 4.1 presents the analytical formulation for the construction of moment-curvature 
curves of rectangular sections from the integration of the material stresses and the equilibrium and strain compatibility equations, 
applicable for concrete up to C50. For concretes between C55 and C90, the analytical formulation can be found in Alva [10]. 
The analytical formulation of item 4.1 was implemented in a computational procedure in FORTRAN language and the results 
were validated by free and commercial software for structural analysis found in Brazil, as presented in Alva [10]. The 
computational procedure was used in the examples presented in item 5. 

4.1 Integration of stresses and equilibrium equations in reinforced concrete section (columns and beams) 
To understand the problem of rectangular sections subjected to axial load and bending moment, as well the analytical 

formulation, it is shown in Figure 5 a generic rectangular section with known (or pre-defined) longitudinal 
reinforcement. Figure 5 also contains diagrams representing the section strains, the internal resultant forces, the stresses 
in the concrete and the internal resultant forces in the longitudinal reinforcement. 

For the equilibrium of the horizontal forces, the applied axial force SdN  must be equal to the sum of the resultant 
internal forces of concrete and reinforcement: 

Sd cc si si ctN R A Rσ= + ∑ ⋅ −  (14) 

where 
ccR  is the resultant of the concrete compressive stresses; 

ctR  is the resultant of concrete tensile stresses; 

siA  is the area of the longitudinal reinforcement steel bar i (or layer i): 

siσ  is the stress in the longitudinal reinforcement steel bar i (or layer i) (positive sign for compression). 
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Figure 5. Generic rectangular section - strains, stresses in concrete and internal resultant forces 

The moment resulting by the internal forces of the section in relation to the center of gravity of the concrete gross 
section can be calculated by Equation 15: 

cc CG si si i ct t
h h hM R z A d R z
2 2 2

σ     = ⋅ − + ∑ ⋅ ⋅ − + ⋅ −     
     

 (15) 

where 
h  is the section height; 

id  is the distance between extreme compression fiber of the section and the steel bar i (or layer i) of the longitudinal 
reinforcement; 

CGz  is the distance between extreme compression fiber of the section and resultant of the compressive stresses in the 
concrete ccR . According to Figure 5, this distance is obtained by: 

CG CGz x y= −  (16) 

where: 
x  is the neutral axis depth; 

CGy  is the distance from the neutral axis to the centroid of the compressive stress in concrete along the section height. 
This distance defines the point of application of the resultant ccR . Likewise, the distances ty  and tz  define the position 
of the tensile resultant ctR . 

The formulation for sections subjected to axial load and bending moment follows the cases of strains presented in 
items 4.1.1 to 4.1.4. To verify the case in which the section is found, obtain the stresses in the longitudinal 
reinforcements, and generate the points of the moment-curvature curve, strain compatibility equations are used, 
according to Equation 17. 

/
cc c0 si

i

1
r x x h 2 x d

ε ε ε
= = =

− −
 (positive sign for compression) (17) 

where 
/1 r  is the section curvature; 
ccε  is the strain of the concrete extreme compression fiber; 

c0ε  is the strain at the gross section centroid; 

siε  is the strain of the longitudinal reinforcement steel bar i (or layer i). 

Asi
id

i

CG

h/2 Rsi Rcc

σcc

CGz

x

L.N.

Resultant
internal forces

Stresses in
concrete
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section

siε
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ccε

h/2

b

CGy c0ε

Rct
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The constitutive models for concrete in compression and non-prestressed steel reinforcement according to 
NBR 6118 [1] are illustrated in Figure 6. 

 
Figure 6. Idealized stress-strain curves for materials – NBR 6118 [1] 

In Figure 6: 
ckf  and cdf  are the concrete compressive strength (the characteristic and the design values, respectively); 

c2ε  is the strain of beginning of plastification of the concrete (equal to 2 o/oo for concrete up to C50); 

cuε  is the ultimate strain of the concrete (assumed equal to 3,5 o/oo for concrete up to C50). 
The curvature value is chosen and a value c0ε  is estimated (which can be done from the applied axial force at the 

first point of the curve) for the generation of a point of the moment-curvature diagram. An iterative process begins until 
the equilibrium of forces occurs in the section. The detailed solution algorithm is presented in item 4.1.6. 

To deduce the analytical expressions for the compressive resultant in the concrete ccR  and its position in relation to 
the neutral axis CGy , Equation 18 is used, which expresses the proportionality between the strain and the ordinate y , 
(Figure 7) - consequence of the assumption that plane sections remain plane. 

c k yε = ⋅   (18) 

where k  is the constant that relates the concrete strain and the ordinate y . This constant represents the curvature of 
the section. 

Strains Stresses

x

ccε ccσ

h/2

L.N.
y y

c0ε

c1ε
b

h/2

CG

cε cσ
 

Figure 7: General scheme of strains and stresses in concrete along the section height 
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The analytical expressions for the compressive resultant in the concrete ccR  and its position in relation to the neutral 
axis CGy  for concretes C20 to C50 are presented in items 4.1.1 to 4.1.4. Depending on the strain of the extreme 
compression fiber of concrete ccε  and the value of the neutral axis depth x , 4 possible cases are defined for sections 
subjected to axial load and bending moment, as shown in Figure 8. 

In this paper, the values of strains in the concrete are expressed in units per thousand, due to the values assumed by 
c2ε  and by the exponent n  of the parabolic function of the stress-strain curve for concretes up to C50. Thus, the values 

of c2y  (ordinate corresponding to the strain c2ε  according to Figure 8) are calculated by: 

c2
c2

2y
k k
ε

= =  (    c2ε in units per thousand) (19) 

 
Figure 8. Possible cases - RC sections subjected to axial compressive load and bending moment 

4.1.1 Case 1: cc c2ε ε≤  e x h≤  

In this case, the neutral axis passes through the section and the concrete has not yet reached its maximum stress 
(strength). The resultant ccR  is calculated from the integration of the stresses over the compressed area of concrete: 

x x

cc c c
0 0

R b dy b dyσ σ= ⋅ ⋅ = ⋅ ⋅∫ ∫  (20) 
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where 
b  is the section width (constant for rectangular section); 

cσ  is the compressive stress of concrete as a function of the neutral axis depth x . In this case, the stress diagram takes 
on a parabolic format as shown in Figure 6. 
The position of the resultant ccR  in the section is defined with the calculation of CGy , expressed by: 

x x
c c0 0

CG x
ccc0

b y dy b y dy
y

Rb dy

σ σ

σ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅

∫ ∫

∫
 (21) 

Equation 22 can be deduced from substituting the analytical expression of the parabola that describes the compressive 
stress of the concrete in the integral of Equation 20: 

,
2x

c
cc cd

0
R b 0 85 f 1 1 dy

2
ε  = ⋅ ⋅ ⋅ − − ⋅  

   
∫  (22) 

From Equation 18, it is possible to rewrite ccR  according to the ordinate y : 

,
2x

cc cd
0

k yR 0 85 f b 1 1 dy
2

 ⋅ = ⋅ ⋅ ⋅ − − ⋅  
   

∫  (23) 

Solving the integral expressed in Equation 23, results in: 

,
2 3

cc cd
x k xR 0 85 f b k
2 12

 ⋅
= ⋅ ⋅ ⋅ ⋅ +  

 
 (24) 

In the numerator of Equation 21, the analytical expression of the parabolic curve of the concrete compressive stress is 
used to calculate the integral: 

,
2

x c
cd0

CG
cc

b 0 85 f 1 1 y dy
2

y
R

ε  ⋅ ⋅ ⋅ − − ⋅ ⋅  
   =

∫
 (25) 

From Equation 18, it is possible to rewrite CGy  as a function of the ordinate y : 

,
2

x
cd 0

CG
cc

k y0 85 f b 1 1 y dy
2

y
R

 ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅  
   =

∫
 (26) 

Solving the integral of the numerator of Equation 26 results in: 

3 4

CG 2 3
16 x 3 k xy
24 x 4 k x

⋅ − ⋅ ⋅
=

⋅ − ⋅ ⋅
 (27) 
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4.1.2 Case 2: cc c2ε ε>  e x h≤  
The resultant ccR  and its position in the section represented by CGy  are calculated from the integration of the concrete 

compressive stresses over two regions: where the stresses assume parabolic distribution and in where the stresses 
assume a constant value equal to , . cd0 85 f  (Figure 8). 

,
c2

c2

y x

cc c cd
0 y

R b dy 0 85 f b dyσ= ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫  (28) 

, ,c2 c2

c2 c2

c2

c2

y x y x
c cd c cd0 y 0 y

CG y x
ccc c0 y

b y dy 0 85 f b y dy b y dy 0 85 f b y dy
y

Rb dy b dy

σ σ

σ σ

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ + ⋅ ⋅

∫ ∫ ∫ ∫

∫ ∫
 (29) 

Solving the integrals of Equations 28 and 29 provides the expressions for ccR  and CGy : 

,
2 3

2c2 c2
cc cd c2

y yR 0 85 f b k k x y
2 12

 
= ⋅ ⋅ ⋅ ⋅ − ⋅ + −  

 
 (30) 

In Equation 29, substituting the parabolic function that describes the compressive stress in concrete cσ  and using 
Equation 18 that relates cε  and y  result in: 

, 3 2 4 22
cd c2 c2 c2

CG
cc

0 85 f b k y k y k yk xy
R 3 16 2 2

 ⋅ ⋅ ⋅ ⋅ ⋅⋅
= − + −  

 
 (31) 

4.1.3 Case 3: cc c2ε ε≤  e x h>  

In this case, the section is completely compressed, and the concrete has not yet reached its maximum stress 
(strength). The integrals used for the calculation of ccR  and CGy  must be calculated within the range of ordinates y  that 
cover the section, according to Equations 32 and 33. 

x x

cc c c
x h x h

R b dy b dyσ σ
− −

= ⋅ ⋅ = ⋅ ⋅∫ ∫  (32) 

x x
c cx h x h

CG x
cccx h

b y dy b y dy
y

Rb dy

σ σ

σ
− −

−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅

∫ ∫

∫
 (33) 

Solving the integrals of Equations 32 and 33 provides the expressions for ccR  and CGy : 

( ) ( ),
2 32 3

cc cd
x h k x hx k xR 0 85 f b k

2 2 12 12

 − ⋅ −⋅ = ⋅ ⋅ ⋅ ⋅ − − +
  

 (34) 

( ) ( ),
3 43 4

cd

CG
cc

x h k x hx k x0 85 f b k
3 3 16 16

y
R

 − ⋅ −⋅ ⋅ ⋅ ⋅ ⋅ − − +
  =  (35) 
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4.1.4 Case 4: cc c2ε ε>  e x h>  
In the same way as case 2, ccR  and CGy  are calculated from the integration of the concrete compressive stresses over 

two regions: for the parabolic segment and for the constant stress segment. The complete integration interval comprises 
the entire height of the section. 

,
c2 c2

c2 c2

y yx x

cc c c c cd c
x h y x h y

R b dy b dy b dy 0 85 f dyσ σ σ σ
− −

 
 = ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅
 
 

∫ ∫ ∫ ∫  (36) 

( )c2c2

c2c2

c2

c2

y xy x
c cc c x h yx h y

CG y x
ccc cx h y

b y dy y dyb y dy b y dy
y

Rb dy b dy

σ σσ σ

σ σ
−−

−

⋅ ⋅ ⋅ + ⋅ ⋅⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
= =

⋅ ⋅ + ⋅ ⋅

∫ ∫∫ ∫

∫ ∫
 (37) 

Solving the integrals of Equations 36 and 37 provides the expressions for ccR  and CGy : 

( ) ( ),
2 322 2 3

c2 c2
cc cd c2

k x h k x hk y k yR 0 85 f b x y
2 2 12 12

 ⋅ − ⋅ −⋅ ⋅ = ⋅ ⋅ ⋅ − − + + −
  

 (38) 

( ) ( ), 3 423 2 4 22
cd c2 c2 c2

CG
cc

k x h k x h0 85 f b k y k y yxy
R 3 3 16 16 2 2

 ⋅ − ⋅ −⋅ ⋅ ⋅ ⋅ = − − + + −
  

 (39) 

4.1.5 Tension Stiffening 
For considering the contribution of tensioned concrete between cracks (tension stiffening), Torres et al. [11] model 

was used, which assumes a stress-strain curve for concrete in tension as shown in Figure 9. 

 
Figure 9. Equivalent stress-strain curve for concrete in tension (tension stiffening) – Torres et al. [11] 

In Figure 9: 
ctf  is the tensile concrete strength (peak value); 

crε  is the strain corresponding to the maximum tensile stress (peak value); 

1α  and 2α  are the coefficients which define the tension stiffening model and are obtained with Equations 40 and 41: 

, .
.1

ct

N0 4 1 0
A f

α
 

= − ≥ 
 

 (40) 

, ,, , . .
. .2

e e

d 1 31 1 06 d20 3 15 1
h h

α
α ρ α ρ

= − + −  (41) 
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where 
N  is the axial compressive force (positive sign for compression); 
A  is the cross-section area; 
d  is the cross-section effective depth; 
h  is the cross section total height; 

eα  is the ratio between the modulus of elasticity of steel to the concrete modulus of elasticity; 
ρ  is the tensile reinforcement ratio (related to the section effective depth). 

The values 1α  and 2α  are calculated in case of tensile stresses in the section. The value of the tensile resultant in 
concrete ctR  and its position (with the distances ty  and tz , as shown in Figure 5) are calculated using the equations of 
equilibrium and compatibility of the section. 

4.1.6 Algorithm for generating the points of the moment-curvature diagrams 
In a simplified way, the solution algorithm used in this paper for the generation of each point of the moment-

curvature diagram is presented: 
(1) Set the curvature value /1 r  

(2) Estimate the initial value 
( )
Sd

c0
ci

N
E bh

ε =
⋅

 

(3) Iterative Process: While ErrorN >Tolerance 

/cc c0
h1 r
2

ε ε  = + ⋅ 
 

 

/
ccx

1 r
ε

=  

cck
x
ε

=  

(4)  Identify the case applicable to members under bending and axial loads from ccε  and x  
(5)  Calculate ccR , CGy , CGz  
(6)  Calculate ctR , ty , tz  
(7)  Calculate the strains (Equation 17) and the stresses in the reinforcements 
(8)  Calculate cc CG si si i ct t

h h hM R Z A d R Z
2 2 2

σ     = ⋅ − + ∑ ⋅ ⋅ − + ⋅ −     
     

 

(9)  Calculate cc si si ctN R A Rσ= + ∑ ⋅ −  

(10) Calculate 
( )

Sd
c0

ci

N N
E bh

ε −
∆ =

⋅
 

(11) Recalculate c0 c0 c0ε ε ε= + ∆  

(12) Calculate Sd

cd

N N
ErrorN

b h f
−

=
⋅ ⋅

 

(13) Return to step (3) and check the end of the iterative process 

In the presented algorithm, ErrorN is associated with the relative error in terms of axial force. Tolerance must be 
defined: values around 0.001 (0.1%) are sufficient to achieve good accuracy. 

4.2 Equivalent Branson stiffness (beams only) 
A simpler alternative than that presented in item 4.1 in beams is the use of the expression suggested by Branson [12] 

to calculate the equivalent flexural stiffness in Stage II (cracked). Thus, the moment-curvature curve is defined by the 
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cracking moment, by the ultimate moment (strength) - both calculated by usual design of reinforced concrete sections 
- and by the segment obtained by relations indicated in Equations 42 and 43 corresponding to Stage II: 

( )eq

1 M
r EI
=  (42) 

( ) . . .
3 3

r r
c I IIeq

M MEI E I 1 I
M M

      = + −     
       

 (43) 

where 
cE  is the concrete modulus of elasticity; 

rM  it is the cracking moment; 

M  it is the section applied moment; 
II  is the uncracked section second moment of area (inertia, Stage I); 

III  it is the cracked section second moment of area (inertia, Stage II). 

The moment-curvature diagrams of the reinforced concrete beam for one of the connections analyzed by 
numerical simulations of item 5 (LVP1) is shown in Figure 10 for the purpose of comparison between the 
differences found when using the equilibrium equations of the section (item 4.1) and when using Branson 
expression in the Stage II. 

 
Figure 10. Moment-curvature curves generated using computational procedure (item 4.1) and using Branson´s expression 

(cracked stage) for LVP1: Alva [13] 

5 NUMERICAL SIMULATIONS 
In this item, numerical simulations of beam-column connections of reinforced concrete frames are presented 

for the comparison between theoretical and experimental results. To obtain the theoretical results, the analytical 
model proposed by Alva and El Debs [8] was applied to account for the deformability under bending moment 
(item 3). Moment-curvature relationships (as per item 4) were used in the consideration of the material 
nonlinearity. 

Figure 11 illustrates the geometry of the beam-column connections analyzed by the numerical simulations, 
as well as the loading scheme applied and the longitudinal reinforcement of beams and columns of these 
connections. 
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Figure 11. Detail of the beam-column connections of the numerical simulations 

The mechanical characteristics are summarized in Table 1 (concrete and longitudinal reinforcements). The 
dimensions of the connections and the area of longitudinal reinforcements of beams and columns are shown in Table 2. 
Table 3 contains the constants values of the model presented in Alva and El Debs [8] for the connections analyzed by 
the numerical simulations. It should be noted that all parameters of the analytical model were calculated based on the 
mechanical properties of the materials (characterization tests). 

Table 1. Mechanical properties of concrete and longitudinal steel reinforcement of the beam-column connections 

Connection fc (MPa) fct (MPa) Ec (GPa) fy (MPa) Es (GPa) 

Alva [13] 

LVP1 44,18 3,30 33,60 630 182 
LVP2 23,89 1,95 28,32 594 213 
LVP3 24,62 2,08 28,47 594 213 
LVP4 25,91 2,20 28,74 594 213 

Lee et al. [14] Specimen 2 28,94 2,89 25,91 335 200 
Specimen 5 24,80 2,48 23,70 351 200 

fc – concrete compressive strength fct – concrete tensile strength. Ec – modulus of elasticity of concrete. fy – yield stress of steel reinforcement. Es – modulus 
of elasticity of steel reinforcement 

Table 2. Dimensions and area of the longitudinal reinforcement of the beam-column connections 

Connections L H hb bb hc bc As1 As2 As 
(cm) (cm) (cm) (cm) (cm) (cm) (cm2) (cm2) (cm2) 

Alva [13] 
LVP1-LVP4 155,0 250,0 40,0 20,0 30,0 20,0 8,04 8,04 20,10 

Lee et al. [14] 
Specimen 2 118,1 152,4 25,4 20,3 27,9 20,3 5,70 4,00 11,35 

Lee et al. [14] 
Specimen 5 104,8 152,4 25,4 20,3 27,9 20,3 5,70 4,00 11,35 

Table 3. Constants of Alva and El Debs [8] analytical model 

Connections My (kN.cm) ϕ (mm) Lp (cm) sR (cm) C1 (kN.cm)-2 C2 (cm) 

Alva 
[13] 

LVP1 16577 16 30 12,9 9,526E-12 21,45 
LVP2 15645 16 30 12,9 7,861E-12 21,45 
LVP3 15369 16 30 12,9 1,132E-11 21,45 
LVP4 15380 16 30 12,9 1,114E-11 21,45 

Lee et al. [14] Specimen 2 3298 19 20,3 17,2 1,609E-10 18,76 
Specimen 5 3458 19 20,3 17,2 1,774E-10 18,73 
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5.1 Beam-column connections: Alva [13] 
Alva [13] performed tests on exterior beam-column connections subjected to alternating cyclic loads. The first stage 

of loading was the same to all connections: application of cyclic loads with amplitude increments of 10 kN up to the 
value of 60 kN. This loading in the first cycle generated a maximum bending moment corresponding to 60% of the 
yielding moment. Higher loads were applied at the end of the beam in the second stage of loading until the failure of 
the connection, as shown in Figure 12. 

 
Figure 12. Loading history at the last stage of loading - Alva [13] 

In all connections, the failure occurred by crushing the diagonal strut due to beam-column joint shear forces. In the 
connections LVP1 and LVP2, the connection failure occurred with yielding of the beam flexural reinforcement. In the 
connections LVP3 and LVP4, the failure of the connection occurred without the yielding of the beam flexural 
reinforcement. Further information about the experimental investigation is found in Alva [13] and Alva and El Debs [8]. 

To obtain the relative rotations between beam and column, horizontal displacement transducers were used, as shown 
in Figure 13. 

T4

T3

300mm

Beam

Column

H

 
Figure 13. Displacement transducers used to evaluate relative rotations - Alva [13] 
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In this case the relative rotation is calculated by: 

3 4
H

δ δθ −
=  (44) 

where 3δ  and 4δ  are the displacements measured by the transducers T3 and T4 and H  is the distance between the 
transducers. 

According to Figure 13, the length pL  to be used in Alva and El Debs [8] model is equal to 300 mm (see transducers 
position in relation to the column face). 

The moment-rotation curves of the connections tested by Alva [13] are shown in Figures 14 to 17 for the two stages of 
loading mentioned. 

 
Figure 14. Experimental and theoretical moment-rotation curves for LVP1 - Alva [13] 

 
Figure 15. Experimental and theoretical moment-rotation curves for LVP2 - Alva [13] 

 
Figure 16. Experimental and theoretical moment-rotation curves for LVP3 - Alva [13] 
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Figure 17. Experimental and theoretical moment-rotation curves for LVP4 - Alva [13] 

In a general way, it can be concluded that Alva and El Debs [8] analytical model simulates satisfactorily the bending 
deformability of the connections. For the second loading stage of the connections LVP3 and LVP4, the results provided 
by the analytical model were less satisfactory, since the shear joint failure did not allow the connection to reach the 
yielding moment of the beams. 

5.2 Beam-column connections: Lee et al. [14] 
Lee et al. [14] presented experimental results of beam-column connections subjected to seismic loads. Specimen 2 

and Specimen 5 were chosen for comparison with the theoretical results. Figure 18 illustrates the structural model used 
to obtain the theoretical force-displacement curves using the finite element software ANSYS. The moment-rotation 
behavior of the beam-column connections was simulated by nonlinear springs, using the COMBIN39 element. The 
joint region was simulated with rigid offsets. Beams and columns were discretized and represented by frame elements, 
using the finite element BEAM188, which allows the consideration of material nonlinearity by moment-curvature 
relationships. The points of the moment-curvature curves were obtained by the formulation presented in item 4. The 
iterative incremental Newton-Raphson method was used for the numerical solution of the nonlinear problem, with 
convergence criteria based on the residual forces and moments. 

Rigid Offsets

F

N

Beam element

Column Element

Nonlinear spring

 
Figure 18. Structural model for obtaining the theoretical curves - Lee et al. [14] 

Figure 19 contains the theoretical force-displacement curves (fully rigid and deformable connections) and the 
experimental curve for the first loading cycle. It can be seen from the referred curves that the consideration of the 
bending deformability led to significantly better results than those obtained by the hypothesis of a fully rigid connection. 
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There are no experimental results from moment-rotation curves in Lee et al. [14]. Thus, the experimental relative 
rotations between beam and column were obtained indirectly from the experimental displacements, according to 
Equation 45: 

exp teor

L
δ δ

θ
−

=  (45) 

where 
expδ  is the experimental displacement at the beam end at the loading point; 

teorδ  is the theoretical displacement at the beam end obtained by the hypothesis of fully rigid connection; 
L  is the distance from the load application point at the beam end to the face of the column. 

Figure 20 contains the experimental moment-rotation curves (obtained indirectly by Equation 45) and the curves 
obtained using Alva and El Debs [8] analytical model. The comparison of results reveals that the analytical model 
simulates in a very satisfactory way the bending deformability of the beam-column connections. 

 
Figure 19. Experimental and theoretical force-displacement curves - Lee et al. [14] 

 
Figure 20. Experimental and theoretical moment-rotation curves - Lee et al. [14] 

6 FINAL CONSIDERATIONS AND CONCLUSIONS 
This paper dealt with the question of the deformability of reinforced concrete monolithic beam-column connections 

in the nonlinear analysis of framed reinforced concrete structures. To consider the deformability under bending moment, 
Alva and El Debs [8] analytical model was used. To consider the material nonlinearity of structural elements, moment-
curvature relationships were used. The entire formulation of the constitutive models was deduced and presented, to 
allow the implementation of these models in computational procedures. 



G. Alva and A. Tsutake 

Rev. IBRACON Estrut. Mater., vol. 13, no. 5, e13515, 2020 21/21 

The numerical simulations carried out in this paper prove that taking into account the bending deformability of the 
connections leads to significantly better results than the hypothesis of fully rigid connections, even in the case of 
monolithic connections. In addition, Alva and El Debs [8] model proved to be suitable for use in structural models that 
employ moment-curvature relationships in nonlinear analysis of reinforced concrete frames. 
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