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ABSTRACT
Background: Bacterial resistance to extended-spectrum beta-lactamases (ESBL) is present worldwide. Empirical antibiotic therapy is often 
needed, and the use of fluoroquinolones, such as ciprofloxacin and norfloxacin, is common. This study aimed to analyze the urine cultures 
from 2,680 outpatients in January 2019, 2020, 2021, and 2022, with bacterial counts above 100,000 CFU/mL in which Escherichia coli was 
the etiological agent.
Methods: We monitored the resistance of ESBL-positive and ESBL-negative strains to ciprofloxacin and norfloxacin and evaluated 
resistance rates.
Results: Significantly higher fluoroquinolone resistance rates were observed among ESBL-positive strains in all years studied. Furthermore, 
a significant increase in the rate of fluoroquinolone resistance was observed between 2021 and 2022 in ESBL-positive and -negative 
strains, as well as from 2020 to 2021 among the ESBL-positive strains.
Conclusions: The data obtained in the present study showed a tendency towards an increase in fluoroquinolone resistance among 
ESBL-positive and -negative E. coli strains isolated from urine cultures in Brazil. Since empirical antibiotic therapy with fluoroquinolones is 
commonly used to treat diverse types of infections, such as community-acquired urinary tract infections, this work highlights the need for 
continuous monitoring of fluoroquinolone resistance among E. coli strains circulating in the community, which can mitigate the frequency 
of therapeutic failures and development of widespread multidrug-resistant strains.
Keywords: Fluoroquinolones. Urinary tract infection. Escherichia coli. Drug resistance.

INTRODUCTION

Urinary tract infections (UTIs) are among the most frequent 
infections in humans, with an incidence that is high in the community 
and varies with sex and age. UTIs can be caused by a range of 
pathogen, mainly Escherichia coli and other Gram-negative bacteria1. 
UTI treatment often requires the use of antimicrobials, among which 
oral beta-lactams and fluoroquinolones are the most prescribed 

until susceptibility results are acquired. However, owing to the rapid 
spread of drug resistance among Gram-negative microorganisms, 
including E. coli, UTIs are becoming increasingly difficult to treat2.

The production of extended-spectrum beta-lactamases (ESBL) 
is the most important resistance mechanism that Gram-negative 
bacteria have against beta-lactam agents3-5. Although there is no 
direct correlation between the mechanisms involved in resistance 
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TABLE 1: Frequency of resistance/susceptibility to ciprofloxacin and norfloxacin among extended-spectrum beta-lactamases (ESBL)-positive and -negative  
Escherichia coli observed in January 2019, 2020, 2021, and 2022.

Group (n) Fluoroquinolone 
profile (n)

Years
p value 

2019-2020
p value 

2020-2021
p value 

2021-20222019 2020 2021 2022

n % p value n % p value n % p value n % p value

ESBL-
positive
(1340)

Resistant (1113) 275 82.1

<0.001

258 77.0

<0.001

280 83.6

<0.001

300 89.6

<0.001

0.051 0.016 0.023
Susceptible (227) 60 17.9 77 23.0 55 16.4 35 10.4

ESBL-
negative
(1340)

Resistant (409) 96 28.7 90 26.9 97 29.0 126 37.6
0.302 0.363 0.017

Susceptible (931) 239 71.3 245 73.1 238 71.0 209 62.4

Notes: In all analyses, the difference between ciprofloxacin and norfloxacin resistance was below 1%. For a better understanding, we considered them equal and 
named them fluoroquinolone resistant. p value < 0.05 was considered statistically significant.

to beta-lactams and fluoroquinolones, ESBL-positive strains were 
found to be more resistant to these agents than ESBL-negative 
strains. Prior studies have demonstrated that until 58% of  
ESBL-positive strains harbor resistance genes against quinolones6,7.

Therefore, this study aimed to evaluate the frequency of 
resistance to ciprofloxacin and norfloxacin among ESBL-positive 
and ESBL-negative E. coli strains isolated from outpatients with 
UTIs in January 2019, 2020, 2021, and 2022.

METHODS

In the present retrospective study, data were obtained from the 
database of one of the largest private laboratories in Latin America. 
Approximately 120,000 urine cultures originating from all regions 
of Brazil are processed monthly through an advanced automation 
system at the Operational Technical Nucleus, a central operation 
base located in the city of Vespasiano (Minas Gerais). The urine 
samples were collected at the service units spread throughout the 
country, preserved in boric acid (Greiner Bio-One®, Brazil), kept 
under refrigeration, and sent within 24 h to the central operation 
base. To ensure an adequate conservation time, the samples were 
transported by air through an integrated logistics system.

We randomly selected the results of 2,680 mid-stream urine 
cultures carried out in January 2019, 2020, 2021, and 2022 from 
the database. January was randomly chosen to standardize the 
time of year. Patients who answered the questionnaire with 
predefined information or were using antibiotics were excluded. 
To obtain an overview of the community strains, only information 
from outpatients was included in the study. Moreover, only data 
from cultures with bacterial growth above 100,000 CFU/mL, whose 
identification was conclusive for E. coli were included.

Until 2019, laboratory analyses were manually performed. The 
specimens were seeded in a laminar flow hood in chromogenic 
medium plates (chromID® CPS® Elite, bioMérieux®, Brazil) using a 1 
μL calibrated loop. After incubation for 24 h at 37 °C in an aerobic 
atmosphere, biochemical tests were performed using a Modified 
Rugai medium (Renylab®, Brazil). Antimicrobial Susceptibility Tests 
(ASTs) were performed using the disk diffusion method in Mueller-
Hinton medium (PlastLabor®, Brazil). Additionally, the strains 
were screened for ESBL production by the disk-approximation 
method using amoxicillin-clavulanic acid (20/10 µg, Oxoid®, Brazil), 

ceftriaxone (30 µg, Oxoid®), ceftazidime (30 µg, Oxoid®), aztreonam 
(30 µg, Oxoid®), and cefotaxime (30 µg, Oxoid®). Although 
several antibiotics were tested, the compiled results focused on 
the analysis of ciprofloxacin (5 µg, Oxoid®), norfloxacin (10 µg, 
Oxoid®), and ESBL production. Standardization followed Clinical 
and Laboratory Standards Institute (CLSI) guidelines8.

Since 2020, laboratory analyses have been conducted by using 
automated processes. The samples were processed using AutoPlack® 

automatic seeders (Beckman Coulter Diagnostics®, USA) and bacterial 
identification was performed by MALDI-TOF mass spectrometry 
(VITEK® MS, bioMérieux®, France). The ASTs and screening tests 
for ESBL were performed using semi-automated cards (VITEK® XL, 
bioMérieux®). Standardization followed the guidelines established 
by the BrCAST9 and the Brazilian Ministry of Health. The tests were 
quality controlled using the standard strains E. coli ATCC 25922 
(ESBL-negative), Pseudomonas aeruginosa ATCC 27853 (ESBL-
negative), and Klebsiella pneumoniae ATCC 700603 (ESBL-positive).

The fluoroquinolone resistance rates among ESBL-positive 
and -negative groups were calculated and analyzed using the 
OpenEpi software (version 3.0.1) (Dean AG, Sullivan KM, Soe MM.  
OpenEpi: Open Source Epidemiologic Statistics for Public Health, 
http://www.OpenEpi.com). A Chi-square test was performed to 
compare the resistance rates between the studied groups.

RESULTS

Resistance frequency to ciprofloxacin and norfloxacin was 
evaluated in 1,340 ESBL-positive (335 per year) and 1,340 
ESBL-negative (335 per year) E. coli strains randomly selected 
during the same period (January) of 2019, 2020, 2021, and 2022. 
Approximately 43.2% (n=1,158) of the E. coli strains were found 
to be susceptible to the tested fluoroquinolones, whereas the 
rest, 56.8% (n=1,522), showed resistance to both antimicrobials.

As shown in Table 1 and Figure 1, the frequency of fluoroqui-
nolone resistance in the ESBL-negative strains was 28.7% (n=96) in 
2019, 26.9% (n=90) in 2020, 29% (n=97) in 2021, and 37.6% (n=126) 
in 2022. The resistance of ESBL-positive strains was verified to be 
82.1% (n=275) in 2019, 77% (n=258) in 2020, 83.6% (n=280) in 
2021, and 89.6% (n=300) in 2022.

The fluoroquinolone resistance rates among ESBL-positive 
strains compared to ESBL-negative strains were significantly 
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FIGURE 1: Fluoroquinolone resistance among extended-spectrum beta-lactamases (ESBL)-positive and -negative 
Escherichia coli. Frequency of resistance in each of the groups analyzed individually, demonstrating the trend over 
the years of study.

different (p < 0.0001) in each of the years considered individually. 
However, there was no statistically significant difference in 
resistance when the years were compared, specifically, 2019 versus 
2020 for ESBL-positive isolates, and for ESBL-negative isolates, in 
2019 versus 2020 and 2020 versus 2021. In all other evaluations 
between years, we found a statistically significant increase in 
fluoroquinolone resistance as shown in Table 1.

DISCUSSION

In routine laboratory tests, several microorganisms can be isolated 
from urine cultures. Enterobacteria are the main etiological agents 
of UTIs with E. coli being the most frequent species. The widespread 
use of empirical antibiotic therapy significantly contributes to 
the increased prevalence of antimicrobial-resistant strains, as the 
indiscriminate and incorrect use of therapeutic agents is a risk 
factor for the emergence and spread of microbial resistance6,10,11.

Resistance to beta-lactams is often reported for Gram-negative 
bacteria, occurring mainly due to the production of beta-lactamases 
or associated with changes in membrane permeability due to the 
loss of porins. Resistance depends on the amount of enzyme present 
and the affinity for the substrate, and may not be measured by AST, 
if the suspension of microorganisms is not adequate and variation 
in the predominant enzyme can also occur. Therefore, routine 
susceptibility tests do not always detect ESBL production, but the 
possibility of their presence cannot be ignored and is relevant12-14.

The treatment of infections caused by resistant strains 
offers a substantial challenge, as they can hydrolyze penicillin, 
cephalosporins of all generations, and monobactam, minimizing 
therapeutic options, and only some beta-lactam antibiotics 
maintain their activity against them15. To aggravate this issue, two 
additional facts must be highlighted. First, empirically prescribed 
antimicrobials that reach a percentage of resistance above 20% in 
the community run a high risk of therapeutic failure, recommending 
caution with their usage. Second, a significant increase in the 
appearance of ESBL-producing strains has been reported 
worldwide, including in North America and South/Latin America16-20.

Although fluoroquinolone resistance in E. coli is not new, 
studies investigating the resistance rates among strains circulating 
in the community are necessary, especially given the spread 
of multidrug-resistant (MDR) strains and the recurrent use of 
empirical therapy with these antimicrobials for the treatment 
of UTIs. Thus, in the present study, we analyzed the frequency 
of fluoroquinolone resistance among ESBL-positive and  
ESBL-negative E. coli strains isolated from outpatients with UTIs 
in the same month over the past four years.

Our data revealed that the rate of fluoroquinolone resistance in 
the ESBL-positive strains was approximately 180% higher than that 
in the ESBL-negative samples in all years evaluated. In addition, our 
data showed a trend towards increased rates of fluoroquinolone 
resistance among both ESBL-positive and -negative strains. Once 
ESBL-negative strains are isolated at high levels in a community, 
these findings can be considered an alert for the empirical 
treatment of UTIs.

In 2020, the microbiology laboratory standards were changed. 
A committee formed by members of the Societies of Clinical 
Analysis, Infectious Diseases, Microbiology, Clinical Pathology, 
and Laboratory Medicine began to determine and periodically 
review procedures for the interpretation of susceptibility tests 
to antimicrobials for clinical use and epidemiological purposes, 
proposing to the National Agency of Sanitary Surveillance 
the implementation of these procedures in Brazilian clinical 
laboratories. The CLSI standards fell into disuse, and this change 
was implemented in our study at its inception. Thus, it is necessary 
to consider the change in breakpoints for fluoroquinolones. For 
example, resistance to ciprofloxacin was previously determined 
by a minimum inhibitory concentration of ≥1 µg/mL but is now 
determined when >0.5 µg/mL. Initially, we believed that this would 
increase the number of resistant strains. However, as the change 
was only one dilution point, this was not occurred. In fact, as 
shown in Table 1, the number of resistant strains in 2020 was not 
statistically different from that in 2019, with p values of 0.051 and 
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0.302 (resistance in ESBL-positive and ESBL-negative, respectively). 
For the ESBL-negative group there was a decrease in the absolute 
number (from 96 to 90 strains).

In Brazil, a similar study found a fluoroquinolone resistance 
rate of approximately 76%21 among ESBL-positive strains. In Latin 
America, resistance rates of 58% and 90% have been reported in 
Peru22 and Venezuela23, respectively. Moreover, a rate of 80% has 
been reported in Mexico, 60% in Ecuador24 and 12% in Chile25. 
In Brazil, rates of 43%26 and 56%27 have been reported. In earlier 
studies, rates of 12%28,29 and 22%30 were found. In a Russian study, 
a resistance rate of 25% was obtained in 2017, which was 23% 
higher than the rate found in 199931.

Studies have also indicated that microorganisms with the ESBL 
phenotype may show in vitro susceptibility to some drugs, but the 
use of these drugs leads to a lower clinical response due to the 
inoculum effect, resulting in an increase in the minimum inhibitory 
concentration when faced with a large bacterial inoculum or when 
the drug fails to reach its pharmacodynamic targets32,33. Thus, the 
decrease in antimicrobial susceptibility of ESBL-positive strains 
may also represent a significant possibility for therapeutic failure 
in situations where AST is not performed.

In cases of UTIs, particularly community-acquired UTIs, it 
is common to not perform urine cultures and apply empirical 
treatment. However, with the high rates of resistance in ESBL-positive 
strains, empiric therapy can result not only in therapeutic failure, 
but also increase bacterial resistance rates, which is an unfavorable 
outcome. Infection control is extremely important, and studies 
such as this one have value in guiding health professionals in this 
difficult mission. Bacterial multidrug resistance must be considered, 
and therapeutic options, which are often limited, become 
even scarcer when ESBL-producing bacteria cause infection.

The clinical significance of ESBL strains is high because 
limitation in antibiotic choice for treatment, thus making it evident 
that monitoring the resistance profile of bacteria is beneficial and 
recommended, as it reduces the chance of failure and spread of 
MDR strains. Finally, increased fluoroquinolone resistance among 
ESBL-negative strains, which is more common in the community 
(non-hospital environments), should also be monitored to prevent 
rising resistance rates in infections.

ETHICAL APPROVAL

Since the study was a retrospective analysis of laboratory data 
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