Acessibilidade / Reportar erro

Evaluation of fatigue behavior of Al2024T3 alloys bonded with epoxy adhesive

Aluminum alloys are widely used in aeronautical parts due to their good mechanical properties and low densities. These parts must be joined together to form larger assemblies. A structural joint is defined as a segment of structure that provides a means of transferring load from one structural member to another. The majority of aircraft joints are mechanically fastened with multiple fasteners. These joints present a high concentration of stresses around the fastener, because the load transfer between elements of the joint has to take place over a fraction of the available area. By contrast, the applied loads in the adhesive joints are distributed over the entire bonded area and reduce points of stress concentration. Joints are the most common source of structural failures in aircraft and almost all repairs involve joints. Therefore, it is important to understand all aspects of joint design and analysis. The aim of the present work was to perform a comparative evaluation of the structural joints of Al2024-T3 alloy in three conditions: mechanically fastened joint, bonded joints and a hybrid conFiguration of bonded-riveted joint. The Standard Test Method for determining strength properties of mechanically fastened sheet metal lap joints (NASM 1312-4) was used in all specimen conFigurations. Besides, fatigue tests were conducted in specimens under constant amplitude loading at a stress ratio of 0.1 to evaluate the efficiency of the structural elements during their service life. The results showed that when metal-to-metal adhesive bond procedures are used with a mechanically fastened technique, the static strength and fatigue life of the joint will increase.

Al 2024-T3 alloy; structural joints; fatigue; metal bonding; single lap joint


Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com