ABSTRACT
The materials sizing in nano-scale is a challenge to be overcome, because the size determined by various methods differ. In order to shed light about the nanomaterials sizing, a modified Scherrer's equation was applied to estimate more accurately the nanostructured titanium dioxide crystal size. The manufactured titanium dioxide-nanostructured powder with nominal average size about 21nm was used as the reference standard to determine the accurate of modified equation. From X-ray diffraction data, an average crystal size about 20.63 nm was achieved for unheated sample. To establish a relation between the result obtained with modified Scherrer's equation and the nominal average crystal size, a statistical treatment and a comparative assessment were performed. The average absolute divergence does not exceed 0.70 nm. The value of crystal size determined from X-ray data was in good agreement with that informed by the supplier. Additionally, the behavior of sample was studied as a function of temperature.
Keywords:
Nanomaterials; Scherrer's equation; Titanium dioxide