Acessibilidade / Reportar erro

Montane forest tree species have lower hydraulic efficiency and vulnerability than lowland forest species in the Atlantic Forest

Abstract

The adaptations of plants to different environments are closely related to their wood anatomical traits. This study investigated the wood anatomy of a montane forest community and compared it with anatomical data from three other areas in the Atlantic Forest biome (montane and lowland forest). Samples from 23 montane forest species were processed and analyzed according to standard wood anatomy techniques. Quantitative xylem traits were measured and conductivity parameters were calculated. Wood anatomical data for 76 species from other areas were obtained from previous studies and incorporated into the analyses. Shared wood features indicated ecological trends related to the forest formations. Species of the sampled montane forest were discriminated into groups based on their qualitative and quantitative features, especially those related to ray and xylem conduction traits. Hydraulic traits were also important for distinguishing forest communities along the altitudinal gradient. The montane forest communities had lower conductivity and higher hydraulic safety than the lowland forest community. Apart from these differences, all the studied communities are in the Atlantic Forest biome and present traits related to high hydraulic efficiency and vulnerability, as expected for this tropical region.

Key words:
anatomical traits; anatomical trends; ecological wood anatomy; plant hydraulic; xylem conductivity

Resumo

As adaptações das plantas aos diferentes ambientes estão intimamente relacionadas aos atributos anatômicos da madeira. Este estudo investigou a anatomia da madeira de uma comunidade de floresta montana e comparou-a com dados anatômicos de outras três áreas do bioma Mata Atlântica (floresta montana e floresta de terras baixas). Amostras de 23 espécies da floresta montana foram processadas e analisadas de acordo com técnicas padrão de anatomia da madeira. Atributos quantitativos do xilema foram medidos e parâmetros de condutividade foram calculados. Dados anatômicos da madeira de 76 espécies de outras áreas foram obtidos de estudos anteriores e incorporados às análises. As características compartilhadas da madeira indicaram tendências ecológicas relacionadas às formações florestais. Espécies amostradas da floresta montana foram discriminadas em grupos com base em suas características qualitativas e quantitativas, especialmente aquelas relacionadas aos raios e a condução Atributos hidráulicos foram importantes para distinguir as comunidades florestais no gradiente altitudinal. As comunidades da floresta montana tiveram menor condutividade e maior segurança hidráulica do que a comunidade da floresta de terras baixas. Apesar dessas diferenças, todas as comunidades estudadas estão na Mata Atlântica e apresentam alta eficiência hidráulica e vulnerabilidade, como esperado para esta região tropical.

Palavras-chave:
atributos anatômicos; tendências anatômicas; anatomia ecológica da madeira; hidráulica vegetal; condutividade do xilema.

Introduction

The Atlantic Forest biome is a biodiversity hotspot (Myers et al. 2000Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB & Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858. DOI: 10.1038/35002501
https://doi.org/10.1038/35002501...
; Mittermeier et al. 2005Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J & Fonseca GAB (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City. 392p. ), with only 12-28% of it remaining well preserved (Rezende et al. 2018Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA & Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16: 208-214. DOI: 10.1016/j.pecon.2018.10.002
https://doi.org/10.1016/j.pecon.2018.10....
; SOS Mata Atlântica & INPE 2023), largely composed of forest fragments embedded in open-habitat matrices because of degradation over many centuries (e.g., Joly et al. 2014Joly CA, Metzger JP & Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytologist 204: 459-473. DOI: 10.1111/nph.12989
https://doi.org/10.1111/nph.12989...
; Scarano & Ceotto 2015Scarano FR & Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation 24: 2319-2331. DOI: 10.1007/s10531-015-0972-y
https://doi.org/10.1007/s10531-015-0972-...
). The Atlantic Forest is characterized by various plant formations constituting a diverse set of associated ecosystems. Moving inland from the coastal plains to the mountain summits, there are alluvial, lowland, submontane, montane, and high montane forests, as well as other extreme environments including restingas, mangroves, altitudinal grasslands and vegetation growing on rock outcrops (Scarano 2002; IBGE 2012). This multiplicity of environments helps to explain the rich biodiversity of the Atlantic Forest and makes the region suitable for long-term ecological investigations (Scarano 2002; ForestPlots.net et al. 2021), including those on ecological plant anatomy (Barros et al. 2006Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
https://doi.org/10.1590/2175-78602006573...
; Ribeiro & Barros 2006Ribeiro MLC & Barros CF (2006) Variação intraspecífica do lenho de Pseudopiptadenia contorta (DC.) G.P. Lewis & M.P. Lima (Leguminosae - Mimosoideae) de populações ocorrentes em dois remanescentes de Floresta Atlântica. Acta Botanica Brasilica 20: 839-844. DOI: 10.1590/S0102-33062006000400009
https://doi.org/10.1590/S0102-3306200600...
; Marques et al. 2015Marques JBC, Callado CH, Rabelo GR, Silva Neto SJ & Cunha M (2015) Comparative wood anatomy of species of Psychotria L. (Rubiaceae) in Atlantic Rainforest remnants of Rio de Janeiro state, Brazil. Acta Botanica Brasilica 29: 433-444. DOI: 10.1590/0102-33062015ABB0006
https://doi.org/10.1590/0102-33062015ABB...
; Campbell et al. 2016Campbell G, Rabelo GR & Cunha M (2016) Ecological significance of wood anatomy of Alseis pickelii Pilg. & Schmale (Rubiaceae) in a Tropical Dry Forest. Acta Botanica Brasilica 30: 124-130. DOI: 10.1590/0102-33062015abb0267
https://doi.org/10.1590/0102-33062015abb...
; Soffiatti et al. 2016Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
https://doi.org/10.4067/S0717-9200201600...
; Macedo et al. 2019Macedo TM, Lima HC, Souza ND, Gonçalves AC, Costa CG & Barros CF (2019) Intraspecific variation of Paubrasilia echinata (Fabaceae) wood along a latitudinal gradient in Brazil. Flora 258: 151437. DOI: 10.1016/j.flora.2019.151437
https://doi.org/10.1016/j.flora.2019.151...
; Costa et al. 2020Costa WS, Cunha M, Rodrigues PJFP, Iguatemy MA, Valladares F & Barros CF (2020) Intraspecific variation in functional wood anatomy of tropical trees caused by effects of forest edge. Forest Ecology and Management 473: 118305. DOI: 10.1016/j.foreco.2020.118305
https://doi.org/10.1016/j.foreco.2020.11...
).

Wood anatomy can provide valuable information concerning functional traits for species and communities (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
, 2001, 2012; Lachenbruch & Mcculloh 2014Lachenbruch B & Mcculloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist 204: 747-764. DOI: 10.1111/nph.13035
https://doi.org/10.1111/nph.13035...
; Beeckman 2016Beeckman H (2016) Wood anatomy and trait-based ecology. IAWA Journal 37: 127-151. DOI: 10.1163/22941932-20160127
https://doi.org/10.1163/22941932-2016012...
; Baas et al. 2016Baas P, Beeckman H, Čufar K & De Micco V (2016) Functional traits in wood anatomy. IAWA Journal 37: 124-126. DOI: 10.1163/22941932-20160139
https://doi.org/10.1163/22941932-2016013...
; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
). Anatomical traits such as wood density and vessel diameter have been used as proxies for understanding plant ecological strategies (Westoby 1998Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213-227. DOI: 10.1023/A:1004327224729/METRICS
https://doi.org/10.1023/A:1004327224729/...
; Chave et al. 2009Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG & Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366. DOI: 10.1111/j.1461-0248.2009.01285.x
https://doi.org/10.1111/j.1461-0248.2009...
; Zanne et al. 2010Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ & Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97: 207-215. DOI: 10.3732/AJB.0900178
https://doi.org/10.3732/AJB.0900178...
; Apgaua et al. 2015Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM & Laurance SGW (2015) Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE 10: 1-19. DOI: 10.1371/journal.pone.0130799
https://doi.org/10.1371/journal.pone.013...
). Currently, studies globally are focused on analyzing how species will respond to different climatic scenarios, and hydraulic traits of plants have been used to evaluate and understand their responses (Pandey 2021Pandey S (2021) Climatic influence on tree wood anatomy: a review. Journal of Wood Science 67: 24. DOI: 10.1186/S10086-021-01956-W
https://doi.org/10.1186/S10086-021-01956...
; Hollunder et al. 2022Hollunder RK, Garbin ML, Scarano FR & Mariotte P (2022) Regional and local determinants of drought resilience in tropical forests. Ecology and Evolution 12: e8943. DOI: 10.1002/ece3.8943
https://doi.org/10.1002/ece3.8943...
). Some authors have also stressed that water availability influences the anatomical structures of wood, showing adaptations to the environment (Carlquist 1977, 2001, 2012; Baas et al. 1983; Dickison 1989Dickison WC (1989) Steps toward the natural system of the dicotyledons: vegetative anatomy. Aliso 12: 555-566. DOI: 10.5642/aliso.19891203.10
https://doi.org/10.5642/aliso.19891203.1...
; Woodcock et al. 2000Woodcock DW, Reynel C & Santos G (2000) Wood characteristics of Amazon Forest Types. IAWA Journal 21: 277-292. DOI: 10.1163/22941932-90000248
https://doi.org/10.1163/22941932-9000024...
; Wheeler et al. 2007Wheeler EA, Baas P & Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Insidewood database. IAWA Journal 28: 229-258. DOI: 10.1163/22941932-90001638
https://doi.org/10.1163/22941932-9000163...
; Apgaua et al. 2015, 2017; Tng et al. 2018Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF & Laurance SGW (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479-12491. DOI: 10.1002/ECE3.4601
https://doi.org/10.1002/ECE3.4601...
; Olson 2020).

Carlquist (1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
) proposed two different approaches to expressing ecological-anatomical relationships. One is based on analyzing a particular taxonomic group and aims to compare a given species along an ecological gradient; the other involves identifying anatomical characters held in common within a given plant formation in a limited area, regardless of the taxonomic groups analyzed (Barajas-Morales 1985Barajas-Morales J (1985) Wood structural differences between trees of two tropical forests in Mexico. IAWA Journal 6: 355-364. DOI: 10.1163/22941932-90000962
https://doi.org/10.1163/22941932-9000096...
; Noshiro & Suzuki 1995Noshiro S, Suzuki M & Ohba H (1995) Ecological wood anatomy of Nepalese Rhododendron (Ericaceae). 1. Interspecific variation. Journal of Plant Research 108: 1-9. DOI: 10.1007/BF02344299
https://doi.org/10.1007/BF02344299...
; Noshiro et al. 1995, 2020; Alves & Angyalossy-Alfonso 2000Alves E & Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21: 3-30. DOI: 22941932-90000233
https://doi.org/22941932-90000233...
; Carlquist 2001; Barros et al. 2006Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
https://doi.org/10.1590/2175-78602006573...
; Wheeler et al. 2007Wheeler EA, Baas P & Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Insidewood database. IAWA Journal 28: 229-258. DOI: 10.1163/22941932-90001638
https://doi.org/10.1163/22941932-9000163...
; Apgaua et al. 2017Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ & Laurance SGW (2017) Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology 31: 582-591. DOI: 10.1111/1365-2435.12787
https://doi.org/10.1111/1365-2435.12787...
; Tng et al. 2018Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF & Laurance SGW (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479-12491. DOI: 10.1002/ECE3.4601
https://doi.org/10.1002/ECE3.4601...
). The characteristics emphasized are generally related to vessel elements, which are considered important for the performance of xylem functions under various environmental conditions and express ecological trends of water transport under a given set of environmental conditions (Callado et al. 1997Callado CH, Pugialli HRP, Costa CG, Cunha M, Marquete O & Barros CF (1997) Anatomia do lenho de espécies da Mata Atlântica: interpretação ecológica e indicações para aproveitamento. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 251-274.; Alves & Angyalossy-Alfonso 2000; Barros et al. 2006; Soffiatti et al. 2016Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
https://doi.org/10.4067/S0717-9200201600...
; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
).

The main evolutionary mechanisms of xylem are related to adaptations to the degree of moisture availability, the rate of transpiration, water seasonality, and the need for investments in mechanical strength. It should be emphasized that such characteristics can vary considerably, even locally, and different plants may use the same habitat very differently (Carlquist 1975Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkley. 243p., 2001; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
; Olson et al. 2020). However, with a floristic approach it is possible to detect shared features in species occurring in the same area (Carlquist 1977, 2001; Olson 2020, 2023). Previous works on tropical rainforest tree species have demonstrated common traits for water transport among co-occurring species (Callado et al. 1997Callado CH, Pugialli HRP, Costa CG, Cunha M, Marquete O & Barros CF (1997) Anatomia do lenho de espécies da Mata Atlântica: interpretação ecológica e indicações para aproveitamento. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 251-274.; Barros et al. 2006Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
https://doi.org/10.1590/2175-78602006573...
; Apgaua et al. 2015Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM & Laurance SGW (2015) Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE 10: 1-19. DOI: 10.1371/journal.pone.0130799
https://doi.org/10.1371/journal.pone.013...
; Soffiatti et al. 2016Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
https://doi.org/10.4067/S0717-9200201600...
; Tng et al. 2018Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF & Laurance SGW (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479-12491. DOI: 10.1002/ECE3.4601
https://doi.org/10.1002/ECE3.4601...
), but each of these cited studies was based on investigating only one site.

The present work was designed to contribute to the knowledge of the functional diversity of Atlantic Forest tree species. It also aimed to characterize their wood traits related to hydraulic efficiency strategies by describing the anatomical traits in a montane forest community and comparing the results with anatomical data from previous studies in other Atlantic Forest formations (montane and lowland forest). Montane forest trees present lower sap flow and more conservative water use than lowland trees in the Atlantic Forest, which is related to differences in water availability (Rosado et al. 2016Rosado BHP, Joly CA, Burgess SSO, Oliveira RS & Aidar MPM (2016) Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees 30: 47-61. DOI: 10.1007/s00468-015-1165-8
https://doi.org/10.1007/s00468-015-1165-...
). This work hypothesized that species grown in a certain forest formation respond similarly to environmental signals and should have similar anatomical wood features. Moreover, tree species in montane forest should present lower hydraulic conductivity and higher safety to embolism than when in lowland forest, which is associated with differences in vessel features and environmental conditions (Rosado et al. 2016; Hacke et al. 2022Hacke UG, Jacobsen AL & Pratt RB (2022) Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal 44: 304-319. DOI: 10.1163/22941932-bja10107
https://doi.org/10.1163/22941932-bja1010...
; Ewers et al. 2023Ewers FW, Jacobsen AL & López-Portillo J (2023) Carlquist’s indices for vulnerability and mesomorphy of wood: are they relevant today? IAWA Journal : 1-13. DOI: 10.1163/22941932-bja10113
https://doi.org/10.1163/22941932-bja1011...
; Olson 2023Olson ME, Pace MR & Anfodillo T (2023) The vulnerability to drought-induced embolism-conduit diameter link: breaching the anatomy-physiology divide. IAWA Journal : 44: 335-354. DOI: 10.1163/22941932-bja10123
https://doi.org/10.1163/22941932-bja1012...
; Olson et al. 2023). The floristic approach used here is based on Carlquist’s comparative method (Carlquist 1975Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkley. 243p., 1977, 1980, 2001, 2012; Carlquist & Hoekman 1985; Olson 2020, 2023).

Material and Methods

Samples were collected in the Tinguá Biological Reserve (hereafter RBT, acronym in Portuguese), in Rio de Janeiro state, Brazil (22°22’20”S-22°45’00”S; 43°40’00”W-43°05’40”W) (Fig. 1). The RBT is a fully protected federal conservation area that represents 8% of the total protected area of Rio de Janeiro State. The landscape is generally quite steep and irregular, with scarps cut by torrential rivers. Topographically, the Tinguá Massif is an imposing and rugged geological monument reaching 1,600 m in elevation (MMA & IBAMA 2006). The regional soils include red and yellow dystrophic argisols and latosols, red eutrophic argisols, and haplic eutrophic cambisols. The regional climate is tropical humid, with dry winters and temperate summers, corresponding to type Cwb of the Köppen classification, with an average austral winter temperature of 15.7 °C, and 27.7 °C in the summer. The mean total annual rainfall is 2,000 mm, although unevenly distributed throughout the year. The driest period is between April and August, when monthly rainfall is below 80 mm. The RBT is an important Atlantic Forest biome remnant in Rio de Janeiro state due to its protection of mountain streams and its socio-economic value (MMA & IBAMA 2006; Iguatemy et al. 2017Iguatemy MA, Neto SJS, Lobão A, Bovini MG, Braga JMA, Negreiros FF, Lima HC, Rodrigues PJFP, Jesus MFS, Hottz D, Lima MSC, Ramos E, Quinet A, Souza M, Pessoa SVA, Kurtz BC & Barros CF (2017) An annotated checklist of Atlantic rainforest trees in southeastern Brazil, Tinguá Biological Reserve, Rio de Janeiro. Journal of the Botanical Research Institute of Texas 11: 479-497. ). Wood samples were collected in a permanent plot located in the Montane Dense Ombrophilous Forest formation (~980 m a.s.l.). The plot was one of the permanent plots established by the Instituto de Pesquisas Jardim Botânico do Rio de Janeiro for a long-term biodiversity project (PPBio-MA Núcleo Sudeste). We chose to study the species with the highest Importance Values (IV) (> 0.6) based on phytosociological analyses performed by that long-term project (unpublished data). The IV represents the degree of dominance of a species in a plot, where the species with the highest IVs represent the dominant species (Curtis & McIntosh 1950Curtis JT & McIntosh RP (1950) The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31: 434-455. DOI: 10.2307/1931497
https://doi.org/10.2307/1931497...
). The IV is obtained for each species by summing its relative density, dominance, and frequency values. The IV has been very useful in separating different types of forests and relating them to environmental factors, including the relationships between species distributions and abiotic factors (Martins 1991Martins FR (1991) Estrutura de uma floresta mesofila. UNICAMP, Campinas. 246p.).

Figure 1
a. Map of South America and the Atlantic Forest biome (gray). b. Map of Rio de Janeiro state delimiting the four conservation units containing the collection sites (heavy black line): Macaé de Cima Environmental Protection Area (AMC), Itatiaia National Park (PNI), Tinguá Biological Reserve (RBT), Poço das Antas Biological Reserve (RBPA). Altitude represented by color scale (m). Environmental features of the collection sites in the conservation units are presented in the table.

Wood samples were collected, processed, and analyzed from 82 trees belonging to 23 species and 12 families (Tab. 1). The samples were collected using a non-destructive method (increment borer) in mature trunks at breast height without any injuries, and deposited in the Jardim Botânico do Rio de Janeiro Wood Collection (RBw). The wood samples were processed according to the usual techniques for bright field optical microscopy (Johansen 1940Johansen D (1940) Plant microtechnique. McGraw-Hill, New York, London. 523p.; Sass 1958Sass JE (1958) Elements of botanical microtechnique. McGraw- Hill Book Company Inc, New York. 222p.; Machado et al. 1997Machado SR, Angyalossy-Alfonso V & Morretes BL (1997) Comparative wood anatomy of root and stem in Styrax camporum (Styracaceae). IAWA Journal 18: 13-25. DOI: 10.1163/22941932-90001454
https://doi.org/10.1163/22941932-9000145...
).

The samples were sectioned (18 to 20 µm thick) in their transverse and longitudinal planes (radial and tangential) using a Leica microtome. The sections were then bleached, dehydrated, and stained with Astra blue and Safranin (Bukatsch 1972Bukatsch F (1972) Bemerkungen zur doppelfärbung Astrablau-safranin. Mikrokosmos 61: 33-36. ). Permanent slides were mounted with Entellan® (Burger & Richter 1991Burger LM & Richter HG (1991) Anatomia da madeira. Nobel, São Paulo. 160p.). Macerations were used to measure the elements that compose the axial system of the wood (Franklin 1945Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155: 51. DOI: 10.1038/155051a0
https://doi.org/10.1038/155051a0...
). Dissociated cells were stained with hydroalcoholic Safranin (Strasburger 1924Strasburger E (1924) Handbook of practical botany. MacMillan, New York. 532p.). A Zeiss Primostar microscope coupled with AxioCam Erc 5 camera and Zeiss Zen software were used to capture and process the images. Measurements were performed for all species using Image-Pro Plus® version 4.5 software for Windows. The wood anatomy was described and measured according to the recommendations of the IAWA Committee (1989IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin 10: 219-332. ) with modifications (measurement of ray-vessel pit diameter was added). The vulnerability index, the mesomorphy index, the conductivity index, hydraulic diameter and theorical hydraulic conductivity were calculated (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
; Zimmermann 1983Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg. 146p. DOI: 978-3-662-22627-8
https://doi.org/978-3-662-22627-8...
; Tyree & Ewers 1991Tyree MT & Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1111/j.1469-8137.1991...
; Sperry & Sullivan 1992Sperry JS & Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology 100: 605-613. DOI: 10.1104/pp.100.2.605
https://doi.org/10.1104/pp.100.2.605...
; Sperry & Saliendra 1994).

The formulas used were:

Vulnerability index = mean vessel diameter (µm) / mean vessel frequency (vessels/mm2) (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
).

Mesomorphy index = [mean vessel diameter (µm) × mean vessel element lenght (µm)] / mean vessel frequency (vessels/mm2) (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
).

Conductivity index = [mean vessel diameter (µm) / 2] 4 / mean vessel frequency (vessels/mm2) (Zimmermann 1983Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg. 146p. DOI: 978-3-662-22627-8
https://doi.org/978-3-662-22627-8...
).

Hydraulic diameter = [sum vessel diameter (µm)] 5 / [sum vessel diameter (µm)] 4 (Sperry & Sullivan 1992Sperry JS & Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology 100: 605-613. DOI: 10.1104/pp.100.2.605
https://doi.org/10.1104/pp.100.2.605...
; Sperry & Saliendra 1994).

Theoretical hydraulic conductivity = [π × [hydraulic diameter (µm)] 4 / [128×0,000000001× mean vessel frequency (vessels/mm2)] (Tyree & Ewers 1991Tyree MT & Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1111/j.1469-8137.1991...
).

Wood anatomical data were obtained from previously published data of 76 other species growing in three distinct areas in the Atlantic Forest: Itatiaia National Park (PNI, acronym in Portuguese), Montane Dense Ombrophilous Forest in Serra da Mantiqueira (22°15’S-22°30’S, 44°30’W-44°45’W, ~800 m a.s.l.), annual rainfall 1,645 mm, mean annual temperature 16.8 °C (Barros et al. 2008Barros CF, Callado CH, Cunha M, Marcon ML, Tamaio N, Marquete O & Costa CG (2008) Madeiras da Mata Atlântica - anatomia do lenho de espécies ocorrentes nos remanescentes florestais do estado do Rio de Janeiro - Brasil - Vol. III. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 103p.); Macaé de Cima Environmental Protection Area (AMC, acronym in Portuguese), Montane Dense Ombrophilous Forest in Serra do Mar (22°21’S-22°28’S, 42°27’W-42°35’W, ~1,100 m a.s.l.) annual rainfall 1,532 mm, mean annual temperature 16.5 °C (Callado et al. 1997Callado CH, Pugialli HRP, Costa CG, Cunha M, Marquete O & Barros CF (1997) Anatomia do lenho de espécies da Mata Atlântica: interpretação ecológica e indicações para aproveitamento. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 251-274.; Barros et al. 2001); Poço das Antas Biological Reserve (RBPA, acronym in Portuguese), Lowland Dense Ombrophilous Forest (22°30’S-22°33’S, 42°15’W-42°19’W, ~30 m a.s.l.), annual rainfall 2,260 mm, mean annual temperature 24.5 °C (Barros et al. 2001, 2006) (Fig. 1). The species are listed in Table S1 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25742892.v1>) and the environmental characteristics of the areas are summarized in Figure 1. These previous studies were conducted by the same research group as the present study, with the same methods, making their data suitable for the present analysis.

Statistical analyses were performed using Statistica 7.0 software to test the similarities among RBT species and among species from all areas (AMC, PNI, RBT, RBPA). Principal component analysis (PCA) was used to sort species from RBT and different areas, showing the variance factors. The 23 anatomical features by species and area used in the PCA are summarized in Table S2 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25742892.v1>).

Table 1
Species sampled in the studied montane forest (RBT) by family, mean diameter breast height (DBH), mean tree height (H) when measured, and records in the Jardim Botânico do Rio de Janeiro Wood Collection (RBw).

Results

Diffuse-porous wood, alternate intervessel pits, simple perforation plates, and non-septate fibers were observed in all the species examined from the montane forest of RBT (Fig. 2; Tab. 2). Other anatomical features present in more than 50% of the species were distinct growth ring boundaries (65%), vessel frequency of 5-20/mm² (61%); vessel diameter of 100-200 μm (52%); vessel element length of 350-800 μm (83%); paratracheal axial parenchyma (61%), vessel-ray pits with distinct borders (similar to intervessel pits in size and shape throughout the ray cell, 61%); thin- to thick-walled fibers (61%), with simple to minutely bordered pits (83%); fiber length of 900-1,600 μm (83%); axial parenchyma with 3-4 cells per strand (78%); axial parenchyma with 5-8 cells per strands (52%); ray frequency of 4-12/mm (74%); and ray width of 1 to 3 cells (74%) (Fig. 2; Tab. 2).

Figure 2
a-l. Examples of some wood anatomical features with high occurrence in the montane forest species of RBT - a. Ocotea catharinensis, distinct growth ring boundary (yellow arrow) and thin- to thick-walled fibers (black arrow); b. Ocotea catharinensis, alternate intervessel pits (black arrow); c. Copaifera lucens, axial parenchyma with 5-8 cells per strands (black arrow) and ray width of three cells (yellow arrow); d. Ocotea indecora, diffuse-porous wood and paratracheal axial parenchyma (black arrow); e. Qualea gestasiana, paratracheal aliform confluent axial parenchyma (black arrow); f. Calyptranthes grandifolia, vessel-ray pits with distinct borders (black arrow); g. Alchornea triplinervia, diffuse-porous wood and distinct growth ring boundary (black arrow); h. Myrceugenia myrcioides, simple perforation plate (black arrow); i. Cordiera concolor, non-septate fibers present (black arrow); j. Cordiera concolor, frequency of vessel (5-20 vessels per square millimeter) and diffuse-porous wood; k. Cordiera concolor, ray frequency (4-12 / mm); l. Geissospermum laeve, 3-4 cells per parenchyma strand (black arrow). a,d-e,g, j - transversal sections; b-c,f, h-i, k-l - longitudinal tangential sections. Scale bars: a, c, e, g, l = 100 µm; b, f, h, i = 10 µm; d, j, k = 200 µm.

Table 2
Relative frequencies of anatomical traits in the studied montane forest (RBT). The frequencies (FR) were clipped above 50%.

The PCA of RBT species grouped most of them by their similar qualitative and quantitative features. Three factors corresponded to approximately 66% of the total variance in the PCA (Factor 1 = 27.7%, Factor 2 = 24.2%, Factor 3 13.9%) (Fig. 3). Higher scores for Factor 1 were features related to rays. Higher scores for Factor 2 were vessel length and pit features all related to water transport, while those for Factor 3 were vessel features (Tab. 3). These features grouped the majority of species, while influencing the separation of four: S. hirsuta (Elaeocarpaceae), M. gardineriana (Primulaceae), and A. intermedia and B. australis (both Rubiaceae) (Fig. 3).

The mean species mesomorphy index was 6,546; vulnerability index 10.6; conductivity index 1,747,620; hydraulic diameter 117 μm; and theoretical hydraulic conductivity 1.43E+15 kg m-1 s-1 MPa-1. Values for the species are summarized in Table 4. Except for C. concolor and M. myrcioides, all the studied species had high values for the mesomorphy index, the vulnerability index, the conductivity index, hydraulic diameter, and theoretical hydraulic conductivity.

The PCA of the 99 different species of the four Atlantic Forest areas grouped species by areas. Three factors corresponded to approximately 64% of the variance (Factor 1 = 31.4%, Factor 2 = 19.8%, Factor 3 13.0%) (Fig. 4). The AMC species were separated from those of the other montane forests areas (PNI and RBT) by a higher incidence of scalariform perforation plates (0.81 - Factor 1), while the other montane forests species had higher incidences of simple perforation plates (-0.79 - Factor 1) [Fig. 4; Tab. 5; Tab. S2 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25742892.v1>)]. The lowland forest (RBPA) species were separated from those of the montane forest areas by higher values for vessel diameter and the vulnerability and mesomorphy indices (-0.77, -0.78, -0.84 - Factor 2, respectively) [Fig. 4; Tab. 5; Tab. S2 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25742892.v1>)]. Factor 3 represented 13% of the variance and also detached AMC from other areas because all species had thin- to thick-walled fibers (-0.76), while some species in the other areas had very thick-walled fibers (0.81) [Fig. 4; Tab. 5; Tab. S2 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25742892.v1>)].

Figure 3
Principal component analysis of the species from the studied montane forest (RBT). Graphical representation of the species described by three factors - 1 = Duguetia microphylla; 2 = Geissospermum laeve; 3 = Licania kunthiana; 4 = Sloanea hirsuta; 5 = Alchornea triplinervia; 6 = Ocotea aciphylla; 7 = Ocotea catharinensis; 8 = Ocotea domatiata; 9 = Ocotea indecora; 10 = Ocotea odorifera; 11 = Copaifera lucens; 12 = Pseudopiptadenia schumanniana; 13 = Tachigali urbaniana; 14 = Calyptranthes grandifolia; 15 = Myrceugenia myrcioides; 16 = Myrsine gardneriana; 17 = Amaioua intermedia; 18 = Bathysa australis; 19 = Cordiera concolor; 20 = Manilkara subsericea; 21 = Pouteria caimito; 22 = Qualea gestasiana; 23 = Vochysia laurifolia.

Discussion

Species that grow in a certain forest physiognomy respond similarly to environmental signals, and thus should have similar wood anatomical features (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
). Evaluations of the relationships between wood anatomy and ecology in floristic approaches are essential to better understand aspects of functional anatomy (Carlquist 1977, 2001; Alves & Angyalossy-Alfonso 2000Alves E & Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21: 3-30. DOI: 22941932-90000233
https://doi.org/22941932-90000233...
; Olson et al. 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
, 2023; Olson 2023). The present analysis documented differences between communities in the forest formations and the influence of altitude on hydraulic structure. Montane forest species in the Atlantic Forest have similar anatomical wood traits with less efficient water conductivity and higher vulnerability to embolism than lowland forest species. Species from AMC (~1100 m a.s.l.) had the narrowest vessel diameter of the analyzed areas, while those from PNI and RBT (~800 m and ~980 m, respectively) had similar values, and RBPA the widest. The response of communities to environmental conditions, such as temperature, precipitation, atmospheric pressure, solar radiation and UV-B radiation, change with altitude, so influences on wood anatomical traits are expected (van der Graaff & Baas 1974van der Graaff NA & Baas P (1974) Wood anatomical variation in relation to latitude and altitude. Blumea 22: 101-121. ; Noshiro & Suzuki 1995Noshiro S, Suzuki M & Ohba H (1995) Ecological wood anatomy of Nepalese Rhododendron (Ericaceae). 1. Interspecific variation. Journal of Plant Research 108: 1-9. DOI: 10.1007/BF02344299
https://doi.org/10.1007/BF02344299...
; Noshiro et al. 1995, 2010, 2020; Körner 2007Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22: 569-574. DOI: 10.1016/J.TREE.2007.09.006
https://doi.org/10.1016/J.TREE.2007.09.0...
; Bosio et al. 2010Bosio F, Soffiatti P & Boeger MRT (2010) Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetation types of Paraná state, Brazil. IAWA Journal 31: 179-190. DOI: 10.1163/22941932-90000015
https://doi.org/10.1163/22941932-9000001...
).

Analysis of the wood anatomical features of the four studied communities in the Atlantic Forest along an altitudinal gradient (AMC, PNI, RBT and RBPA) revealed anatomical and functional features that differentiate them (perforation plates, vessel features, vulnerability and mesomorphy) (Callado et al. 1997Callado CH, Pugialli HRP, Costa CG, Cunha M, Marquete O & Barros CF (1997) Anatomia do lenho de espécies da Mata Atlântica: interpretação ecológica e indicações para aproveitamento. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 251-274.; Barros et al. 2006Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
https://doi.org/10.1590/2175-78602006573...
, 2008). For lowland forest species (RBPA), the highest values of vessel diameter, vessel length and mesomorphy are likely related to the high pluviosity in the area, and explain adjustments in xylem anatomy to high conductivity (Dickison 1989Dickison WC (1989) Steps toward the natural system of the dicotyledons: vegetative anatomy. Aliso 12: 555-566. DOI: 10.5642/aliso.19891203.10
https://doi.org/10.5642/aliso.19891203.1...
; Wheeler & Baas 1991Wheeler EA & Baas P (1991) A survey of the fossil record for dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Journal 12: 275-318. DOI: 10.1163/22941932-90001256
https://doi.org/10.1163/22941932-9000125...
; Alves & Angyalossy-Alfonso 2000Alves E & Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21: 3-30. DOI: 22941932-90000233
https://doi.org/22941932-90000233...
; Barros et al. 2006; Wheeler et al. 2007; Körner 2007Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22: 569-574. DOI: 10.1016/J.TREE.2007.09.006
https://doi.org/10.1016/J.TREE.2007.09.0...
; Soffiatti et al. 2016Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
https://doi.org/10.4067/S0717-9200201600...
; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
). Besides that, species of AMC, the study area with highest altitude, showed different features separating them by statistical analysis. Thus, a functional trade-off was documented here between hydraulic safety and efficiency, whereby montane species that experience drier conditions have reduced conductive efficiency and enhanced safety for better fitness, when compared with lowland species.

Table 3
Highest scores from the PCA performed for the studied montane forest (RBT). Scores were clipped above ±0.44.

Measurements of sap flow in Atlantic Forest species following an altitudinal gradient have shown higher sap flow in lowland forest than in montane forest and hydraulic adjustments in response to water availability (Rosado et al. 2016Rosado BHP, Joly CA, Burgess SSO, Oliveira RS & Aidar MPM (2016) Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees 30: 47-61. DOI: 10.1007/s00468-015-1165-8
https://doi.org/10.1007/s00468-015-1165-...
). These findings are congruent with our results and reinforce the importance of hydraulic conductivity indices and data calculated on xylem quantitative features, as performed here, because they help to understand plant hydraulic functioning by plant structure (Ewers et al. 2023Ewers FW, Jacobsen AL & López-Portillo J (2023) Carlquist’s indices for vulnerability and mesomorphy of wood: are they relevant today? IAWA Journal : 1-13. DOI: 10.1163/22941932-bja10113
https://doi.org/10.1163/22941932-bja1011...
; Olson et al. 2023Olson ME, Pace MR & Anfodillo T (2023) The vulnerability to drought-induced embolism-conduit diameter link: breaching the anatomy-physiology divide. IAWA Journal : 44: 335-354. DOI: 10.1163/22941932-bja10123
https://doi.org/10.1163/22941932-bja1012...
). Although previous studies have demonstrated an increase in conservative water use in woody species of the Atlantic Forest from lowland to montane forest (Rosado et al. 2016), further measurements and analysis of conductivity, transpiration, and carbon assimilation, can elucidate the differences in water-use efficiency of these communities and their responses to climate change.

Table 4
Hydraulic indexes, hydraulic diameter (µm) and theoretical hydraulic conductivity (kg m-1 s-1 MPa-1) of the species of the studied montane forest (RBT).

The indices and calculations used in the present study represent a quantitative approach to understanding functional and ecological wood anatomy, mostly hydraulic strategies (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
; Zimmermann 1983Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg. 146p. DOI: 978-3-662-22627-8
https://doi.org/978-3-662-22627-8...
; Tyree & Ewers 1991Tyree MT & Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1111/j.1469-8137.1991...
; Sperry & Sullivan 1992Sperry JS & Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology 100: 605-613. DOI: 10.1104/pp.100.2.605
https://doi.org/10.1104/pp.100.2.605...
; Sperry & Saliendra 1994; Hacke et al. 2022Hacke UG, Jacobsen AL & Pratt RB (2022) Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal 44: 304-319. DOI: 10.1163/22941932-bja10107
https://doi.org/10.1163/22941932-bja1010...
; Ewers et al. 2023). Carlquist (1977) proposed the mesomorphy and vulnerability indices, which integrate the features of vessel diameter, vessel element length, and vessel frequency to provide a broad understanding of ecological strategies. High values of mesomorphy and vulnerability imply great hydraulic efficiency, and low values imply great safety against embolism (Carlquist 1977; Ewers et al. 2023). Anatomical studies have also used hydraulic diameter, the conductivity index, and theoretical hydraulic conductivity, based on the Hagen-Poiseuille Law, as more representative conductivity parameters. The increase in vessel diameter increases conductivity to the fourth power; species with wide vessels are more efficient at conduction but more susceptible to embolism. Besides, vessel frequency is a feature linked to hydraulic safety by redundancy and embolism resistance (Zimmermann 1983; Tyree & Ewers 1991; Sperry & Sullivan 1992; Sperry & Saliendra 1994; Hacke et al. 2022; Ewers et al. 2023). Thus, mesomorphic species tend to have wide vessels in low frequency and high mesomorphy and vulnerability indices, while xeromorphic species tend to have narrow vessels in high frequency and low mesomorphy and vulnerability indices (Carlquist 1977, 2001).

Since wood anatomical traits are extremely important for the adaptation of plant communities to different conditions of water availability, by adjusting hydraulic safety and efficiency (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
, 2012; Poorter et al. 2008Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO & Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908-1920. DOI: 10.1890/07-0207.1
https://doi.org/10.1890/07-0207.1...
; Zanne et al. 2010Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ & Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97: 207-215. DOI: 10.3732/AJB.0900178
https://doi.org/10.3732/AJB.0900178...
; Baas & Wheeler 2011Baas P & Wheeler EA (2011) Wood anatomy and climate change. In: Hodkinson TR, Jones MB, Waldren S & Parnell JAN (eds.) Climate change, ecology and systematics. Cambridge University Press, Cambridge. Pp. 141-155. DOI: 10.1017/CBO9780511974540.007
https://doi.org/10.1017/CBO9780511974540...
; Apgaua et al. 2015Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM & Laurance SGW (2015) Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE 10: 1-19. DOI: 10.1371/journal.pone.0130799
https://doi.org/10.1371/journal.pone.013...
, 2017; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
; Pandey 2021Pandey S (2021) Climatic influence on tree wood anatomy: a review. Journal of Wood Science 67: 24. DOI: 10.1186/S10086-021-01956-W
https://doi.org/10.1186/S10086-021-01956...
), comparisons of these traits in different climates and environments can elucidate responses to future climatic scenarios. Many authors have related wide vessels to high water availability, high conductivity and low safety from embolism (Carlquist 1977, 2001; Sperry 2003Sperry JS (2003) Evolution of water transport and xylem structure. International Journal of Plant Sciences 164: S115-S127. DOI: 10.1086/368398
https://doi.org/10.1086/368398...
; Zanne et al. 2010; Olson 2020; Olson et al. 2020, 2023; Hacke et al. 2022Hacke UG, Jacobsen AL & Pratt RB (2022) Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal 44: 304-319. DOI: 10.1163/22941932-bja10107
https://doi.org/10.1163/22941932-bja1010...
; Ewers et al. 2023Ewers FW, Jacobsen AL & López-Portillo J (2023) Carlquist’s indices for vulnerability and mesomorphy of wood: are they relevant today? IAWA Journal : 1-13. DOI: 10.1163/22941932-bja10113
https://doi.org/10.1163/22941932-bja1011...
), as seen in the present results. We therefore hypothesize that the alterations in water availability predicted by future climate change scenarios will affect the hydraulic functioning of montane and lowland forest communities in the Atlantic Forest (Baas & Wheeler 2011; Tng et al. 2018Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF & Laurance SGW (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479-12491. DOI: 10.1002/ECE3.4601
https://doi.org/10.1002/ECE3.4601...
; Olson 2020; Pandey 2021; Hollunder et al. 2022Hollunder RK, Garbin ML, Scarano FR & Mariotte P (2022) Regional and local determinants of drought resilience in tropical forests. Ecology and Evolution 12: e8943. DOI: 10.1002/ece3.8943
https://doi.org/10.1002/ece3.8943...
). Climate change can increase the frequency of extreme events, including drought, likely inducing hydraulic failure that causes productivity loss and plant mortality even in water-nonlimited environments (McDowell et al. 2008McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG & Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178: 719-739. DOI: 10.1111/J.1469-8137.2008.02436.X
https://doi.org/10.1111/J.1469-8137.2008...
; Allen et al. 2010Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A & Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684. DOI: 10.1016/j.foreco.2009.09.001; Choat et al. 2012Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ & Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491: 752-755. DOI: 10.1038/nature11688
https://doi.org/10.1038/nature11688...
). The xylem trait data provided here can be incorporated into a metanalysis to model vegetation response and forecast responses to changing environmental scenarios (e.g., Wiemann 1998Wiemann MC, Wheeler EA, Manchester SR & Portier KM (1998) Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeography, Palaeoclimatology, Palaeoecology 139: 83-100. DOI: 10.1016/S0031-0182(97)00100-4
https://doi.org/10.1016/S0031-0182(97)00...
, 1999, 2001; McDowell et al. 2008; Baas & Wheeler 2011; Choat et al. 2012; Anderegg 2015Anderegg WRL (2015) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist 205: 1008-1014. DOI: 10.1111/NPH.12907
https://doi.org/10.1111/NPH.12907...
; Pandey 2021). Choat et al. (2012), based on published and unpublished data on vulnerability to drought-induced embolism for many woody species (226) and sites (81), reported that all forest biomes, regardless of their current rainfall, are equally vulnerable to hydraulic failure due to drought, indicating a global convergence in the vulnerability of forests to drought. The availability of xylem trait data has allowed, and will continue to allow, an understanding of how climate affects forests and the forecasting of climate change impacts (Pandey 2021).

Figure 4
Principal component analysis of the species from the four different Atlantic Forest areas along an altitudinal gradient. Graphical representation of the species described by three factors. Black + = Macaé de Cima Environmental Protection Area (AMC), Red * = Poço das Antas Biological Reserve (RBPA), Green % = Tinguá Biological Reserve (RBT), and Blue # = Itatiaia National Park (PNI).

Even though montane forest species in the Atlantic Forest have less efficient water conductivity and lower vulnerability to embolism than lowland forest species, some common features of RBT species are related to high hydraulic efficiency, typical in tropical forests with high water availability (Carlquist 1977Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
https://doi.org/10.2307/2442382...
, 2001, 2012; Dickison 1989Dickison WC (1989) Steps toward the natural system of the dicotyledons: vegetative anatomy. Aliso 12: 555-566. DOI: 10.5642/aliso.19891203.10
https://doi.org/10.5642/aliso.19891203.1...
; Wheeler & Baas 1991Wheeler EA & Baas P (1991) A survey of the fossil record for dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Journal 12: 275-318. DOI: 10.1163/22941932-90001256
https://doi.org/10.1163/22941932-9000125...
, 2019; Alves & Angyalossy-Alfonso 2000Alves E & Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21: 3-30. DOI: 22941932-90000233
https://doi.org/22941932-90000233...
; Barros et al. 2006Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
https://doi.org/10.1590/2175-78602006573...
; Wheeler et al. 2007; Soffiatti et al. 2016Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
https://doi.org/10.4067/S0717-9200201600...
; Olson 2020Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
https://doi.org/10.1111/PCE.13884...
) such as diffuse-porous wood, simple perforation plates, vessel diameter of 100-200 µm, vessel element lengths of 350-800 µm, and vessel frequency of 5-20/mm2. The RBT community is mesomorphic with high conductivity and high hydraulic efficiency, although with vulnerability to high water-column tensions (Bosio et al. 2010Bosio F, Soffiatti P & Boeger MRT (2010) Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetation types of Paraná state, Brazil. IAWA Journal 31: 179-190. DOI: 10.1163/22941932-90000015
https://doi.org/10.1163/22941932-9000001...
; Carlquist 2012; Hacke et al. 2017Hacke UG, Spicer R, Schreiber SG & Plavcová L (2017) An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell and Environment 40: 831-845. DOI: 10.1111/pce.12777
https://doi.org/10.1111/pce.12777...
, 2022). In contrast, woody plants in dry regions have adaptations that provide greater hydraulic safety, such as high vessel frequencies of narrow and short vessel elements (Carlquist 1977, 2001, 2012; Hacke et al. 2022). For example, some Cerrado (Brazilian savanna) species have lower vessel diameter and higher vessel frequency than those of the present study (Melo Júnior et al. 2017Melo Júnior JCF, Amorim MW, Oliveira GB & Vieira CV (2017) Wood functional anatomy of Chiococca alba Hitch. (Rubiaceae) from cerrado. Acta Biológica Catarinense 4: 52-61.; Simioni et al. 2021Simioni P, Campbell G, Pinto VD, Castelar JVS, Pessoa MJG, Silva IV & Cunha M (2021) Do anatomical wood traits suggest adjustments in the hydraulic architecture of dominant species in Amazonian savannah? Plant Biosystems 155: 498-509. DOI: 10.1080/11263504.2020.1762782
https://doi.org/10.1080/11263504.2020.17...
). There are trade-offs of hydraulic safety versus efficiency, and vessel diameter versus frequency (Zanne et al. 2010Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ & Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97: 207-215. DOI: 10.3732/AJB.0900178
https://doi.org/10.3732/AJB.0900178...
; Carlquist 2012; Hacke et al. 2017). There are also some differences between sympatric species. RBT species exhibited differences in ray (height, frequency, width) and water transport (vessel length and pit features) features. A systematic approach allows the interpretation of these features. For example, S. hirsuta (Elaeocarpaceae), M. gardineriana (Primulaceae), and A. intermedia and B. australis (both Rubiaceae) belong to families with high, wide, and low-frequency rays (Carlquist 2001), while other species lack these features. Another example is C. lucens, P. schumanniana, and T. urbaniana of the family Leguminosae, which presents short vessels, alternate vestured intervessel pits, and vessel-ray pits with distinct borders, similar to intervessel pits in size and shape throughout the ray cell (Carlquist 2001; Baretta-Kuipers 1981Baretta-Kuipers T (1981) Wood anatomy of Leguminosae: its relevance to taxonomy. In: Polhill RM & Raven PH (eds.) Advances in Legume Systematics 2. Royal Botanic Gardens, Kew. Pp. 677-706. ), sometimes differing from species belonging to other families.

Table 5
Highest scores from the PCA performed for four Atlantic Forest areas. Scores were clipped above ±0.52

In summary, new wood anatomical data was provided here about a montane forest community in the Atlantic Forest, which was compared to data from other communities in the same biome, revealing that montane forest species have a safer and less efficient hydraulic system than lowland forest species. Regardless of the differences among these communities, they are in the Atlantic Forest and present elevated hydraulic efficiency and vulnerability to embolism, as expected for a tropical region. This study also suggests that species will possess characteristics related to their area of occurrence, growing and responding to environmental signals. It also demonstrated the importance of recognizing the functional traits of wood to better understand them and infer the responses of woody plants to future climate changes.

Acknowledgements

We are grateful to the Programa de Pesquisa em Biodiversidade na Mata Atlântica (PPBio-MA), Núcleo Sudeste, and the Reserva Biológica do Tinguá, for logistic support; and to Erik Wild, for English language review.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 001. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), for financial support.

Data availability statement

In accordance with Open Science communication practices, the authors inform that all data are available within the manuscript.

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A & Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684. DOI: 10.1016/j.foreco.2009.09.001
  • Alves E & Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21: 3-30. DOI: 22941932-90000233
    » https://doi.org/22941932-90000233
  • Anderegg WRL (2015) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist 205: 1008-1014. DOI: 10.1111/NPH.12907
    » https://doi.org/10.1111/NPH.12907
  • Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM & Laurance SGW (2015) Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS ONE 10: 1-19. DOI: 10.1371/journal.pone.0130799
    » https://doi.org/10.1371/journal.pone.0130799
  • Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ & Laurance SGW (2017) Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology 31: 582-591. DOI: 10.1111/1365-2435.12787
    » https://doi.org/10.1111/1365-2435.12787
  • Baas P, Werker E & Fahn A (1983) Some ecological trends in vessel characters. IAWA Journal 4: 141-159. DOI: 10.1163/22941932-90000407
    » https://doi.org/10.1163/22941932-90000407
  • Baas P & Wheeler EA (2011) Wood anatomy and climate change. In: Hodkinson TR, Jones MB, Waldren S & Parnell JAN (eds.) Climate change, ecology and systematics. Cambridge University Press, Cambridge. Pp. 141-155. DOI: 10.1017/CBO9780511974540.007
    » https://doi.org/10.1017/CBO9780511974540.007
  • Baas P, Beeckman H, Čufar K & De Micco V (2016) Functional traits in wood anatomy. IAWA Journal 37: 124-126. DOI: 10.1163/22941932-20160139
    » https://doi.org/10.1163/22941932-20160139
  • Barajas-Morales J (1985) Wood structural differences between trees of two tropical forests in Mexico. IAWA Journal 6: 355-364. DOI: 10.1163/22941932-90000962
    » https://doi.org/10.1163/22941932-90000962
  • Baretta-Kuipers T (1981) Wood anatomy of Leguminosae: its relevance to taxonomy. In: Polhill RM & Raven PH (eds.) Advances in Legume Systematics 2. Royal Botanic Gardens, Kew. Pp. 677-706.
  • Barros CF, Callado CH, Cunha M, Marcon ML, Tamaio N, Marquete O & Costa CG (2008) Madeiras da Mata Atlântica - anatomia do lenho de espécies ocorrentes nos remanescentes florestais do estado do Rio de Janeiro - Brasil - Vol. III. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 103p.
  • Barros CF, Callado CH, Marcon ML, Costa CG, Cunha M, Lima HRP & Marquete O (2001) Madeiras da Mata Altântica - anatomia do lenho de espécies ocorrentes nos remanescentes florestais do estado do Rio de Janeiro - Brasil - Vol. II.. 94p.
  • Barros CF, Marcon-Ferreira ML, Callado CH, Lima HRP, Cunha M, Marquete O & Costa CG (2006) Ecological trends in wood anatomy of tree species at Reserva Biológica de Poço das Antas, Rio de Janeiro, Brazil. Rodriguésia 57: 443-460. DOI: 10.1590/2175-7860200657305
    » https://doi.org/10.1590/2175-7860200657305
  • Beeckman H (2016) Wood anatomy and trait-based ecology. IAWA Journal 37: 127-151. DOI: 10.1163/22941932-20160127
    » https://doi.org/10.1163/22941932-20160127
  • Bosio F, Soffiatti P & Boeger MRT (2010) Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetation types of Paraná state, Brazil. IAWA Journal 31: 179-190. DOI: 10.1163/22941932-90000015
    » https://doi.org/10.1163/22941932-90000015
  • Bukatsch F (1972) Bemerkungen zur doppelfärbung Astrablau-safranin. Mikrokosmos 61: 33-36.
  • Burger LM & Richter HG (1991) Anatomia da madeira. Nobel, São Paulo. 160p.
  • Callado CH, Pugialli HRP, Costa CG, Cunha M, Marquete O & Barros CF (1997) Anatomia do lenho de espécies da Mata Atlântica: interpretação ecológica e indicações para aproveitamento. In: Lima HC & Guedes-Bruni RR (eds.) Serra de Macaé de Cima: diversidade florística e conservação em Mata Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Pp. 251-274.
  • Campbell G, Rabelo GR & Cunha M (2016) Ecological significance of wood anatomy of Alseis pickelii Pilg. & Schmale (Rubiaceae) in a Tropical Dry Forest. Acta Botanica Brasilica 30: 124-130. DOI: 10.1590/0102-33062015abb0267
    » https://doi.org/10.1590/0102-33062015abb0267
  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkley. 243p.
  • Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896. DOI: 10.2307/2442382
    » https://doi.org/10.2307/2442382
  • Carlquist S (1980) Further concepts in ecological wood anatomy, with comments on recent work in wood anatomy and evolution. Aliso 9: 499-553. DOI: 10.5642/aliso.19800904.02
    » https://doi.org/10.5642/aliso.19800904.02
  • Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. 2nd ed. Springer Verlag, Heidelberg. DOI: 10.1007/978-3-662-04578-7
    » https://doi.org/10.1007/978-3-662-04578-7
  • Carlquist S (2012) How wood evolves: a new synthesis. Botany 90: 901-940. DOI: 10.1139/B2012-048
    » https://doi.org/10.1139/B2012-048
  • Carlquist S & Hoekman DA (1985) Ecological wood anatomy of the woody southern Californian flora. IAWA Journal 6: 319-347. DOI: 10.1163/22941932-90000960
    » https://doi.org/10.1163/22941932-90000960
  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG & Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366. DOI: 10.1111/j.1461-0248.2009.01285.x
    » https://doi.org/10.1111/j.1461-0248.2009.01285.x
  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ & Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491: 752-755. DOI: 10.1038/nature11688
    » https://doi.org/10.1038/nature11688
  • Costa WS, Cunha M, Rodrigues PJFP, Iguatemy MA, Valladares F & Barros CF (2020) Intraspecific variation in functional wood anatomy of tropical trees caused by effects of forest edge. Forest Ecology and Management 473: 118305. DOI: 10.1016/j.foreco.2020.118305
    » https://doi.org/10.1016/j.foreco.2020.118305
  • Curtis JT & McIntosh RP (1950) The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31: 434-455. DOI: 10.2307/1931497
    » https://doi.org/10.2307/1931497
  • Dickison WC (1989) Steps toward the natural system of the dicotyledons: vegetative anatomy. Aliso 12: 555-566. DOI: 10.5642/aliso.19891203.10
    » https://doi.org/10.5642/aliso.19891203.10
  • Ewers FW, Jacobsen AL & López-Portillo J (2023) Carlquist’s indices for vulnerability and mesomorphy of wood: are they relevant today? IAWA Journal : 1-13. DOI: 10.1163/22941932-bja10113
    » https://doi.org/10.1163/22941932-bja10113
  • ForestPlots.net, Blundo C, Carilla J, Grau R, Malizia A, Malizia L, et.al (2021) Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biological Conservation 260: 108849. DOI: 10.1016/j.biocon.2020.108849
    » https://doi.org/10.1016/j.biocon.2020.108849
  • Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155: 51. DOI: 10.1038/155051a0
    » https://doi.org/10.1038/155051a0
  • Hacke UG, Jacobsen AL & Pratt RB (2022) Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal 44: 304-319. DOI: 10.1163/22941932-bja10107
    » https://doi.org/10.1163/22941932-bja10107
  • Hacke UG, Spicer R, Schreiber SG & Plavcová L (2017) An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell and Environment 40: 831-845. DOI: 10.1111/pce.12777
    » https://doi.org/10.1111/pce.12777
  • Hollunder RK, Garbin ML, Scarano FR & Mariotte P (2022) Regional and local determinants of drought resilience in tropical forests. Ecology and Evolution 12: e8943. DOI: 10.1002/ece3.8943
    » https://doi.org/10.1002/ece3.8943
  • IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin 10: 219-332.
  • IBGE (2012) Manual técnico da vegetação brasileira. Instituto Brasileiro de Geografia e Estatística - IBGE, Rio de Janeiro. 271p.
  • Iguatemy MA, Neto SJS, Lobão A, Bovini MG, Braga JMA, Negreiros FF, Lima HC, Rodrigues PJFP, Jesus MFS, Hottz D, Lima MSC, Ramos E, Quinet A, Souza M, Pessoa SVA, Kurtz BC & Barros CF (2017) An annotated checklist of Atlantic rainforest trees in southeastern Brazil, Tinguá Biological Reserve, Rio de Janeiro. Journal of the Botanical Research Institute of Texas 11: 479-497.
  • Johansen D (1940) Plant microtechnique. McGraw-Hill, New York, London. 523p.
  • Joly CA, Metzger JP & Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytologist 204: 459-473. DOI: 10.1111/nph.12989
    » https://doi.org/10.1111/nph.12989
  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22: 569-574. DOI: 10.1016/J.TREE.2007.09.006
    » https://doi.org/10.1016/J.TREE.2007.09.006
  • Lachenbruch B & Mcculloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist 204: 747-764. DOI: 10.1111/nph.13035
    » https://doi.org/10.1111/nph.13035
  • Macedo TM, Lima HC, Souza ND, Gonçalves AC, Costa CG & Barros CF (2019) Intraspecific variation of Paubrasilia echinata (Fabaceae) wood along a latitudinal gradient in Brazil. Flora 258: 151437. DOI: 10.1016/j.flora.2019.151437
    » https://doi.org/10.1016/j.flora.2019.151437
  • Machado SR, Angyalossy-Alfonso V & Morretes BL (1997) Comparative wood anatomy of root and stem in Styrax camporum (Styracaceae). IAWA Journal 18: 13-25. DOI: 10.1163/22941932-90001454
    » https://doi.org/10.1163/22941932-90001454
  • Marques JBC, Callado CH, Rabelo GR, Silva Neto SJ & Cunha M (2015) Comparative wood anatomy of species of Psychotria L. (Rubiaceae) in Atlantic Rainforest remnants of Rio de Janeiro state, Brazil. Acta Botanica Brasilica 29: 433-444. DOI: 10.1590/0102-33062015ABB0006
    » https://doi.org/10.1590/0102-33062015ABB0006
  • Martins FR (1991) Estrutura de uma floresta mesofila. UNICAMP, Campinas. 246p.
  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG & Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178: 719-739. DOI: 10.1111/J.1469-8137.2008.02436.X
    » https://doi.org/10.1111/J.1469-8137.2008.02436.X
  • Melo Júnior JCF, Amorim MW, Oliveira GB & Vieira CV (2017) Wood functional anatomy of Chiococca alba Hitch. (Rubiaceae) from cerrado. Acta Biológica Catarinense 4: 52-61.
  • Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J & Fonseca GAB (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City. 392p.
  • MMA & IBAMA (2006) Plano de Manejo da Reserva Biológica do Tinguá. MMA/IBAMA, Distrito Federal. 951p.
  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB & Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858. DOI: 10.1038/35002501
    » https://doi.org/10.1038/35002501
  • Noshiro S, Ikeda H & Joshi L (2010) Distinct altitudinal trends in the wood structure of Rhododendron arboreum (Ericaceae) in Nepal. IAWA Journal 31: 443-456. DOI: 10.1163/22941932-90000034
    » https://doi.org/10.1163/22941932-90000034
  • Noshiro S & Suzuki M (1995) Ecological wood anatomy of Nepalese Rhododendron (Ericaceae). 2. Intraspecific variation. Journal of Plant Research 108: 217-233. DOI: 10.1007/BF02344347
    » https://doi.org/10.1007/BF02344347
  • Noshiro S, Suzuki M, Joshi L, Ikeda H & Ohba H (2020) Ecological wood anatomy of Alnus nepalensis (Betulaceae) throughout Nepal. IAWA Journal 41: 261-277. DOI: 10.1163/22941932-BJA10013
    » https://doi.org/10.1163/22941932-BJA10013
  • Noshiro S, Suzuki M & Ohba H (1995) Ecological wood anatomy of Nepalese Rhododendron (Ericaceae). 1. Interspecific variation. Journal of Plant Research 108: 1-9. DOI: 10.1007/BF02344299
    » https://doi.org/10.1007/BF02344299
  • Olson ME (2020) From Carlquist’s ecological wood anatomy to Carlquist’s Law: why comparative anatomy is crucial for functional xylem biology. American Journal of Botany 107: 1328-1341. DOI: 10.1002/ajb2.1552
    » https://doi.org/10.1002/ajb2.1552
  • Olson ME (2023) A skeptic’s guide to Sherwin Carlquist’s inferences of xylem function. IAWA Journal : 44: 287-303. DOI: 10.1163/22941932-bja10109
    » https://doi.org/10.1163/22941932-bja10109
  • Olson ME, Anfodillo T, Rosell JA & Martínez-Méndez N (2020) Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. Plant, Cell & Environment 43: 3068-3080. DOI: 10.1111/PCE.13884
    » https://doi.org/10.1111/PCE.13884
  • Olson ME, Pace MR & Anfodillo T (2023) The vulnerability to drought-induced embolism-conduit diameter link: breaching the anatomy-physiology divide. IAWA Journal : 44: 335-354. DOI: 10.1163/22941932-bja10123
    » https://doi.org/10.1163/22941932-bja10123
  • Pandey S (2021) Climatic influence on tree wood anatomy: a review. Journal of Wood Science 67: 24. DOI: 10.1186/S10086-021-01956-W
    » https://doi.org/10.1186/S10086-021-01956-W
  • Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO & Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908-1920. DOI: 10.1890/07-0207.1
    » https://doi.org/10.1890/07-0207.1
  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA & Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 16: 208-214. DOI: 10.1016/j.pecon.2018.10.002
    » https://doi.org/10.1016/j.pecon.2018.10.002
  • Ribeiro MLC & Barros CF (2006) Variação intraspecífica do lenho de Pseudopiptadenia contorta (DC.) G.P. Lewis & M.P. Lima (Leguminosae - Mimosoideae) de populações ocorrentes em dois remanescentes de Floresta Atlântica. Acta Botanica Brasilica 20: 839-844. DOI: 10.1590/S0102-33062006000400009
    » https://doi.org/10.1590/S0102-33062006000400009
  • Rosado BHP, Joly CA, Burgess SSO, Oliveira RS & Aidar MPM (2016) Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees 30: 47-61. DOI: 10.1007/s00468-015-1165-8
    » https://doi.org/10.1007/s00468-015-1165-8
  • Sass JE (1958) Elements of botanical microtechnique. McGraw- Hill Book Company Inc, New York. 222p.
  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Annals of Botany 90: 517-524. DOI: 10.1093/aob/mcf189
    » https://doi.org/10.1093/aob/mcf189
  • Scarano FR & Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation 24: 2319-2331. DOI: 10.1007/s10531-015-0972-y
    » https://doi.org/10.1007/s10531-015-0972-y
  • Simioni P, Campbell G, Pinto VD, Castelar JVS, Pessoa MJG, Silva IV & Cunha M (2021) Do anatomical wood traits suggest adjustments in the hydraulic architecture of dominant species in Amazonian savannah? Plant Biosystems 155: 498-509. DOI: 10.1080/11263504.2020.1762782
    » https://doi.org/10.1080/11263504.2020.1762782
  • Soffiatti P, Boeger MRT, Nisgoski S & Kauai F (2016) Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque 37: 21-31. DOI: 10.4067/S0717-92002016000100003
    » https://doi.org/10.4067/S0717-92002016000100003
  • SOS Mata Atlântica & INPE (2023) Atlas dos remanescentes florestais da Mata Atlântica período 2021-2022. SOS Mata Atlântica, São Paulo. 61p.
  • Sperry JS (2003) Evolution of water transport and xylem structure. International Journal of Plant Sciences 164: S115-S127. DOI: 10.1086/368398
    » https://doi.org/10.1086/368398
  • Sperry JS & Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis Plant, Cell & Environment 17: 1233-1241. DOI: 10.1111/j.1365-3040.1994.tb02021.x
    » https://doi.org/10.1111/j.1365-3040.1994.tb02021.x
  • Sperry JS & Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology 100: 605-613. DOI: 10.1104/pp.100.2.605
    » https://doi.org/10.1104/pp.100.2.605
  • Strasburger E (1924) Handbook of practical botany. MacMillan, New York. 532p.
  • Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF & Laurance SGW (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479-12491. DOI: 10.1002/ECE3.4601
    » https://doi.org/10.1002/ECE3.4601
  • Tyree MT & Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x
    » https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
  • van der Graaff NA & Baas P (1974) Wood anatomical variation in relation to latitude and altitude. Blumea 22: 101-121.
  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213-227. DOI: 10.1023/A:1004327224729/METRICS
    » https://doi.org/10.1023/A:1004327224729/METRICS
  • Wheeler EA, Baas P & Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Insidewood database. IAWA Journal 28: 229-258. DOI: 10.1163/22941932-90001638
    » https://doi.org/10.1163/22941932-90001638
  • Wheeler EA & Baas P (1991) A survey of the fossil record for dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Journal 12: 275-318. DOI: 10.1163/22941932-90001256
    » https://doi.org/10.1163/22941932-90001256
  • Wheeler EA & Baas P (2019) Wood evolution: baileyan trends and functional traits in the fossil record. IAWA Journal 40: 2-42. DOI: 10.1163/22941932-40190230
    » https://doi.org/10.1163/22941932-40190230
  • Wiemann MC, Wheeler EA, Manchester SR & Portier KM (1998) Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeography, Palaeoclimatology, Palaeoecology 139: 83-100. DOI: 10.1016/S0031-0182(97)00100-4
    » https://doi.org/10.1016/S0031-0182(97)00100-4
  • Wiemann MC, Manchester SR & Wheeler EA (1999) Paleotemperature estimation from dicotyledonous wood anatomical characters. Palaios 14: 459-474. DOI: 10.2307/3515397
    » https://doi.org/10.2307/3515397
  • Wiemann MC, Dilcher DL & Manchester SR (2001) Estimation of mean annual temperature from leaf and wood physiognomy. Forest Science 47: 141-149. DOI: 10.1093/FORESTSCIENCE/47.2.141
    » https://doi.org/10.1093/FORESTSCIENCE/47.2.141
  • Woodcock DW, Reynel C & Santos G (2000) Wood characteristics of Amazon Forest Types. IAWA Journal 21: 277-292. DOI: 10.1163/22941932-90000248
    » https://doi.org/10.1163/22941932-90000248
  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ & Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97: 207-215. DOI: 10.3732/AJB.0900178
    » https://doi.org/10.3732/AJB.0900178
  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Heidelberg. 146p. DOI: 978-3-662-22627-8
    » https://doi.org/978-3-662-22627-8

Edited by

Area Editor:

Dra. Mariana Alves

Publication Dates

  • Publication in this collection
    17 June 2024
  • Date of issue
    2024

History

  • Received
    25 Aug 2023
  • Accepted
    08 Apr 2024
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br