
This work aims to investigate the viability and convenience of adopting a variable limit a1 for the instability parameter of buildings with reinforced 
concrete wall-frame or core-frame structures. Initially, the evolution of tall buildings global stability theory is summarized, giving emphasis to 
define when a second order analysis is needed. The treatment given to this subject by the present Brazilian code for concrete structures design 
(NBR 6118:2007) is also showed. It follows a detailed analytical study that led to the derivation of an equation for the variable limit a1; a series of 
examples is presented to check its accuracy. Results are analyzed, showing the validity bounds of the equation and research directions are sug-
gested, in order to improve it.
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O presente trabalho tem por objetivo investigar a viabilidade e a conveniência de se adotar um limite variável a1 para o parâmetro de instabilidade 
de edifícios com estruturas de concreto armado, constituídas por associações de pórticos com paredes ou núcleos. Inicialmente, é feito um re-
sumo da evolução da teoria sobre a análise da estabilidade global de edifícios altos, especialmente sobre a definição da necessidade ou não de 
se realizar uma análise de segunda ordem; mostra-se também como esta questão é tratada pela atual norma de projeto de estruturas de concreto 
(NBR 6118:2007). Na seqüência, apresenta-se um detalhado estudo analítico que levou ao estabelecimento de uma fórmula para o limite variável 
a1, seguido de uma série de exemplos para testar a validade da mesma. Os resultados são analisados, mostrando-se os limites de validade da 
fórmula e indicando-se linhas de investigação no sentido de aperfeiçoá-la. 

Palavras-chave: instabilidade, estruturas de contraventamento, segunda ordem.
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1.	 Introduction

1.1	 Second order effects in building structures

Depending on its flexibleness, a building bracing structure, when 
simultaneously subject to gravity and wind loads, may develop addi-
tional effects to those usually obtained in a first order linear analysis 
(in which the equilibrium is verified in the non deformed structure). 
They are the second order effects, in whose computation the mate-
rial nonlinear behavior (physical nonlinearity) and the structure de-
flected shape (geometric nonlinearity) must be considered. 
The work of Beck and König [1], brought in 1967, represented an im-
portant advance in the development of tall buildings global stability 
analysis. A very easy criterion to apply was established, determining 
that the second order effects may be neglected, provided that they 
don’t represent an increase more than 10% on the first order effects. 
Figure 1 shows the simplified model for the bracing system. At first, 
all bracing substructures are grouped in a single column, while all 
braced elements (bearing elements that don’t belong to the bracing 
system) are replaced by an assemblage of hinged bars, as shown 
in figure 1-a. The wind is considered by means of a w rate uniform 
load. P and V  are the floor vertical loads, applied on the bracing sub-
structures and braced elements, respectively. The loads w, P and V 
are considered with their characteristic values. Thereafter, in order 
to make possible to determine the second order effects by means of 
a continuum analysis, an equivalent approximate model, shown in 
figure 1-b, is adopted, with a continuous and uniform distribution of 
floors and vertical loads (p = P/h e v = V/h). 
Concerning to the influence of the loads V, acting on the braced 
elements, Beck and König [1] proved that, when the system dis-
torts laterally, horizontal forces are transmitted through the floor 

members to the bracing system, increasing the bending moment 
on its support. It can be proved that this increase is given by the 
sum of the forces V multiplied by the horizontal displacements of 
the respective floors. Therefore, in order to compute this bending 
moment including second order effects, the vertical loads acting 
on the bracing system would be given by the sum of its proper P 
loads and V  loads. 
In 1978, the criterion proposed by Beck and König [1] was included 
in the Comité Euro-International du Béton recommendations (CEB 
[2]). Its application consists in comparing the global bending mo-
ments at the bracing system support M I (considering only first or-
der effects) and M II (including second order effects): 
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It can be noted that M I and M II are due to factored loads, since 
the rates w, p and v are multiplied by 1,75. On the other hand, 
the physical nonlinearity is regarded taking EJ = 0,7 Ecm J for the 
structural members, where Ecm J represents the sum of the bracing 
substructures stiffness coefficients at the non cracked stage. Thus, 
performing this substitution leads to the condition:
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Figure 1 – Simplified model for the bracing system
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[2], on determining in its section 15 that the second order global 
effects are negligible when lower than 10% of the respective first 
order effects (fixed nodes structure). In order to “verify the possibil-
ity of dispensing the consideration of second order global efforts, 
in other words, to define if the structure may be classified as a 
fixed nodes one, without the need of a rigorous analysis”, ABNT [8] 
presents two approximate procedures, based respectively on the 
instability parameter and the gz factor. The first one just consists of 
the Beck and König [1] criterion application and determines that: “A 
symmetrical framed structure may be considered as a fixed nodes 
one, if its instability parameter a will be lesser than the a1 value, 
according to the expressions: 

(5) )/( CSCktot IENH=a
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“n is the number of horizontal bars levels (floors) above the founda-
tion or a slightly displaceable subsoil level. Htot  is the structure total 
height, measured from the foundation top or a slightly displaceable 
subsoil level. Nk is the summation of all vertical loads acting on 
the structure (from the level considered for Htot computation), with 
their characteristic values. ECSIC represents the summation of all 
column stiffness values in the considered direction. In the case 
of framed, trussed or mixed structures, or columns with variable 
stiffness along the height, the ECSIC value of an equivalent column 
with constant section may be considered”. The determination of 
this equivalence will be seen in section 2.1. IC is the moment of 
inertia considering columns gross sections. ECS is the secant elas-
ticity modulus, expressed by: 

(7) 2/1560085,085,0 ckCiCS fEE ´==

ECS, ECi (tangent elasticity modulus) and fck (compressive charac-
teristic strength) are given in MPa. The NBR 6118 code also ad-
opted the Franco [5] propositions on determining different a1 val-
ues, depending on the bracing structure type: “The limit value a1 = 
0,6, prescribed for n > 4, is generally applicable to the building 
usual structures. It may be adopted for wall-columns assemblages 
and rigid frames associated to wall-columns. It may be increased 
until a1 = 0,7 in the case of bracing systems composed exclusively 
by wall-columns and must be reduced to a1 = 0,5 if there are only 
rigid frames.” 
In a second order analysis, the effects of both physical and geomet-
ric nonlinearities must be considered. ABNT [8], in its item 15.7.3, 
allows that the physical nonlinearity can be considered in an ap-
proximated manner, on calculating second order global efforts in 
framed structures with four or more floors. This is done by means 
of a reduction of the structural members (EI)sec stiffness factors as 

(3) 0,54)/()( cmtottot £+ JEHvpH

According to Vasconcelos [3], the results obtained by Beck and 
König [1] could be applied only to building structures whose lat-
eral stiffness was concentrated in few columns rigidly connected 
among themselves, in order to be considered as a single column. 
The correspondence of this model with other types of bracing sys-
tems (variable section walls, rigid frames etc.) came to be done 
through the equality of horizontal displacements due to horizontal 
loads. The equivalent column would be that one with a stiffness 
factor EJ such that the resulting horizontal displacements were 
the same of the structure under consideration, for the same hori-
zontal loading. With the purpose of simplification, this equivalent 
stiffness came to be determined based on the actuation of a unit 
horizontal load at the building top. In Brazil, the procedure came 
to be applied changing the load factor from 1,75 to 1,40 – see, for 
example, Sussekind [4] – and came to be known as minimal stiff-
ness check. Consequently, inequality (3) changed to:

(4) 0,60)/()( I28Stottot £+ - JEHvpH

where ES-28  is the concrete secant elasticity modulus at 28 days and 
JI is the sum of bracing substructures inertias at non cracked stage. 
      In 1985, Franco [5] proposed that the equivalent column stiff-
ness have to be obtained based on the actuation of a uniformly dis-
tributed horizontal load, in place of the top unit load. Furthermore, 
he preconized that the deflected shape of the bracing structure can 
affect the Beck and König [1] criterion application. Thus, the coef-
ficient on the inequality (4) right hand would have its value defined 
as a function of the bracing type:
- walls or cores: coefficient 0,7;
- wall-frame or core-frame structures: coefficient 0,6;
- only rigid frames: coefficient 0,5. 
In 1995, Franco [6], dealing with the physical nonlinearity consid-
eration through structural members stiffness reduction, proposed 
different reduction factors, specific for slabs, column members and 
beam members with symmetrical and asymmetrical reinforcement.
Although not belonging to this work purpose, a mention deserves 
to be made to the method based on the moment amplification fac-
tor gz, presented in 1991 by Franco and Vasconcelos [7]. It also ap-
plies the criterion of 10% increase in relation to first order effects, 
to define if a second order analysis is or not needed; however, in 
this case it is done for each combination of horizontal and verti-
cal loads. Furthermore, under certain conditions, this method may 
itself constitute a second order analysis. These features caused 
this method to be rapidly disseminated and largely employed in 
buildings structures design. 

1.2	 ABNT NBR 6118 prescriptions

The ABNT NBR 6118 [8], present Brazilian code for concrete struc-
tures design, adopted the fundamental idea presented in [1] and 
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nance of frames, when a value lesser than 0,6, possibly close 
to 0,5, should be adopted.

      These errors, if expressed in relation to a1, are apparently small. 
However, is must be remembered that the instability parameter 
computation requires a square root extraction. Consequently, on 
verifying the exemption of performing a second order analysis, the 
error on determining the needed stiffness can become significant. 
This work aims to research a way of defining the instability parameter 
limit a1 for associations of rigid frames and walls/cores, variable with 
their stiffness factors proportion. At first, the linear behavior formula-
tion for these associations is presented, followed by an analytical study 
about the geometric nonlinear behavior of isolated walls/cores and rigid 
frames and then of their association. This study is based on the simpli-
fied model presented in section 1.1, applying the criterion expressed by 
inequality (1); the differential equations are solved by Galerkin method. 
Right away, the formula found for the variable limit a1 is tested in a 
series of examples of buildings braced by wall-frame associations. 88 
tests are performed, varying the number of floors, of frame spans and 
the proportion between the stiffness factors of frames and walls.

2.	 Linear analysis 

2.1	 Equivalence between bracing substructures 

The substructures of the wall or core types distinguish themselves 
by a high stiffness to shear, predominating flexural deflections. 
They may be modeled by simple beams, fixed on the building sup-
port, behaving as columns. Figure 2-a shows a wall or core, mod-
eled by a cantilever bar of length l, subject to an uniformly distribut-
ed horizontal load of ratio w. Representing the material longitudinal 
elasticity modulus, the constant section moment of inertia and the 
bending moment function respectively by E, J and M(x), the differ-
ential equation of motion may be expressed as:

(13) 2/)()(// 222 xwxMdxdJEdxydJE -=== lf

Bending moments inducing tension on the bar left side are posi-
tive, the deflected concavity becoming turned to right (f(x) is its 
slope). Introducing the appropriate boundary conditions, y(x) and 
the top horizontal displacement DH are obtained: 

(14)
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In substructures of the rigid frame type, the deflections due to bend-
ing of the individual beam and column members are predominant. 
When the frame is subject to horizontal loads, the global bending 
moment is mainly carried to the columns as axial efforts, for which 

a function of ECiIC, or of ECSIC if equation (7) is used. Representing 
by As and As’, respectively, the tensile and compressive longitudi-
nal reinforcements areas, the following expressions can be written: 
- slabs: 

(8) CCSCCi IEIEEI 353,03,0)( sec ==

- beams: 

(9) '
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(10) '
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- columns: 

(11) CCSCCi IEIEEI 941,08,0)( sec ==

Furthermore, when the bracing substructure is exclusively con-
stituted by beams and columns (rigid frame) and the “importance 
factor” of the second order global efforts (gz) is lesser than 1,3 (cor-
responding to a “bland” nonlinearity) it is allowed to consider the 
stiffness of the rigid frame members as a whole, as follows: 

(12) 
CCSCCi IEIEEI 824,07,0)( sec ==

 
1.3	 Reasons and targets of the research 

The ABNT [8] code represented an improvement in relation to 
the preceding one, on establishing procedures for checking if 
second order global effects are unnecessary to consider. Con-
cerning to the instability parameter for buildings with four or 
more floors, it treated differently the various types of bracing 
systems, on determining different values for the a1 limit. How-
ever, the prescription of a fixed limit (a1 = 0,6) for associations 
of walls and/or cores with rigid frames is questionable. As the 
relation between the stiffness factors of walls/cores and frames 
can vary, a1 also can vary from 0,5 to 0,7. This can lead to two 
types of errors:
n	 on behalf of safety: in associations with predominance of walls/

cores, the code restricts a1 to 0,6, when a larger value, possibly 
close to 0,7, could be adopted;

n	 contrary to safety: in the case of associations with predomi-
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the structure has a high stiffness. The horizontal deflections are 
mostly caused by global shear. Therefore, the rigid frames may be 
modeled as vertical bars extremely stiff to global bending, prevail-
ing shear distortions. 
Figure 2-b shows a rigid plane frame subject to an uniformly dis-
tributed horizontal load of ratio w. It is modeled by a vertical bar 
predominantly deformable by shear. As shown in the figure, the 
deflected shape of this bar characterizes itself by a maximum f(x) 
slope at basis and tending to zero at top, just the contrary that hap-
pens to the bar simulating the wall or core. This slope is related 
with the differences between horizontal displacements at adjacent 
floors. In their turn, these differences are proportional to the global 
shear Q(x). According to Stamato [9], the deflected shape for this 
case is described by the following equation: 

(16) )()()(/ xwxQxSdxdyS -=== lf

The proportionality factor S represents the system (plane frame) stiff-
ness to global shear; it corresponds to the G A / c factor of a bar 
with shear deformation, where G, A and c are, respectively, the shear 
modulus, the section area and the section shape factor. Solving equa-
tion (16), y(x) is obtained, leading to the top horizontal displacement: 

(17) SwyH 2/)( 2ll ==D

The relations established in this section have as their purpose to 
obtain the inertia of a bar equivalent to a given rigid plane frame. 
The item 15.5.2 of ABNT [8] code, on dealing with the instability 
parameter, establishes a methodology to determine the ECSIC fac-
tor of a constant section column, equivalent to a given rigid plane 
frame. According to this methodology, the above-mentioned stiff-

ness factor should be obtained computing initially the horizontal 
displacement on the bracing structure (frame) top, under the hori-
zontal loading, which is just DH given by (17). The next step is to 
obtain the stiffness of an equivalent column with constant section 
such that, under the same loading, undergoes the same top hori-
zontal displacement which, in this case, is DH given by (15). This 
implies in equality between the two expressions for DH, resulting: 

(18) 2/4 lJES =

2.2	 Association of rigid frames with walls and/or cores

This section presents the formulation of the linear response of 
frame-wall/core structures, in order to that it have further on to 
be used by Galerkin method in obtaining an approximate solution 
for the nonlinear behavior of these structures. Figure 3-a shows 
the simplified model of a bracing system composed by substruc-
tures of the frame and wall/core types. The model consists in a 
wall (representing all system walls and cores) and a rigid frame 
(representing all system frames) connected among themselves by 
hinges (representing the floor slabs). An uniform distribution of rate 
w is admitted for the wind loads. EJ1 represents the stiffness of the 
frames set, according to equation (18). EJ2 represents the stiffness 
of the walls/cores set. 
Figures 3-b and 3-c show the loads to that the wall and the frame 
will respectively be subject. These loads consist in top concen-
trated forces (QT for the frame and –QT for the wall) and distributed 
forces that can be decomposed in constant and variable (along 
the height) parcels. The constant parcels (w1 for the frame and w2 
for the wall) are such that w1 + w2 = w. The variable parcels (rate 
(u(x) for the frame and –u(x) for the wall), jointly with the forces QT, 
represent internal forces originated from the wall-frame interaction; 
since they are connected by the hinges, the wall and the frame 

Figure 2 – Bracing substructure equivalent bars

Wall or core Plane frameBBA
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are impeded to develop their natural deflected shapes, as shown 
in figure 3-d. The frame will be subject to a global shear forces 
distribution given by:

(19) 
ò++-=

l

l
x

T duQxwxQ xx )()()( 1

As was seen in section 2.1, the frame behavior is described by 
equation (16). Writing this equation, introducing (18) and (19) and 
isolating the terms regarding to the internal forces, gives:
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In its turn, the wall will be subject to a bending moments distribu-
tion given by:
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As was also seen in section 2.1, the wall behavior is described by 
equation (13). Writing this equation, introducing M(x) given by (21) 
and deriving both members, gives successively: 
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Substituting (20) into (23) and re-arranging:
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Considering that w1 + w2 = w (total wind load acting on the system) 
and defining a new variable  K = 21/JJ , the solution for equa-
tion (24) may be expressed as follows: 
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Figure 3 – Association of rigid frames with walls or cores
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3.	 The Galerkin method

      In many engineering problems, as the ones that are presented 
in the next sections, there arises the need to solve an equation of 
the type L(y) = 0, where L is a differential operator, whose solu-
tion satisfies to homogeneous boundary conditions. The Galerkin 
method consists in obtaining an approximate solution of the form:

(28)
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where )(i xϕ  (i = 1, 2,..., n) are functions, previously chosen 
and satisfying to the same boundary conditions; the ai are coef-
ficients to be determined. The n functions )(i xϕ must be linearly 
independent and belong to a system, represented by { )(i xϕ } (i 
= 1, 2,..., n) and endowed of the completeness property in the 
solution domain. In order to )(xy  be the exact solution of the 
given equation, it is necessary that L( y ) be identically null. This 
requirement, if L( y ) is considered to be continuous, is equiva-
lent to the requirement of the orthogonality of the expression L(
y ) to all the functions )(i xϕ  (i = 1, 2,..., n). However, having at 

disposal only n constants ai, only n orthogonality conditions can 
be satisfied. Applying these conditions, the following system of 
equations is obtained: 

(29)
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The solution of this system (a linear one, in the case of a linear 
operator L) provides the values of the coefficients ai, from which 
the approximate solution )(xy  is obtained. The proof of conver-
gence, as well as more detailed considerations about the Galerkin 
method can be seen in Kantorovich and Krylov [10]. 

4.	 Exemption of the second order effects 	
	 consideration
      
The sections 4.1 and 4.2 present the formulation of the geometric 
nonlinear behavior, respectively of wall/cores and rigid frames assem-
blages. For both cases, the limits a1 of the instability parameter are de-
duced, comparing them with the values prescribed by ABNT [8] code. 
The section 4.3 does the same for the associations of these types of 
substructures, obtaining an expression for the variable limit a1, main 
objective of this work. 
Figure 4-a shows the deflected shape of a bar equivalent to a bracing 
system, subject to uniformly distributed loads of rates w and q, respec-
tively in the horizontal and vertical directions; q is given by the sum of 
the rates p and v of figure 1-b. Taking into account the bar deflections 
(geometric nonlinearity) and representing by Y the primitive function of 
the displacements y(x), the bending moment will be given by:

(30) 
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Considering that y(0) = 0, the bending moment at support will be 
expressed by: 

(32) [ ])0()(2)0( 2 YYqwM -+= ll

Figure 4 – Deformations influence in the structure response

Bracing system equivalent bar Shear deformation at the infinitesimal levelBBA
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4.1	 Substructures of shear wall or shear core types

In the case of bracing systems formed exclusively by shear walls 
and/or shear cores, the differential equation of motion will be ob-
tained equalizing   22 / dxydEJ  to M(x) given by (31): 

(33) [ ])()()()(2/)(/ 222 xyxxYYqxwdxydJE ---+-= lll

Deriving it in relation to x and considering that the rotations are 
given by f(x) = dy/dx, changes equation (33) into: 

(34) 0)()()(22 =-+-+ xwxxqdxdJE ll ff

An approximate solution for equation (34) can be obtained 
through the Galerkin method. Assuming that this solution is 
proportional to f(x) due exclusively to first order effects, it may 
be written: 

(35)
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where )(1 xϕ  was obtained deriving equation (14) in relation to x 
and suppressing the constant that would remain in evidence. Ap-
plying equation (29) with n = 1, leads successively to: 
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Performing the integration and isolating a1, results:

(38)
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On substituting (38) into (35), the approximate solution is obtained: 

(39)
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Integrating (39) in relation to x and applying the condition of zero 

displacement at support, leads to the displacements function. Inte-
grating again, leads to: 

(40)
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where C is the integration constant. The bending moment at sup-
port can be obtained on applying equations (32) and (40):

(41)
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Equation (41) can be transformed successively into:

(42)
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The condition of that, in the ultimate limit state (loads multiplied by 
1,4), the second order effects may not exceed the first order effects 
in more than 10%  (inequality (1)), is applied to the support bending 
moment, obtaining:

(43)
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The terms wl2, multiplying both sides of the inequality, do vanish. 
Performing the required algebraic transformations, results: 

(44) 6349,0/3 £EJql

Since a wall or core has a behavior equivalent to the one of a 
column, the physical nonlinearity may be considered adopting for 
EJ the expression 0,941 ECSIC, according to equation (11). On the 
other hand, remembering that ql is the total vertical load Nk and l is 
the total height Htot, inequality (44) becomes: 

(45) 59740,/ CCSk
2
tot £´ IENH

Extracting the square root of both members:

(46) 7730,/ CCSktot £´ IENH
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Thus, inequality (46) denotes a value of 0,773 for a1. In its turn, the 
ABNT [8] code allows the coefficient a1 to be increased until 0,7 if the 
bracing system is composed exclusively by shear walls or shear cores. 

4.2	 Substructures of the rigid plane frame type

In the case of bracing systems formed exclusively by rigid frames, 
the equivalent bar of figure 4-a will deform predominantly by shear. 
Also in this case, the efforts expression must take the deflected 
shape into account. It can be proved that the infinitesimals ds and 
dx shown in figure 4-b are related by:

(47) 222222 1)1( f+=+=+= dxdxdydxdydxds

The shear effort can be obtained from the derivation of equation (31) in 
relation to the bar deflected axis. Introducing ds given by (47), results:

(48)
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It is an inclined shear effort, as shown in figure 4-b. The shear deforma-
tion caused by it has the same slope, given at the infinitesimal level by: 

(49)
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On establishing the differential equation of motion for this case, 
two changes must be performed with relation to equation (16): to 
introduce dy/cos f given by (49), in place of dy, and Q(x) given by 
(48). On doing so, results: 
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Thus: 

(51)
 

)](1[

)(
)(

2 xS

xx)q(x)w(

dx

dy
x

f

f
f

+

-+-
==

ll

In cases of “bland” geometric nonlinearity, as the ones treated by this work, 
the rotations f(x) present values much lesser than unit; therefore, f 2(x) may 
be neglected in face of 1 and equation (51) may be put in the form: 

(52) )()()()( xxqxwxS ff -+-= ll

Isolating f(x): 
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Integrating equation (53) in relation to x and applying the condition 
of zero displacement at support, leads to the displacements func-
tion. Integrating again, gives: 
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where C is the integration constant. Applying equation (54) for x = 
0 and x = l, leads to the difference below: 
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Thus, the bending moment at support can be expressed, substitut-
ing equation (55) into (32): 
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Applying the condition expressed by inequality (1) to this bending 
moment, results:

(57)
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Performing the required algebraic transformations, inequality (57) 
changes into:

(58)
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Taking the factor ql /Sas an unknown, inequality (58) can be solved 
by means of trials, obtaining:

(59) 0962,0/ £Sql
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Substituting S by expression (18), results: 

(60) 384802 ,/EJq £× ll

According to the ABNT [8] code, the physical nonlinearity might be 
considered, substituting EJ by (EI)sec given by (12). However, the 
(EI)sec / ECSIC ratio of the frame bars assemblage, as a function of 
the individual bar (EI)sec / ECSIC ratios cannot be considered a con-
stant value; it can vary due to many factors, such as the numbers 
of floors and spans, story heights, span lengths, relation between 
the cross section dimensions of beams and columns etc. Pinto and 
Ramalho [11] show that the influence of physical nonlinearity in the 
frame lateral stiffness depends mainly on the reinforcement ratios 
and the loading magnitude; they obtained (EI)sec / ECSIC ratios vary-
ing from 0,51 until 0,75 for the ultimate limit state. 
On the other hand, Schueler [12] states that the contribution of beams 
flexibility for the lateral deflections of a rigid frame can reach 65%, 
remaining 35% due to columns flexibility. Furthermore, in a slender 
frame the beam reinforcements As and As’ tend to be the same, due 
to the predominance of wind effects. Thus, in this case equations (10) 
and (11) may be employed to relate the components of yNL (frame 
horizontal displacements including physical nonlinearity), due to the 
beams (yNL

BEAMS) and columns (yNL
COLUMNS), with the corresponding 

components (yL
BEAMS) and (yL

COLUMNS) of the horizontal displacements 
resulting from linear analysis  (yL). Simultaneously, the above-men-
tioned share factors (35% and 65%) of these components in the total 
displacements may be used, leading to the following expressions: 

(61)
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Performing the sum of the components expressed by (61) and 
(62), leads to the following relation between the total horizontal 
displacements yNL and yL: 

(63) 
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As the frame lateral stiffness is inversely proportional to these dis-
placements, it may be written:

(64) CCS IEEI 677,0)( sec =

Considering this expression of (EI)sec and following the same de-
ductive sequence that led to the inequalities (45) and (46), results: 

(65) 510,/ CCSktot £´ IENH

It can be noticed that this inequality is coherent with ABNT [8] code, 
which appoints the value of 0,5 for the coefficient a1, if the bracing 
system is constituted exclusively by rigid frames. In fact, in order to 
obtain a1 = 0,5, (EI)sec must satisfy the following: 

(66) CCiCCS IEIEEI 552,0650,0)( sec ==

4.3	 Associations of rigid frames with shear walls 	
	 and/or shear cores

      The same model of figure 3 is adopted and the same definitions 
of section 2.2 are considered. In order to deduce the differential 
equation of motion for the frames assemblage (figure 3-c), equa-
tion (50) is applied, adding the terms due to the wall-frame interac-
tion to the shear effort, as was done in equation (19): 
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Considering that f 2(x) may be neglected in face of 1 and isolating 
the terms due to the interaction forces: 
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In order to deduce the differential equation of motion for the walls 
assemblage (figure 3-b), the bending moment given by (31) is in-
troduced, added to the terms due to the interaction forces, as was 
done in equation (21): 
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Deriving equation (69) in relation to x, gives:
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Substituting (68) into (70) and re-arranging, results:

(71)
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Considering that w1 + w2 = w (total wind load), q1 + q2 = q (total 
gravity load) and re-arranging again, leads to the differential equa-
tion describing the behavior of a system composed by rigid frames 
and walls/cores, including the deflections influence: 

(72)
 

0)()()]([
2

2

2 =-+--- xwxxqS
dx

d
EJ ll f

f

In order to apply the Galerkin method to equation (72), it will be 
assumed a solution given by a function f(x) multiplied by the linear 
solution, expressed by equations (25), (26) and (27): 
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Substituting (73) into (72), results: 
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Assuming that f(x) is a constant function, leads the first and sec-
ond terms of equation (74) to be null, since they are multiplied by 
the derivatives )(x'f  and )(x"f . Furthermore, considering the 
preceding definitions of K (section 2.2) and S (equation 18), it may 
be written:

(75)
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Consequently, the third term of equation (74) cancels with some 
parts of the fourth one, reducing the equation to: 

(76)
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The Galerkin method will be used in order to find a constant func-
tion (x)f  that has to be a good approximation for f(x) appearing in 
equation (76). According to (28), it may be written: 
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For this case, equation (29) is applied in the following form:
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Performing the integration,  a1 can be isolated, giving: 
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Therefore, the approximate solution for equation (72) will be given by: 
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with a1 given by (79). Integrating twice leads to the primitive of the 
displacements function: 

(81)
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where C4 is an undetermined constant and C3 results from the con-
dition of zero displacement at support: 

(82)
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The bending moment at support is obtained, applying equation (32): 

(83)
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It can be observed that the difference Y(l) – Y(0) made the con-
stant C4 to vanish.  Substituting C1, C2 and C3, respectively, by 
equations (26), (27) and (82), transforms equation (83) into: 
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Introducing the expressions for C1 and C2 also in equation (79) and 
substituting the formula of a1 obtained in such a manner into equa-
tion (84), leads to the expression of the bending moment at support 
of the system composed by frames and walls/cores: 

(85)
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Applying the condition expressed by inequality (1) to this bending 
moment, results: 
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In inequality (86), the factor ql3/EJ1 can be isolated, giving: 

(87)
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Calling J the sum of inertias of the walls/cores and frames assemblag-
es, and considering the preceding definition of K, it may be written: 
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Isolating J1: 
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IC1 and IC2 are defined as the gross inertias, respectively, of the 
frames and walls assemblages. Calling IC the sum of IC1 and IC2 and 
applying the relations (11) and (66), gives: 

(90)
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From (90), the factor EJ1 may be expressed by:

(91)
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Equation (87) can be rewritten, substituting EJ1 by expression (91), 
ql by Nk (total vertical load) and l by Htot (building height). After, 
extracting the square root of both members, results: 
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In this manner, an expression for the limit a1 of the instability pa-
rameter, variable with K (relation between the reduced inertias of 
frames and walls/cores), was obtained. However, in order to obtain 
a1, it is more practical to deal with the gross inertias. Combining 
equations (66) and (90), the following relation between K and IC1/
IC (proportion between the frames gross inertia and the total one) 
is obtained: 

(94) )/1/()/(831,0 11 CCCC IIIIK -=

Thus, given any proportion IC1/IC, K is obtained applying equa-
tion (94); soon after, a1 is obtained applying equation (93). The 
sequence of a1 values, presented in table 1 and graphically 
represented in figures 7 and 8, shows a rough variation for 
IC1/IC close to 1 (predominance of frames) and a more smooth 
one for IC1/IC close to 0 (predominance of walls). It can also be 
observed that equation (93), at its domain ends, reproduces 
equation (46) exactly, but presents a discrepancy of 1,8% for 
bracing systems composed exclusively by rigid frames. The 

Table 1 – Values of a , varying the I /I ratio1 C1 C

I /IC1 C I /I   C1 C I /IC1 C     a1 a1 a1                                

0      0,773                                 0,50     0,755                      0,90 0,651
0,10 0,772                                 0,60     0,744                             0,95 0,611
0,20    0,771                                 0,70   0,726                          0,98 0,574
0,30 0,768                                 0,80 0,699                             0,99 0,555
0,40  0,763                                 0,85     0,679                             1,00 0,509
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next sections present a series of examples assaying the feasi-
bility of equation (93). 

5.	 Examples
 
5.1	 Description of the tests

The plan of figure 5 shows the basic configuration of the transver-
sal bracing system of a rectangular on plane building (examples 1, 
3, 5 and 7); it is constituted by walls 1 and 5 on the lateral faces 
and the rigid frames 2, 3 and 4 spanning over a single bay (7,5 m 
between column axes). In the same way, figure 6 shows the basic 
configuration  of the transversal bracing system of a building with 
an oblong octagonal shape on plane (examples 2, 4, 6 and 8); it is 
also composed by two walls and three frames which, in this case, 

span over three equal bays (5m between column axes). Each of 
these systems was employed in buildings having 5, 10, 20 and 30 
floors with a 3 m height, constituting examples 1 to 8, whose gen-
eral information is mentioned in table 2. 
Tests were performed for each of the eight buildings, varying the 
rectangular cross sections of walls and frame members, in such 
a way to result the sequence of IC1/IC ratios mentioned in table 3. 
In some cases, this required changes in the basic configurations 
of figures 5 and 6, but keeping the double symmetry of the brac-
ing system on plane. For IC1/IC = 1, the walls were suppressed; for 
decreasing values of IC1/IC, the frames were gradually suppressed, 
becoming excluded for IC1/IC = 0. In the examples with 30 floors, 
some additional frames were included in some cases and some 
additional walls in others. The cross sections dimensions adopted 
in the tests are listed in table 4. 

Figure 5 – Transversal bracing system: examples 1, 3, 5 and 7

Figure 6 – Transversal bracing system: examples 2, 4, 6 and 8
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Figure 7 – Graphs a  x I /I  ratio for 1 C1 C

the examples with 5 and 10 floors
Figure 8 – Graphs a  x I /I  ratio for 1 C1 C

the examples with 20 and 30 floors

A concrete with fck = 25 MPa was adopted, resulting in an elastic-
ity modulus ECS = 23800 MPa. A total vertical load of 10 kN/m2 
per floor (characteristic value) was considered. A wind pressure 

of 1,5 kN/m2 (characteristic value), constant along the height, was 
adopted, since it was the first experience with a formulation based 
on a model with constant wind load. 

Table 2 – General information about examples 1 to 8

       Example                             1 2 3 4 5 6 7 8 

Floors number                           5 5 10 10 20 20 30 30
Building height (m)         15 15 30 30 60 60 90 90 

Spans number perframe           1 3 1 3 1 3 1 3 
Frames number        0 to 3      0 to 3 0 to 3  0 to 3  0 to 3 0 to 3   0 to 5 0 to 5  
Walls number 0 to 2 0 to 2 0 to 2 0 to 2 0 to 2 0 to 2 0 to 2 0 to 4     

Table 3 – I /I  ratios adopted in the examplesC1 C

1,00       0,95       0,90 0,85 0,80 0,70 0,60 0,50 0,40 0,20       0 

Table 4 – Cross sections dimensions (cm)

                            

                          
Example Beams

                                
Columns
                              

Walls
 

1 20 x 50 to 25 x 60 20 x 50 to 25x 60   20 x 88,5 to 20 x 201  
2 15 x 34 to 20 x 50 15 x 34 to 20x 50  20 x 102 to 20 x 243  
3 18 x 68 to 24 x 68 30 x 85 to 40 x 85 20 x 158,5 to 20 x 422,5  
4 15 x 51 to 24 x 59,5 20 x 77 to 34x 90  20 x 224 to 20 x 481,5  
5      34 x 85                           42,5 x 140         20 x 307,5 to 25 x 838,5  
6      21 x 68                34 x 96     20 x 351 to 25 x 957  
7      34 x 85                            42,5 x 140     20 x 418 to 35 x 1200  
8     21 x 85                   36 x 119     20 x 588 to 31 x 998,5  
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Thus, 88 different bracing systems were tested. Each test aimed 
to determine the relation between vertical loads and horizon-
tal stiffness that would result in a 10% increase on the global 
bending moment at building support, concerning to first order 
analysis; in this way, the limit a1 for the instability parameter 
was determined. The procedure applied in each test consisted 
in, at first, to assign cross section dimensions for the members 
of the frames assemblage and compute its horizontal stiffness 
IC1, according to item 15.5.2 of ABNT [8] code (relation between 
the wind load and the horizontal displacement at structure top). 
After, the cross section of the walls assemblage was adjusted in 
order to obtain the desired IC1/IC ratio. 
The test proceeded with an initial second order analysis of the 
frame-wall system, employing the P-D method. After, this second 
order analysis was successively repeated, adjusting the values 
of the vertical loads, until achieving the desired 10% increase on 
the support global moment. Although an adjustment of the hori-
zontal stiffness would be more logical, the loads adjustment was 
preferred because it made the 88 tests more agile to perform and 
didn’t affect the results. The physical nonlinearity was considered 
by means of the individual bar stiffness reductions expressed 
by equations (10) and (11). The analysis was performed using 
the same plane frame model of figure 3, with the sets of frames 
and walls joined by hinges, since the formulation proposed in this 
work is based just on that model. Later on, some cases were re-
analyzed by means of a method employing geometric stiffness 
matrices, in order to confirm the results obtained by P-D method. 

Table 5 – Values of a , varying the I /I  ratio and the numbers of floors and spans1 C1 C

                  Example: 1        2 3 4            5 6         7           8 I /IC1 C Floors:      5    5 10 10 20 20 30 30 

1,00 0,515 0,514 0,528 0,519 0,569 0,534 0,608 0,591 
0,95 0,552 0,557 0,567 0,563 0,605 0,590 0,639 0,635 
0,90 0,572 0,584 0,594 0,592 0,630 0,621 0,656 0,656 
0,85 0,590 0,603 0,613 0,614 0,650 0,644 0,675 0,676 
0,80 0,610 0,619 0,629 0,632 0,663 0,662 0,690 0,690 
0,70 0,626 0,641 0,653 0,657 0,687 0,687 0,710 0,711 
0,60 0,641 0,656 0,671 0,676 0,702 0,702 0,724 0,727 
0,50 0,652 0,665 0,685 0,689 0,716 0,716 0,734 0,735 
0,40 0,662 0,671 0,695 0,699 0,724 0,726 0,743 0,740 
0,20 0,675 0,681 0,714 0,715 0,738 0,736 0,753 0,752 

 0 0,683 0,683 0,726 0,726 0,749 0,749 0,764 0,764  

5.2	 Results discussion 

The values of a1 obtained in the tests are listed in table 5. In or-
der to better interpret the results, it is appropriate to arrange the 
eight examples according to the floors number and to consider two 
ranges of the relative stiffness values:  IC1/IC < 0,9 and IC1/IC > 0,9. 
Figures 7 and 8 show, for each floors number, a graph represent-
ing the variation of the parameter a1 found in the tests, as well as 
the graph of a1 corresponding to formula (93). 
On examining the results regarding to IC1/IC < 0,9, it is verified that 
almost all the values for a1 obtained in the examples are below the 
values predicted by formula (93) and listed in table 1. Thus, the 
application of this formula results in upward errors, whose maxi-
mum values are mentioned in table 6. It can be clearly observed 
that these errors decrease as the number of floors increases; they 
are of 16,2% at 5 floors and drop to 3,1% at 30 floors, indicating a 
trend to become null for a little more than 30 floors. This behavior 
of equation (93) is much probably due to the adoption of figure 1-b 
model, in place of figure 1-a one; in other words, the model with 
an uniform and continuous distribution of floors and vertical loads 
provides a reasonable accuracy only for buildings with more than 
30 floors. 
 On the other hand, for values of IC1/IC larger than 0,9, indicative of 
a high predominance of frames, the trend of decreasing errors with 
the increase of floors also exists. However, in this case, it comes 
along with another trend, consisting of downward errors generat-
ed by equation (93), increasing with the floors number, as can be 

Table 6 – Maximum errors (%)

I /IC1 C              5 floors 10 floors 20 floors 30 floors 

≤0,90 +16,2 +11,2 +6,0 +3,1 
= 0,95 +10,7   +8,5 +3,6 –4,4 
= 1,00 –1,2 –3,6 –10,5 –16,3 
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observed in table 6 for IC1/IC = 0,95 and 1,00. This trend is due to 
equation (93) taking into account that the frames distort only due to 
global shear. Smith and Coull [13] state that, in slender buildings, the 
frames global bending, due to the columns axial deformation, can 
contribute significantly to the horizontal displacements. It is about 
the same distortion pattern of walls, making the limit coefficient a1 
to increase. Thus, as much higher the building and the greater pres-
ence of frames, greater will be the errors generated by a formulation 
that neglects this effect. In the case of bracing systems composed 
exclusively by frames (IC1/IC = 1), table 6 shows maximum errors 
varying between –1,2% (5 floors) and –16,3% (30 floors). 
Still regarding to the case IC1/IC = 1, the values of a1 mentioned 
in the first line of table 5 hint that the limit a1 = 0,5, prescribed by 
ABNT [8] for bracing systems composed exclusively by frames, is 
conservative, especially in buildings with more than 10 floors. On 
the other hand, the values of a1 found for IC1/IC = 0, mentioned in 
the last line of table 5, indicate that the limit a1 = 0,7, prescribed for 
bracing systems composed exclusively by walls/cores, is also con-
servative for buildings with more than 10 floors. However, in build-
ings with less than 10 floors, the contrary can occur; values slightly 
lower than 0,7 were found in buildings with 5 floors. Furthermore, 
the adoption of the fixed value a1 = 0,6 for wall-frame and core-
frame bracing systems should be conditioned to a minimum limit of 
the walls contribution for the bracing stiffness, especially in lower 
buildings. Interpolations performed in the values of table 5 indicate 
that the proportion of the walls gross inertia in relation to the total 
one should be at least 18% in example 1, 14% in example 2 and 
12% in examples 3 and 4. 

6.	 Conclusions 

The limit values a1 for the instability parameter, obtained in the 
examples of this work and mentioned in table 5, vary from a mini-
mum of 0,514 in example 2 until a maximum of 0,764 in examples 
7 and 8. The proportion between these extreme values is close to 
1,5:1. Since their computation includes a square root extraction, 
the proportion between the radicands (vertical load/horizontal stiff-
ness relations) associated to these extreme values is more than 
2:1. The extent of this variability shows the importance of having 
a way of predicting a limit a1 appropriated to the relation IC1/IC and 
the floors number of a given building to be designed, in place of the 
fixed values prescribed by ABNT [8]. 
Equation (93) represents an initial attempt to accomplish such pre-
diction. The relatively good accuracy attained in examples 7 and 
8 for IC1/IC < 0,9 denotes that this aim is possible to be achieved 
and efforts deserve to be done in order to carry it out. In order to 
remedy the errors occurred in the other cases (predominance of 
frames and low number of floors), the effect of the columns axial 
flexibility has to be introduced into equations (16) and (50), mak-
ing the curve of a1, corresponding to equation (93) and depicted 
in figures 7 and 8, decline not so much in its final segment; it has 
also to be searched a way to adjust the formulation to the variation 
of the floors number. Another subject to investigate is the viability 
of including the variability of physical nonlinearity influence in the 
frames horizontal stiffness (actually, this influence is considered 
through a constant factor). 
It must be emphasized that all of this has to be done in such a man-
ner to keep the formulation simplicity, just one of the greater advan-
tages of the instability parameter utilization. Finally, it must be ac-

centuated the need of adopting a more realistic analysis model for 
the tests: modeling of the structure as a three-dimensional frame, 
considering the floors as rigid diaphragms; variation of the wind 
load along the building height; effectuation of the nonlinear analy-
sis through an incremental-iterative method; and a more accurate 
consideration of physical nonlinearity, for example, by means of 
moment-curvature relations.
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