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ABSTRACT
In this work, the evolution and formation of the amorphous phase during the preparation of amorphous Co67Si23B10 
(at.%) powder by mechanical alloying (MA) under an argon atmosphere were studied. The grinding time of 15 
h had a profound effect on the phase transformation, microstructure, morphology development, and thermal 
and magnetic behavior of the powders. These effects were studied by X-ray diffraction (XRD), EDX scanning 
electron microscopy (SEM), thermal analysis (TGA/DTA), N2 texture analysis (BET/BJH) and, magnetic 
measurements (VSM). The results show that the evolution of the amorphous phase in the early stage of milling 
consists of nanocrystalline α-Co2B and β-Co2Si phases, which are diluted and coexist with the amorphous phase. 
After 15 hours of ball milling, the amorphous phase became the main phase with a proportion of 98.1%, which 
is relatively high compared to the 1.9% of the nanocrystalline phases α-Co2B and β-Co2Si. The results obtained 
indicate that amorphization develops with higher thermal stability than a small fraction of the nanocrystalline 
phase diluted in the amorphous phase. This behavior suggests the presence of the amorphous phase coexisting 
with the nanocrystalline phase in a small fraction with overlapping crystallization and recrystallization at a 
temperature of around 924.42°C.
Keywords: amorphous phase; Co67Si23B10 powder; mechanical alloying (MA).

1. INTRODUCTION
Amorphous alloys are a unique class of materials characterized by a lack of long-range structural order ordering 
while retaining short-range chemical ordering, and they giving them a series of superior physical properties 
compared to their polycrystalline counterparts [1, 2] . Amorphous alloys also have practical applications due to 
their unique magnetic properties [3], good mechanical behavior [4], and high corrosion resistance [5], making 
them suitable for a variety of industrial applications in fields such as energy [6], aeronautics, chemistry [7], and 
orthopedic biomaterials [8].

 The Co-based amorphous alloys exhibit near-zero magnetostriction and magnetocrystalline anisotropy 
[9], giving them outstanding soft magnetic properties such as low coercivity [10], high permeability [11], low 
hysteresis losses [12], lower saturation induction and high mechanical strength compared to their crystalline 
counterparts [13]. This is due to the relatively large amount of metalloid atoms present in their composition. 
Metalloid elements (B, Si, P, C, and Ge) in order to understand their effects on the atomic structure, glass 
formation ability (GFA), thermal stability, and magnetic properties of Co-based amorphous alloys [14, 15]. Over 
the years, several synthesis routes have been used to produce amorphous soft magnetic materials, including melt 
spinning [16], gas atomization [17], mechanical alloying [18], copper mould casting [19], vapour deposition 
[20], and plasma processing [21]. 

 Mechanical alloying (MA) is an alternative process for producing amorphous alloys from either a mixture 
of pure elemental powders [22]. MA offers several advantages over traditional casting or rapid solidification 
methods. Mechanically alloyed amorphous powders can be easily solidified into high-density amorphous bulk 
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samples of any shape and size in a supercooled liquid region without the need for any post-processing processes 
such as mechanical processing [23, 24]. Furthermore, MA is versatile enough to allow amorphization over 
a composition range that is wider than that corresponding to rapid solidification and is close to the eutectic 
composition [25, 26].

 A major advantage of the mechanical alloying route is that this technique can successfully produce 
amorphous materials in systems where conventional routes, such as melt spinning, fail or are difficult to 
achieve metallic alloy amorphization evolution [27]. Different authors have demonstrated the effectiveness of 
mechanical alloying in promoting the amorphization of various Co-based alloys, such as Co–B [28], Co–Si 
[29], Co-Fe-Si-B-Nb [30], Co-Fe-B-Si-Nb [31], Co–Ta–B [32], and Co–Cr–Mo–Nb–B [33]. On the other 
hand, the main disadvantage of the MA process is that the balls or milling media introduce impurities and 
grinding residues into the powder, which may affect the thermal stability and some physical properties of the 
amorphous powder [34]. 

The amorphous phase formed by MA depends on the energy provided by the grinding media, the atomic 
size of the components, and the thermodynamic properties of the alloy system [35]. Currently, two criteria 
are required for the formation of amorphous phases during MA processes in binary and ternary systems:  
(i) large negative mixing heats between the basic components and (ii) large asymmetries in elemental diffusion 
coefficients [36]. The amorphous phase is kinetically formed when the amorphization reaction occurs much 
faster than the formation of the nanocrystalline and crystalline phases [37]. It has also been shown that the 
introduction of crystal defects into the lattice during the MA process increases the internal energy [38]. When 
the free energy of the crystal exceeds the free energy of the amorphous phase, the crystal structure becomes 
thermodynamically unstable and can transform into the amorphous phase [39].

In this paper, we report on the preparation of Co67Si23B10 (at. %) amorphous powder via a wet mechanical 
alloying (MA) route. The milling time of 15 h was required for alloy amorphization. The evolution of the mor-
phological and microstructural characteristics of the powder, magnetic properties, and thermal stability of the 
powders are presented and discussed.

2. MATERIALS AND METHODS 
Elemental metallic powders (99.9% purity, from Êxodo Científica − LTDA/Brasil) of Co, Si, and B with a 
nominal composition of Co67Si23B10 (at. %) were mechanically alloyed using a planetary ball mill (Type Fritsch 
Pulverisette 5) under an Ar atmosphere (99.9% purity). To produce this alloy, 20 g of each batch metal powder 
was stoichiometrically weighed and placed in a grinding bowl made of hardened stainless-steel balls and vials, 
with seven balls (12 mm diameter), and subjected to a total milling time of 15 h. The mill speed was set at 350 
rpm, and the ball-to-powder ratio (BPR) was kept at 20:1. Ethyl alcohol (C2H6O) from Sigma-Aldrich Brasil 
Ltda was used as a process control agent (PCA) to regulate the morphology of the homogenized powder. The 
microstructural evaluation of the samples obtained from the mechanical alloying was carried out by X-ray 
diffraction (XRD; BRUKER diffractometer, model D2 Phaser) using CuKα (λ = 1.54056 Å) radiation produced 
at 45 kV and 40 mA. The diffraction angle (2θ) was ranging between 10° and 80° with a step size of 0.013°, and 
a time of 5 s.

Microstructural morphology and chemical composition of the powders milled was evaluated by scanning 
electron microscope (SEM; TESCAN VEGA3) equipped with the energy dispersive X-ray (EDX), operating 
at 30 kV with a magnification of 100 kx. In the EDX diagram, the Au element was detected, which was caused 
by the gold spraying treatment to the sample before the test. Thermal studies of the milled amorphous powder 
Co67Si23B10 were collected after milling using differential thermal analysis (DTA) and thermogravimetric analysis 
(TGA) equipment from the brand SHIMADZU DTG-60H. All thermal studies were conducted under argon 
atmosphere with a heating rate of 10°C/min. Textural analysis was conducted using a Quantachrome NOVA 
2200E BET surface area and pore size analyzer, model Autosorb IQ, to obtain adsorption/desorption isotherms 
of the amorphous alloy Co67Si23B10. The uniaxial compressive mechanical tests were conducted on a WDW-100 
testing machine at a strain rate of 4 10–4 s–1 at room temperature. The size of the Co67Si23B10 powder pressed into 
a cylindrical disc shape is 2 mm in diameter and 4mm in height. The compression tests were performed at least 
in triplicate for the Co67Si23B10 powder. Magnetic properties were studied by a vibrating sample magnetometer 
(VSM) at 25°C within a ± 40 kOe magnetic field range. 

3. RESULTS AND DISCUSSION
Figure 1 displays the X-ray pattern of Co67Si23B10 powder during milling time of 15 h. The diffraction pattern 
contains of a diffuse halo that includes the amorphous phase and small two diffraction reflections corresponding 
to the nanocrystalline phases of the α-Co2B and β-Co2Si type [40] in Figure 1.
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A broad diffusion peak near 2θ = 45º suggests the presence of an amorphous structure in the prepared 
Co67Si23B10 powder, as illustrated in Figure 1 obtained by MA. The nanocrystalline α-Co2B and β-Co2Si phases 
showed a weak reflection that corresponds to 1.9%. It indicates that they are embedded in the amorphous matrix 
with a larger fraction of 98.1% in this phase. Thus, nanocrystals were formed under strain with an average size 
of 30 nm during the MA process of powder milling [41].

Figure 2 shows the SEM/EDS micrograph of the amorphous powder Co67Si23B10. A particle morphology 
is observed with shapes of irregular aggregates of snowflakes and small flat spheres with a typical size of  
50 μm [42]. 

In the upper right corner of Figure 2, a small spherical particle flattened at the poles with a typical size 
of 20 μm is visible, indicating strong plastic deformation effects during the 15 h milling process, leading to  
the evolution of the amorphous phase in the structural composition. By milling for 15 h as illustrated in Figure 2,  
we observe that, the powders are strain-hardened by heavy plastic deformation during milling and become 
brittle in nature [43]. In this case, no agglomeration and cold welding occur due to fracturing mechanisms. As a 
result, the particle size is reduced, producing a mixture of semi-spherical and flattened particles, as can be seen 
at the top of the SEM micrograph in Figure 2. A narrow size distribution of 20 μm is developed.

Figure 1: XRD pattern of Co67Si23B10 powder.

Figure 2: SEM/EDS micrographs of the Co67Si23B10 powder.
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Figure 2 displays the EDS analysis and mapping of the powder that was obtained after 15 h of milling. 
Co, Si, and B were present in the initial mixture, according to the EDS analysis. However, the EDS mapping 
reveals that the powders became inhomogeneous, and distinct clusters of Co, Si and B indicate the development 
of small fractions of nanocrystalline phases α-Co2B and β-Co2Si diluted and coexisting with the amorphous 
phase towards the end result of the amorphous powder Co67Si23B10 mixture during milling [44].

Figure 3 shows the TGA-DTG curves of Co67Si23B10 powder obtained by heating until 1000ºC under an 
Ar atmosphere.

According to Figure 3, it can be said that the amorphous Co67Si23B10 powder remains an amorphous 
metallic alloy up to a temperature of approximately 449.44°C, where a mass loss of only 1.03% occurs, which 
can be attributed to the loss of adhered moisture in conjunction with the presence of some reducible oxides, 
burnt carbon, etc.

Subsequently, in the temperature range of 449.44°C–672.56°C, a small mass gain of 5.676% is observed, 
showing the beginning of the crystallization and phase transformation of the amorphous Co67Si23B10 powder. It 
also indicated that the crystallization was followed by the high temperature oxidation with some mass gains. The 
onset temperatures of the first and second exothermic peaks (Tx1 and Tx2) obtained from Figure 3.

For each curve, two separate exothermic peaks can be recognized, indicating a two-stage crystallization 
behavior. To clarify the precipitation phases, the structures of the alloys milled for 15 h under the effect of 
grinding in a wet environment were examined by XRD. Two of these peaks are the primary and secondary 
crystallization temperatures, where the formation of crystals from the amorphous phase is observed during the 
oxidation process.

The other two peaks show the oxidation transformation in the ribbons, and one of them shows a phase 
transformation. In region I, the exothermic peak in the DTA curve occurs around 675.87°C. After 15 h of milling 
time, a phase transition occurs. Heating the Co67Si23B10 powder to higher temperatures leads to the formation 
of stable α-Co2B and β-Co2Si from the residual disordered phase [45, 46]. The phase of the (Co, Si)3B type 
is retained in this case. The glass transition temperature (Tg1) is about 637.59°C and the first crystallization 
temperature (Tx1) is around is around 675.87°C for the amorphous Co67Si23B10 powder, which corresponds to 
the supercooled liquid region associated to the endothermic peak, being considered higher value of ΔT causes a 
growth delay in the grain, i.e. ΔT1=Tx1 −Tg1 =38.28°C with bulk metal glasses (BMG) of the cycle I region dotted 
in red. In the last stage of region II, we observed an exothermic peak in the DTA at ∼924.42°C, α-Co2B and 
β-Co2Si can be fixed in the phase composition of the alloy to a stable crystalline state through the mechanism 

Figure 3: Overlapping TGA/DTA curves of the Co67Si23B10 powder.
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of crystal nucleation and growth [47, 48]. Thus, the comparative study of the peculiarities of the crystallization 
and thermal stability of amorphous phases produced by MA. In circle II, the glass transition temperature (Tg2) is 
about 836.89°C, and the first crystallization temperature (T2x) is around 924.42°C for the amorphous Co67Si23B10 
powder [49]. The supercooled liquid region of circle II is associated with the endothermic peak by a temperature 
higher value of ΔT2 causes a growth delay in the grain, i.e., ΔT2=Tx2 − Tg2 = 87.53°C with bulk metal glasses 
(BMG) [50, 51].

The transition to a stable crystalline state upon heating occurs through the mechanism of crystal nucleation 
and growth [52, 53]. Under the effect of a thermodynamic driving force, such a process can be realized, depending 
on the kinetic features, either through the formation of stable crystals directly from the amorphous phase or, if 
this way is kinetically hindered, through the formation of a number of metastable crystal structures [54, 55]. It is 
known that plastic deformation of an amorphous phase increases the fraction of excess free volume in it, which 
facilitates the diffusion of atoms [56]. Consequently, in the MA amorphous alloys, we can expect, because of 
an increased excess free volume, the acceleration of diffusion, the elimination of kinetic restrictions, a decrease 
in thermal stability, and a simpler mechanism of crystallization (amorphous phase→stable crystalline phase) 
compared to the amorphous ribbons of the same chemical composition of the amorphous alloy [57, 58]. 

Figure 4 shows the Co67Si23B10 powder with isothermal type IV adsorption lines and H3-type hysteresis 
loops. The hysteresis loops of the black and red lines represent the adsorption (ADS) and desorption (DES) 
curves.

Furthermore, they presented type IV isotherm profiles as shown in Figure 4, indicating mesoporous 
properties due to their high mesopore density according to the IUPAC classification [59]. The pore structure is 
provided by the aggregates of small powders in flake-like shapes and small spherical particles flattened with 
a maximum specific surface area of 3.195 m2/g and an average pore size of the adsorbent reached 1.0505 nm, 
respectively.

Figure 5 shows the hysteresis loops M-H for the powder Co67Si23B10 at temperatures of 300 K, respectively, 
with a magnetic field range of –15 kOe to 15 kOe. 

The hysteresis loop M-H of the powder Co67Si23B10 shows an estimated saturation magnetization  
Ms= 114.31 emu/g, remanent magnetization Mr= 7.27 emu/g, and a coercive field Hc= 0.04869 kOe. In the upper 
part of Fig. 5, it exhibits strong typical soft magnetic alloy characteristics after milling the powder for 15 h. It 
is observed that the saturation remanence ratio (Mr/Ms) of powder Co67Si23B10 is 0.05144, i.e., multidomains  
(Mr/Ms << 0.1) during 15 h of milling. The milled powders display the same ferromagnetic behavior with 
sigmoidal hysteresis curves as those typically seen in nanostructured materials with small magnetic multidomains. 
Despite the independence of the Co-based solid solution concentrations as identified by XRD investigation, the 
magnetic characteristics remain only partially stable. This suggests that due to the evolution of the amorphous 
phase with a small fraction of nanocrystalline phases α-Co2B and β-Co2Si as a solid solution, there is a single 
Bloch wall in magnetic domains [60].

Figure 4: Adsorption/desorption isotherms of N2 for Co62Nb32B6 alloy.



NASCIMENTO, L.; LEAL, E.; GUEDES, D.G., et al.,  revista Matéria, v.29, n.2, 2024

4. CONCLUSIONS
The α-Co2B and β-Co2Si nanocrystalline phases (around 1.9%) dispersed within an amorphous matrix (around 
98.1%) are achieved after milling Co, Si, and B powder mixtures. This was confirmed by XRD patterns (showed 
the formation of a diffuse halo around 2θ = 45°, exhibiting the shape of an amorphous structure) as a function 
of milling time up to 15 h by MA.

 The micrograph of amorphous Co67Si23B10 powder showed aggregates of small powders in flake-like 
shapes and small spherical particles flattened with a size of 50μm, along with the-EDS analysis and mapping 
of the powder obtained from 15 h of milling. Co, Si, and B were present in the initial mixture, as indicated by 
the EDS analysis. However, the EDS mapping reveals that the powders became inhomogeneous, with distinct 
clusters of Co and Si indicating the development of the nanocrystalline phases α-Co2B and β-Co2Si coexisting 
with the amorphous phase towards the end result of the powder mixture’s milling. The Co67Si23B10 powder 
exhibited typical soft magnetic properties. Conversely, the Co67Si23B10 powder showed two crystallization 
exothermic peaks at primary and secondary temperatures. 

The formation of nanocrystalline phases α-Co2B and β-Co2Si from the amorphous phase is observed 
during the oxidation process at high temperatures, resulting in some mass gains. The N2 adsorption-desorption 
isotherm of Co67Si23B10 powder alloy represents a type IV isotherm with a hysteresis loop profile characteristic of 
H3 type mesoporous materials. The saturation magnetization was Ms = 114.31 emu/g, remanent magnetization 
was Mr = 7.27 emu/g, a coercive field Hc= 0.04869 kOe, and it showed a saturation remanence ratio in the order 
of Mr/Ms = 0.051447, revealing multidomains (Mr/Ms << 0.1) during 15 h of milling.
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