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Abstract 
Erythroxylum is common in the Brazilian Cerrado. Species from this genus have ecological, pharmacological 
and popular medical importance. Based on this information, the aims of this study was to perform a descriptive 
and quantitative morphoanatomical study of Erythroxylum tortuosum leaves present in two environments: 
cerrado sensu stricto and campo rupestre. To carry out these studies, 24 fully developed leaves were collected 
and fixed from individuals across both environments. For the quantitative anatomy study, the following 
measurements were made: leaf area, length, width and mass; stomatal density; polar and equatorial diameter 
of the stomata; thickness of the leaf blade, mesophyll, epidermis and cuticles on the adaxial and abaxial 
surfaces; and thickness of the spongy and palisade parenchyma; specific leaf area, leaf mass area and foliar 
tissue density. This species shows a bald and uniseriate epidermis when viewed in cross section. Stomata 
are paracytic and occur only on abaxial surfaces. The mesophyll is dorsiventral type, with a dense vascular 
system, and the vascular bundle is collateral type. The general pattern of the veins is pinnate camptodrome 
and brochidodrome, with dense veins and pseudosecondary ribs. Significant differences were found for almost 
all analysed variables, suggesting that different environmental conditions may influence plant development.
Key words: ecological anatomy, medicinal plants, mercúrio-do-campo, plant anatomy, plant morphology.

Resumo 
Erythroxylum é um gênero bastante comum nos Cerrados Brasileiros. Espécies deste gênero possuem 
grande importância ecológica, farmacológica e na medicina popular. Baseado nestas informações, o objetivo 
deste trabalho foi realizar um estudo morfoanatômico descritivo e quantitativo das folhas de Erythroxylum 
tortuosum presentes em duas fitofisionomias: cerrado stricto sensu e campo rupestre. Para a realização dos 
estudos, 24 folhas completamente expandidas foram coletadas e fixadas de indivíduos presentes nos dois 
ambientes. Para o estudo da anatomia quantitativa, as seguintes medidas foram obtidas: área foliar, largura, 
comprimento e massa foliar; densidade estomática, diâmetro polar e equatorial do estômato; espessura da 
lâmina foliar, mesofilo, epiderme e cutícula das faces adaxial e abaxial; e espessura do parênquima paliçádico 
e esponjoso; área foliar específica, área de massa foliar e densidade dos tecidos foliares. Esta espécie apresenta 
epiderme glabra e unisseriada, quando vista em secção transversal. Os estômatos são paracíticos e ocorrem 
apenas na face abaxial. O mesofilo é dorsiventral, com um sistema vascular denso e feixe vascular é do tipo 
colateral. O padrão geral da venação é pinada, camptódroma e broquidódroma, com veias densas e nervuras 
pseudosecundárias. Diferenças significativas foram encontradas em quase todas as variáveis analisadas, 
sugerindo que condições ambientais diferentes podem influenciar o desenvolvimento da planta.
Palavras-chave: anatomia ecológica, plantas medicinais, mercúrio-do-campo, anatomia vegetal, morfologia 
vegetal.
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Introduction
The Brazilian Cerrado is an ecosystem 

with one of the largest biodiversity in the world 
(Ribeiro & Walter 2008) and it is considered a 
hotspot of diversity. However, this domain has been 
suffering from significant anthropic changes over 
the years, and now only 19,8% of its original flora 
remains (Strassburg et al. 2017). The cerrado can 
be classified in many ways due to their different 
vegetation physiognomies, such as cerrado sensu 
stricto, campo rupestre, among others (Ribeiro & 
Walter 2008). 

The cerrado  sensu stricto occupies 
approximately 70% of the cerrado domain 
(Assunção & Felfili 2004), and its main traits 
are short trees growing on an inclined and windy 
slope that show irregular shapes and twists, usually 
presenting the evidence of fire. The leaves of most 
species are rigid and leathery (Ribeiro & Walter 
2008). According to Ribeiro & Walter (2008), 
many factors can interfere with tree density, such 
as edaphic conditions, pH, aluminium saturation, 
fertility, water conditions, soil depth, fire frequency 
and anthropic actions.

Campos rupestres occur at altitudes above 
approximately 900 metres and are associated 
with outcrops of quartzite, sandstone and iron 
ore (Vasconcelos 2011). On this vegetation 
physiognomy, there is a predominance of 
herbaceous and shrub species and undeveloped 
small trees. Their floristic composition varies over 
short distances, and the species density depends 
on the substrate. The species in these regions have 
some xeromorphic traits, such as small, thick 
leathery leaves (Ribeiro & Walter 2008).

In regard to the floristic diversity in this 
area, Erythroxylum P. Browne (Erythroxylaceae) 
is very common; it is the only genus of this family 
in the neotropical region, with approximately 240 
species (Araújo et al. 2015). In Brazil, 135 species 
were identified, of which 80 are endemic [Flora do 
Brasil 2020 (continuously updated)]. Their species 
have high ecologic importance, pharmacological 
applications and popular medical applications 
(Loiola et al. 2001; Albuquerque et al. 2014; Elias 
et al. 2016; Restrepo et al. 2019) mainly due to 
the presence of specific metabolites, such as tropic 
alkaloids, tannins, terpenes and phenylpropanoids 
(Evans 1981; Nascimento et al. 2012; Silva-Jr et 
al. 2021). According to Zuanazzi et al. (2001), 
increasing interest in this genus occurred in the 19th 
century due to the discovery of the pharmacological 

activities of Erythroxylum coca Lam. leaves, 
which were used by the indigenous tribes from the 
Andes region in South America. This species also 
produces cocaine, one of the largest illicit markets 
on the planet (Restrepo et al. 2019). However, 
among the few papers about the foliar anatomy of 
Erythroxylum (Rury 1981; Bieras & Sajo 2004a, 
b; Mantuano et al. 2006; Simioni et al. 2017; Silva 
& Santos 2023), there are only a few records of 
the relationship between the foliar structure and 
the environmental traits of the Cerrado or Campo 
Rupestre or the association with species plasticity.

Phenotypic plasticity is an alteration of 
the genotype due to environmental influences 
(Bradshaw 2006). As such, leaves present structural 
variation because of some factors, such as water 
and light availability (Menezes et al. 2013), that 
may cause modifications to foliar area, parenchyma 
thickness, stomatal density, epidermal cell size and 
leaf biomass (Cutter 2002). Anatomical studies 
are fundamental to the evaluation of these traits, 
especially when they are associated with ecological, 
physiological and comparative aspects (Metcalfe 
& Chalke 1979).

In this context, the morphoanatomical traits 
of Erythroxylum tortuosum Mart. (Erythroxylaceae) 
species occurring in different Cerrado vegetation 
physiognomies can demonstrate species plasticity 
responses. Moreover, quantitative anatomical 
evaluations may contribute to further work related 
to ecology, pharmacology and popular medicine, as 
well as improve the knowledge and conservation of 
the Cerrado flora. Consequently, this work aimed to 
analyse the phenotypic plasticity in Erythroxylum 
tortuosum occurring in cerrado sensu stricto and 
campo rupestre domains, considering that leaf 
structure traits are influenced by environmental 
variation.

Materials and Methods
Plant material
The plant material was collected in areas of 

altered cerrado sensu stricto in the recovery stage 
and campo rupestre above Serra do Campestre in 
the city of Lavras with coordinates 21°20’00.42”S 
and 44°58’09.66”W, 1,041 m altitude, and 
21°20’45”S and 44°58’38.40”W, 1,159 m altitude, 
respectively. The climate according to the Koeppen 
classification is Cwb, a mesothermal climate with 
a dry winter, mild summer and rainy season in the 
summer. During 2017–2018, the Lavras weather 
station registered an annual average temperature 
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of 22,5 °C, average relative humidity of 67%, 
average insolation of 6,75 h, average maximum 
temperature of 27,8 °C and minimum temperature 
of 16,2 °C, and average daily rainfall of 2.66 mm 
(INMET 2021).

Voucher species were deposited at the ESAL 
Herbarium of Universidade Federal de Lavras under 
numbers 30343 and 30344, one from each study 
area. Species identification was based on Loiola’s 
work (2001) and specimens deposited in the ESAL 
herbarium. To carry out the analysis, fully expanded 
leaves located at the third node of 12 individuals 
were collected from each area, for a total of 24 
observations for each vegetation physiognomy.

Leaf anatomy
The anatomical sections were carried out 

manually with the help of a steel blade. To study 
the epidermis, paradermal sections were made 
and subsequently stained with 1% safranin and 
mounted on semipermanent slides and coverslips 
with 50% glycerine (Johansen 1940). To study 
the leaf blade and petiole, the cross sections were 
clarified in a 50% sodium hypochlorite solution 
for approximately 1 minute, washed in distilled 
water twice for 10 minutes, stained with safrablau 
solution (0,1% astra blue and 1% safranin in a 7:3 
proportion), and mounted on semipermanent slides 
and coverslips with 50% glycerine (Bukatsch 1972; 
Kropp 1972).

Photomicrographs were taken with a Nikon 
light microscope, model Eclipse E100, and a 
stereomicroscope, both coupled to an Infinity 
capture camera. The diagrams were made using 
an Olympus CBB microscope coupled with a 
drawing tube (clear chamber). Measurements were 
performed using ImageJ image analysis software.

Stomata counts and measurements were 
made in three regions: the apex, middle and base 
of the leaf blade. Three slides of each region were 
analysed. From the quantitative analyses of the leaf 
epidermis, stomatal density (number of stomata 
per mm²) was obtained in each of the regions, as 
well as the average density of the leaf, the polar 
diameter average of each region of the leaf (µm), 
and the equatorial diameter (µm) of the leaf. The 
total stomatal pore area index (SPI, a dimensionless 
index of stomatal pore area per leaf blade area) was 
calculated as stomatal density × cell length guard2 
(Sack et al. 2003). The measurement of the stomatal 
polar diameter was considered equivalent to the 
guard cell length. The stomatal index was calculated 
by the equation EI = NE/(NE + NC) × 100, and 

it represents the value of the stomatal index. NE 
represents the number of stomata per unit of leaf 
area, and NC represents the number of epidermic 
cells in the same area (Salisbury 1927).

For the analysis of the internal foliar tissues, 
a slide with cross sections was obtained for each 
individual, and adaxial and abaxial surface cuticle 
and epidermis thickness (µm), thickness of the 
palisade (µm) and spongy (µm) parenchyma, 
thickness of the mesophyll (µm), and leaf blade 
thickness (µm) were observed.

Leaf venation
Leaves were fixed in FAA70% (formaldehyde, 

5 mL; acetic acid, 5 mL; and 70% ethyl alcohol, 
90 mL) for 72 hours (Johansen 1940) and later 
preserved in 70% ethyl alcohol (Jensen 1962).

For the study of the leaf veins, fragments of 
leaves that included the primary vein to the leaf 
edge in the middle region of the leaf were used. 
The fragments were diaphanized in 5% aqueous 
sodium hydroxide solution and renewed daily 
until complete leaf clarification. Afterwards, the 
material was placed in a 50% (v.v) aqueous solution 
of sodium hypochlorite until the clarification was 
complete, and the solution was neutralized with 5% 
aqueous acetic acid solution (Handro 1964).

The clarified material was washed in distilled 
water and then washed in 50% ethyl alcohol and 
stained with hydroalcoholic solution of 1% safranin 
or acidified 1% aniline blue solution (Handro 1964). 
After staining, the leaves were mounted between 
glass slides in glycerinated gelatine (Roman 1971). 
Leaf fragments that were needed to observe finer 
details of the veining pattern were mounted between 
specially sized blades made of glass and slides made 
of VETEC’s Canada Balsam after dehydration and 
diaphanization in the alcohol-xylol series.

The photomicrographs of the slides were 
made under a Nikon Eclipse E100 light microscope 
and stereomicroscope, both coupled to an Infinity 
capture camera. The diagrams were made using an 
Olympus CBB microscope coupled with a drawing 
tube (clear chamber).

Mass and foliar dimensions
To obtain the fresh and dry masses of the 

leaves, a Shimadzu precision scale (model AY220) 
was used. To obtain the dry mass, 24 leaves of 
each vegetation physiognomy were submitted to a 
drying press. Daily weighing was carried out until a 
constant dry mass was obtained. Using this method, 
it was possible to obtain dry and fresh masses in 
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grams. The fresh mass was obtained at the first 
weighing on the same day as collection.

To carry out measurements of leaf area, length 
and width, scans of the leaves were performed 
using an Epson scanner (Epson Perfection V330 
Photo). The images were analysed using ImageJ 
software and calibrated with a scanned ruler. Three 
measurements were taken for each leaf: one for 
length (cm), one for width (cm) and one for area 
(cm2).

The water content of the leaves was calculated 
using the following equation:

H2O content (%) = [1 - (dry leaf mass/fresh 
leaf mass) * 100]

The leaf succulence was obtained using the 
following equation:

S (g H2O cm2) = (fresh leaf mass - dry leaf 
mass)/fresh leaf area

H2O content and S can be combined to 
determine the leaf moisture index (Bussotti et al. 
2002).

Specific leaf area, leaf mass area and 
foliar tissue density
The specific leaf area (SLA, cm2 g-1), which 

describes the amount of foliar area for light capture 
per unit of biomass invested, was measured as the 
ratio between the area of ​​fresh leaves and dry mass 
of leaves (Radford 1967). Moreover, the leaf mass 
area (LMA, g cm-2), which represents the cost of 
light interception at the leaf level (Gutschick & 
Wiegel 1988), was obtained as the ratio between 
dry mass and leaf area.

For the calculation of leaf tissue density (mg 
cm-3), the following equation was used:

LTD = leaf dry mass/(leaf area × leaf 
thickness)

LMA and LTD are considered sclerophilic 
indices (Bussotti et al. 2002).

Statistical analysis
The data were submitted to the Shapiro-

Wilk test of normality and Levene test for data 
homogeneity and then to the T test for parametric 
data and Mann-Whitney test for nonparametric data 
with 0,05% significance. R software was used to 
perform the analyses.

Results
Leaf anatomic description
In paradermal sections, the epidermis is bald, 

with irregularly polygonal shaped cells, and is larger 
on the adaxial surface (Fig. 1). In cross section, the 
epidermis is uniseriate but sometimes presents two 
layers. Cells with irregular shapes and sizes, tending 
to a polyhedral shape, with anticlinal walls without 
sinuosity were observed. In cross section, stomata 
are located at the same level as the other epidermal 
cells (Fig. 2). The mesophyll is dorsiventral type, 
and the palisade parenchyma presents three cell 
layers with a cylindrical format that is elongated, 
narrow, and adjacent cells, with few intercellular 
spaces. The spongy parenchyma presents 3–6 cell 
layers that vary in shape from circular to irregular 
and are close to the epidermis of the abaxial surface 
(Fig. 2). 

Figure 1 – a-b. Representation of Erythroxylum tortuosum adaxial (a) and abaxial epidermis (b) in frontal view. 
Scale bars = 100 μm.

a b
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The adaxial and abaxial surfaces of the 
epidermis that cover the midrib are bald, devoid 
of stomata and the epidermis cells have a rounded 
shape. The adaxial surface presents larger cells than 
the abaxial surface. Below the epidermis, there 
are some collenchyma layers. The fundamental 
parenchyma is composed of cells of varying sizes 
with rounded contours and small intercellular 
spaces. The vascular system is very dense, open 
and arch-shaped, forming a “horseshoe”, with flat 
lateral edges, the presence of only one vascular 
bundle of the collateral type, and fibre caps on the 
external face of the phloem (Fig. 3).

The epidermis that lines the leaf edge is 
devoid of stomata, with epidermal cells of a 
rectangular to rounded shape, which decrease 
toward the leaf edge. Below the epidermis, the 
palisade and spongy parenchyma meet at the leaf 
edge, with rounded cells tending to a polyhedral 
shape, with few intercellular spaces. It is possible 
to notice the presence of fibres spread throughout 
the mesophyll (Fig. 2).

The general pattern of the veins was pinnate 
camptodrome and brochidodrome, with ovate-
type blades and slightly asymmetrical bases. 
The primary vein is sharp, median, and tapering 
towards the apex, with a straight course and 
no branches (Fig. 4). The secondary veins are 
alternating and ascending, with an acute angle 
of divergence, moderate thickness and a slightly 
curved course at the base, with frequent simple or 
compound intersecting ribs. The tertiary veins are 
visible in the green leaf. The quaternary ribs have 
a relatively random course, and the vein close to 

the edge is in an arc form (Fig. 4d). The ribs are 
simple and branched (Fig. 4f), and the halos are 
well developed, tending to a polyhedral shape 
(Fig. 4a).

Figure 2 – a-b. Cross sections of Erythroxylum tortuosum mesophyll collected at cerrado sensu stricto (a) and 
campo rupestre (b). AbE = abaxial epidermis; AdE = adaxial epidermis; pp = palisade parenchyma; sp = spongy 
parenchyma. Scale bars = 100 μm.

a b

Figure 3 – a. Cross section of Erythroxylum tortuosum 
midrib (scale bar = 150 µm). b. Representation of 
Erythroxylum tortuosum midrib (scale bar = 100 µm). 
col = collenchyma; fl = floem; fi = fiber; xil = xylem.

a

b
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Leaf quantitative morphoanatomy
The leaves from cerrado sensu stricto plants 

presented a larger leaf area, length and width than 
the leaves of campo rupestre plants (Tab. 1). The 
fresh and dry mass are both higher in cerrado. 

The specific leaf area (SLA) (Tab. 1) did not vary 
significantly between environments. Among the 
sclerophilic indices evaluated through the leaf mass 
area (LMA) and leaf tissue density (LTD), only the 
LTD presented a significant difference (Tab. 1). 

Figure 4 – a-f. Details of secondary and tertiary ribs in cerrado sensu stricto (a) and campo rupestre (b) diaphanized 
leaves, leaf edge in cerrado sensu stricto (c) and campo rupestre (d); details of halos and ribs in cerrado sensu stricto 
(e) and campo rupestre (f) leaves. at = arc termination; btbt = branched termination; h = halo; ir = intersecondary rib; 
st = simple termination. (Scale bars: a-d = 1000 μm; e-f = 100 μm).

a b

c

e f

d



Foliar plasticity of Erythroxylum tortuosum in the Cerrados 7 of 12

Rodriguésia 75: e01512023. 2024

Traits Cerrado Campo rupestre

Stomatal density (mm²) 248 (±65) b 303 (±67) a

Stomatal density (APEX) (mm²) 261 (±63) b 323 (±67) a

Stomatal density (MIDDLE) 244 (±54) a 299 (±76) a

Stomatal density (BASE) 238 (±76) a 287 (±52) a

Polar diameter (μm) 29,983 (±3,433) a 27,988 (±3,216) b

Polar diameter (APEX) (μm) 30,751 (±3,773) a 27,897 (±2,785) b

Polar diameter (MIDDLE) (μm) 29,569 (±3,443) a 27,602 (±3,413) a

Polar diameter (BASE) (μm) 29,631 (±3,059) a 28,567 (±3,480) a

Equatorial diameter (μm) 19,516 (±3,048) a 17,599 (±1,937) b

Equatorial diameter (APEX) (μm) 19,403 (±3,128) a 16,946 (±2,786) b

Equatorial diameter (MIDDLE) (μm) 18,745 (±2,894) a 17,835 (±3,413) a

Equatorial diameter (BASE) (μm) 20,401 (±3,011) a 18,018 (±3,481) b

Stomatal index (%) 15,55 (±0,37) b 17,56 (±0,36) a

Total stomatal pore area index 0,22 (±0,01) a 0,24 (±0,01) a

For the leaf moisture index, measured by the water 
content and succulence index (S), only S presented 
higher and significant values in campo rupestre 
(Tab. 1). The stomata from campo rupestre present 
higher stomatal density and smaller polar and 
equatorial diamenters when compared to cerrado 
sensu stricto. Futhermore, the stomata index is 

higher in campo rupestre and the total pore área 
index is higher in cerrado sensu stricto (Tab. 2).

After analysing the thickness of the epidermis, 
it was observed that there were differences only on 
the adaxial surface, which presented higher values 
in campo rupestre leaves. In the cuticle, both the 
adaxial and abaxial faces had higher averages in the 

Cerrado sensu stricto Campo rupestre

Leaf area (cm²) 74,15 (±15,44) a 50,29 (±13,41) b

Leaf length (cm) 22,34 (±2,57) a 19,87 (± 1,70) b

Leaf width (cm) 5,24 (±0,50) a 4,77 (±0,50) b

Fresh mass (g) 3,06 (±0,83) a 2,39 (±0,61) b

Dry mass (g) 2,02 (±0,74) a 1,45 (±0,40) b

Specific leaf area (SLA, cm2 g-1) 39,89 (±2,33) a 37,71 (±2,65) a

Leaf mass area (LMA, g cm−2) 0,028 (±0,001) a 0,030 (±0,002) a

Leaf tissue density (LTD, mg cm-3) 0,61 (±0,03) b 0,91 (±0,07) a

H2O content (%) 33,29 (±3,35) a 41,27 (±3,22) a

Succulence (g H2O cm2) 0,013 (± 0,002) b 0,022 (± 0,003) a

Table 1 – Morphological, moisture-related and sclerophilic traits of Erythroxylum tortuosum leaves in the cerrado 
sensu stricto and campo rupestre environments.

The averages followed by different letters in the same row differ from each other by the t test for p < 0.05 or the Mann-Whitney test. Source: the authors (2019).

Table 2 – Stomatal traits of Erythroxylum tortuosum present in cerrado sensu stricto and campo rupestre environments.

The averages followed by different letters in the same rows differ from each other by the t test for p < 0.05 or the Mann-Whitney test. Source: the authors (2019).
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cerrado sensu stricto leaves (Tab. 3). In addition to 
the epidermis on the adaxial face, modifications in 
palisade and spongy parenchyma thickness, hence 
the mesophyll and leaf blade, were observed. The 
thickness of the leaf blade, mesophyll, palisade 
parenchyma and spongy parenchyma are higher in 
cerrado sensu stricto than campo rupestre (Tab. 3).

Discussion
In this study, a PP/SP ratio of approximately 

66% was observed for both cerrado sensu and 
campo rupestre leaves, in addition to the presence 
of bundle sheath extension and the absence 
of crystals. These differences possibly reflect 
structural responses to the distinct environments 
where these plants were collected for both studies. 
Beiguelman (1962) and Bieras & Sajo (2004b), 
studying the species Erythroxylum suberosum St 
Hill. and other Erythroxylum species, respectively, 
found anatomic patterns. The authors also 
highlighted the open arch of the petiole vascular 
bundle, acuminate leaf margin and epidermis with 
two cell layers. Bieras & Sajo (2004a) found a PP/
SP ratio of 50%, the presence of crystals and bundle 
sheath extension.

Some traits, such as higher leaf area and 
mesophyl thickness are related to specific 
conditions of each physiognomy we studied. 
Campo rupestre is characterized by underwood 
vegetation and open environments and is subject 
to higher incident radiation, with poorer and 
lower soil water retention capacity (Messias et 
al. 2012; Alves & Silva 2014; Fernandes 2016). 
The cerrado sensu stricto may contain abundant 
arboreal vegetation (Nettesheim et al. 2010), 
which promotes shading on plant leaves present 
in this environment, making it more favourable 
for tree growth than campo rupestre (Alves et al. 
2014). According to Kubinová (1991), leaves that 
develop in environments with higher radiation 
present a smaller area than leaves that develop 
in shaded areas. Gavilanes et al. (2016) found 
similar results when studying Palicourea rigida 
Kunth (Rubiaceae) leaves. They concluded that 
higher averages observed for leaf traits in plants 
from cerrado sensu stricto may be attributed to 
less inhospitable environmental characteristics that 
led to the formation of larger and more functional 
leaves compared to those from campo rupestre.

Brodersen et al. (2008) explained that a larger 
leaf area exposed to solar radiation is related to an 
increase in the light receiving surface. Thus, these 
alterations may increase incident light capture and 

increase plant photosynthetic efficiency (Gobbi 
et al. 2011). Moreover, the decrease in leaf size 
reduces the air layer in contact with the leaf and 
allows more heat loss to the environment by 
convection, requiring less transpiration to cool 
the leaf down (Pooter 1999). This is an important 
strategy in environments with higher irradiance and 
lower water availability in the soil, such as campo 
rupestre (Silveira et al. 2016). The carbon gain 
per leaf mass unit was similar across individuals, 
although the leaf thickness was higher in the 
cerrado sensu stricto plants (Tab. 3). Due to the 
fact that the leaves are plastic organs, they may vary 
in mass and area, as they develop in environments 
with different light intensities and according to 
the availability of local resources, such as water 
and nutrients (Gonçalves et al. 2005; Boeger et al. 
2009); these differences can be found between the 
cerrado sensu stricto and campo rupestre. About 
the succulence results, they are probably related to 
the smaller leaf area and higher fresh mass and dry 
mass observed in the leaves from this environment

Between the sclerophilic indices only the 
LTD presented a significant difference, because 
they are plastic organs, leaves vary in mass and 
area, as they difference; it was higher in campo 
rupestre. This result shows that campo rupestre 
leaves may present more compact cells and 
tissues more compact and/or thicker cell walls 
and cuticles, with more abundant mechanical and 
vascular tissues (Witkowski & Lamont 1991), 
which explains the higher sclerophilic indices, 
despite the smaller mass, compared to leaves of 
the cerrado sensu stricto. According to Gutschick 
(1999), sclerophilic indices increase under more 
stressful conditions with intense radiation, poor 
nutrients and less water availability (Gutschick 
1999; Gonçalves-Alvim et al. 2006), as is present 
in campo rupestre. Therefore, a higher LTD favours 
resistance to drought due to a higher resistance 
to physical damage promoted by desiccation 
(Mediavilla et al. 2001).

We showed a negative relation between 
stomatal density and size (Tab. 2). A higher 
stomatal density is related to plants exposed to 
adverse environments, similar to campo rupestre, 
and may be an adaptation mechanism of these 
plants to conditions of low water availability (Souza 
et al. 2019). Additionally, it is associated with more 
efficiency to gas exchange during periods of higher 
humidity, the increase of conductance and CO2, 
essential to the photosynthetic process (Pearce 
et al. 2006; Siqueira et al. 2023). Generally, the 
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increase of the stomatal density is accompanied by 
the decrease of the stomatal size (Harrison et al. 
2020). The decrease of the stomatal size causes an 
alteration on the pore depth due to the smaller area 
of the guard cells, creating a shorter distance to CO2 
absorption inside the leaf (Franks & Farquar 2007; 
Franks & Beerling 2009). The presence of small 
area pores increases the speed of stomatal opening 
when there is water available and closing rapidly in 
water deficit, resulting in an improvement of water 
use efficiency (Drake et al. 2013).

Regarding to the thickness of the epidermis, 
according to Esau (1974) and Dickison (2000), 
environmental factors may influence the thickness 
and composition of the cuticle, both of which 
play an important role in reducing water loss, 
waterproofing and reflecting sunlight; these 
characteristics probably vary between the studied 
environments. The decrease in leaf blade thickness 
in campo rupestre leaves may favour CO2 diffusion 
within the leaves by decreasing the pathways 
through which this gas travels to chloroplasts 
(Cruz et al. 2014). Stomata are the main entrance 
for CO2 on leaves during photosynthesis, and after 
photosynthesis, CO2 needs to diffuse through the 
mesophyll until it finds chloroplasts. Each part 
of this pathway offers resistance to gas diffusion, 
such as the boundary layer resistance, stomatal 
resistance, intracellular space resistance and liquid 
phase resistance (Taiz & Zeiger 2009). 

Generally, plants exposed to higher 
radiation have thicker leaf blades; however, 
in this case, Cerrado sensu stricto plants are 
theoretically exposed to less radiation compared 
to campo rupestre plants, which presented these 

characteristics. Nevertheless, it is important to 
emphasize that both environments can present a 
high incidence of solar radiation. Furthermore, 
the higher leaf tissue thickness in cerrado sensu 
stricto is consistent with the dry mass results 
observed here.

Erythroxylum tortuosum presents plasticity 
in its foliar structure when it occurs in different 
environments of the cerrado and likely adjusts to 
differences in environmental conditions, such as 
irradiance and water availability. In campo rupestre 
where there are higher solar incidente irradiation, 
poorer soil and lower water retention capacity, and 
cerrado stricto sensu presents arboreal vegetation, 
promoting shading on the leaves, altering their 
anatomy and morphology.
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