
www.scielo.br/rsbmt  I  www.rsbmt.org.br 1

 Bernardo Geraldini.  e-mail: bernardo.geraldini@gmail.com
Data Availability statement: Data and R code are available at: REDU https://doi.
org/10.25824/redu/NCZHR3
Authors’ contribution: BG: Conception and design of the study, methodology, 
acquisition of data, software, analysis and interpretation of data, visualization, 
writing – original draft; ICJ: writing – original draft, writing – review and editing; MJ: 
methodology, supervision, writing – review and editing.
Conflict of Interest: The authors declare that there is no conflict of interest.
Financial Support: This study was financed in part by the Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001. 
Received 20 March 2024 - Accepted 28 June 2024

doi

Revista da Sociedade Brasileira de Medicina Tropical
Journal of the Brazilian Society of Tropical Medicine

Vol.:57 | (e00710-2024) | 2024
  https://doi.org/10.1590/0037-8682-0080-2024

Short Communication

Influence of temperature and precipitation on dengue 
incidence in Campinas, São Paulo State, Brazil (2013–2022)

Bernardo Geraldini[1] , Igor Cavallini Johansen[2]  and Marcelo Justus[3] 

[1]. Universidade Estadual de Campinas, Instituto de Economia, Campinas, SP, Brasil.
[2]. Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas, Departamento de Demografia, Campinas, SP, Brasil.

[3]. Universidade Estadual de Campinas, Instituto de Economia, Centro de Estudos em Economia Aplicada, Agrícola e do Meio Ambiente, Campinas, SP, Brasil.

ABSTRACT

Background: Global dengue cases are rising, notably in Brazil. 

Methods: By using monthly data, we estimated linear regressions with ARIMA errors to measure the influence of temperature and 
precipitation on dengue incidence in the city of Campinas, São Paulo State, Brazil.

Results: Findings suggest that a 1°C increase in mean temperature can lead to a cumulative increase of up to 40% in dengue incidence 
within 2 months. Precipitation shows no significant impact. 

Conclusions: Results highlight the importance of temperature on the spread of dengue and potentially other mosquito-borne diseases.
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Global dengue incidence has increased over the past years. 
A recent report by the World Health Organization (WHO) points 
to a ten-fold increase in reported cases from 2000 to 2019, with 
more than five million cases registered in 20191. Brazil has been 
particularly affected and recorded more than 1.5 million cases in 
2023, a surge of > 65% compared to 2 years prior2.

Climate change is set to modify the scenario of infectious 
diseases, particularly mosquito-borne illnesses like dengue, 
yellow fever, Chikungunya, and Zika3. Although increases in 
temperature (up to 30°C) and precipitation are commonly found 
to be associated with increased dengue incidence, recent studies 
have shown that general explanations concerning climate are not 
capable of explaining the dynamics of the disease4,5,6. Hence, the 
interconnections between mosquito vectors, the environment, 
and disease transmission pose a significant challenge for precise 
forecasting, which is crucial for public health readiness.

Since urban and climate specificities directly shape dengue 
incidence, we investigated the influence of precipitation and 
temperature on the dengue spread in the city of Campinas, São Paulo 
State, Brazil. Similar to Brunkard et al. (2008)7 and Gharbi et al. (2011)8, 
we estimated linear regressions with autoregressive integrated 
moving average (ARIMA) errors. Both precipitation and temperature 
were included as independent variables, whereas dengue incidence 
per 100,000 population served as the dependent variable.

Monthly number of dengue cases was obtained from the 
State Health Department9. To smooth the series, we followed a 
procedure similar to the one employed by Martinez et al. (2011)10: 
a value of 1 was added to all observations to allow for logarithmic 
transformation of the series. Annual population count was 
obtained from the Brazilian Institute of Geography and Statistics 
(IBGE)11 and interpolated linearly to provide monthly estimates. 
Temperature and precipitation data were obtained from the Center 
for Meteorological and Climatic Research Applied to Agriculture 
(CEPAGRI)12. Climate variables were also logarithmized. Data covers 
the period from January 2013 to December 2022§. Stationarity 
is a key requirement when estimating time series models since 

§ Epidemiological data for dengue in Campinas are available from 1998 onwards. However, data from 
1998 to 2012 were removed from this analysis since ARIMA models estimated with the full sample 
showed poor fit and persistent autocorrelation (even though temperature coefficients were similar 
to the ones reported here). This suggests that intervention and/or transfer function analysis should 
be considered (in addition to multivariate models) when analyzing the full sample.
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FIGURE 1: Logarithm of monthly observations for the modeled series in the city of Campinas (2013 – 2022). Top panel: number of dengue cases (plus one) per 
100,000 population. Middle panel: mean temperature. Lower panel: precipitation.

an underlying assumption is that the time series data shows a 
stable statistical structure over time. Stationarity was verified 
using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. Model 
specification was performed automatically with fable package 
for R13. The selection process for the seasonal and non-seasonal 
ARIMA models was carried out automatically, aiming to minimize 
the Akaike Information Criterion. As a measure of regression 
performance, we provide the standardized root mean square error 
(SRMSE), obtained by dividing the model's root mean square error 
(RMSE) by the standard deviation of the series of cases. An SRMSE 
> 1 indicates that predictions are less accurate than assuming the 
mean of the series14. Complete modeling information, including 
ARIMA coefficients and analysis of residuals, as well as the R code 
used, is available in the supplementary material. Time dummies 
were introduced to account for the three months where dengue 
incidence was > 1,000 per 100,000 population. This adjustment was 
implemented to capture and accommodate the unique temporal 
patterns associated with these particular periods better. 

Figure 1 displays the logarithm of the monthly observations 
for the three analyzed series in the city of Campinas: the top 
panel shows the number of dengue cases (plus one) per 100,000 
population; the middle panel shows the mean temperature; and 
the lower panel shows precipitation. Seasonality is evident in each 
series, as confirmed by the autocorrelation function provided in 
the supplementary material.

Following Hyndman’s15 notation, basic model specification is

where 𝑦𝑡 is the logarithm of the number of dengue cases (plus 
one) per 100,000 population at time 𝑡, 𝛽1 is the vector of estimated 
coefficients, 𝑥𝑡−𝑖 is a vector of the exogenous variables (precipitation 
and temperature) at time 𝑡−𝑖 (where 0 ≤ 𝑖 ≤ 2), and the error term 
𝜂𝑡 is modeled using 𝐴𝑅𝐼𝑀𝐴 (𝑝,𝑑,𝑞)(𝑃,𝐷,𝑄)𝑠, that is, accounting for 
seasonality.

In our modeling strategy, we first proceeded by estimating a 
pure seasonal 𝐴𝑅𝐼𝑀𝐴 model — i.e., a model without exogenous 
variables. As expected and shown in Figure 1, dengue incidence 
exhibits a highly seasonal pattern. The model automatically 
selected was 𝐴𝑅𝐼𝑀𝐴 (2,0,0)(2,1,0)12, as detailed in Table 1. 
However, by incorporating temperature and precipitation as 
exogenous variables, seasonality is almost entirely accounted for. 
Intermediate models (Models 2 to 4), which include an increasing 
number of lags for the climate variables, demonstrate a reduction 
in the number of seasonal coefficients. In the selected models 
(Models 5 and 6), no seasonal coefficients are present. This absence 
indicates that seasonality is effectively captured by the climate 
variables and by the dummy variable.

Regarding the exogenous variables, we modeled two lag 
specifications. In the first specification, temperature and rain have 
an impact on dengue incidence within the same month, and an 
impact lagged by 1 month — i.e., dengue incidence at month 𝑡 is 
affected by these climate variables at month 𝑡 and at month 𝑡−1. 
In the second specification, dengue incidence is affected by climate 
variables at months 𝑡, 𝑡−1, and 𝑡−2. Additionally, models with three 
lags were estimated but yielded insignificant coefficients for the 
third lag of the climate variables and were therefore excluded. 
These models are available in the supplementary material.

https://github.com/bfsg839/dengue_data
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TABLE 1: Estimation results from the seasonal ARIMA model (Model 1) and regression models with ARIMA errors (Models 2–6).

Exogenous variables

                                                             Regression with ARIMA errors

Model 1: Model 2: Model 3: Model 4: Model 5: Model 6: 

ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA

(2,0,0)(2,1,0)12 (2,0,0)(2,1,0)12 (0,0,5)(1,0,0)12 (2,0,0)(1,0,0)12 (3,0,3) (2,0,4)

Temperature (t) - NS NS 2.82*** (1.03) 3.13*** (0.91) 4.27*** (0.91)

Temperature (t-1) - - NS 2.25** (1.05) 2.13** (0.88) 2.61*** (0.90)

Temperature (t-2) - - - 1.79* (1.04) - 2.56*** (0.94)

Precipitation (t) - NS NS NS NS NS

Precipitation (t-1) - - NS NS NS NS

Precipitation (t-2) - - - NS - NS

Dummy No No No No Yes Yes

Diagnostics tests and other measures

Shapiro-Wilk test p < 0.01 p < 0.01 p = 0.05 p = 0.67 p = 0.10 p = 0.47

ARCH-LM test p = 0.24 p = 0.27 p = 0.57 p = 0.88 p = 0.84 p = 0.68

Ljung-Box test: Q(18) p < 0.01 p < 0.01 p < 0.01 p = 0.01 p = 0.29 p = 0.22

Q(24) p < 0.01 p < 0.01 p = 0.03 p = 0.03 p = 0.57 p = 0.50

AIC 225.50 227.88 245.61 245.53 241.22 238.44

SRMSE - - - - 0.4125 0.4108

Notes: *, **, and *** denote statistical significance of at least 10%, 5%, and 1%, respectively. The values between parentheses indicate the standard error of the 
coefficient. NS denotes ‘not significant at the 5% level’. Sample size is 120.

Table 1 presents the regression results, with selected models 
in boldface. Diagnostic tests guided model selection and are listed 
at the bottom of the table. 

In the selected models (Models 5 and 6), since all variables 
are logarithmized, coefficients represent the elasticity of dengue 
incidence concerning temperature and precipitation. In Model 5, 
for example, a 1% rise in temperature leads to a 3.1% increase 
in dengue incidence within the same month. Assuming a mean 
temperature of 25°C would mean that a 1°C rise (or 4% of the 
initial temperature) leads to a 12.4% increase in dengue incidence 
within the same month and an 8.4% surge in the next month. 
Hence, Model 5 suggests that a 1°C rise in temperature results in 
a combined increase in dengue incidence of approximately 20%. 

In Model 6, a 1°C rise in temperature leads to a 16.8% increase 
within the same month, 10.4% in one month, and 10% in two 
months — i.e., the total increase in dengue incidence could reach 
almost 40% after two months.

Precipitation played no statistically significant role in predicting 
dengue incidence in Campinas, although two observations must 
be made. First, the model assumes a linear relationship between 
the climate variables and dengue incidence, and non-linearities 
may be present — for instance, given the municipality’s urban and 
sociodemographic characteristics, a minimal amount of precipitation 
may be necessary to allow for mosquito reproduction, whereas 
heavy precipitation may eliminate breeding habitats16. It is possible 
that our model failed to capture such a non-linear relationship. 
Second, different lag effects (such as weekly or biweekly effects) 
could be pertinent7 and were not considered in this research. 

Breeding habitats in Campinas are mostly containers such as 
plant pots, animal waterers, dismountable swimming pools, cans, 
bottles, and buckets, among others17. The abundance of such 

containers directly stems from human behavior and does not solely 
rely on rainwater for filling. Moreover, the impact of precipitation 
can occur indirectly. For example, during the 2014 epidemic in 
Campinas, which coincided with a severe drought18, part of the 
population began storing water in barrels at home, often without 
proper covering, thus facilitating the proliferation of breeding sites.

This study has some limitations. Dengue is a complex disease 
influenced by multiple factors, requiring a comprehensive 
understanding of the various elements that collectively contribute 
to triggering or preventing epidemics. Models like the one 
presented here assume that factors influencing disease incidence 
are stable. Such an assumption is invalid, for example, if a new virus 
serotype is introduced to a naive community. Moreover, urban 
and spatial characteristics (known to impact dengue incidence in 
Campinas19) were not considered due to the nature of the model. 

Another limitation is that dengue case reporting accuracy 
has improved over time, yet it remains reliant on secondary data 
provided by the Campinas Health Department via the reporting 
system. Such reliance on secondary data is a constraint inherent 
to long-term studies on dengue in Brazil. In Campinas, dengue 
notification is mandatory, following the protocols established 
by the Brazilian Ministry of Health20 and the São Paulo State 
Health Secretary21. Suspected dengue cases can be confirmed by 
laboratory criteria or by clinical-epidemiological linkage§§. However, 
underreporting remains a significant concern, particularly as it 

§§ The laboratory confirmation criteria include the following tests and their respective results: a. 
Detection of reactive NS1 protein; b. Positive viral isolation; c. Detectable RT-PCR (up to the fifth day 
after the onset of symptoms); d. Detection of IgM antibodies by ELISA (from the sixth day after the 
onset of symptoms); e. A ≥4-fold increase in antibody titers in PRNT or IH test, using paired samples 
(acute and convalescent phases with at least a 14-day interval). If specific laboratory confirmation is 
not possible or if laboratory results are inconclusive, confirmation by epidemiological linkage should 
be considered. This involves evaluating the spatial distribution of confirmed cases and the likelihood 
that the patient was infected based on nearby confirmed dengue cases.
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seems to have increased in 2020 due to the COVID-19 pandemic22. 
Additionally, a portion of the cases reported in Campinas originate 
from neighboring municipalities, which is another factor of 
uncertainty. Nonetheless, given the recent study period selected, 
the data available were the most appropriate and comprehensive 
for our investigation. 

While our focus was not to address all dengue-associated 
conditioning factors, we aimed to employ a promising methodology 
to underscore its importance and potential for predicting this 
disease, as well as other vector-borne illnesses, particularly in 
the context of a changing climate. Econometric models can serve 
as valuable tools to assist stakeholders in comprehending the 
evolving patterns of disease occurrence and formulating proactive 
public policies to mitigate new outbreaks.

This paper builds on a previous study published in this Journal10, 
which predicted dengue cases in Campinas using a SARIMA 
model. We were able to complement the previous analysis by 
incorporating two additional climate variables — temperature 
and precipitation — using a similar methodology, although not 
designed to forecast dengue incidence. Given Campinas’ location 
in a tropical climate zone, the possibility that rising temperatures 
could impact dengue incidence, as suggested by our models, is 
alarming. Brazil, as a whole, being a tropical country, faces this 
challenge. Despite the approval of a dengue vaccine, available in 
the Universal Health System since 2024, it is still limited to a very 
targeted population group (10–14 years old) and to only 521 out of 
the total 5,570 cities23. As such, the dengue vaccine is expected to 
have only marginal epidemiologic impacts over the next few years. 

Therefore, the findings of this paper remain crucial for planning 
surveillance and preparedness strategies. If temperature increases 
can exacerbate dengue incidence in areas already characterized 
by hot and humid tropical climates, this suggests that dengue 
fever may expand into cooler regions expected to warm up due to 
climate change, and outbreaks may intensify in already high-risk 
areas. Similar trends are projected for diseases such as Zika24 and 
Chikungunya25 in Brazil.
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