Acessibilidade / Reportar erro

Charcoal anatomy of Brazilian species. III. Melastomataceae

Abstract

Charcoal anatomy descriptions are paramount for identifying unknown charcoal specimens in different contexts. They form an integral part of anthracological studies, which can provide crucial information for researchers of different expertise. This paper describes the charcoal anatomy of 21 species in two subfamilies (Melastomatoideae and Olisbeoideae) of Melastomataceae native to Brazil. From those, six species are here described for the first time. The results point to clear distinction between the anatomical types inside the two studied subfamilies along with a relative homogeneity in anatomical features inside Melastomatoideae. For the latter, small qualitative and quantitative differences were identified, but intrageneric and interspecific variability hamper reliable identification in generic or tribe level.

Key words:
anthracology; archaeobotany; nature conservancy; palaeoecology

Resumo

Descrições da anatomia do carvão são indispensáveis para a identificação de fragmentos de carvão desconhecidos em diferentes contextos. Elas formam uma parte integral dos estudos antracológicos, e podem fornecer informações cruciais para pesquisadoras e pesquisadores de diversas especialidades. O presente artigo analisa a anatomia do carvão de 21 espécies de duas subfamílias (Melastomatoideae e Olisbeoideae) de Melastomataceae nativas do Brasil. Destas, seis espécies são descritas pela primeira vez. Os resultados apontam para uma distinção clara entre os tipos anatômicos dentro das duas subfamílias, além de uma relativa homogeneidade em características anatômicas dentro de Melastomatoideae. Para a última, pequenas diferenças qualitativas e quantitativas foram identificadas, mas a variabilidade intragenérica e interespecífica dificulta a identificação confiável a nível de gênero ou tribo.

Palavras-chave:
antracologia; arqueobotânica; conservação da natureza; paleoecologia.

Introduction

Charcoal, a key material for the study of past societies, is often well preserved in archaeological sites. A charcoal piece can be analyzed and identified even after thousands of years of deposition, allowing the reconstruction of the plant environment and providing multiple data regarding human use, such as technological and ritual practices, firewood economy, wood uses, and others (Figueiral & Mosbrugger 2000Figueiral I & Mosbrugger V (2000) A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 397-407. DOI: 10.1016/S0031-0182(00)00195-4
https://doi.org/10.1016/S0031-0182(00)00...
; Pearsall 2015Pearsall DM (2015) Paleoethnobotany: a handbook of procedures. 3rd ed. Left Coast Press, New York. 917p. DOI: 10.4324/9781315423098
https://doi.org/10.4324/9781315423098...
; Scheel-Ybert 2020Scheel-Ybert R (2020) Anthracology (Charcoal Analysis). In: Smith (ed.) Encyclopedia of global archaeology. 2nd ed. Springer-Verlag, New York. Pp. 408-418. DOI: 10.1007/978-3-030-30018-0_3201
https://doi.org/10.1007/978-3-030-30018-...
). Charcoal analysis is also important in paleoecological and modern contexts. For instance, it can be a key ally in the effort of reducing illegal wood extraction from native biomes - which proceed from the possibility of recognizing the exploited species through their charcoal anatomy (e.g., Gonçalves & Scheel-Ybert 2012Gonçalves TAP, Marcati CR & Scheel-Ybert R (2012) The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA Journal 33: 73-90. DOI: 10.1163/22941932-90000081
https://doi.org/10.1163/22941932-9000008...
, 2016; Gonçalves et al. 2018). Studies of charcoal anatomy are also crucial for identifying unknown charcoals, whether archaeological, paleoecological or modern.

Anthracology is the science that identifies and interprets charcoal remains. Taxonomic identification is based on wood anatomy. This is possible due to the preservation of the anatomical structure of charred wood (Prior & Alvin 1983Prior J & Alvin KL (1983) Structural changes on charring woods of Dichrostachys and Salix from southern Africa. IAWA Bulletin 4: 197-206. <https://www.cabidigitallibrary.org/doi/full/10.5555/19840691363>. Access on 25 September 2018.
https://www.cabidigitallibrary.org/doi/f...
; Prior & Gasson 1993; Braadbaart & Poole 2008Braadbaart F & Poole I (2008) Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeological Science 35: 2434-2445. DOI: 10.1016/j.jas.2008.03.016
https://doi.org/10.1016/j.jas.2008.03.01...
). Diagnostic anatomical features allow archaeological, pedological or extant unknown specimens to be identified to generic or even specific level (Scheel-Ybert 2020Scheel-Ybert R (2020) Anthracology (Charcoal Analysis). In: Smith (ed.) Encyclopedia of global archaeology. 2nd ed. Springer-Verlag, New York. Pp. 408-418. DOI: 10.1007/978-3-030-30018-0_3201
https://doi.org/10.1007/978-3-030-30018-...
). This identification, however, depends on the availability of good reference material, such as comparative collections containing well identified modern specimens, but especially wood and charcoal anatomy publications (Scheel-Ybert 2016).

In the last decade, a large investment has been made in charcoal studies for the Brazilian flora. The comparison of wood and charcoal anatomy demonstrated that anatomical changes due to carbonization are of low magnitude and do not prevent charcoal identification (Leme et al. 2010Leme CLD, Cartwright C & Gasson P (2010) Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA Journal 31: 333-351. DOI: 10.1163/22941932-90000027
https://doi.org/10.1163/22941932-9000002...
; Gonçalves et al. 2012Gonçalves TAP, Marcati CR & Scheel-Ybert R (2012) The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA Journal 33: 73-90. DOI: 10.1163/22941932-90000081
https://doi.org/10.1163/22941932-9000008...
). Several charcoal anatomy descriptions aiming to assist anthracological studies and/or to contribute to controlling the use of illegal logged native wood as charcoal have been published since (Nisgoski et al. 2012Nisgoski S, Muñiz GIB, Trianoski R, Matos JLM & Venson I (2012) Características anatômicas da madeira e índices de resistência do papel de Schizolobium parahyba (Vell.) Blake proveniente de plantio experimental. Scientia Forestalis, Piracicaba 40: 203-211.; Gonçalves & Scheel-Ybert 2016Scheel-Ybert R (2016) Charcoal collections of the world. IAWA Journal 37: 489-505. DOI: 10.1163/22941932-20160148
https://doi.org/10.1163/22941932-2016014...
; Muñiz et al. 2016Muñiz GIB, Carneiro ME, Batista R, Rodrigues F, Schardosin FZ & Nisgoski S (2016) Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy. Maderas. Ciencia y Tecnología 18: 505-522. DOI: 10.4067/S0718-221X2016005000045
https://doi.org/10.4067/S0718-221X201600...
; Carvalho et al. 2017Carvalho AF, Brand MA, Nisgoski S, Muñiz GIB, Friederichs G, Kuster LC & Santos TS (2017) Anatomia do carvão oriundo de cinco espécies comercializadas no estado de Santa Catarina. Revista Ciência da Madeira 8: 158-167.; Pinto et al. 2017Pinto AA, Giongo C & Scheel-Ybert R (2017) Anatomia do lenho carbonizado de 10 espécies nativas da Planície Costeira do Rio Grande do Sul: subsídio a pesquisas arqueobotânicas e paleoecológicas. Cad LEPAARQ 14: 480-511. DOI: 10.15210/lepaarq.v14i27.9661
https://doi.org/10.15210/lepaarq.v14i27....
; Scheel-Ybert & Gonçalves 2017; Gonçalves et al. 2018; Souza-Pinto & Scheel-Ybert 2021Souza-Pinto NR & Scheel-Ybert R (2021) Charcoal anatomy of Brazilian species. II. 15 native species occurring in Atlantic or Amazon rainforest. Anais da Academia Brasileira de Ciências 93: e20190983. DOI: 10.1590/0001-3765202120190983
https://doi.org/10.1590/0001-37652021201...
). In order to contribute to this effort, this work is part of a series intended to assist anthracological and wood anatomy studies and to improve our knowledge of tropical species.

Melastomataceae is a large botanical family widely distributed in tropical and subtropical regions. It is composed of 173 genera and about 6,000 species. Although pantropically distributed, the family has a marked concentration of species in the New World where there are 3,741 species in 84 genera. From these, 11 genera and 1,453 species are endemic to Brazil (Ulloa Ulloa et al. 2022Ulloa Ulloa C, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, Penneys DS, Stone RD & Veranso-Libalah MC (2022) Melastomataceae: global diversity, distribution, and endemism. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 3-28. DOI: 10.1007/978-3-030-99742-7_1
https://doi.org/10.1007/978-3-030-99742-...
).

Melastomataceae’s economic and medicinal importance nowadays is poorly known, as most of its uses refer to ornamental purposes. Among the few species more widely known as medicinal, several belong to the genus Pleroma s.l., used to ease pains in general (Cruz & Kaplan 2004Cruz AVM & Kaplan MAC (2004) Uso medicinal de espécies das famílias Myrtaceae e Melastomataceae no Brasil. Floresta e Ambiente 11: 47-52.). On the other hand, this family has high ecological relevance. It comprises many pioneer species, of great importance in Atlantic and Amazonian Forests and in several other Brazilian and tropical biomes as well. For this reason, they are largely used for ecological restoration (Albuquerque et al. 2013Albuquerque LB, Aquino FG, Costa LC, Miranda ZJG & Sousa SR (2013) Espécies de Melastomataceae Juss. com potencial para restauração ecológica de mata ripária no Cerrado. Polibotánica 35: 1-19. <https://polibotanica.mx/index.php/polibotanica/article/view/400>. Access on 25 September 2018.
https://polibotanica.mx/index.php/polibo...
).

On account of its ecological and cultural importance, Melastomataceae charcoal is very frequently found in archaeological sites (e.g., Scheel-Ybert 2000Scheel-Ybert R (2000) Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Review of Palaeobotany and Palynology 110: 111-138. DOI: 10.1016/S0034-6667(00)00004-X
https://doi.org/10.1016/S0034-6667(00)00...
; Bianchini et al. 2007Bianchini GF, Scheel-Ybert R & Gaspar MD (2007) Estaca de Lauraceae em contexto funerário (sítio Jaboticabeira II, Santa Catarina, Brasil). Revista do Museu de Arqueologia e Etnologia, São Paulo 17: 223-229. DOI: 10.11606/issn.2448-1750.revmae.2007.89777
https://doi.org/10.11606/issn.2448-1750....
; Beauclair et al. 2009Beauclair M, Scheel-Ybert R, Bianchini GF & Buarque A (2009) Fire and ritual: bark hearths in South-American Tupiguarani mortuary rites. Journal of Archaeological Science 36: 1409-1415. DOI: 10.1016/j.jas.2009.02.003
https://doi.org/10.1016/j.jas.2009.02.00...
; Bianchini & Scheel-Ybert 2012; Caromano et al. 2013Caromano CF, Cascon LM, Neves EG & Scheel-Ybert R (2013) Revealing fires and rich diets: macro-and micro-archaeobotanical analysis at the Hatahara Site, Central Amazonia. Tipití 11: 40-51. <https://digitalcommons.trinity.edu/tipiti/vol11/iss2/5>. Access on 25 September 2018.
https://digitalcommons.trinity.edu/tipit...
; Scheel-Ybert et al. 2014, 2016; Bachelet & Scheel-Ybert 2017Bachelet C & Scheel-Ybert R (2017) Landscape and firewood selection in the Santa Elina rock shelter (Mato Grosso, Brazil) during the Holocene. Quaternary International 431: 52-60. DOI: 10.1016/j.quaint.2015.12.019
https://doi.org/10.1016/j.quaint.2015.12...
; Capucho & Scheel-Ybert 2019Capucho TCJP & Scheel-Ybert R (2019) Paisagem do sítio da Ilha Redonda, Monumento Natural das Ilhas Cagarras (Rio de Janeiro) na época da colonização. Revista de Arqueologia 32: 268-274. DOI: 10.24885/sab.v32i2.715
https://doi.org/10.24885/sab.v32i2.715...
). However, it is rarely identified lower than family level, because of the great homogeneity of its wood anatomy (Détienne & Jacquet 1983Détienne P & Jacquet P (1983) Atlas d’identification des bois de l’Amazonie et des régions voisines. Centre Technique Forestier Tropical, Nogent-Sur-Marne. 640p.; Scheel-Ybert 1998).

The wood anatomy of Melastomataceae is as yet incompletely known, largely because the family is composed mostly by shrubs, while its few trees are not economically valuable (Metcalfe & Chalke 1950Metcalfe CR & Chalk L (1950) Anatomy of the dicotyledons. 2 vols. Clarendon Press, Oxford. 1500p. ; Van Vliet 1981Van Vliet GJCM, Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.). Better taxonomic identifications depend on improving the knowledge on its charcoal anatomy. For that, it is key to investigate its anatomical features, in order to increase the knowledge on the wood and charcoal anatomy and verify the reliability of genera and species-level identifications. In doing so, this study aims to contribute not only to Anthracology, but also to Wood Anatomy and to other charcoal-related researches, such as Paleoecology, Paleobotany, Wood Anatomy, Forensics, Forest Sciences, and others.

Material and Methods

In this paper, we follow the classification of Melastomataceae as given in Penneys et al. (2022Penneys DS, Almeda A, Reginato M, Michelangeli FA, Goldenberg R, Fritsch PW & Stone RD (2022) A new Melastomataceae classification informed by molecular phylogenetics and morphology. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 109-165. DOI: 10.1007/978-3-030-99742-7_5
https://doi.org/10.1007/978-3-030-99742-...
), divided in three subfamilies, Melastomatoideae, Olisbeoideae and Kibessioideae (since this subfamily has no occurrence in Brazil, it was not mentioned in this paper), with Melastomatoideae comprising 21 tribes. Genera classification inside each tribe was regarded as put by Ulloa Ulloa et al. (2022Ulloa Ulloa C, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, Penneys DS, Stone RD & Veranso-Libalah MC (2022) Melastomataceae: global diversity, distribution, and endemism. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 3-28. DOI: 10.1007/978-3-030-99742-7_1
https://doi.org/10.1007/978-3-030-99742-...
), Michelangeli et al. (2022Michelangeli FA, Dellinger AS, Goldenberg R, Almeda F, Mendoza-Cifuentes H, Fernández-Fernández D, Ulloa Ulloa C & Penneys DS (2022) Phylogenetics and taxonomy of the tribe Merianieae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae. Springer, Cham. Pp. 255-273. DOI: 10.1007/978-3-030-99742-7_11
https://doi.org/10.1007/978-3-030-99742-...
), Stone (2022Stone RD (2022) Phylogeny and circumscription of the subfamily Olisbeoideae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 167-192. DOI: 10.1007/978-3-030-99742-7_6
https://doi.org/10.1007/978-3-030-99742-...
), Veranso-Libalah et al. (2022Veranso-Libalah MC, Stone RD, Kadereit G & Guimarães PJF (2022) Systematics and taxonomy of the tribe Melastomateae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 429-463. DOI: 10.1007/978-3-030-99742-7_21
https://doi.org/10.1007/978-3-030-99742-...
).

Twenty-nine charcoal samples of 21 species from 2 subfamilies of Melastomataceae native to Brazil were described. The samples were deposited in the charcoal collection of the Laboratório de Arqueobotânica e Paisagem (RAwa), Museu Nacional, Federal University of Rio de Janeiro, that was unfortunately almost entirely lost on the fire that struck the institution in September, 2018. They are the following:

Subfamily Melastomatoideae: Tribe Pyramieae: Huberia glazioviana Cogn.; H. ovalifolia DC.; H. semiserrata DC.; Tribe Merianieae: Meriania excelsa (Gardner) Cogn.; M. robusta Cogn.; Tribe Miconieae: Miconia albicans (Sw.) Triana.; M. breviflora (Cogn.) R. Goldenb.; M. cinnamomifolia (DC.) Naudin.; M. dasytricha (A. Gray) R. Goldenb.; M. minutiflora (Bonpl.) DC.; M. mirabilis (Aubl.) L.O. Williams.; M. sellowiana Naudin.; M. stenostachya DC.; M. tristis Spring.; Miconia sp. [formely in Leandra sp.]; Tribe Melastomateae: Pleroma arboreum (Gardner.) Cogn.; P. estrellense (Raddi) P.J.F. Guim. & Michelang; P. granulosum (Desr.) D. Don.; P. stenocarpum (Schrank et Mart. ex DC.) Triana.

Subfamily Olisbeoideae: Mouriri chamissoana Cogn.; Mouriri sp.

The wood samples were obtained through donations from institutional wood collections, where they were already taxonomically identified by specialists: Instituto de Pesquisas Tecnológicas do Estado de São Paulo (BCTw), Instituto de Botânica de São Paulo (SPw), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (RBw), and Instituto Florestal de São Paulo (SPSFw). Samples were wrapped in aluminum foil and carbonized in a muffle furnace at 400 ºC during 40 minutes (Scheel-Ybert 2004Scheel-Ybert R (2004) Teoria e métodos em antracologia. 2. Técnicas de campo e de laboratório. Arquivos do Museu Nacional 62: 343-356.).

Charcoal samples were manually split according to the three fundamental wood sections: transversal, longitudinal tangential, and longitudinal radial. They were then examined under a reflected light brightfield/darkfield Zeiss AxioScope.A1 microscope. Descriptions followed the procedures and terminology recommended by the International Association of Wood Anatomists (IAWA Committee 1989), except for intervessel pits size, for which the internal horizontal diameter of pits apertures was measured (Scheel-Ybert & Gonçalves 2017Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.).

Quantitative data were obtained using an ocular micrometer. They were based on 25 measurements of tangential vessel diameter and 10 measurements for the other parameters. Results are presented as arithmetic means and range (minimum and maximum values). The measurement of characters with diagnostic and identification value was prioritized. For this reason, some characters that are frequently considered in wood anatomy studies were not taken into account here, such as ray height and width (in μm), vessel element length, and fibres pitting. Fibres pitting, although important for wood identification, is of small value for charcoal identification, because the homogenization of cell walls during carbonization often prevents the identification of bordered pits (Scheel-Ybert & Gonçalves 2017Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.). The codes alongside the charcoal characteristics in the anatomical descriptions correspond to their IAWA Feature Number (IAWA Committee 1989). Photographs were obtained using the ZEN Microscopy Software with extended focus tool. A representative plate of each taxonomic group is given along their descriptions in the results section.

Taxonomic classification was revised according to the Brazilian Flora [Flora e Funga do Brasil 2022 (continuously updated)] and the Melastomataceae.Net (2007-2024) databases. Data regarding vernacular names, geographical distribution, ecological data, and uses were obtained from the specialized literature and from the List of Species of the Brazilian Flora [Flora e Funga do Brasil 2022 (continuously updated)]. They are presented in Table S1 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25818352>).

Results

All genera, in both subfamilies, present medium mean vessels diameter (all species between 50 and 100 µm or very close to it) and few to moderately numerous vessels (7 to 40 vessels/mm2), with few species presenting a higher vessel frequency (up to 100 vessels/mm2) (Tab. S2, available on supplementary material <https://doi.org/10.6084/m9.figshare.25818352>). While Mouriri (Olisbeoideae) presents only non-septate fibres, Melastomatoideae exhibit great intrageneric variation, some species presenting only septate fibres, others only non-septate fibres, and others still presenting both types in the same specimens. Mineral inclusions are very common in Mouriri (Olisbeoideae) and generally absent in Melastomatoideae, except for one individual of Miconia cinnamomifolia that exhibited raphides in ray cells.

Wood anatomical descriptions for each genus follow. The species were ordered according to their taxonomic classification. A synthesis of the main anatomical features of the studied species are presented in Table S2 (available on supplementary material <https://doi.org/10.6084/m9.figshare.25818352>). A dichotomous key was also constructed.

Family: Melastomataceae Juss.

Subfamily: Melastomatoideae Ser. ex DC.

Tribe: Pyramieae Naudin.

Huberia DC.Fig. 1

Growth ring boundaries: Indistinct or absent (2). Vessels: Wood diffuse-porous (5); random arrangement; solitary (48.8%) and multiple (51.2%). Tangential diameter 91(70-130) µm, but 60(50-80) µm in H. glazioviana; 26(12-49) vessels/mm². Solitary vessel outline circular to oval. Simple perforation plates (13). Intervessel pits alternate (22); vestured; aperture diameter 14.5(10-20) µm, but 8(6-10) µm in H. semiserrata. Vessel-ray pits larger than intervessel pits (borders much reduced to apparently simple); rounded (31); horizontal and vertical (32). Tyloses absent in H. ovalifolia, rare in H. glazioviana and common in H. semiserrata. Fibres: Septate (65); very thin-walled (68) to thin-to-thick-walled (69); faint parenchyma-like fibre bands alternating with ordinary fibres (67). Axial Parenchyma: Parenchyma scanty paratracheal (78). 1-3 cells per parenchyma strand. Rays: Exclusively uniseriate (96); 20(15-25) rays/mm; all ray cells upright and/or square (105).

Material studied: Huberia glazioviana Cogn.: RIO DE JANEIRO, Macaé de Cima (RBw 7296, RAwa 1159). Huberia ovalifolia DC.: RIO DE JANEIRO, Gávea Pequena (RBw 3235, RAwa 1160). Huberia semiserrata DC. (Fig. 1a-c). SÃO PAULO, Parque do Estado (BCTw 644, RAwa 1161).

Tribe: Merianieae Triana.

Meriania Sw.Fig. 2

Growth ring boundaries: Indistinct or absent (2). Vessels: Wood diffuse-porous (5); random arrangement; solitary (56.4%) and multiple (43.6%). Tangential diameter 61(40-80) µm; 44.5(34-69) vessels/mm². Solitary vessel outline circular to oval. Simple perforation plates (13). Intervessel pits alternate (22); vestured; aperture diameter 7(6-10) µm. Vessel-ray pits larger than intervessel pits (borders much reduced to apparently simple); rounded (31); horizontal and vertical (32). Tyloses absent in M. excelsa and rare in M. robusta. Fibres: Septate (65) and non-septate (66) in M. excelsa, or exclusively non-septate (66) in M. robusta; very thin-walled (68); faint parenchyma-like fibre bands alternating with ordinary fibres (67). Axial Parenchyma: Scanty paratracheal (78); 2-4 cells per parenchyma strand. Rays: Exclusively uniseriate (96) [M. robusta] or 1-3-seriate (97) [M. excelsa]; 10(6-13) rays/mm; all ray cells upright and/or square (105).

Material studied: Meriania excelsa (Gardner) Cogn. (Fig. 2a-c): RIO DE JANEIRO, Parque Nacional da Serra dos Órgãos (RBw 2180, RAwa 1167). Meriania robusta Cogn.: RIO DE JANEIRO, Macaé de Cima (RBw 7275, RAwa 1168).

Tribe: Miconieae DC.

Miconia Ruiz & Pav.Fig. 3

Growth ring boundaries: Indistinct or absent, or sometimes boundaries marked by weakly distinguished early and thick-walled latewood fibres [RAwa 1173; RAwa 1174]. Vessels: Wood diffuse-porous (5); random arrangement; solitary (51.5%) and multiple (48.5%). Tangential diameter 77.5(50-130) µm, or 51(30-80) µm [M. albicans, M. breviflora, M. dasytricha and M. stenostachya] and 91(70-100) µm [Miconia sp.]; 16(11-20) to 94.6(75-139) vessels/mm². Solitary vessel outline circular to oval. Simple perforation plates (13). Intervessel pits alternate (22); vestured; aperture diameter 2.6(2-6) µm or 4(3-5) µm in Miconia sp., 7(5-8) in M. dasytricha, 7(6-10) µm in M. mirabilis, and 7.4(6-10) in M. robusta. Vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30) [M. albicans, M. cinnamomifolia, M. minutiflora, M. sellowiana and M. stenostachya] or larger than intervessel pits (borders much reduced to apparently simple); rounded (31); horizontal and vertical (32) [M. breviflora, M. dasytricha, M. mirabilis and M. tristis]. Tyloses absent in M. albicans, M. breviflora, M. cinnamomifolia, M. dasytricha, M. sellowiana, M. stenostachya, M. tristis and Miconia sp., rare in M. cinnamomifolia (SPw 1139), M. minutiflora, M. mirabilis, and common in M. cinnamomifolia (BCTw 16253). Fibres: Septate (65) and non-septate (66), or exclusively septate (65) in M. mirabilis and M. stenostachya; very thin-walled (68) or thin-to-thick-walled (69); faint parenchyma-like fibre bands alternating with ordinary fibres (67). Axial Parenchyma: Scanty paratracheal (78); 1-6 cells per parenchyma strand. Rays: Exclusively uniseriate (96), and rarely 2-seriate [M. sellowiana]; 14(8-28) rays/mm [6(4-10) rays/mm in M. albicans]; all ray cells upright and/or square (105). Rare procumbent cells in M. minutiflora, M. sellowiana, and M. tristis. Mineral inclusions: Rare raphides crystals on the rays (149) in M. cinnamomifolia (RAwa 1171).

Figure 1 -
a-c. Huberia semiserrata (BCTw 644, RAwa 1161) - a. transverse section; b. tangential section; c. radial section. Bars = 100 µm

Figure 2
a-c. Meriania excelsa (RBw 2180, RAwa 1167) - a. transverse section; b. tangential section; c. radial section. Bars = 100 µm.

Figure 3
a-c. Miconia stenostachya (BCTw 6366, RAwa 1184) - a. transverse section; b. tangential section; c. radial section. Bars = 100 µm.

Material studied: Miconia albicans (Sw.) Triana.: SÃO PAULO, Itirapina (SPw 200, RAwa 1169). Miconia breviflora (Cogn.) R. Goldenb.: RIO DE JANEIRO, Macaé de Cima (RBw 7253, RAwa 1162). Miconia cinnamomifolia (DC.) Naudin.: SÃO PAULO, Serra da Cantareira (SPSFw 1667, RAwa 1174); SÃO PAULO (RBw 1705, RAwa 1173); SÃO PAULO, Jardim Botânico (SPw 1139, RAwa 1175). MINAS GERAIS, Universidade Federal de Viçosa (BCTw 16253, RAwa 1171). Miconia dasytricha (A. Gray) R. Goldenb.: SÃO PAULO, Ilha Bela (BCTw 19139, RAwa 1163). Miconia minutiflora (Bonpl.) DC.: PARÁ, Belém (SPSFw 836, RAwa 1180). Miconia mirabilis (Aubl.) L.O.Williams.: RIO DE JANEIRO, Mesa do Imperador (RBw 1248, RAwa 1179). Miconia sellowiana Naudin.: SÃO PAULO, Parque do Estado (BCTw 633, RAwa 1181). Miconia stenostachya DC. (Fig. 3a-c): PARÁ, Belém (BCTw 6366, RAwa 1184). Miconia tristis Spring.: RIO DE JANEIRO, Parque Nacional da Serra dos Órgãos (RBw 2188, RAwa 1187). Miconia sp. [Leandra sp.] SÃO PAULO, Chapada (BCTw 647, RAwa 1164).

Tribe: Melastomateae Bartl.

Pleroma D.Don.Fig. 4

Growth ring boundaries: Indistinct or absent (2). Vessels: Wood diffuse-porous (5); random arrangement; solitary (38%) and multiple (62%) (64.4% solitary and 35.6% multiple in P. granulosum and P. estrellense). Tangential diameter 92(50-150) µm, 15.5(8-32) vessels/mm². Solitary vessel outline circular to oval. Simple perforation plates (13). Intervessel pits alternate (22); vestured; aperture diameter 6(4-10) µm. Vessel-ray pits larger than intervessel pits (borders much reduced to apparently simple); rounded (31). Tyloses absent in P. granulosum and P. stenocarpum, and common in P. arboreum and P. estrellense. Fibres: Septate (65) and non-septate (66), or exclusively septate (65) in P. estrellense and exclusively non-septate in P. granulosum (66); very thin-walled (68) or thin-to-thick-walled (69); conspicuous parenchyma-like fibre bands alternating with ordinary fibres (67). Axial Parenchyma: Scanty paratracheal (78); 1-4 cells per parenchyma strand. Rays: Exclusively uniseriate [P. granulosum], or 1(-2)-seriate [P. arboreum], 1-2(-3)-seriate [P. estrellense] and 1-3(-4)-seriate [P. stenocarpum]; 11(7-19) rays/mm; upright, square and procumbent cells mixed throughout the ray (109).

Material studied: Pleroma arboreum Gardner. (Fig. 4a-c): RIO DE JANEIRO, Parque Nacional da Serra dos Órgãos (RBw 2169, RAwa 1195). Pleroma estrellense (Raddi) P.J.F. Guim. & Michelang: RIO DE JANEIRO, Parque Nacional Itatiaia (RBw 2256, RAwa 1197); RIO DE JANEIRO, Pico Itatiaia (BCTw 6065, RAwa 1196). Pleroma granulosum (Desr.) D. Don.: SÃO PAULO, Serra da Cantareira (BCTw 637, RAwa 1198). Pleroma stenocarpum (Schranket Mart. ex DC.) Triana.: MINAS GERAIS, Serra do Cipó (SPw 713, RAwa 1201).

Figure 4 -
a-c. Pleroma arboreum (RBw 2169, RAwa 1195) - a. transverse section; b. tangential section; c. radial section. Bars = 100 µm

Subfamily: Olisbeoideae Burnett.

Mouriri Aubl.Fig. 5

Growth ring boundaries: Indistinct or absent (2). Vessels: Wood diffuse-porous (5); random arrangement; exclusively solitary or solitary (77.5%) and multiple (22.5%) in RAwa 1190, RAwa 1191 and RAwa 1192. Tangential diameter 81.5(50-110) µm. 19.8(10-34) vessels/mm². Solitary vessel outline circular to oval. Simple perforation plates (13). Intervessel pits alternate (22); vestured; aperture diameter 7.5(4-10) µm. Vessel-ray pits similar to intervessel pits in size and shape throughout the ray cell (30). Tyloses absent, and rare in M. chamissoana (BCTw 645). Fibres: Non-septate (66); very thick-walled (70). Axial Parenchyma: Paratracheal vasicentric (79); aliform (80) and confluent (83). Rays: Exclusively uniseriate; 17.5(10-24) rays/mm; all cells upright and/or square (105). Mineral inclusions: Presence of prismatic (136); styloids and/or elongate (151) crystals on the included phloem in M. chamissoana and on the vessels in Mouriri sp; crystal sand (153) in ray cells in the latter. Cambial variants: Included phloem; diffuse (134).

Material studied: Mouriri chamissoana Cogn. (Fig. 5a-c): SÃO PAULO, Jardim Botânico (SPw 1138, RAwa 1193); SÃO PAULO, Serra da Cantareira (SPSFw 2564, RAwa 1192); SÃO PAULO, Parque do Estado (BCTw 646, RAwa 1191); SÃO PAULO, Chapada (BCTw 645, RAwa 1190); MARANHÃO (BCTw 17369, RAwa 1189). Mouriri sp. Aubl.: RIO DE JANEIRO, Ilha Grande (BCTw 6837, RAwa 1194).

Key to the analyzed Melastomataceae charcoal anatomy samples

1. Presence of included phloem; axial parenchyma vasicentric or aliformMouriri

1’. Absence of included phloem; axial parenchyma scanty paratracheal or very rare 2

2. Vessel-ray pits similar to intervessel pits in size and shapeMiconia cinnamomifolia, M. minutiflora, M. sellowiana, M. stenostachya

2’. Vessel-ray pits larger than intervessel pits 3

3. Conspicuous parenchyma-like fibre bands alternating with ordinary fibresPleroma

3’. Faint or unconspicuous parenchyma-like fibre bands alternating with ordinary fibresMeriania, Huberia, Miconia breviflora, M. dasytricha, M. mirabilis, M. tristes, Miconia sp.

Discussion

Circumscription of the Melastomataceae family has been kept relatively steadily over the years; the main controversies relate to the status of Olisbeoideae (previously Memecyloideae Meisn.), as a subfamily of Melastomataceae or as an autonomous family (Goldenberg et al. 2012Goldenberg R, Baumgratz JFA & Souza MLD (2012) Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro . Rodriguésia 63: 145-161. DOI: 10.1590/S2175-78602012000100011
https://doi.org/10.1590/S2175-7860201200...
; Stone 2022Stone RD (2022) Phylogeny and circumscription of the subfamily Olisbeoideae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 167-192. DOI: 10.1007/978-3-030-99742-7_6
https://doi.org/10.1007/978-3-030-99742-...
). Indeed, several authors argued for the separation between the Olisbeoideae subfamily (as Memecylaceae DC) and other clades such as Melastomataceae Juss. (Van Vliet 1981Van Vliet GJCM, Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.; Van Vliet et al. 1981; Ter Welle & Koek-Noorman 1981Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy of Neotropical Melastomataceae. Blumea 2: 335-394.; Renner 1993Renner SS (1993) Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13: 519-540. DOI: 10.1111/j.1756-1051.1993.tb00096.x
https://doi.org/10.1111/j.1756-1051.1993...
), on the basis of wood anatomy features, especially regarding the presence of included phloem and fibre-tracheids in the first. Others agree that both are related groups which can be considered either as distinct families or in a single family (Conti et al. 1996Conti E, Litt A & Sytsma KJ (1996) Circumscription of Myrtales and their relationships to other rosids: evidence from sequence data. American Journal of Botany 83: 221-233. DOI: 10.1002/j.1537-2197.1996.tb12700.x
https://doi.org/10.1002/j.1537-2197.1996...
; Clausing & Renner 2001Clausing G & Renner SS (2001) Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88: 486-98. DOI: 10.2307/2657114
https://doi.org/10.2307/2657114...
; Goldenberg et al. 2012). Phylogenetic data corroborates the positioning of Olisbeoideae in Melastomataceae, since DNA and anatomical data suggest a close relationship between this subfamily and Kibessioideae (Penneys et al. 2022Penneys DS, Almeda A, Reginato M, Michelangeli FA, Goldenberg R, Fritsch PW & Stone RD (2022) A new Melastomataceae classification informed by molecular phylogenetics and morphology. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 109-165. DOI: 10.1007/978-3-030-99742-7_5
https://doi.org/10.1007/978-3-030-99742-...
).

Wood and charcoal anatomy, however, are clearly distinguishable between the two studied subfamilies, Olisbeoideae (Mouriri) and Melastomatoideae [for which we analyzed species from the tribes Pyramieae (Huberia), Merianieae (Meriania), Miconieae (Miconia), and Melastomateae (Pleroma)]. Mouriri stands out for presenting included phloem and axial parenchyma vasicentric or aliform, while the other genera characteristically present axial parenchyma absent or scanty paratracheal and parenchyma-like fibre bands alternating with ordinary fibres. These bands seem to be more conspicuous in Melastomateae (Pleroma), when compared to the other genera. Inside Melastomatoideae, some Miconia species can be distinguished by the presence of vessel-ray pits similar to intervessel pits in size and shape, which contrasts to the larger vessel-ray pits typical from the other genera. Merianieae, Miconieae, and Melastomateae species can also be distinguished by small differences in rays seriation (either uniseriate or weakly multiseriate) and composition (rays composed either by upright and square cells only or by upright, square and procumbent cells mixed throughout the ray). However, none of these characters are consistent inside each genera or tribe, not being useful to separate the groups at taxonomic level.

Figure 5 -
a-d. Mouriri chamissoana - a-c. (SPw 1138, RAwa 1193) - a. transverse section; b. tangential section; c. radial section; d. transverse section. Bars = 100 µm

All of the descriptions presented on this paper agree, in general lines, to previous wood anatomy studies available in the literature (Metcalfe & Chalk 1950Metcalfe CR & Chalk L (1950) Anatomy of the dicotyledons. 2 vols. Clarendon Press, Oxford. 1500p. ; Koek-Noorman et al. 1979Koek-Noorman J, Hogeweg P, Van Maanen HM & Ter Welle BJH (1979) Wood anatomy of the Blakeeae (Melastomataceae). Acta Botanica Neerlandica 28: 21-43. DOI: 10.1111/j.1438-8677.1979.tb01154.x
https://doi.org/10.1111/j.1438-8677.1979...
; Van Vliet et al. 1981Van Vliet GJCM, Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.; Ter Welle & Koek-Noorman 1981Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy of Neotropical Melastomataceae. Blumea 2: 335-394.; Détienne & Jacquet 1983Détienne P & Jacquet P (1983) Atlas d’identification des bois de l’Amazonie et des régions voisines. Centre Technique Forestier Tropical, Nogent-Sur-Marne. 640p.; Barros & Callado 1997 apud Insidewood 2004-onwards; Bosio et al. 2010Bosio FP, Soffiatti MR & Torres B (2010) Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetative types of Parana state, Brazil. IAWA Journal 31: 179-190. DOI: 10.1163/22941932-90000015
https://doi.org/10.1163/22941932-9000001...
; Scheel-Ybert & Gonçalves 2017Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.). They also agree to specific wood descriptions of Huberia glazioviana (Barros & Callado 1997 apud Insidewood 2004-onwards), H. semiserrata (Ter Welle & Koek-Noorman 1981), Miconia sp. (named as Leandra in Ter Welle & Koek-Noorman 1981), Meriania robusta (Barros & Callado 1997 apud Insidewood 2004-onwards), Miconia albicans (Sonsin et al. 2014Sonsin JAP, Gasson SR, Machado C, Caum & Marcati CR (2014) Atlas da diversidade de madeiras do cerrado paulista. Fundação de Estudos e Pesquisas Agricolas e Florestais, Botucatu 423p.), M. breviflora (Barros & Callado 1997 apud Insidewood 2004-onwards), M. minutiflora (Ter Welle & Koek-Noorman 1981), M. mirabilis (Silva et al. 2015Silva MS, Santos FAR, Silva CRA, Santos NC & Silva LB (2015) Systematic wood anatomy of Huberia, Miconia, and Tibouchina. IAWA Journal 36: 326-337. DOI: 10.1163/22941932-20150103
https://doi.org/10.1163/22941932-2015010...
), M. sellowiana (Marcon & Costa 2000Marcon ML & Costa CG (2000) Anatomia da madeira de quatro espécies do gênero Miconia Ruiz & Pavón (Melastomataceae). Rodriguésia 51: 5-20. DOI: 10.1590/2175-7860200051787901
https://doi.org/10.1590/2175-78602000517...
; Bosio et al. 2010), Pleroma arboreum (Ter Welle & Koek-Noorman 1981), Pleroma estrellense (Barros et al. 2001 apud Insidewood 2004-onwards).

Some small description divergences, however, occurred for some species. This is not unusual, and may happen for a series of reasons, including ecological differences and the conditions of growth of each individual. We present below some of the discrepancies found between our descriptions and the available literature.

Previous studies on Miconia cinnamomifolia described rays as 1-3-seriate (Barros & Callado 1997 apud Insidewood 2004-onwards), uniseriate and uniseriate with biseariate portions (Marcon & Costa 2000Marcon ML & Costa CG (2000) Anatomia da madeira de quatro espécies do gênero Miconia Ruiz & Pavón (Melastomataceae). Rodriguésia 51: 5-20. DOI: 10.1590/2175-7860200051787901
https://doi.org/10.1590/2175-78602000517...
) or uniseriate (Scheel-Ybert & Gonçalves 2017Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.). The present description agrees with the last.

Previous descriptions of Pleroma stenocarpum identified axial parenchyma diffuse (Sonsin et al. 2012Sonsin JO, Gasson PE, Barros CF & Marcati CR (2012) A comparison of the wood anatomy of 11 species from two cerrado habitats (cerrado s.s. and adjacent gallery forest). Botanical Journal of the Linnean Society 170: 257-276. DOI: 10.1111/j.1095-8339.2012.01282.x
https://doi.org/10.1111/j.1095-8339.2012...
, 2014), while the samples analysed here presented scanty paratracheal parenchyma.

Prior studies on Mouriri sp. described some variation on axial parenchyma. Ter Welle & Koek-Noorman (1981Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy of Neotropical Melastomataceae. Blumea 2: 335-394.) attested a variation of diffuse apotracheal, scanty paratracheal, aliform, aliform-confluent and tangential/wavy bands parenchyma, on samples comprising M. acutiflora Naudin., M. chamissoana, M. crassifolia Sagot. and M. vernicosa Naudin. Van Vliet et al. (1981Van Vliet GJCM, Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.) classified vasicentric and aliform confluent parenchyma for Mouriri sp.; and León (2012León WJ (2012) Anatomía de la madera de 69 especies de la Reserva Forestal Caparo (Barinas, Venezuela). Revista Forestal Venezolana 56: 167-195.) attested, for M. barinensis (Morley) Morley, apotracheal, diffuse-in-aggregates, scanty paratracheal, vasicentric and aliform parenchyma. As for descriptions available on Insidewood (2004-onwards), scanty paratracheal and winged-aliform are recorded for Mouriri sp. Our results agree with Van Vliet et al. (1981) and with general descriptions for the genera.

Six out of the twenty-one analyzed species are having its wood and charcoal anatomical description presented for the first time, to the best of our knowledge. They are: Huberia ovalifolia, Meriania excelsa, Miconia dasytricha, Miconia stenostachya, Miconia tristis, Pleroma granulosum. As for charcoal anatomy, two species had published descriptions: Miconia cinnamomifolia (DC.) Naudin. (Carvalho et al. 2017Carvalho AF, Brand MA, Nisgoski S, Muñiz GIB, Friederichs G, Kuster LC & Santos TS (2017) Anatomia do carvão oriundo de cinco espécies comercializadas no estado de Santa Catarina. Revista Ciência da Madeira 8: 158-167.; Scheel-Ybert & Gonçalves 2017Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.) and Mouriri chamissoana Cogn. (Ter Welle & Koek-Noorman 1981Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy of Neotropical Melastomataceae. Blumea 2: 335-394.; Scheel-Ybert & Gonçalves 2017). For the other nineteen species analyzed, charcoal anatomy descriptions are being presented for the first time.

Charcoal reference collections are paramount for identifying unknown charcoal specimens in different contexts and form an integral part of anthracological studies, which can provide crucial information for researchers of different expertise (Scheel-Ybert 2016Scheel-Ybert R (2016) Charcoal collections of the world. IAWA Journal 37: 489-505. DOI: 10.1163/22941932-20160148
https://doi.org/10.1163/22941932-2016014...
). Likewise, charcoal anatomy descriptions and photographs are also of great value to assist in the identification of unknown ancient or modern charcoal samples. The high diversity of tropical woods adds to the difficulties of charcoal identification, highlighting the value of constituting comparative collections of modern charcoal and creating databases of anatomical descriptions.

In this paper, we contributed to this effort by describing the charcoal anatomy of 21 Melastomataceae species. Wood and charcoal anatomy of Brazilian Melastomataceae are, in general, very homogeneous, especially inside Melastomatoideae subfamily, hindering the distinction of genera and species. The present research evidenced a few diagnostic features that may help in better identifications, but further work on the description of more specimens is still needed.

This work corroborated previous studies pointing to diagnostic features in Mouriri (Olisbeoideae) such as the presence of included phloem and axial parenchyma vasicentric or aliform. In Melastomatoideae we demonstrate the consistency of traits such as heterogeneous rays, axial parenchyma absent or scanty paratracheal, and parenchyma-like fibre bands alternating with ordinary fibres. Some Miconia species stand out by the presence of vessel-ray pits similar to intervessel pits in size and shape, while Pleroma can be distinguished by the conspicuousness of parenchyma-like fibre bands. Although small differences related to rays seriation and composition might help distinguishing different species in this subfamily, intergeneric and intraspecific variability hamper reliable identification in generic or even in tribe level.

The effort to analyze and characterize inframiliar taxonomic groups is particularly important in cases such as the one presented here, where the family is of certain homogeneity on its traits and requires a focused study. This research may indicate possible means of taxonomic distinction. Not only does it contribute to a better knowledge of our native flora, but also leads to increased accuracy in charcoal identification. This is of chief concern to the work of anthracologists and to all those who, for multiple reasons, search to identify wood specimens, be it in archaeological, palaeoecological, environmental, forensics, or any other context.

Acknowledgements

This research was supported by grants from CNPq (National Council for Scientific and Technological Development, Brazil) Scientific Initiation Program. We warmly thank Caroline Bachelet and Rubia Patzlaff, for help and assistance during the descriptions labor; and Celia Boyadjian, for the language revision.

Data availability statement

In accordance with Open Science communication practices, the authors inform that all data are available within the manuscript.

References

  • Albuquerque LB, Aquino FG, Costa LC, Miranda ZJG & Sousa SR (2013) Espécies de Melastomataceae Juss. com potencial para restauração ecológica de mata ripária no Cerrado. Polibotánica 35: 1-19. <https://polibotanica.mx/index.php/polibotanica/article/view/400>. Access on 25 September 2018.
    » https://polibotanica.mx/index.php/polibotanica/article/view/400
  • Bachelet C & Scheel-Ybert R (2017) Landscape and firewood selection in the Santa Elina rock shelter (Mato Grosso, Brazil) during the Holocene. Quaternary International 431: 52-60. DOI: 10.1016/j.quaint.2015.12.019
    » https://doi.org/10.1016/j.quaint.2015.12.019
  • Braadbaart F & Poole I (2008) Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeological Science 35: 2434-2445. DOI: 10.1016/j.jas.2008.03.016
    » https://doi.org/10.1016/j.jas.2008.03.016
  • Beauclair M, Scheel-Ybert R, Bianchini GF & Buarque A (2009) Fire and ritual: bark hearths in South-American Tupiguarani mortuary rites. Journal of Archaeological Science 36: 1409-1415. DOI: 10.1016/j.jas.2009.02.003
    » https://doi.org/10.1016/j.jas.2009.02.003
  • Bianchini GF, Scheel-Ybert R & Gaspar MD (2007) Estaca de Lauraceae em contexto funerário (sítio Jaboticabeira II, Santa Catarina, Brasil). Revista do Museu de Arqueologia e Etnologia, São Paulo 17: 223-229. DOI: 10.11606/issn.2448-1750.revmae.2007.89777
    » https://doi.org/10.11606/issn.2448-1750.revmae.2007.89777
  • Bianchini GF & Scheel-Ybert R (2012) Plants in a funerary context at the Jabuticabeira-II shellmound (Santa Catarina, Brazil) - feasting or ritual offerings? Saguntum: Extra 11: 253-258.
  • Bosio FP, Soffiatti MR & Torres B (2010) Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetative types of Parana state, Brazil. IAWA Journal 31: 179-190. DOI: 10.1163/22941932-90000015
    » https://doi.org/10.1163/22941932-90000015
  • Capucho TCJP & Scheel-Ybert R (2019) Paisagem do sítio da Ilha Redonda, Monumento Natural das Ilhas Cagarras (Rio de Janeiro) na época da colonização. Revista de Arqueologia 32: 268-274. DOI: 10.24885/sab.v32i2.715
    » https://doi.org/10.24885/sab.v32i2.715
  • Caromano CF, Cascon LM, Neves EG & Scheel-Ybert R (2013) Revealing fires and rich diets: macro-and micro-archaeobotanical analysis at the Hatahara Site, Central Amazonia. Tipití 11: 40-51. <https://digitalcommons.trinity.edu/tipiti/vol11/iss2/5>. Access on 25 September 2018.
    » https://digitalcommons.trinity.edu/tipiti/vol11/iss2/5
  • Carvalho AF, Brand MA, Nisgoski S, Muñiz GIB, Friederichs G, Kuster LC & Santos TS (2017) Anatomia do carvão oriundo de cinco espécies comercializadas no estado de Santa Catarina. Revista Ciência da Madeira 8: 158-167.
  • Clausing G & Renner SS (2001) Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88: 486-98. DOI: 10.2307/2657114
    » https://doi.org/10.2307/2657114
  • Conti E, Litt A & Sytsma KJ (1996) Circumscription of Myrtales and their relationships to other rosids: evidence from sequence data. American Journal of Botany 83: 221-233. DOI: 10.1002/j.1537-2197.1996.tb12700.x
    » https://doi.org/10.1002/j.1537-2197.1996.tb12700.x
  • Cruz AVM & Kaplan MAC (2004) Uso medicinal de espécies das famílias Myrtaceae e Melastomataceae no Brasil. Floresta e Ambiente 11: 47-52.
  • Détienne P & Jacquet P (1983) Atlas d’identification des bois de l’Amazonie et des régions voisines. Centre Technique Forestier Tropical, Nogent-Sur-Marne. 640p.
  • Figueiral I & Mosbrugger V (2000) A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 397-407. DOI: 10.1016/S0031-0182(00)00195-4
    » https://doi.org/10.1016/S0031-0182(00)00195-4
  • Flora e Funga do Brasil 2022 (continuously updated) Jardim Botânico do Rio de Janeiro. Available at <Available at http://floradobrasil.jbrj.gov.br/ >. Access on 14 August 2022.
    » http://floradobrasil.jbrj.gov.br/
  • Goldenberg R, Baumgratz JFA & Souza MLD (2012) Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro . Rodriguésia 63: 145-161. DOI: 10.1590/S2175-78602012000100011
    » https://doi.org/10.1590/S2175-78602012000100011
  • Gonçalves TAP & Scheel-Ybert R (2012) Contra o carvão ilegal: estudo da anatomia da madeira pode ajudar a salvar florestas nativas. Ciência Hoje 292: 74-76.
  • Gonçalves TAP, Marcati CR & Scheel-Ybert R (2012) The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado IAWA Journal 33: 73-90. DOI: 10.1163/22941932-90000081
    » https://doi.org/10.1163/22941932-90000081
  • Gonçalves TAP & Scheel-Ybert R (2016) Charcoal anatomy of Brazilian species. I. Anacardiaceae. Anais da Academia Brasileira de Ciências 88: 1711-1725. DOI: 10.1590/0001-3765201620150433
    » https://doi.org/10.1590/0001-3765201620150433
  • Gonçalves TAP, Sonsin-Oliveira J, Nisgoski S, Marcati CR, Ballarin AW & Muñiz GIB (2018) A contribution to the identification of charcoal origin in Brazil III: microscopic identification of 10 Cerrado species. Australian Journal of Botany 66: 255-264. DOI: 10.1071/BT17196
    » https://doi.org/10.1071/BT17196
  • IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bulletin, 10: 219-332.
  • Insidewood (2004-onwards) Available at <Available at http://insidewood.lib.ncsu.edu/search/ >. Access on 17 April 2017.
    » http://insidewood.lib.ncsu.edu/search/
  • Koek-Noorman J, Hogeweg P, Van Maanen HM & Ter Welle BJH (1979) Wood anatomy of the Blakeeae (Melastomataceae). Acta Botanica Neerlandica 28: 21-43. DOI: 10.1111/j.1438-8677.1979.tb01154.x
    » https://doi.org/10.1111/j.1438-8677.1979.tb01154.x
  • Leme CLD, Cartwright C & Gasson P (2010) Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA Journal 31: 333-351. DOI: 10.1163/22941932-90000027
    » https://doi.org/10.1163/22941932-90000027
  • León WJ (2012) Anatomía de la madera de 69 especies de la Reserva Forestal Caparo (Barinas, Venezuela). Revista Forestal Venezolana 56: 167-195.
  • Marcon ML & Costa CG (2000) Anatomia da madeira de quatro espécies do gênero Miconia Ruiz & Pavón (Melastomataceae). Rodriguésia 51: 5-20. DOI: 10.1590/2175-7860200051787901
    » https://doi.org/10.1590/2175-7860200051787901
  • Melastomataceae.Net (2007-2024) A site with information on the biodiversity of Melastomataceae. Available at <Available at http://www.melastomataceae.net >. Access on 08 February 2023.
    » http://www.melastomataceae.net
  • Metcalfe CR & Chalk L (1950) Anatomy of the dicotyledons. 2 vols. Clarendon Press, Oxford. 1500p.
  • Michelangeli FA, Dellinger AS, Goldenberg R, Almeda F, Mendoza-Cifuentes H, Fernández-Fernández D, Ulloa Ulloa C & Penneys DS (2022) Phylogenetics and taxonomy of the tribe Merianieae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae. Springer, Cham. Pp. 255-273. DOI: 10.1007/978-3-030-99742-7_11
    » https://doi.org/10.1007/978-3-030-99742-7_11
  • Muñiz GIB, Carneiro ME, Batista R, Rodrigues F, Schardosin FZ & Nisgoski S (2016) Wood and charcoal identification of five species from the miscellaneous group known in Brazil as “Angelim” by Near-IR and wood anatomy. Maderas. Ciencia y Tecnología 18: 505-522. DOI: 10.4067/S0718-221X2016005000045
    » https://doi.org/10.4067/S0718-221X2016005000045
  • Nisgoski S, Muñiz GIB, Trianoski R, Matos JLM & Venson I (2012) Características anatômicas da madeira e índices de resistência do papel de Schizolobium parahyba (Vell.) Blake proveniente de plantio experimental. Scientia Forestalis, Piracicaba 40: 203-211.
  • Pearsall DM (2015) Paleoethnobotany: a handbook of procedures. 3rd ed. Left Coast Press, New York. 917p. DOI: 10.4324/9781315423098
    » https://doi.org/10.4324/9781315423098
  • Penneys DS, Almeda A, Reginato M, Michelangeli FA, Goldenberg R, Fritsch PW & Stone RD (2022) A new Melastomataceae classification informed by molecular phylogenetics and morphology. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 109-165. DOI: 10.1007/978-3-030-99742-7_5
    » https://doi.org/10.1007/978-3-030-99742-7_5
  • Pinto AA, Giongo C & Scheel-Ybert R (2017) Anatomia do lenho carbonizado de 10 espécies nativas da Planície Costeira do Rio Grande do Sul: subsídio a pesquisas arqueobotânicas e paleoecológicas. Cad LEPAARQ 14: 480-511. DOI: 10.15210/lepaarq.v14i27.9661
    » https://doi.org/10.15210/lepaarq.v14i27.9661
  • Prior J & Alvin KL (1983) Structural changes on charring woods of Dichrostachys and Salix from southern Africa. IAWA Bulletin 4: 197-206. <https://www.cabidigitallibrary.org/doi/full/10.5555/19840691363>. Access on 25 September 2018.
    » https://www.cabidigitallibrary.org/doi/full/10.5555/19840691363
  • Prior J & Gasson P (1993) Anatomical changes on six African hardwoods. IAWA Journal 14: 77-86. DOI: 10.1163/22941932-90000579
    » https://doi.org/10.1163/22941932-90000579
  • Renner SS (1993) Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13: 519-540. DOI: 10.1111/j.1756-1051.1993.tb00096.x
    » https://doi.org/10.1111/j.1756-1051.1993.tb00096.x
  • Scheel-Ybert R (1998) Stabilité de l’Écosystème sur le littoral Sud-Est du Brésil à l’Holocène Supérieur (5500-1400 ans BP). PhD thesis. Université de Montpellier II, Montpellie.
  • Scheel-Ybert R (2000) Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Review of Palaeobotany and Palynology 110: 111-138. DOI: 10.1016/S0034-6667(00)00004-X
    » https://doi.org/10.1016/S0034-6667(00)00004-X
  • Scheel-Ybert R (2004) Teoria e métodos em antracologia. 2. Técnicas de campo e de laboratório. Arquivos do Museu Nacional 62: 343-356.
  • Scheel-Ybert R (2014) Landscape and use of plants by Southern and Southeastern Brazilian shell mound builders. In: Roksandic M, Mendonça de Souza S, Eggers S, Burchell M & Klokler D (eds.) The cultural dynamics of shell middens and shell mounds: a worldwide perspective. University of New Mexico Press, Albuquerque. Pp. 289-300.
  • Scheel-Ybert R (2016) Charcoal collections of the world. IAWA Journal 37: 489-505. DOI: 10.1163/22941932-20160148
    » https://doi.org/10.1163/22941932-20160148
  • Scheel-Ybert R (2020) Anthracology (Charcoal Analysis). In: Smith (ed.) Encyclopedia of global archaeology. 2nd ed. Springer-Verlag, New York. Pp. 408-418. DOI: 10.1007/978-3-030-30018-0_3201
    » https://doi.org/10.1007/978-3-030-30018-0_3201
  • Scheel-Ybert R & Gonçalves TAP (2017) Primeiro atlas antracológico de espécies brasileiras - First anthracological atlas of Brazilian species. Museu Nacional - Série Livros Digital 10, Rio de Janeiro. 232p.
  • Silva MS, Santos FAR, Silva CRA, Santos NC & Silva LB (2015) Systematic wood anatomy of Huberia, Miconia, and Tibouchina IAWA Journal 36: 326-337. DOI: 10.1163/22941932-20150103
    » https://doi.org/10.1163/22941932-20150103
  • Sonsin JO, Gasson PE, Barros CF & Marcati CR (2012) A comparison of the wood anatomy of 11 species from two cerrado habitats (cerrado s.s and adjacent gallery forest). Botanical Journal of the Linnean Society 170: 257-276. DOI: 10.1111/j.1095-8339.2012.01282.x
    » https://doi.org/10.1111/j.1095-8339.2012.01282.x
  • Sonsin JAP, Gasson SR, Machado C, Caum & Marcati CR (2014) Atlas da diversidade de madeiras do cerrado paulista. Fundação de Estudos e Pesquisas Agricolas e Florestais, Botucatu 423p.
  • Souza-Pinto NR & Scheel-Ybert R (2021) Charcoal anatomy of Brazilian species. II. 15 native species occurring in Atlantic or Amazon rainforest. Anais da Academia Brasileira de Ciências 93: e20190983. DOI: 10.1590/0001-3765202120190983
    » https://doi.org/10.1590/0001-3765202120190983
  • Stone RD (2022) Phylogeny and circumscription of the subfamily Olisbeoideae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 167-192. DOI: 10.1007/978-3-030-99742-7_6
    » https://doi.org/10.1007/978-3-030-99742-7_6
  • Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy of Neotropical Melastomataceae. Blumea 2: 335-394.
  • Ulloa Ulloa C, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, Penneys DS, Stone RD & Veranso-Libalah MC (2022) Melastomataceae: global diversity, distribution, and endemism. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 3-28. DOI: 10.1007/978-3-030-99742-7_1
    » https://doi.org/10.1007/978-3-030-99742-7_1
  • Van Vliet GJCM (1981) Wood anatomy of Palaeotropical Melaslomataceae. Blumea 27: 395-462.
  • Van Vliet GJCM, Ter Welle BJH & Koek-Noorman J (1981) Wood anatomy, classification and phylogeny of the Melastomataceae. Blumea 27: 463-473.
  • Veranso-Libalah MC, Stone RD, Kadereit G & Guimarães PJF (2022) Systematics and taxonomy of the tribe Melastomateae. In: Goldenberg R, Michelangeli FA & Almeda F (eds.) Systematics, evolution, and ecology of Melastomataceae . Springer, Cham . Pp. 429-463. DOI: 10.1007/978-3-030-99742-7_21
    » https://doi.org/10.1007/978-3-030-99742-7_21

Edited by

Area Editor:

Dr. João Paulo Basso-Alves

Publication Dates

  • Publication in this collection
    22 July 2024
  • Date of issue
    2024

History

  • Received
    07 Aug 2023
  • Accepted
    24 Apr 2024
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rua Pacheco Leão, 915 - Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brasil, Tel.: (55 21)3204-2148, Fax: (55 21) 3204-2071 - Rio de Janeiro - RJ - Brazil
E-mail: rodriguesia@jbrj.gov.br