ABSTRACT
Plasma nitriding of tool steels improves the surface hardness due to formation of diffusion zone and/or compound layer. The process parameters such as temperature, gas composition and dwell time, allow us to control the layer thickness, the microstructure, the crystalline phases and the type of layer (for example white layer or diffusion zone). This paper discusses an alternative procedure for the heat treatment of tempering and surface treatment, both in plasma or combining conventional heat treatment with subsequent plasma nitriding. Carring out both treatments in plasma could enable reduction in manufacturing costs, lower energy consumption and less time for tools manufacturing. Samples of VF800AT steel were treated and characterized (at surface and core of samples) through the following technique: X-ray diffraction, optical microscopy, scanning electron microscopy, micro-hardness profile and Rockwell C measurement. Temperature measurements during the plasma treatment, show that arise thermal gradient between the surface and the core of the samples. In this work, it was observed that the surface was up to 7% hotter than the core of sample, during the plasma treatment with temperature of magnitude about 5 x 102 °C. This thermal gradient seems inherent to the plasma process, so that it can produce different microstructure, hardness and crystalline phases between core and edge of samples. However, when two tempering operations are prior carried out in a muffle furnace and the third tempering treatment is subsequently carried out simultaneously with the plasma nitriding, it is observed that the microstructure, the crystalline phases, hardness and micro hardness (in both, edge and core) are similar to treatments done in conventional mode cycle (in muffle furnace) with subsequent plasma nitriding.
Tool steel; plasma nitriding; tempering