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Evaluation of a proposed model for concrete at 
mesoscopic scale

Avaliação de uma proposta de modelagem do concreto 
na meso-escala

Abstract  

Resumo

This work deals with numerical modeling of mechanical behavior in quasi-brittle materials, such as concrete. For this propose, a two-dimensional 
meso-scale model based on RVE existence is presented. The material is considered as a three-phase material consisting of interface zone (ITZ), 
matrix and inclusions – each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists 
of inclusions idealized as circular shapes symmetrically and non-symmetrically placed into the specimen. The interface zone is modeled by 
means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. 
Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models 
for the mechanical behavior of the brittle materials using a finite element procedure within a purely kinematical multi-scale framework. Besides, 
the fundamental importance of the representing dissipative phenomena in the interface zone to model the complex microstructural responses of 
materials like concrete is focused in this work. A set of numerical examples, involving the microcracking processes, is provided in order to illustrate 
the performance of the proposed modeling.

Keywords: homogenization, quasi-brittle materials, cohesive contact finite element, concrete, plasticity.

Este trabalho trata da modelagem numérica do comportamento mecânico em materiais quase-frágeis, tal como o concreto. Para este fim, um 
modelo 2D de escala mesoscópica baseado no conceito de Elemento de Volume Representativo (EVR) é apresentado. O material é considerado 
como composto por três fases consistindo de zona de interface, matriz e inclusões, onde cada constituinte é modelado independentemente. O 
EVR consiste de inclusões idealizadas como de forma circular dispostas de maneira simétrica e não simétrica. A zona de interface é modelada 
por meio de elementos finitos coesivos de contato. A inclusão é modelada como sendo um material elástico linear, já a matriz é considerada como 
material elastoplástico. Nosso principal objetivo é mostrar que uma formulação baseada na homogeneização computacional é uma alternativa 
aos modelos constitutivos macroscópicos complexos para o comportamento mecânico de matérias frágeis usando um procedimento baseado no 
Método dos Elementos Finitos no âmbito de uma teoria multi-escala. Além disso, o trabalho foca na fundamental importância em representar os 
fenômenos dissipativos na Zona de Transição para obter uma resposta microestrutural de um material complexo como o concreto. Uma série de 
exemplos envolvendo processos de microfissuração é apresentada de modo a ilustrar o desempenho da modelagem proposta.

Palavras-chave: homogeneização, materiais quase-frágeis, elemento finito coesivo, concreto, plasticidade
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1.	 Introduction

Recently, different composite materials have been used in Structural 
Engineering, as example the concrete. These materials are made by 
two or more different materials in order to create new materials or to 
improve the mechanical behavior of well known materials. 
In general, as the concrete is a composite material, it presents 
a very complex mechanical behavior, which is very difficult to be 
modeled (see Pituba and Fernandes [1], Brancherie and Ibrahim-
begovic [2], Zhu et al. [3] and others). Initially, the constitutive the-
ories called as phenomenological could represent satisfactorily 
the mechanical behavior of such materials, as example the Con-
tinuous Damage Mechanics that can provide sophisticated con-
stitutive models to simulate the mechanical behavior of heteroge-
neous materials, as the concrete, presenting satisfactory results 
(see Pituba et al. [4], Pereira Jr at el. [5], Pituba [6]). But in order 
to better represent the mechanical behavior of such complex ma-
terials, these kind of constitutive models require a sophisticated 
formulation as well as a great number of parameters, sometimes 
difficult to identify. Then, in the last decades, theories that analyze 
the structure in different scales have been proposed, where the 
constitutive response of the material is obtained by analyzing the 
structure in different lengths and/or time. Therefore, the mechani-
cal behavior of the material at micro-scale is connected to the 
structural behavior at macro-scale, leading to a more accurate 
behavior of the continuum, Péric et al. [7] and Miehe and Koch 
[8]. In this context, some works had been developed to model the 
mechanical behavior of the concrete (see Gitman [9], Wriggers 
and Moftah [10] and López et al. [11])
In summary, the elastic macroscopic response is modeled by a 
multi-scale constitutive theory based on homogenization tech-
niques, where the stress and strain vectors for a particular point 
of the macro-continuum are defined as the volumetric average of 
their respective microscopic fields at the RVE (Representative Vol-
ume Element) related to that point of the macro- continuum. In this 
model, the micro-structure elastic response depends on the choice 
of kinematical restrictions imposed to the cinematically admissible 
displacements field of the RVE.
One of the main advantages of multi-scale modeling is that the 
physical phenomena can be better evaluated, as the properties of 
each material of the microstructure can be considered as well as 
the imperfections and voids and then take these informations to a 
bigger scale of observation. If the analysis is performed at macro 
level, the concrete behaves as a continuum material, but its micro-
structure is composed by several materials, presenting different 
mechanical behaviors. 
The phenomena treated by conventional theories, in fact is a mac-
roscopic reflection of what happens at microstructure level. Thus, 
when analyzing heterogeneous materials, specially the concrete, 
more efficient constitutive models can be obtained if its microstruc-
ture is observed and a multi-scale modeling considered, where 
adopting simple constitutive models at the microstructure, complex 
phenomena can be reproduced at the macrostructure, Pituba and 
Souza Neto [12].
In this work only the mechanical behavior of the concrete at mi-
crostructure level is considered in order to validate qualitatively 
the proposed model. The presented formulation is proposed in 

the context of the multi-scale analysis, where the RVE must be 
defined as well as homogenization techniques, according to the 
multi-scale formulation developed in Fernandes et al. [13] e Fer-
nandes et al. [14] in which the Finite Element Method is used 
in the RVE modeling. In the proposed model the Fracture Me-
chanics as well as the Plasticity Theory have been considered to 
model the dissipative phenomena in the interface zone as well as 
inside the matrix taking into account the geometry and properties 
of the materials defined at the concrete microstructure. The pro-
posed model is an alternative to the complex phenomenological 
constitutive models used to represent the behavior of heteroge-
neous quasi-brittle materials. In future work the proposed model 
will be coupled to a macro-continuum formulation in order to per-
form a full coupled multi-scale analysis.
In what follows a brief description of the proposed model for the 
concrete is presented in section 2, where the homogenization tech-
niques, the constitutive models based on the Contact and Frac-
ture Mechanics, the Mohr-Coulomb model adopted to represent 
the matrix behavior, as well as a contact-cohesive finite element 
used to model the interface zone have been discussed. In section 
3 numerical examples are analyzed to show the potentialities and 
limitations of the proposed model. Finally, in section 4, final consid-
erations have been discussed.

2.	 Proposed model for the concrete

The proposed formulation represents the mechanical behavior of 
a particular point of the macro-continuum, which can be an inte-
gration point of a finite element defined at the macro-structure, 
as example. By solving the macrostructure problem, this point is 
subjected to a strain vector which is imposed to its microstructure 
and then the stresses and constitutive tensor related to that point 
of the macro-continuum can be computed after solving the micro-
structure problem. For that, the material microstructure is defined 
as RVE, whose dimensions are not important, but the distribution 
and proportionality of the materials composing the microstructure 
affect its behavior. Adopting concepts of volumetric average and 
of energy equivalence between the macro and micro-continuum, 
different values for the homogenized stresses and constitutive ten-
sor can be obtained according to the multi-scale model adopted, 
which depends on the boundary conditions adopted for the RVE. 
Note that in this work, the material microstructure is analyzed in the 
context of multi-scale analysis, where different RVEs subjected to 
a strain vector have been analyzed, but a full coupled multi-scale 
analysis of a structure is not presented.
Therefore, to simulate the concrete mechanical behavior, a RVE 
is used to represent the meso-scale, whose discretization by the 
Finite Element Method is shown in Figure 1. The aggregates are 
considered approximately circular, where elastic triangular finite el-
ements are defined, while the matrix can present elastoplastic be-
havior governed by the Mohr-Coulomb model. Besides, cohesive-
contact elements are used to model the interface zone in order to 
simulate the opening and/or closure of fractures that occur mainly 
in this region leading to dissipative phenomena during the fracture 
process of the concrete microstructure. Therefore, in what follows 
the proposed model is used to simulate the mechanical behavior of 
the conventional concretes.
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2.1	 Proposed formulation for meso-scale

The RVE is considered as a continuum medium, so that the stress 
concept is valid at micro-scale.. The macroscopic quantities for 
strain ε(x,t) and stress σ(x,t) at a point x of the macro-continuum 
are defined as the volumetric average of their respective field  
εμ = εμ (y,t)  or  σμ = σμ (y,t) over the RVE, considering all points y of 
the RVE related to the point x. Thus, for an arbitrary instant t the 
following expressions are defined:

(1)           

(2)
Equations (1) and (2) represent the macroscopic or homogenized 
values for strain and stress, as a microscopic filed have been 
transformed into a macroscopic quantity by means of a homogeni-
zation technique. Besides, the microscopic stress can be written in 
terms of the microscopic strain, as follows:

(3)
where fy is the constitutive functional, defined in this work by the 
Mohr-Coulomb model. Moreover, the microscopic strain εμ can 
be written in terms of the microscopic displacement filed uμ of the 
RVE, as follows:

(4)
where  is the symmetric gradient operator of the displacement field u.
Without loss of generality, the microscopic displacement filed uμ 
can be defined as the sum of three parts:

(5)

being the first one constant representing a rigid body motion coin-
cident to the macroscopic displacement u (x, t) related to the point 
x, the second one is obtained from the macroscopic strain e as 
follows:

(6)
which varies linearly with the coordinate y, and a displacement fluc-
tuation field ũμ (y, t). Thus, Equation (5) can be written as:

(7)
In Equation (7) the part εy varies linearly with y resulting from the 
multiplication of the macroscopic strain ε of the EVR, which is 
constant, by the coordinates of the point y. In the case of having 
uniform microscopic displacement εμ, the displacement fluctuation  
ũμ is null. In the RVE the following relations for the microscopic strain 
εμ and the microscopic strain fluctuation %em have to be satisfied: 

(8)           

(9)
Considering Equations (7) to (9) the microscopic strain can also 
be written as:

(10)

After some manipulations (Fernandes et al. [13]), Equation (10) 
can be written in terms of velocity, where a microscopic strain ve-
locity is cinematically admissible if:

(11)
where νµ is the space of cinematically admissible displacements of 
the RVE. More details can be found in Fernandes et al. [13].

Figure 1
Multi-scale analysis scheme
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As already mentioned, the microscale is represented by the RVE, 
being the FEM the numerical method used to solve the RVE equi-
librium problem. The RVE characteristics as its dimensions, elastic 
properties and constitutive models adopted for the materials are 
the same for all RVEs defined at macroscale. The RVE solution is 
obtained, i.e., the computation of displacements, internal forces, 
stress and constitutive tensors, for all finite elements, are obtained 
when the convergence of the equilibrium problem is achieved ac-
cording to the adopted tolerance. But in order to solve the RVE 
equilibrium problem boundary conditions in terms of displacement 
fluctuations must be imposed to the RVE Then, the numerical re-
sponse can varies according to the boundary condition adopted. 
Thus, in what follows, the following topics will be discussed: RVE 
equilibrium problem, Hill-Mandel Principle, Stress homogenization, 
Boundary conditions imposed to the RVE, Homogenized Constitu-
tive Tangent Tensor. 
To simplify the model the inclusions domain  and the ma-
trix domain  will be considered together as the solid do-
main . Neglecting the inertia forces and that the RVE is sub-
jected to the body force b = b (y, t) and to surface force field  
te = te (y, t) acting along the boundary, the Principle of Virtual Dis-
placements establishes that the RVE is in equilibrium if, and only if, 
the stress field σμ over Ωμ satisfies the classic variational equation of 
the elasticity:

(12)

The works of Hill and Mandel (Giusti et al. [15]) have established 
the Macro Homogeneity Principle which defines that the macro-
scopic stress power in a arbitrary point of the macrocontinuum 
must be equal to the volumetric average of the microscopic stress 
power over the RVE related to that point for any movement cin-
ematically admissible of the RVE. (Giusti et al. [15]). Considering 
Equation (11), assuming    and considering that the voids 
are in equilibrium, after some manipulations (see details in Fer-
nandes et al. [13] and Fernandes et al. [14]), we can conclude 
that the Hill-Mandel principle is valid if, and only if, the following 
integrals are nulls: 

(13)           

(14)

Considering Equations (8) and (10) and writing σμ σμ  as  σμ = fy (εμ), 
where  fy is the constitutive functional, the following Equation in 
terms of displacement fluctuation can be obtained to represent the 
equilibrium problem of the solid part of the RVE:

(15)
Finally the formulation is completed by the appropriated choice of 
the space , with the choice of the kinematical restrictions to be 
imposed to the RVE. Thus, the microscopic equilibrium problem 

consists of, given the macroscopic strain tensor ε, finding the field 
 such that for each instant t, the Equation (15) is satisfied. 

As η is an arbitrary field η, after the RVE domain discretization 
into finite elements, whose domain is referred as , the following 
incremental microscopic equilibrium equation must hold for a load 
increment in time  and a domain discretization h, 
finding the displacement fluctuation :

(16)

where B is the global matrix relating strain and displacement, 
 is the RVE discretized domain. If the load increment is non-

linear, Equation (16) is solved by applying the Newton-Raphson 
Method which consists of finding the fluctuation correction   
for iteration i+1, such that:

(17)
where F is the force vector and K the tangent rigidity matrix of 
the RVE. After computing the correction   defined in Equation 
(17), the next step is to obtain the displacement fluctuation field to 
be considered at iteration i+1 given by: .
The homogenized stress is computed from Equation (2), consider-
ing that the RVE is composed by voids and a solid part (matrix and 
agregates) , resulting into:

(18)

The RVE equilibrium problem is completed with the choice of the 
kinematical restrictions to be imposed to the RVE, leading to dif-
ferent classes of multi-scale models and consequently to different 
numerical results (Peric et al. [7]). In this work only periodic dis-
placement fluctuations is considered. For that, each RVE side  
whose normal direction is , must correspond to an equal side 

 with normal direction , being . Similarly, for each 
point  defined on  must exist a point   on the side .To 
have periodic displacement fluctuation on the boundary, for every 
pair of points  the following relation must be verified:

(19)

2.2	 Cohesive fracture model and plasticity

Pituba et al. [12] have proposed an extension of a cohesive frac-
ture law presented in Cirak et al. [16] in order to deal with dam-
age process leading to the complete failure of microstructures in 
ductile media. In general way, this model has been developed to 
represent the cracking process where traction is still possible to be 
transmitted between fracture lips. The proposed model describes 
the finite-deformation irreversible cohesive law. The cohesive free 
energy is given by:

(20)
Where, δn is the normal opening displacement due to mode I; δs 
is the sliding opening displacement due to mode II and q is the 
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internal variable that describes the inelastic processes related  
to decohesion.
It is possible to assume that the deformation due to sliding opening 
process is a scalar value independent of the direction of sliding on 
the cohesive surface, thus δs = |δs|, therefore the behavior has an 
isotropic characteristic and the cohesive law is written introducing 
an effective opening displacement expressed by:

(21)
The parameter β assumes different values (from 0 to 1) to the slid-
ing and normal opening displacements given a weight ratio be-
tween the sliding and normal directions. On the other hand, the 
φ free energy potential depends of δ, and the cohesive law is ex-
pressed as:

(22)
Where, n is the unit normal to the cohesive surface; δs is the sliding 
opening vector located on the cohesive surface, t is the cohesive 
traction on the crack; t is a scalar effective traction.
On the other hand, the released cohesive energy in the microstruc-
ture of the material proposed in this work (Equation (20)) is given by:

(23)
Where the law for the scalar effective traction for the loading cases 
is obtained from Equation (23) as:

(24)
For the scalar effective traction for the unloading cases is proposed 
a law considering an elastic behavior, i. e., without residual effec-
tive opening displacement as follows:

(25)

Where e is the e-number, σc is the maximum tension cohesive nor-
mal traction and δc is a characteristic opening displacement that 
indicates a critical opening. Thus, β, σc and δc are parameters of 
the cohesive model. Besides, δ& is the opening displacement rate. 
The effective stress versus effective opening displacement cohe-
sive laws for loading and unloading cases are presented in Figure 
2a and Figure 2b, respectively.
Accordingly to Ortiz and Pandolfi [17], there is a relation between 
the cohesive law and the critical energy released rate (GC) for 
crack propagation in the microstructure in our case. Assuming the 
direction 1 as the direction on the fracture surface and towards to 
the its propagation, GC can be written as:

(26)

Where R is the cohesive zone length. The Equation (26) can also 
be defined as:

(27)

For the cohesive law presented in this work, using Equation (24), 
the critcial energy released rate is given by:

(28)
Obviously, the GC for conventional modeling is developed with 
phenomenological constitutive models applied on the homog-
enized macrocontinuum. In the present work, the concept of 
fracture energy is closely related to that which occurs in the ITZ 
of the microstructure at mesoscale level. When there are nucle-
ation and growth processes of the microcracks, it may generate 
a localization process leading to a nucleation of fracture on the 
macrocontinuum. This process leads to a relation between frac-
ture energies on macrocontinuum (homogenized material) and 

Figure 2
Cohesive law written in terms of effective stress versus effective opening displacement: 
a) Loading case; b) Unloading case

B BA B
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on mesoscale of the material, as described in Oliver et al. [18].
Before the nucleation process, it is assumed the existence of stiff-
ness between the lips of the future fracture situated between trian-
gule finite elements. This stiffness is simulated by another param-
eter of the proposed model called penalty factor (λp). In a practical 
view, high values for this parameter are adopted in order to obtain 
a accurate approach. This procedure ensures that the future frac-
ture be kept closed until the separation criterion is reached and, at 
the same time, guarantees the physical admissibility of the entire 
process. The penalty factor is, therefore, a stiffness imposed to the 
closuring of the crack.
In general way, that strategy intends to create stiffness between 
the nodes of the embedded cohesive contact finite elements in the 
matrix zone in order not to allow penetration of the surfaces of the 
fracture. On the other hand, in tension regimes, this penalty factor 
effectively replaces the initial rigid part of the cohesive law for a 
linear response given by Equation (26). In order to detect the co-
hesive contact phenomenon, the concept of the opening displace-
ment gap between the Gauss points of the cohesive contact finite 
element is adopted.

(29)
The finite elements used in this work are composed of two surfaces 
which are coincident in the undeformed configuration of the RVE. 
The cohesive contact finite element is defined as an element with 
four nodes and its geometry is compatible with the two triangule 
finite elements used to model the matrix and aggregate zones. The 
formulation of the cohesive contact finite element is presented in 
Pituba and Souza Neto [12] and Pituba et al. [19].
On the other hand, to deal with plastic strains presented on the mac-
rostructure of the concrete when the material is subjected mainly to 
compression stress, the well-know Mohr-Coulomb model is used to 
represent the mechanical behavior of the cement matrix. Therefore, 
this is another dissipative process to be modeled in the microstruc-
ture of the material together the possible microcracking nucleation 
that occurs mainly in the ITZ. In case of predominant tension regime, 
the proposed modeling evidences the microcracking process in the 
ITZ as the most important dissipative phenomenon, mainly in the ini-

tial loading stages. This phenomenon is simulated by the cohesive 
contact finite elements placed in the ITZ. Obviously, the microcrack-
ing process in the matrix zone that occurs in the softening regime of 
the macrostructure of the material is also important leading to the 
need of the insertion of cohesive contact finite elements in the matrix 
zone. However, this embedded finite elements can generates nu-
merical instabilities, mainly in the peak stress regime. On the other 
hand, in predominant compression regimes, the yielding process of 
the matrix is understood as principal phenomenon in conjunction 
with the microcracking process in the ITZ. 
The modeling of the microcracking process in the ITZ is fundamental 
to estimate the collapse of the concrete microstructure, mainly in pre-
dominant tension regimes. This assertion is based on results obtained 
by Pituba and Souza Neto [12], even considering elastic behavior for 
the matrix and aggregates, the fracture process in the ITZ modeled 
by cohesive contact finite elements together with the geometry of the 
aggregates have allowed the simulation of homogenized plastic mac-
roscopic strains in unloading and reversal loadings situations, leading 
to the capture of the unilateral effect of the concrete.
The Mohr-Coulomb model as well as the contact and cohesive 
fracture model has been implemented on the computational code 
developed to analyze RVEs of heterogeneous materials submitted 
to a state of macroscopic strain. The macroscopic strain is divided 
in increments and imposed to the RVE and the stresses are cor-
rected by the constitutive models. In case of Mohr-Coulomb model, 
with the stress values it is possible to update the yielding surface 
of the constitutive model. More details can be obtained in Souza 
Neto et al. [20].
On the other hand, the equations proposed are valid to the three-
dimensional cases. For plane stress cases, Souza Neto et al. [20] 
suggests a strategy to approach to the stress plane case using 
constitutive equations of the plane stress state restraining the 
stresses in Gauss points of the finite element. As the stresses σ13 
and σ23 are nulls, it is added σ33 in the computational implementa-
tion, where its value has to be zero, considering the direction 3 
normal to the middle surface of the finite element. However, σ33 
is related to the strain ε33 that depends of others stresses on the 
plane of the finite element. Thus, for a given initial elastic strain 

Figure 3
Representative volume element with 4 inclusions

Figure 4
Representative volume element with 8 inclusions
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(εe)33, an algorithm for the axisymmetric case of stresses is ap-
plied in order to obtain the value for σ33. If the convergence of the 
process is achieved (|σ33|≤єtol), the updating of the stress is valid, 
otherwise it is necessary to update the strain (εe)33. The correction 
procedure is performed using the Newton-Raphson algorithm and 
a self-consistent linearization of the problem leading to a conver-
gence with quadratic rate for the numerical solution. This is a very 
interesting aspect because in multi-scale analyses the computa-
tional cost has a high value.

3.	 Results and discussions

In order to evaluate the application of the proposed formulation 
in quasi-brittle materials as concrete, some numerical simulations 
based on mechanical behavior of the microstructure of the con-
crete are performed. Initially, RVEs with dimensions l x l and thick-
ness l/10 containing inclusions placed into a matrix are generated. 
Obviously, the inclusions (aggregates) and matrix have different 
mechanical properties evidencing the heterogeneous characteris-
tic of the medium submitted to plane stress states. For the matrix 
zone, an elastopplastic behavior is assumed following the Mohr-
Coulomb criterion with the parameter values given by, Assad et 
al. [21]: Young´s modulus E is 20 GPa and Poisson ration ν is 0.2, 
friction angle and dilatation angle are φ = 5º and Ψ = 10%, respec-
tively. The aggregates are considered elastic media with E = 35 
GPa and ν = 0.26, Mehta and Monteiro [22].
For the ITZ, in the situations where the fracture process has been 
evaluated, cohesive contact finite elements have been used. The 
parameters for the cohesive law are given by: λp = 200000 N/mm3, 
β = 0.7, σc=0.09 MPa and δc = 0.02mm, Ortiz e Pandolfi [17], Oli-
ver et al. [18], Pituba e Souza Neto [12].

3.1	 Influence of the fracture process in the ITZ

In this section, RVEs containing 4 and 8 inclusions with circular 

shape placed in the matrix zone are analyzed. Figure 3 presents 
the RVE with 4 inclusions that represent 12% of volume fraction. 
For the RVE discretization, 798 triangule finite elements and 64 co-
hesive contact finite elements are used when included in the anal-
yses. Besides, Figure 4 presents the RVE with 8 inclusions that 
represent 14% of volume fraction. For the RVE discretization, 1184 
triangule finite elements and 128 cohesive contact finite elements 
are used when included in the analyses. In other analysis, perfect 
bonding between aggregates and matrix has been considered.
The RVEs have been submitted to a total macroscopic strain εx = 
0,0001 e εy= -0,00001 divided in 20 increments. The distortional 
strain has been considered null. The homogenized stresses ob-
tained in the analyses for x-direction versus the macroscopic strain 
in the same direction are plotted in Figures 5 and 6. Note that the 
numerical responses considering perfect bonding or fracture pro-
cess in the ITZ are the same in the initial steps of loading. Never-
theless, when the dissipative processes take place those numeri-
cal responses diverge. The consideration of fracture process in the 
ITZ evidences an important contribution in the non-linear behavior 
of the material at microscale level. Therefore, the cohesive fracture 
model decreases the stiffness of the RVE beyond the yielding limit. 
The numerical responses for both RVEs are quite similar due to the 
very close values for the volumetric fractions of inclusions.
In order to visualize the stress distribution in the x-direction inside 
the RVE, Figures 7 and 8 illustrate the impact on the numerical 
response when considering the fracture process in the ITZ. Fig-
ure 7 shows the stress distribution for the RVE containing 4 inclu-
sions considering perfect bonding between inclusions and matrix 
whereas Figure 8 represents the RVE considering the fracture 
process in the ITZ. Note in Figure 7 that the stresses are perfectly 
transmitted submitting high levels of stresses at the inclusions. 
Therefore, as the aggregates present stiffness values higher than 
the cimenticious matrix, they increase the homogenized stiffness 
of the material, see Figure 5.
On the other hand, the stress values in the aggregates presented 

Figure 5
Tension normal homogenized stress in the x-direction 
versus elongation macroscopic strain imposed in the 
x-direction of the RVE with 4 inclusions

Figure 6
Tension normal homogenized stress in the x-direction 
versus elongation macroscopic strain imposed in the 
x-direction of the RVE with 8 inclusions
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in Figure 8 are smaller when compared to the Figure 7 due to the 
dissipative processes presented in the cohesive contact finite ele-
ments. Thus, the impact of the aggregates in the homogenized 
stiffness of the material is smaller, as shown in Figure 5.

3.2	 Influence of the boundary conditions

On the Multi-scale formulation, the homogenized response is influ-
enced by the boundary conditions as presented in section 2.1. For 

Figure 7
Normal stress distribution in the x-direction inside the RVE with 4 inclusions without considering the 
fracturing process in the ITZ

Figure 8
Normal stress distribution in the x-direction inside the RVE with 4 inclusions considering fracturing process 
in the IT



1095IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 5

 	 D. C. BORGES  |  W. M. G. QUARESMA  |  G. R. FERNANDES  |  J. J. C. PITUBA

the numerical analysis presented here, a new RVE model proposed 
by Nguyen et al. [23] is used. This RVE presents a randomly distri-
bution of aggregates with various dimensions, as shown in Figure 9. 
The use of this RVE is due to no existence of symmetry in any axes. 
This property will be important in the analyses of the section 3.3. 
The volume fraction of inclusions in this RVE is 35.6%. For the RVE 
discretization, 520 triangule finite elements and 95 cohesive contact 
finite elements are used when included in the analyses.
Figure 10 shows the homogenized responses of stress in x-direc-
tion when using linear and periodic boundary conditions on the 
RVE with 4 inclusions presented in Figure 4. Figure 11 presents 
the homogenized responses for the RVE shown in Figure 9. Both 
analyses consider the fracture process in the ITZ.
The use of linear and periodic boundary conditions did not influence 
the responses presented in Figure 10 due to the symmetric disposi-
tion of aggregates in the RVE. But, when the RVE does not present 

symmetry, as shown in Figure 9, the homogenized response is influ-
enced by the fracture process in the ITZ. This influence has not sig-
nificance at the microscopic level. Nevertheless, this influence has 
to be very important when performing multi-scale analysis.

3.3	 Anisotropic behaviour

In order to check how the proposed modeling is capable to obtain 

Figure 9
Representative volume elements proposed 
by Nguyen et al. [23]

Figure 10
Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the x-direction of RVE with 4 inclusions 
considering different boundary conditions

Figure 11
Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the x-direction of the RVE presented 
in Nguyen et al. [23] considering different 
boundary conditions

Figure 12
Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the RVE with 4 inclusions
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complex responses on the macrostructure, as the anisotropic be-
havior, as instance, a set of analyses has been performed using 
the RVEs described in Figures 3 and 4. Initially, the macro strains 
εx = 0.0001 and εy= - 0.00001 have been imposed. Soon after, εy = 
0.0001 e εx = - 0.00001 have been applied. The numerical results 
are presented in Figures 12 and 13 expressed by homogenized 
stress versus macro strains. In Figure 12 is presented the numeri-
cal results for RVE with 4 inclusions and Figure 13 presents the 
numerical results for RVE with 8 inclusions.
Figure 12 shows that the mechanical behavior in different direc-
tions has been the same. This happens because the RVE has 

symmetry related to the axes x and y. But in Figure 13, the me-
chanical behavior in different directions presents significative dif-
ferences when the fracture nucleation in the ITZ takes place. In this 
last case, the non-symmetric distribution of the inclusions in the 
RVE is responsible for this phenomenon. Therefore, the geometry 
of the inclusions and the consideration of the fracture process in 
the ITZ lead to simulate a complex macroscopic phenomenon us-
ing simple constitutive models at mesoscale of the material.

3.4	 Homogenized responses in tension 
	 and compression regimes

In this section is evaluated the fracture process in the ITZ for RVEs 
in predominant tension and compression regimes. The RVE pre-
sented in Figure 9 is used. The first analysis consists in the appli-
cation of the macro strain simulating a predominant tension regime 
given by: εx = 0.0001 and εy = - 0.00001, where γxy is approximately 
null. After that, a predominant compression regime has been con-
sidered with the same magnitude before. Therefore, the macro 
strains are: εx = - 0.0001 and εy = 0.00001. The Figures 14 and 
15 present results of the homogenized stress in x-direction versus 
imposed macro strain in x-direction.
Figure 14 shows the important contribution of the fracture process 
in predominant tension regime leading to a decreasing of the ho-
mogenized stiffness and strength of the material. Figure 15 shows 
that the fracture process is not so important in predominant com-
pression regimes. This assertion is based on the mechanical be-
havior of the cohesive contact finite elements placed in the ITZ. 
The stress transmission lost between the surfaces of the fracture 
is evident when the value of the cohesive traction increases, but 
this is not happen in many cohesive contact finite elements in RVE 
submitted to predominant compression regime. Therefore, many 
cohesive contact finite elements are submitted to compression 
loading conditions, where the contact law is activated. For the vi-

Figure 13
Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the RVE with 8 inclusions

Figure 14
Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the x-direction of the EVR of Nguyen on 
the tension predominant regime

Figure 15
Compression normal homogenized stress in the 
x-direction versus compression macroscopic strain 
imposed in the x-direction of the EVR of Nguyen on 
the compression predominant regime
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sualization proposes, Figure 15 presents positive signals for com-
pressive homogenized stress and macro strains.

3.5	 Alternative modeling of the ITZ

Some authors consider the ITZ as a low resistance zone surround-
ing the aggregates with mechanical properties less stiffened than 
the mechanical properties of the matrix. For instance, Ramesh [24] 
and Yang [25] consider a average value for the Young modulus of 
the ITZ as a percentage value of the Young modulus for the ma-
trix. In this section, a RVE containing one inclusion placed on the 
central region is analyzed, see Figure 15. The volume fraction of 
inclusions is 19.6%. For the RVE considering the ITZ modeled by 
cohesive contact finite elements, 612 triangule finite elements and 
36 cohesive contact finite elements have been used in the analy-
sis. For the RVE considering a band for the ITZ, 612 triangule finite 
elements have been used.
The homogenized results for both proposed modeling have been 
compared. For the thickness of the band zone, a value of 40 μm 
has been adopted following Mehta and Monteiro [22]. The authors 
suggest values between 20 and 50 μm.
The same values used in the last sections for the parameters of 
the constitutive models are used here. The macroscopic strain im-
posed to the RVE is given by: εx = 0.0001 and εy = - 0.00001, where 
γxy is approximately null. For the green region of the Figure 16 a 
Young modulus with 50% of the value given to matrix has been 
used. Figure 17 presents the homogenized stress in x-direction 
versus macroscopic strain imposed in the x-direction.
Note that model containing a band for the ITZ initially presents 
a lower homogenized stiffness when compared to the model with 
ITZ modeled by cohesive contact finite elements. However, when 
the loading increases, after yielding and fracture processes have 
begun, the EVR with cohesive elements presents a lower homoge-
nized stiffness. This is due to the consideration of cohesive contact 
finite elements which plays a important role in collapse regimes.

4.	 Conclusions

In this work a model to simulate the concrete mechanic behavior, in 

the context of multiscale modeling, has been proposed, being the 
numerical analyses restricted to the material mesostructure. Using 
simple constitutive models and defining accordingly the geometry 
of the different phases of the RVE, some important macroscopic 
phenomena have been represented.
By considering cohesive-contat finite elements at the concrete 
transition zone, the loss of rigidity in the homogenized response 
could be evidenced without presenting total loss of the stress 
propagation, as expected. As this kind of element does not influ-
ence the homogenized response while the element opening is not 
activated, this model proved to be viable, if compared to others 
strategies to simulate the effect of the concrete transition zone, 
as the definition of less rigid finite elements around the agregates.
On the other hand, the consideration of the plasticity model in the 
multi-scale analysis proved to be satisfactory to overcome the 
problem of having rigid responses for predominant compression 
regime, as discussed in Pituba and Souza Neto [12]. But consid-
ering only the plasticity model for the mortar without defining the 
cohesive-contact finite element is not satisfactory, because as the 
aggregates are assumed to have elastic behavior, they present 
bigger rigidity modifying the homogenized response. Therefore, in 
this work is shown the importance of considering the dissipative 
phenomena at Transition Zone for better represent the concrete 
mechanical behavior. On the other hand, a limitation of the pro-
posed model is not being able to reproduce the softening behavior 
for predominant tension regimes when occurs the microcracking 
process inside the mortar. Besides, the definition of cohesive-con-
tact elements in the matrix can lead to instabilities of the numeri-
cal response for predominant tension regimes. To overcome these 
difficulties, in a future work these cohesive-contact elements could 
be replaced for the high aspect ratio elements developed by Ro-
drigues et al. [26]. But for concrete structures, in service regimes, 
the proposed model has shown to be a viable tool to perform multi-
scale analysis of structures. The authors believe that this strategy 
will be able to represent the softening behavior for tension regimes. 
Although the proposed model presents some limitations, in the  

Figure 16
ITZ modeled by a triangular finite element band Figure 17

Tension normal homogenized stress in the 
x-direction versus elongation macroscopic strain 
imposed in the x-direction of RVE with 1 inclusion
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numerical examples analyzed in this work, it has represented very 
well the concrete mechanical behavior, as it has captured complex 
phenomena by adopting simple constitutive models, what encour-
age us to proceed with this research. The proposed model will be 
considered for identification of quantitative responses for the con-
crete, as well as for full coupled multi-scale analyses of concrete 
structures, based on the works developed in Fernandes et al. [13] 
and Fernandes et al. [14]. Moreover, it is important the develop-
ment of a formulation considering the local damage phenomena at 
microstructure, what can lead to a fracture at macrostructure, as 
discussed in Sanchéz et al. [27].
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