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Finite element model for nonlinear analysis 
of reinforced concrete beams and plane frames

Modelo de elementos finitos para análise não linear 
de vigas e pórticos planos de concreto armado

Abstract  

Resumo

In this work, a two-dimensional finite element (FE) model for physical and geometric nonlinear analysis of reinforced concrete beams and plane 
frames, developed by the authors, is presented. The FE model is based on the Euler-Bernoulli Beam Theory, in which shear deformations are ne-
glected. The bar elements have three nodes with a total of seven degrees of freedom. Three Gauss-points are utilized for the element integration, 
with the element section discretized into layers at each Gauss point (Fiber Model). It is assumed that concrete and reinforcing bars are perfectly 
bonded, and each section layer is assumed to be under a uniaxial stress-state. Nonlinear constitutive laws are utilized for both concrete and rein-
forcing steel layers, and a refined tension-stiffening model, developed by the authors, is included. The Total Lagrangean Formulation is adopted 
for geometric nonlinear consideration and several methods can be utilized to achieve equilibrium convergence of the nonlinear equations. The 
developed model is implemented into a computer program named ANEST/CA, which is validated by comparison with some tests on RC beams 
and plane frames, showing an excellent correlation between numerical and experimental results.

Keywords: nonlinear analysis, finite element, reinforced concrete, beams, plane frames.

Neste trabalho apresenta-se um modelo de elementos finitos de barra bidimensional, desenvolvido pelas autoras, para análise não linear física 
e geométrica de vigas e pórticos planos de concreto armado. A formulação do elemento é baseada na teoria de Euler-Bernoulli, em que se 
desprezam as deformações por cisalhamento. Os elementos de barra possuem três nós e um total de sete graus de liberdade, sendo utilizados 
três pontos de Gauss para integração do elemento, com a seção transversal discretizada em camadas em cada ponto de Gauss (Método das 
Lamelas). Admite-se que o concreto e as barras de armadura têm uma aderência perfeita entre si e considera-se que cada camada da seção 
está submetida a um estado uniaxial de tensões. São utilizadas leis constitutivas não lineares para as camadas de concreto e de armaduras de 
aço, incluindo-se um modelo refinado de tension-stiffening desenvolvido pelas autoras. Adota-se a formulação Lagrangeana Total para conside-
ração da não-linearidade geométrica e podem-se utilizar vários métodos para convergência de equilíbrio das equações não lineares. O modelo 
desenvolvido é implementado em um programa computacional denominado ANEST/CA, o qual é validado em comparação com alguns ensaios 
de vigas e pórticos planos de concreto armado, observando-se uma ótima correlação entre resultados numéricos e experimentais. 

Palavras-chave: análise não linear, elementos finitos, concreto armado, vigas, pórticos planos.

a	 Departamento Acadêmico de Construção Civil, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil;
b 	 Departamento de Egenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.

Received: 09 Dec 2015 • Accepted: 20 Jun 2016 • Available Online: 17 Apr 2017

 	 R. S. B. STRAMANDINOLI a

renatastramandinoli@hotmail.com

H. L. LA ROVERE b

henriettelarovere@gmail.com



1.	 Introduction

Due to the advance in technology combined with the use of more 
resistant materials, more complex and slender structures are cur-
rently being designed, arising thus the necessity of more elabo-
rated computational methods for structural analysis and design.
In structural analysis of reinforced concrete (RC) structures, the more 
refined methods should account for the structure nonlinear behavior, 
due to material nonlinearities (physical nonlinearity), as well as to 
changes in the deformed shape of the structure (geometric nonlin-
earity). Among the more refined methods, the Finite Element Method 
(FEM) stands out as one of the most utilized nowadays, which, for 
the case of plane structures, can be employed by using either bar or 
plane elements. Yet only a few computer programs are available for 
nonlinear finite element analysis of RC structures, and their cost is 
high in comparison with other programs. Due to this fact, refined fi-
nite element (FE) models have been mostly used by researchers, and 
many researchers opt in developing their own models and computer 
programs. Although several nonlinear FE models have already been 
developed, this is still an advanced topic in the scientific-technical 
community, in view of the difficulty on accurately model the reinforced 
concrete material, due to cracking of concrete, yielding of steel and 
the interaction between these materials. Hence, the development of 
models that combine computational efficiency and good accuracy 
needs to be more and more incentivized (Silva and Matos [1]). In this 
work, emphasis is given to the bar element model, as it yields a re-
duced number of degrees of freedom as compared to plane element 
models, making viable the analysis of large structures, which is the 
aim of the research project under way at the Federal University of 
Santa Catarina (UFSC), with participation of the authors.
The early FE bar models were developed in the 60’s, and were limited 
to the analysis of small members and small structures, using simpli-
fied constitutive models. One of the first bar models was the one by 
Giberson [2], which consisted of a linear elastic element connected 
by nonlinear springs at its ends, in which predefined moment-rotation 
relations were utilized. Since then the bar models evolved, particularly 
with the introduction of the Fiber Model (Kaba and Mahin [3]), which 
subdivides the element section into overlaid concrete and reinforce-
ment layers, by considering nonlinear constitutive laws for the ma-
terials in each layer. Another important contribution to the evolution 
of this kind of model was the introduction of an internal node at the 
element midpoint with only one axial degree of freedom. As demon-
strated by Chan [4], the inclusion of this third node allows a proper 
representation of the element flexural stiffness with variation of the 
neutral axis position, caused by material nonlinearities. Not including 
this third node imposes a constraint on the element, making it artifi-
cially stiffer. Holzer et al [5] have used this kind of model for physical 
and geometric nonlinear analysis of RC beams/columns. Marí [6] has 
extended this model to a three-dimensional bar element, with a total of 
thirteen degrees of freedom (six in each external node and one axial 
degree of freedom in the internal node), by discretizing the element 
section into filaments, and by taking into account long term effects 
caused by creep and shrinkage. In the model two Gauss points are 
utilized to integrate the stiffness matrix and the internal forces vec-
tor of the element, with the constitutive matrix being evaluated only 
at the element midpoint, and by neglecting the tensile contribution of 
the intact concrete between cracks (tension-stiffening). The geometric 

nonlinearity is also considered, by means of the Updated Lagrang-
ian formulation. More recently Marí [7] has improved this model, by 
including a tension-stiffening model developed by Carreira and Chu 
[8]. In Brazil, Schulz and Reis [9] have utilized a model similar to the 
one by Marí [6] to analyze three-dimensional RC frame structures, by 
considering physical nonlinearity by means of constitutive equations 
recommended by Design Codes (NBR-6118 and CEB 90), disregard-
ing the tension-stiffening effect, and by considering the Total Lagrang-
ian formulation for geometric nonlinearity. There is also another kind 
of FE bar model that uses a formulation in terms of forces instead of 
displacements, as the model by Taucer, Spacone and Filippou [10]. 
In Brazil this kind of model was utilized by Teixeira and de Souza [11] 
in the three-dimensional analysis of a reinforced concrete building, by 
using a computer program named OpenSees from the University of 
California in Berkeley. This model was validated by comparison with 
a model that uses a co-rotational formulation and with the method 
known as P-delta. The concept of co-rotational formulation, which al-
lows that nodes undergo large displacements and rotations, as well 
as bars display large elongations and curvatures, has been presented 
by Pimenta [12]. Pimenta and Soler [13] applied this formulation to 
analyze one RC beam and two RC plane frames, by adopting a com-
pressive constitutive law for concrete similar to the one given in NBR-
6118, by neglecting the concrete tensile strength, and by considering 
the steel as an elastic-perfectly plastic material. A similar model, with a 
co-rotational coordinate system attached to the element, was utilized 
by Silva and Matos [1]. The authors utilized the Fiber Model and con-
sidered the contribution of concrete between cracks by means of the 
tension-stiffening model developed by Vecchio and Collins [14]. Pinto 
[15] and Carvalho [16] have also utilized a co-rotational formulation for 
physical and geometric nonlinear analysis of RC structures. Further 
details on the literature review of FE models for the analysis of RC 
structures can be consulted in Stramandinoli [17]. 
From this review one can conclude that the models based on the Force 
Method have presented excellent results, however their computer imple-
mentation becomes more difficult, especially in the usual FE programs 
that utilize a formulation in terms of displacements instead of forces. 
Regarding the geometric nonlinearity, despite of the co-rotational for-
mulation being more complete, the large displacement with moderate 
rotations assumption is in general sufficient to represent the behavior of 
usual RC structures, such as beams and frames, since large displace-
ments and rotations would be incompatible with the structure utilization. 
Hence, in this work, a two-dimensional bar element model based on 
the model developed by Marí [6] is presented. The assumption of large 
displacement with moderate rotations is considered and the Total La-
grangian formulation is utilized, which is easier to be computationally 
implemented as compared to the co-rotational formulation. The advan-
tage of this model with respect to similar models described above, lies 
on the inclusion of a novel tension-stiffening model proposed by the 
authors (Stramandinoli and La Rovere [18]), which presents a tensile 
constitutive law for the concrete between cracks as a function of the 
reinforcement ratio of the bar element, whereas in the previously pro-
posed tension-stiffening models - Vecchio and Collins [14], Carreira and 
Chu [8], etc., the same constitutive law is used independently of the 
reinforcement ratio. With that the proposed model can represent more 
realistically the nonlinear behavior of RC structures after cracking. An-
other advantage is that in the proposed model the constitutive matrix is  
evaluated along the element at the three integration points (Gauss 
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points), which allows the use of coarser FE meshes to capture the 
spread of nonlinearities along the structure. At each Gauss point the 
element section is discretized into layers, and it is assumed that each 
layer is under a uniaxial stress-state. The model does not take creep 
and shrinkage effects into account and it is limited to RC structures with 
a dominant flexural behavior, where shear deformation is neglected. 
It should be pointed out that, in those structures where shear effects 
become important, bar models based on Timoshenko Beam Theory 
should be used, as for instance the one developed by the authors in 
Stramandinoli and La Rovere [19], and Stramandinoli [17], or, alterna-
tively, plane finite element models, as, for example, the ones developed 
by d´Avilla [20], should be employed.
The FE model developed by the authors is presented in Section 
2, in the following, and the constitutive equations of the materi-
als utilized are described in Section 3. The model is implemented 
into a computer program named ANEST/CA, which is validated in 
comparison with an analytical model developed by another author 
for the case of geometric nonlinearity for large displacements, and 
in comparison with experimental tests on beams, by considering 
physical nonlinearity only, and on plane frames, by considering 
both nonlinearities, as presented in Section 4. At the end of the 
work, in Section 5, a few conclusions are extracted.

2.	 Finite element model 

A nonlinear model based on the Finite Element Method with isopara-
metric formulation where the structure is discretized into bar finite ele-
ments, is developed. The Euler-Bernoulli assumption, in which shear 
deformation is disregarded, is adopted. 
The bar finite element utilized has three nodes and a total of seven 
degrees of freedom (Figure [1]). The two external nodes have three 
degrees of freedom each: two translations (axial and transversal) and 
one rotation. The internal node at the element midpoint has only one 

axial degree of freedom, similar to the one utilized by Chan [16] and 
by Mari [2]. Upon inclusion of this node, the horizontal displacement 
field in the element becomes compatible (see equation 1 ahead, the 
first term shows a parabolic variation with x, the horizontal axis, as well 
as the second  term due to bending, since v(x) varies cubically with 
x). This allows the axis x to have an arbitrary position, fixed during the 
analysis but not necessarily coincident with the line passing by the sec-
tion centroids, in such a way that the element stiffness can be prop-
erly represented upon variation of the neutral axis position, caused by 
cracking and other material nonlinearities (further details can be found 
in Stramandinoli [17]).
The numerical integration of the element is performed by means of 
three Gauss points, and at each point the section is discretized into 
concrete layers overlaid to longitudinal reinforcement layers (Fiber 
Model). It is assumed that concrete and reinforcing steel are perfectly 
bonded, and that each layer is under a uniaxial stress-state. Nonlinear 
constitutive laws are utilized for the materials, as described in Section 
3. Regarding the geometric nonlinearity, the Total Lagrangian Formula-
tion, considering moderate rotations, is utilized.
The element formulation is described in the following, by considering 
initially linear-elastic material, and in the sequence including physical 
and geometric nonlinearities.
In all equations along the text, bold-faced characters represent either a 
vector or a matrix.

2.1	 Formulation for linear-elastic material

By considering the Euler-Bernoulli Beam Theory, the displacement 
field along the element is given by:

(1)
                                          

where u  is the longitudinal displacement, 0  u is the longitudinal 

Figure 1
Bar element with 3 nodes and 7 degrees of freedom; cartesian coordinates (x,y,z) and natural 
coordinate (ξ)
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displacement along the reference axis x, v  is the transversal dis-
placement and θ  is the rotation of the cross-section.
The longitudinal strain and stress in the element are:

(2)

(3)
where E  is the longitudinal modulus of elasticity of the linear-
elastic material. 
By introducing the natural coordinate =

x
L

ξ , the displacement  
 
field in terms of nodal displacements can be written as:

(4)

(5)

(6)

(7)

in which: 

and where 1  α is related to the displacement of the internal node, 3u :    

(8)

and the interpolation functions ( )N ξ  are given in the Annex.
From the displacement field, the strain in the element can be determined 
(see details in the Annex). The strain and stress vectors are given by:

and (9)
where  is the nodal displacement vector;  is the linear matrix  
that relates strain to nodal displacements, which is obtained from 
equations (2) and (4) to (7):

(10)

and 
 
is the constitutive matrix for linear-elastic material, in 

t h e uniaxial case. 
By applying the Principle of Virtual Work and after some algebraic 
manipulations (Stramandinoli [17], Cook [21]), the equation that 
defines the stiffness matrix can be found:

(11)

and also the internal forces vector in the element:

(12)

The integrals in equations (11) and (12) can be obtained by means 
of numerical integration, and, in this work, the Gauss integration 
rules with three integration points are utilized.
Next, a static-condensation procedure is applied to condense 
out the seventh degree-of-freedom in the element stiffness ma-
trix and in the element force vector, from which the global stiff-
ness matrix and the global internal forces vector of the structure  
are assembled.

2.2	 Formulation including physical nonlinearity only

In order to include physical nonlinearity, besides the Euler-Bernoulli 
assumption, it is assumed that: the element undergoes small strain 
and displacements; concrete and steel are homogeneous materi-
als and there is a perfect bond between them; the element cross-
section is discretized into layers, by considering that each layer is 
under a uniaxial stress-state; the tension-stiffening effect occurs 
in the concrete after cracking; the reinforcing steel is an elastic-
plastic material with strain-hardening; the total internal forces at 
each section are obtained upon superposition of the forces derived 
from the stresses in the concrete layers to those arising from the 
stresses in the reinforcement layers.
Upon inclusion of physical nonlinearity, equations (11) and (12) 
need to be modified, since the stresses and the constitutive matrix  
vary along the element,  and  , therefore an it-
erative procedure becomes necessary to achieve force equilibrium 
at each load step. Solution of the nonlinear equilibrium equations 
can be obtained by means of either the Newton-Raphson methods 
or the Arc-length method (Stramandinoli [17]). Loads are applied 
incrementally, and for each load step the internal forces vector and 
the tangent stiffness matrix of the element are calculated at each 
iteration of the iterative procedure:

(13)

where    is the secant constitutive matrix of the material.
It can be demonstrated that the tangent stiffness matrix    is given 
by (Stramandinoli [2]):

(14)

where    is the tangent constitutive matrix of the material. 
For comparison with the well-known stiffness matrix (6 × 6) of 
a linear-elastic plane frame element, the secant stiffness matrix  
(7 × 7) of the element considering only physical nonlinearity, which 
contains coupling terms between axial and bending stiffness, is 
presented in the Annex. In the initial elastic stiffness matrix, these 
terms become null for the case that the longitudinal axis x of the 
element passes by the centroid of the section (the first moment of 
area, S, is zero).
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2.3	 Formulation including both physical  
	 and geometric nonlinearities

Regarding the geometric nonlinearity, the Total Lagrangian Formu-
lation, with the simplification for moderate rotations, is utilized. By 
considering moderate rotations, equations (1) remain valid, how-
ever the strain becomes:

(15)

This strain can be separated into two parts, a linear one,  Lε  , 
equivalent to the one given by equation (2), and another one non-
linear, NLε .  Rewriting the strain in matrix notation, it follows:

(16)
where:

which is equation (2) presented previously and

(17)
                                                                                           	

By rewriting equation (6) using matrix notation, it follows:

(18)
and its derivative with relation to x becomes:

	

where

; . 
                                                                           

Equation (17) can then be written in the following way:

(19)
The incremental form of strain is given by:

(20)
By replacing the expressions that define Lε , equation (9), and 

NLε , equation (19), into the equation (20) above, yields:

(21)
or else:

(22)
and where    is the matrix that relates strain with displacements 
(linear), equivalent to equation (10).
For this case, with both nonlinearities considered in the model, the 
internal forces vector becomes:

(23)

The tangent stiffness matrix is still given by the expression:

(24)

But in this case, upon derivation of the terms in equation (24), it 
leads to:

(25)
Hence, it follows that the tangent stiffness matrix    is composed 
of three matrices: 
- One matrix  obtained considering physical nonlinearity, ex-
pressed as:

(26)
- Another matrix, usually defined as geometric matrix, , given by:

(27)
- And one matrix  caused by initial displacements by consider-
ing the structured deformed, which is given by the addition of three 
components:

(28)

If instead of the Total Lagrangian Formulation, the Updated La-
grangian Formulation were utilized, this last matrix would not enter 
in the formulation, however it would become necessary to update 
the coordinates in all steps.
For both this case, in which both nonlinearities are considered, 
and the case of physical nonlinearity only (section 2.2), the stiff-
ness matrix and the internal forces vector are obtained by means 
of numerical integration, using the Gauss Rules with three inte-
gration points along the longitudinal axis. At each Gauss point 
the constitutive matrix and the stress vector are obtained upon 
addition of values arising from the concrete and from the rein-
forcement layers, which in turn are obtained from the nonlinear 
constitutive equations for uniaxial state, as described in the fol-
lowing Section 3.
After generation of the element stiffness matrix and internal forces 
vector, a static-condensation procedure is applied to condense out 
the seventh degree-of-freedom of the element, and the global stiff-
ness matrix and the global internal forces vector of the structure 
are assembled. Solution of the nonlinear equilibrium equations 
can be obtained by means of either the Newton-Raphson meth-
ods (Cook [21]) – either the tangent or the initial stiffness method, 
or else the Arc-length method (Riks[22] and Wempner[23]), when 
the equilibrium path presents a limit point or exhibits snap-through 
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phenomenon. This nonlinear FE model using bar elements was 
implemented into a computer program called ANEST/CA, previ-
ously named ANALEST (Stramandinoli [17]), developed in FOR-
TRAN 90 language.

3.	 Uniaxial constitutive equations

3.1	 Concrete under compression

For concrete subjected to compression, both the modified Hog-
nestad model and the CEB model can be utilized in the ANEST/
CA program, but in this work only the modified Hognestad model, 
described in the following, was utilized.
The Hognestad [24] model has already been utilized by several au-
thors, showing good results in comparison with experimental tests. 
In this work this model is modified, using a parabola to describe 
the compressive stress-strain curve for both the ascending and the 
descending branch, after the peak:

(29)

where 
 cmf is the compressive strength of concrete and 0ε  is the cor-

responding strain.

3.2	 Concrete under tension

For concrete under tension, the model proposed by the authors 
in Stramandinoli and La Rovere [18] is utilized in this work for all 
examples. In this model, the material is assumed to behave linear-
elastically until the tensile strength of concrete is reached, and, 
beyond cracking, the tension stiffening effect, described by the fol-
lowing equation, is considered:

(30)

(31)
where:

 ctf is the tensile strength of concrete and  crε  is the correspond-
ing strain; yε  is the strain value corresponding to yielding of the 
reinforcement, after which the stress ctσ  drops abruptly to zero; 
α  is an exponential decay parameter, which is a function of the 
reinforcement ratio ( )ρ  and of the steel-to-concrete modular ratio 
( )n , defined by the equation:

(32)
This equation was derived for bars, where the entire member is 
subjected to tension, and it was validated by comparison with ex-
perimental results from reinforced concrete bars subjected to direct 
tension, using different reinforcement ratios, showing an excellent 
correlation (Stramandinoli and La Rovere [18]). In order to apply 
this model to beams, the effective area that corresponds to the 

tensile zone in the member section needs to be obtained, which 
can be estimated using the equation given in the CEB-FIP Model 
Code 1990 [25]:

(33)
where
h  is the nominal depth of the beam, d  is the effective depth, and 

xk  is the neutral axis depth.
Recalling that in RC beams under bending, the relationship be-
tween nominal and effective depth is usually given by 0,1− ≅h d h , 
the effective area can then be expressed, approximately, as:

(34)

This approximate equation will be utilized in this work to calculate 
the reinforcement ratio in all examples of beams and plane frames, 
by considering the tension-stiffening effect only in this effective 
area. In the numerical analyses where the tension-stiffening effect 
is not considered, the stress drops abruptly to zero in the stress-
strain curve, after the tensile strength limit, ctf , is reached.
It should be noted that the tension-stiffening effect is more accentu-
ated for smaller values of the α  parameter, which means smaller 
values of reinforcement ratios, since the α  parameter increases 
with increasing values of ρ  and/or n . In order to illustrate this ef-
fect and show the influence of the reinforcement ratio on the tension-
stiffening model proposed by the authors, a graph of the proposed 
model upon variation of ( )nρ  is shown in Figure 2b, in comparison 
with other tension-stiffening models – the one by Vecchio and Col-
lins [14] and the bilinear model from Figueiras [26], both displayed in 
Figure 2a, which are independent of the reinforcement ratio.

3.3	 Reinforcing steel

It is assumed that the reinforcing steel, under tension and com-
pression, is an elastic-plastic material, modeled by a bilinear 
stress-strain curve. In order to avoid convergence problems and 
oscillations in the iterative process, a parabolic curve is fitted  
between the elastic and plastic branches of the bilinear stress-
strain curve, between 0.8 and 1.2 yε  (La Rovere [27]). Strain 
hardening of the reinforcing steel may or may not be considered, 
through the use of a coefficient sh , which is the plastic-to-elastic 
modular ratio ( sh  = 0 for horizontal threshold, perfectly plastic 
steel). The ultimate strain is called uε  and the corresponding 
stress, uf .

4.	 Comparison of results given by  
	 the proposed model with analytical 
	 and experimental results obtained by 
	 other authors

In order to validate the proposed nonlinear model, its numerical re-
sults were compared to several analytical and experimental results 
from examples of reinforced concrete plane structures, available in 
the literature, by Stramandinoli [17]. Among these, a few examples 
of beams and plane frames were selected to be presented here, 
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giving emphasis to structures with dominant flexural behavior. Only 
one example of plane frame subjected to large displacements was 
chosen, by considering only geometric nonlinearity, and it will be 
compared to another analytical model in section 4.3. The other ex-
amples – RC beams considering only physical nonlinearity, and 
RC plane frames considering both nonlinearities, physical and 
geometric, will be compared to experimental tests.
Regarding the choice of the FE mesh, parametric studies conducted 
by Stramandinoli [17] in simply-supported beams have shown that, 
under 4-point bending, in which the central span is subjected to pure 
bending, the solution obtained using a mesh of 4 elements basi-
cally coincided with the one obtained using 24 elements, showing 
that the model is objective, without mesh dependency. As for the 
case of beams under a concentrated load applied at mid-span, con-
vergence of the solution was obtained for meshes with at least 10 
elements. On the other hand, for a plane frame of one span and 
one story, fully fixed at the base, a certain mesh dependency was 
observed, though the load-displacement curves were basically coin-
cident until the peak, the values of ultimate load and corresponding 
displacement varied a little by refining the mesh up to 20 elements. 
The author thus recommends that a finer mesh be utilized for plane 
frames, but imposing a restraint of not employing elements of length 
less than its cross-section depth, as recommended by Bazant et al. 
[28]. Stramandinoli [17] has also investigated, for several examples, 
the effect of number of layers used to discretize the element sec-
tion, concluding that for 10 layers or higher there was no change in 
the numerical solution, hence in this work 20 concrete layers were 
adopted in all examples. 

In all numerical analyses, the modified Hognestad model was utilized 
for concrete under compression and the Newton-Raphson method 
was applied for solution of the nonlinear equations, except for the ex-
ample in section 4.3, where the Arc-length method was employed.
In the examples of beams and frames tested experimentally, the 
material properties for concrete and steel measured experimental-
ly were utilized in the numerical model, whenever available (shown 
in highlight in Tables 1 and 2), otherwise they were estimated using 
the values and equations recommended by the Brazilian Code for 
concrete structures, NBR-6118.

4.1	 Simply-supported beams tested by Beber

Among the simply-supported beams tested under 4-point  
bending by Beber [29], two of them, VT1 and VT2, are initially 
utilized for comparison with the results generated by ANEST/CA 
program, considering only physical nonlinearity. The two beams 
are identical, and their geometry and reinforcement, the applied 
loading, and the mesh utilized in the finite element analysis are 
all displayed in Figure 3, with dimensions given in cm. The ma-
terial properties are presented in Table 3. In order to demon-
strate the importance of the tension-stiffening effect, a numeri-
cal analysis without considering this effect was also performed.
Comparison between numerical and experimental results is pre-
sented in Figure 4 in terms of a graph “total applied load versus 
vertical displacement at mid-span”. It can be observed that the FE 
model could capture very well the ascending branch of the experi-
mental curve obtained in the experimental tests, showing a good 

Figure 2
Comparison of tension-stiffening models: (a) Collins and Vecchio [14] and bi-linear model [26]; (b) 
Simplified models and the proposed model for different values of nρ
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approximation even after the onset of cracking when the tension-
stiffening effect is considered. When such effect is not considered, 
the numerical model displays a much more flexible behavior than 
the experimental one, as expected, since this effect is more accen-
tuated in beams with low reinforcement ratio. The onset of yield-
ing of reinforcement was accurately captured by the numerical 
model, corresponding to a total applied load of 44 kN. However, 
beyond that, the post-yielding response of the specimens could not 
be measured experimentally since the instruments have been re-
moved to avoid damage. The ultimate total load measured experi-
mentally was 47 kN, while the numerical value obtained at failure 
by program ANEST/CA was a bit lower, 46 kN.

4.2	 Simply-supported beams tested by Juvandes

Among the beams tested in the experimental program conduct-
ed by Juvandes [30], two simply-supported beams under 4-point 
bending (VB6 and VC3) were selected to be analyzed with ANEST/
CA program, by considering only the physical nonlinearity. Beam 
geometry and reinforcement, loading and FE mesh used in the 
analyses are shown in Figure 5 (dimensions given in cm), while the 
material properties are given in Table 1. The numerical analyses 
were performed with and without considering the tension-stiffening 
effect, to illustrate the importance of such effect.
Comparison between numerical and experimental results is  
presented in terms of “total applied load versus vertical displacement 
at mid-span” graphs in Figures 6 and 7. For beam VB6, it can be 

observed from Figure 6 an excellent approximation of the numerical 
model, considering tension-stiffening, with respect to the experimental 
test, with the curve obtained numerically basically coinciding with the 
one obtained experimentally, in the post-cracking and post-yielding 
ranges. The numerical model was only a little stiffer at the beginning 
of the elastic range, before the onset of cracking, region more sus-
ceptible to instrumentation imprecision, and it predicted very well the 
ultimate load, with a slightly smaller corresponding displacement. 
A more flexible behavior of the numerical model is again observed 
when the tension-stiffening effect is not considered in the analysis 
(NO T.S.). For the other beam, VC3, the numerical model consider-
ing tension-stiffening reproduced very well the experimental model 
in the elastic range but, beyond that, for a total load higher than 25 
kN, it became slightly stiffer than the experimental model (see Fig-
ure 7). The numerical model also predicted well the ultimate load, 
but showed a corresponding displacement smaller as compared 
to the experiment. For this particular beam VC3, the differences in 
the analyses with and without tension-stiffening consideration are 
smaller because, besides its higher reinforcement ratio, the elastic 
modulus of concrete is low, resulting in a high value for the modu-
lar ratio n , which consequently results in a high value for the α  
parameter (see Table 1); therefore there is less tension-stiffening 
effect as compared to the beams analyzed before.

4.3	 Plane frame studied by Williams

In order to verify in this work the geometric nonlinearity formulation 

Table 1
Material properties used in numerical analysis of beams VT1/VT2/VB6/VC3 (experimental values in bold, 
calculated or estimated values without bold)

Table 2
Material properties used in numerical analysis of frames (experimental values in bold, calculated or 
estimated values without bold)

Beam
Concrete  Tension – stiffening Reinforcing steel

fcm 
(MPa)

ftm  
(MPa) ε0 n ρeff n ρeff

α
(5 layers) φ fy  

(MPa)
Es 

(GPa) sh

VT1 / VT2 33.58 2.62 0.0020 6.39 1.50 % 0.096 0.040 6 mm 738 214.83 0.016

VT1 / VT2 33.58 2.62 0.0020 6.39 1.50 % 0.096 0.040 10 mm 565 214.83 0.000

VB6 37.9 2.90 0.0020 5.15 4.60 % 0.240 0.072 3 mm 192 174 0.001

VB6 37.9 2.90 0.0020 5.15 4.60 % 0.240 0.072 8 mm 497 195 0.0042

VC3 20.7 1.60 0.0020 9.00 3.80 % 0.342 0.093 12.5 mm 507 184.6 0.0014

Frame

Concrete  Reinforcing steel

fcm 
(kN/m2)

ftm
(kN/m2) n ρeff

α
(5 

layers)
ε0

fy
(kN/m2)

Es 
(kN/m2) εu sh

P2 36500 2814 0.464 0.113 0.0023 293000 200000000 0.01 0.01

A40 29096 2303 0.443 0.110 0.002 353000 189791000 0.015 0.029

A60 38955 2974 0.317 0.088 0.002 425406 181797000 0.007 0.063
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of the proposed model, and in view of the lack of examples of experi-
mental testing on RC structures subjected to large displacements 
(since such tests are of difficult execution), an example of a plane 
frame composed of two bars slightly inclined and made of hypotheti-
cal material is analyzed. This frame was studied by Williams apud 
Peterson and Petersson [31], and is referred in several works relat-
ed to this topic. The frame geometry is displayed in Figure 8 and the 
element properties are: modulus of elasticity E = 70.735 GPa; cross-
sectional area A = 1.18 cm²; and moment of inertia I = 0.0374 cm4. 
In the numerical analysis the structure was discretized into 20 ele-

ments of equal length and the material was assumed to be linear-
elastic. Firstly the model was applied using the matrices  gk and uk
, and secondly just using the gk  matrix. For solving the nonlinear 
equations, the Arc-length method was utilized, since the structure 
presents a critical point.  Comparison of both numerical analyses with 
the one obtained from the analytical model used by Petersson and 
Petersson [31], expressed in terms of a graph - “load versus vertical 
displacement at the center of the frame”, is shown in Figure 9.
The model with both matrices gk  and uk  could capture the entire 
response of the structure, including the post-critical range, captur-
ing also the effect known as snap-through, with the curve obtained 
by the numerical model coinciding with the one from the analytical 
model of Petersson and Petersson [31]. However, when the matrix 

uk  was not included in the formulation, converge problems arose 
in the analysis close to the response peak, and it was not possible 
to capture the response for the complete load history. It should be 
pointed out, however, that, in many examples of RC plane frames, 
the model with just the geometric matrix, gk , is sufficient to obtain 
good results (Stramandinoli [17]).

4.4	 Plane frame tested by Cranston 

Cranston, apud Bazant et al. [28], has conducted several experi-
mental testing on RC frames hinged at the base, from which one, 
P2, was selected here for comparison with ANEST/CA program. 
Several researches have analyzed this frame; besides Bazant et 
al. [17], it can be quoted: Lazaro and Richards [32], Sun et al. [33], 
and Bratina et al. [34].
Figure 10 shows the frame geometry, the cross-section of the 
members, the load application points, the supports, and the mesh 
utilized to discretize the structure (18 elements) in the numerical 
analysis. The material properties used in the numerical analysis 
are given in Table 2.

Figure 3
Tested beams (VT1 and VT2) geometry and reinforcement; load application and support positions 
(Beber [29])

Figure 4
Comparison between numerical (ANEST/CA) and 
experimental results for beams VT1/VT2 tested by 
Beber [29]



395IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 2

 	 R. S. B. STRAMANDINOLI  |  H. L. LA ROVERE

Figure 11 illustrates the graph of “total load (kN) versus vertical 
displacement at mid-span (mm)” for frame P2. From the graph one 
can realize that the curve obtained using the numerical model basi-
cally coincided with the one obtained experimentally until the load 
peak was reached; the numerical model just showed to be a little 
stiffer in the post-yielding range of the reinforcement. After reaching 
the peak resistance of the frame, the experimental curve showed 
a descending branch, effect known as softening. In the numerical 
analysis (considering tension stiffening), the onset of yielding of 
the reinforcing steel occurs at mid-span of the horizontal bar for a 
load P = 15.7 kN, whereas, for P=20.4 kN, yielding of the rebars 
initiates at the ends of the horizontal bar and also at the top of the 
columns. Close to the ultimate load (between 22.2 and 22.3 kN), 
started the convergence problems, and it was not possible to con-
tinue the analysis and capture the post-peak branch, by either us-
ing the Arc-length method or the Newton-Raphson method under 

displacement control. Such convergence problems are commonly 
found in analyses considering physical nonlinearity when one or 
more coefficients in the diagonal of the global stiffness matrix of the 
structure are close to zero.

4.5	 Plane frames tested by Ernst et al.

Ernst et al. [35] perform a study on the behavior of RC plane frames, 
testing several frames hinged at the base, of one span and one 
story. Among the tested frames, two of them (A40 and A60) were 
selected for comparison with the numerical model. The frame ge-
ometry, the cross-section of the members, and the load application 
points are displayed in Figure 12. A total of 36 bar elements were 
used in the structure discretization for the numerical analysis, and 
the material properties and parameters utilized are shown in Table 2.
 Figure 13 illustrates the graph of “total load (kN) versus verti-

Figure 5
Tested beams (VB6/VC3) geometry and reinforcement; load application and support positions 
(Juvandes [30])

Figure 6
Comparison between numerical (ANEST/CA) 
and experimental results for beam VB6 tested by 
Juvandes [30]

Figure 7
Comparison between numerical (ANEST/CA) 
and experimental results for beam VB6 tested by 
Juvandes [30]
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cal displacement at mid-span (mm)” for frame A40 and Figure 
14 for frame A60. It can be observed from both graphs that the 
numerical model could capture satisfactorily the behavior of 
the frames observed in the tests. The numerical model showed 
to be a little stiffer since the initial elastic range, and this dif-
ference increased a little in the post-cracking range. For both 
frames, the ultimate load obtained numerically was larger than 
the one obtained experimentally, and for frame A40 the ultimate 
displacement was somewhat smaller in comparison with the ex-
perimental value.

5.	 Conclusions

A 2D finite element model, using bar elements with seven degrees 
of freedom for physical and geometric nonlinear analysis of rein-
forced concrete structures, was presented in this work. The model 
was implemented into a computer program named ANEST/CA and 

it was verified in comparison with analytical and experimental re-
sults obtained by other authors.
Regarding the geometric nonlinearity, the model could capture very 
well the behavior of linear-elastic structures under large displace-
ments, by using the formulation with matrices  gk and uk . As far 
as physical nonlinearity is concerned, comparison between the nu-
merical model and experimental tests for structures with dominant  

Figure 8
Load application and support positions for 
Williams’ frame (Petersson and Petersson [31])

Figure 9
Comparison between numerical (ANEST/CA) and 
analytical results (Petersson e Petersson [31]) for 
Williams’ frame

Figure 10
Tested frame (P2) geometry and reinforcement; load application; support positions and mesh used in 
numerical analysis (Cranston apud Bazant et al. [28])
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flexural behavior, in terms of load-displacement curves, showed 
very good agreement for the case of beams and good agreement 
for the case of plane frames. This work also demonstrated the im-
portance of considering the tension-stiffening effect, especially in 
beams. Besides the numerical results presented here, the ANEST/
CA program can also provide other important information in struc-
tural analysis, such as the evolution of cracking and of stress in the 
concrete and in the reinforcement layers, along the load history 
(Stramandinoli [17]).
When shear effects become important, in the presence of inclined 
cracks, another model that takes that into consideration should be 
employed, as, for instance, the bar model developed by Straman-
dinoli and La Rovere [19], based on Timoshenko Beam Theory, or, 
alternatively, plane finite element models using bi-axial constitutive 
models, as, for example, the ones developed by d´Avilla [20].
The ANEST/CA program was also used for comparison with simpli-
fied methods by Junges [36] for the case of beams, by Gelatti [37] 
for plane frames, and by Junges and La Rovere [38] for the case 
of continuous beams. The numerical model described here is cur-
rently being extended and implemented into ANEST/CA program 
to allow for the analysis of three-dimensional reinforced concrete 
structures, by including also the effect of confinement in concrete 
provided by the stirrups. 
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7.	 Annex

 
The interpolation functions ( )N ξ , as used in section 2.1, are 
given by:

From the displacement field, the strain in the element can be deter-
mined, by considering equation (2):

where:

and:

in which:  and  is the curvature.
 

Hence the curvature can be written as follows:

And thus equation (2) can be rewritten as:

𝜀𝑥 = 1 −𝑦
𝑑𝑢0

𝑑𝑥
𝜑

or:

The secant stiffness matrix of the element, according to section 
2.2, is given by:


