Acessibilidade / Reportar erro

Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

Investigação sobre a ductilidade de vigas de concreto armado com base na mecânica da fratura não-linear

Abstracts

In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC) beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

Nonlinear Fracture Mechanics; Reinforced concrete; Minimum reinforcement; Rotational capacity; Size effects; Codes provisions


Neste artigo, um algoritmo numérico baseado no método dos elementos finitos é proposto para a predição da resposta mecânica de vigas de concreto armado carregadas em flexão. A principal novodade de tal abordagem é a introdução do modelo de superposição de fissuras, baseado em conceitos de mecânica da fratura não linear, para descrver o esmagamento do concreto. De acordo com esse modelo, o dano em compressão do concreto é representado por meio de uma interpenetração fictícia. Quanto maior a interpenetração, menores são as forças transferidas através da zona danificada. O conhecido Modelo de fissura coesiva em tração e uma relação tensão versus abertura da fissura elasto-perfeitamente plástica descrevendo o comportamento da armadura de aço são também integrados no algoritmo numérico. A aplicação do Modelo de Fissura Coesiva superposta para a avaliação da armadura mínima necessária para prevenir propagação ins- tável de fissura por tração e para a avaliação da capacidade rotacional de rótulas plásticas, permite prever efeito escala evidenciado por vários programas experimentais disponíveis na literatura. De acordo com os resultados númericos obtidos, novos fórmulas e diagramas para projeto são propostos para aprimoramento de normas atuais que usualmente desprezam efeito escala.

Mecânica da Fratura Não Linear; Concreto armado; capacidade rotacional; efeito escala; prescrições de normas


Investigação sobre a ductilidade de vigas de concreto armado com base na mecânica da fratura não-linear

Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

A. CarpinteriI; M. CorradoII

IPolitecnico di Torino, Department of Structural Engineering and Geotechnics, alberto.carpinteri@polito.it, Corso Duca degli Abruzzi 24, 10129, Torino, Italy, alberto.carpinteri@polito.it

IIPolitecnico di Torino, Department of Structural Engineering and Geotechnics, mauro.corrado@polito.it, Corso Duca degli Abruzzi 24, 10129, Torino, Italy, mauro.corrado@polito.it

RESUMO

Neste artigo, um algoritmo numérico baseado no método dos elementos finitos é proposto para a predição da resposta mecânica de vigas de concreto armado carregadas em flexão. A principal novodade de tal abordagem é a introdução do modelo de superposição de fissuras, baseado em conceitos de mecânica da fratura não linear, para descrver o esmagamento do concreto. De acordo com esse modelo, o dano em compressão do concreto é representado por meio de uma interpenetração fictícia. Quanto maior a interpenetração, menores são as forças transferidas através da zona danificada. O conhecido Modelo de fissura coesiva em tração e uma relação tensão versus abertura da fissura elasto-perfeitamente plástica descrevendo o comportamento da armadura de aço são também integrados no algoritmo numérico.

A aplicação do Modelo de Fissura Coesiva superposta para a avaliação da armadura mínima necessária para prevenir propagação ins- tável de fissura por tração e para a avaliação da capacidade rotacional de rótulas plásticas, permite prever efeito escala evidenciado por vários programas experimentais disponíveis na literatura. De acordo com os resultados númericos obtidos, novos fórmulas e diagramas para projeto são propostos para aprimoramento de normas atuais que usualmente desprezam efeito escala.

Palavras-chave: Mecânica da Fratura Não Linear, Concreto armado, capacidade rotacional, efeito escala, prescrições de normas.

ABSTRACT

In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC) beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm.

The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

Keywords: Nonlinear Fracture Mechanics, Reinforced concrete, Minimum reinforcement, Rotational capacity, Size effects, Codes provisions.

Texto completo disponível apenas em PDF.

Full text avaliable only in PDF.

7. References

[01] Corley, G.W. Rotational capacity of reinforced concrete beams. Journal of Structural Division, v. 92, pp.121-146, 1966.

[02] Macchi, G. Limit-states design of statically indeterminate structures composed of linear members. Costruzioni in Cemento Armato, Studi e Rendiconti, v. 6, pp.151-191, 1969.

[03] Macchi, G. Elastic distribution of moments on continuous beams. International Symposium onthe Flexural Mechanics of Reinforced Concrete, ASCE, ACI, Miami, 1964.

[04] Norwegian Standard. NS 3473 Concrete Structures, Design Rules. Norwegian Council for Building Standardization, Oslo, Norway, 1989.

[05] Comité Euro-International du Béton. CEB-FIP Model Code 1990. Thomas Telford Ltd, Lausanne, Bulletin, n. 213/214, 1993.

[06] CEN TC/250 2004. Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. Brussels, par. 5.6.

[07] Comité Euro-International du Béton. Bulletin d’Information, n. 30, 1961.

[08] Eligehausen, R., Langer, P. Rotation capacity of plastic hinges and allowable moment redistribution. CEB Bulletin d’Information, n. 175, pp.I 7.9 - I 7.27, 1987.

[09] Bigaj, A.J., Walraven, J.C. Size effect on rotational capacity of plastic hinges in reinforced concrete beams. CEB Bulletin d’Information, n. 218, pp.7-23, 1993.

[10] Bosco, C., Debernardi, P.G. Influence of some basic parameters on the plastic rotation of reinforced concrete elements. CEB Bulletin d ’Information, n. 218, pp.25-44, 1993.

[11] ACI-318. Building Code Requirements for Reinforced Concrete", Detroit, 2005.

[12] Mast, R.F. Unified design provisions for reinforced and prestressed concrete flexural and compression members. ACI Structural Journal, v. 89, n. 2, pp.185-199, 1992.

[13] Hillerborg, A., Modeer, M., Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, v. 6, pp.773-782, 1976.

[14] Hillerborg, A. Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Engineering Fracture Mechanics, v. 35, pp.233-240, 1990.

[15] Carpinteri, A., Corrado, M., Paggi, M., Mancini, G. Cohesive versus overlapping crack model for a size effect analysis of RC elements in bending. In: Proceedings of FraMCoS-6, Catania, Italy, 2007, Taylor & Francis, London, v. 2, pp.655-663, 2007.

[16] Carpinteri, A., Corrado, M., Paggi, M., Mancini, G. New model for the analysis of size-scale effects on the ductility of reinforced concrete elements in bending. ASCE Journal of Engineering Mechanics, v. 135, pp.221-229, 2009.

[17] Carpinteri, A., Corrado, M., Mancini, G., Paggi M. Size-scale effects on plastic rotational capacity of RC beams. ACI Structural Journal, v. 106, n. 6, pp.887-896, 2009.

[18] Carpinteri, A., Corrado, M., Paggi, M. An analytical model based on strain localization for the study of size-scale and slenderness effects in uniaxial compression tests. Strain. DOI: 10.1111/j. 1475-1305.2009.00715.x

[19] Carpinteri, A. Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Application of Fracture Mechanics to Cementitious Composites, Martinus Nijhoff Publishers, Dordrecht, pp.287-316, 1985.

[20] Carpinteri, A. Size effects on strength, toughness, and ductility. ASCE Journal of Engineering Mechanics, v. 115, n. 7, pp.1375-1392, 1989.

[21] van Mier, J.G.M. Strain-softening of Concrete under Multiaxial Loading Conditions. PhD Thesis, Eindhoven, University of Technology, 1984.

[22] Jansen, D.C., Shah, S.P. Effect of length on compressive strain softening of concrete. ASCE Journal of Engineering Mechanics, v. 123, pp.25-35, 1997.

[23] Suzuki, M., Akiyama, M., Matsuzaki, H., Dang, T.H. Concentric loading test of RC columns with normal- and high-strength materials and averaged stress-strain model for confined concrete considering compressive fracture energy. In: Proceedings of the 2nd fib Congress, Naples, Italy, 2006, CD-ROM. [24] Ruiz, G., Elices, M., Planas, J. Size effects and bond-slip dependence of lightly reinforced concrete beams. In: Minimum reinforcement in concrete members, A. Carpinteri, ed., Elsevier Science Ltd., Oxford, U.K., pp.127-180, 1999.

[25] Bosco, C., Carpinteri, A., Debernardi, P.G. Minimum reinforcement in high-strength concrete. Journal of Structural Engineering (ASCE), v. 116, n. 2, pp.427-437, 1990.

[26] Buckingham, E. Model experiments and the form of empirical equations. ASME Transaction, v. 37, pp.263-296, 1915.

[27] Carpinteri, A. Static and energetic fracture parameters for rocks and concretes. Materials & Structures, v. 14, pp.151-162, 1981.

[28] Carpinteri, A. Sensitivity and stability of progressive cracking in plain and reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, v. 4, n. 1, pp.47-56, 1982.

[29] Carpinteri, A Stability of fracturing process in R.C. beams. ASCE Journal of Structural Engineering, v. 110, n. 3, pp. 544-558, 1984.

[30] Eligehausen, R., Fabritius, E., Li, L., Zhao, R. An analysis of rotation capacity tests. CEB Bulletin d’Information, n. 218, pp.251-273, 1993.

[31] Cosenza, E., Greco, C., Pecce, M. Nonlinear design of reinforced concrete continuous beams. Structural Engineering International, v. 1/91, pp.19-27, 1991.

Received: 17 Mar 2010

Accepted: 05 Apr 2010

Available Online: 30 Jun 2010

  • [01]   Corley, G.W. Rotational capacity of reinforced concrete beams. Journal of Structural Division, v. 92, pp.121-146, 1966.
  • [02]   Macchi, G. Limit-states design of statically indeterminate structures composed of linear members. Costruzioni in Cemento Armato, Studi e Rendiconti, v. 6, pp.151-191, 1969.
  • [03]   Macchi, G. Elastic distribution of moments on continuous beams. International Symposium onthe Flexural Mechanics of Reinforced Concrete, ASCE, ACI, Miami, 1964.
  • [04]   Norwegian Standard. NS 3473 Concrete Structures, Design Rules. Norwegian Council for Building Standardization, Oslo, Norway, 1989.
  • [05]   Comité Euro-International du Béton. CEB-FIP Model Code 1990. Thomas Telford Ltd, Lausanne, Bulletin, n. 213/214, 1993.
  • [06]   CEN TC/250 2004. Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. Brussels, par. 5.6.
  • [11]   ACI-318. Building Code Requirements for Reinforced Concrete", Detroit, 2005.
  • [12]   Mast, R.F. Unified design provisions for reinforced and prestressed concrete flexural and compression members. ACI Structural Journal, v. 89, n. 2, pp.185-199, 1992.
  • [13]   Hillerborg, A., Modeer, M., Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, v. 6, pp.773-782, 1976.
  • [14]   Hillerborg, A. Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Engineering Fracture Mechanics, v. 35, pp.233-240, 1990.
  • [15]   Carpinteri, A., Corrado, M., Paggi, M., Mancini, G. Cohesive versus overlapping crack model for a size effect analysis of RC elements in bending. In: Proceedings of FraMCoS-6, Catania, Italy, 2007, Taylor & Francis, London, v. 2, pp.655-663, 2007.
  • [16]   Carpinteri, A., Corrado, M., Paggi, M., Mancini, G. New model for the analysis of size-scale effects on the ductility of reinforced concrete elements in bending. ASCE Journal of Engineering Mechanics, v. 135, pp.221-229, 2009.
  • [17]   Carpinteri, A., Corrado, M., Mancini, G., Paggi M. Size-scale effects on plastic rotational capacity of RC beams. ACI Structural Journal, v. 106, n. 6, pp.887-896, 2009.
  • [18]   Carpinteri, A., Corrado, M., Paggi, M. An analytical model based on strain localization for the study of size-scale and slenderness effects in uniaxial compression tests. Strain. DOI: 10.1111/j. 1475-1305.2009.00715.x
  • [19]   Carpinteri, A. Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Application of Fracture Mechanics to Cementitious Composites, Martinus Nijhoff Publishers, Dordrecht, pp.287-316, 1985.
  • [20]   Carpinteri, A. Size effects on strength, toughness, and ductility. ASCE Journal of Engineering Mechanics, v. 115, n. 7, pp.1375-1392, 1989.
  • [21]   van Mier, J.G.M. Strain-softening of Concrete under Multiaxial Loading Conditions. PhD Thesis, Eindhoven, University of Technology, 1984.
  • [22]   Jansen, D.C., Shah, S.P. Effect of length on compressive strain softening of concrete. ASCE Journal of Engineering Mechanics, v. 123, pp.25-35, 1997.
  • [23]   Suzuki, M., Akiyama, M., Matsuzaki, H., Dang, T.H. Concentric loading test of RC columns with normal- and high-strength materials and averaged stress-strain model for confined concrete considering compressive fracture energy. In: Proceedings of the 2nd fib Congress, Naples, Italy, 2006, CD-ROM.
  • [24]   Ruiz, G., Elices, M., Planas, J. Size effects and bond-slip dependence of lightly reinforced concrete beams. In: Minimum reinforcement in concrete members, A. Carpinteri, ed., Elsevier Science Ltd., Oxford, U.K., pp.127-180, 1999.
  • [25]   Bosco, C., Carpinteri, A., Debernardi, P.G. Minimum reinforcement in high-strength concrete. Journal of Structural Engineering (ASCE), v. 116, n. 2, pp.427-437, 1990.
  • [26]   Buckingham, E. Model experiments and the form of empirical equations. ASME Transaction, v. 37, pp.263-296, 1915.
  • [27]   Carpinteri, A. Static and energetic fracture parameters for rocks and concretes. Materials & Structures, v. 14, pp.151-162, 1981.
  • [28]   Carpinteri, A. Sensitivity and stability of progressive cracking in plain and reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, v. 4, n. 1, pp.47-56, 1982.
  • [29]       Carpinteri, A Stability of fracturing process in R.C. beams. ASCE Journal of Structural Engineering, v. 110, n. 3, pp. 544-558, 1984.
  • [31] Cosenza, E., Greco, C., Pecce, M. Nonlinear design of reinforced concrete continuous beams. Structural Engineering International, v. 1/91, pp.19-27, 1991.

Publication Dates

  • Publication in this collection
    18 Sept 2014
  • Date of issue
    June 2010

History

  • Received
    17 Mar 2010
  • Accepted
    05 Apr 2010
IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br