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ABSTRACT

OBJECTIVE: To develop and validate a predictive model utilizing machine-learning techniques 
for estimating the length of hospital stay among patients who underwent coronary artery bypass 
grafting.

METHODS: Three machine learning models (random forest, extreme gradient boosting and 
neural networks) and three traditional regression models (Poisson regression, linear regression, 
negative binomial regression) were trained in a dataset of 9,584 patients who underwent 
coronary artery bypass grafting between January 2017 and December 2021. The data were 
collected from hospital discharges from 133 centers in Brazil. Algorithms were ranked by 
calculating the root mean squared logarithmic error (RMSLE). The top performing algorithm 
was validated in a never-before-seen database of 2,627 patients. We also developed a model 
with the top ten variables to improve usability. 

RESULTS: The random forest technique produced the model with the lowest error. The RMLSE 
was 0.412 (95%CI 0.405–0.419) on the training dataset and 0.454 (95%CI 0.441–0.468) on the 
validation dataset. Non-elective surgery, admission to a public hospital, heart failure, and age 
had the greatest impact on length of hospital stay.

CONCLUSIONS: The predictive model can be used to generate length of hospital stay indices 
that could be used as markers of efficiency and identify patients with the potential for prolonged 
hospitalization, helping the institution in managing beds, scheduling surgeries, and allocating 
resources.

DESCRIPTORS: Length of Stay. Machine Learning. Coronary Artery Bypass.
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INTRODUCTION

Coronary artery bypass grafting (CABG) is the most commonly performed cardiac surgery 
in Brazil, representing 54.1% of cases1. The length of hospital stay (LOS) related to CABG 
serves as a significant indicator of the quality of institutions providing this service, as it 
directly impacts resource utilization and healthcare costs. Timely discharge of patients 
following CABG can facilitate hospital workflow by freeing up beds and optimizing healthcare 
professionals’ time2. Furthermore, an unnecessarily prolonged hospital stay can escalate 
the likelihood of adverse events such as falls, hospital infections and medication errors. The 
development of a predictive model capable of estimating LOS can be an effective tool for 
managing hospital expenses, enhancing service efficiency, and ensuring better patient care3.

Traditionally, predictive models in medicine are made by algorithms based on traditional 
statistics4. However, in recent times, machine learning algorithms have emerged as a viable 
approach for developing predictive models5–7. Determining the most effective model for 
generating accurate predictions involves comparing different algorithms’ predictive abilities.

A potential limitation of predictive models is that they may not be applicable to a 
patient population that significantly differs from the population in which the model was 
developed8. To the best of our knowledge, no predictive models specifically developed 
to estimate LOS for patients undergoing CABG have been trained and validated using a 
Brazilian database.

The primary objective of this study was to develop and validate a predictive model utilizing 
machine learning techniques for estimating LOS among patients who underwent CABG, 
utilizing data from a Brazilian administrative database. 

METHODS

Source of Data and Study Participants

For training and validation, we used an administrative database collected from hospital 
discharges from 133 hospitals, in all regions of Brazil, from January 2017 to December 2022. 
The database is derived from public and private insurance hospitals that employ DRG 
for the management of healthcare processes in healthcare systems. The dataset contains 
information for each hospitalization, encompassing demographic details, adverse events, 
primary and secondary diagnosis codes, as well as procedure codes. Data were collected 
by healthcare professionals trained in data collection. The entire database of patients who 
underwent CABG, comprising 12,211 admissions of individuals aged 18 years and older, 
was utilized to enhance the power of the predictive model and its generalization. Data from 
9,584 patients who underwent CABG with or without valve replacement between January 
2017 and December 2021 were used for training and internal validation of the predictive 
model. Then, the predictive model with the best performance was validated in a new 
sample of 2,627 patients who had undergone CABG between January 2022 and December 
2022. Exclusion criteria were patients younger than 18 years, patients transferred to 
another hospital and patients who died in the same hospitalization. The study followed 
the Transparent Reporting of the Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines9.

Outcome and Variable Selection

The variables were collected at hospital discharge using the International Classification 
of Diseases, 10th Revision (ICD-10), coding. Coders were instructed to identify conditions 
present on admission. Because there is a great number of ICD-10 codes, we categorize them 
into clinically meaningful groups. In total, 59 independent variables were included in the 
predictive model. We also developed a model with the top ten variables identified by Shapley 
Additive Explanations (SHAP) technique10. Variables that the authors considered not to be 
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clinically plausible predictors of LOS stay were excluded. The outcome was LOS for patients 
undergoing CABG. LOS in days was calculated from the difference between the date and 
time of admission and discharge.

Missing Data

Data from 88 patients were missing in the database. Patients with missing data were excluded 
from the analysis. We considered that the missing data occurred completely at random and 
that they represented a small part of the sample.

Model Training, Selection, and Validation

The training sample was used to train three machine learning models (random forest, extreme 
gradient boosting and neural networks) and three traditional regression models (Poisson 
regression, linear regression, negative binomial regression). To guide algorithm selection, 
we ranked the predictive capacities of models. The model with the best performance was 
selected and validated in a new sample of patients undergoing CABG at a distinct time. For 
training the predictive models, a sample of 9,584 patients undergoing CABG between January 
2017 and December 2021 was used. For machine learning models, 30% of the training base 
was selected for a hold out for internal validation and excluded from the database. In the 
remaining portion of the database, we used the K-fold cross validation method11: the dataset 
was divided into ten folds, with each algorithm being trained ten times. In each iteration, 
one fold was utilized for validation while the remaining nine folds were used as the training 
dataset. The process continues until all parts have participated in both the training and 
validation processes. This procedure has a single parameter k, which refers to the number 
of groups the training dataset should be divided into for training and validation purposes. 
The most common values used for k range from 5 to 10. We used k = 10 in all tested models.

The model with the best performance was defined through the root mean squared and 
logarithmic error (RMLSE) in the training dataset. The RMLSE was chosen as our metric 
because it penalizes the model more severely when the predicted value is less than the 
actual value compared to when the predicted value is more than the actual value, but we 
also included other common regression metrics of the models in a supplemental materiala. 
The closer the RMLSE is to 0, the smaller the error of the model12. While it may not be the 
most optimal method for evaluating the predictive accuracy of machine learning models, 
we calculated the R² value for the top-performing model to facilitate a comparative analysis 
against alternative predictive models. Internal validation was performed on 30% of the 
training base that had been separated for this purpose. We also developed a model with the 
top ten variables identified by SHAP technique in the validation dataset, to improve usability.

The algorithm that exhibited the highest performance using all variables and the model 
employing the top ten variables were both trained on the entire training dataset. The models 
were then validated in a never-before-seen database of 2,627 patients who had undergone 
CABG between January 2022 and December 2022.

To set the hyperparameters of the chosen model, we used the Grid Search technique. A set of 
possible values ​​for each hyperparameter was selected and all possible combinations of these 
hyperparameters were tested. The hyperparameters that obtained the best performance were 
used for the final model. Tuning hyperparameters prevents the model from learning solely 
from the presented data (avoiding overfitting and underfitting), enabling it to generalize to 
other possible scenarios13.

The SHAP technique was used to define the relative importance of each model variable in 
the outcome. This is done by comparing the predictive ability of a model with and without 
a given variable. The larger the difference between the predictions, the more important the 
variable is to the model. The advantage of using SHAP values lies in the fact that they add 

aAvailable at: https://github.com/vitorsc-hub/suplemmentary_material_cabg	
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interpretability to complex models10.

A calibration curve was also built to assess the predictive ability of the selected model. 
The main objective of a calibration curve is to assess the alignment of model predictions 
with the true values of the output variable. It provides an idea of how well the model’s 
predictions are aligned with the actual values when comparing numerical predictions with 
the true values of the outcome variable. To do this, predictions are grouped into intervals or 
bins, creating groups of similar predictions. An ideal calibration curve would have all points 
located on the diagonal line, indicating perfect calibration of predictions with respect to 
actual values. By observing the calibration curve, it is possible to identify whether the model 
is consistently underestimating or overestimating the values, which may indicate the need 
for adjustments or refinements in the model14.

To describe the characteristics of patients, we used the Mann-Whitney test to compare 
continuous variables and Pearson’s χ² test to compare categorical variables. For each of 
the most important variables, we compared the LOS between patients with and without 
that characteristic. Since the LOS did not follow a normal distribution, we employed a 
non-parametric test (Mann-Whitney) to assess whether the difference in hospital stay 
was significant between patients with the characteristic and those without it, using a 
significance level of 5%.

This study was approved by the Ethics and Research Committee of the Medical Sciences 
School of Minas Gerais, Brazil (Certificate  of Presentation for Ethical  Appreciation — 
CAEE: 29000819·0.0000·5134). It was classified as a low-risk study, since it used anonymous 
convenience samples extracted from a database which is used for managerial purposes. 
The study did not require participants to sign the informed consent form. Python software 
(version 3.7) was used for training and validation of the model.

RESULTS

Patient Characteristics

Data from 9,584 patients (75% male, mean age 63.2 (9.6) years) who underwent CABG between 
January 2017 and December 2021 were utilized for training the algorithm. Subsequently, 
the algorithm’s performance was assessed using a new dataset comprising 2,627 patients 
(74.2% male, mean age 63.7 (9.4) years) who underwent CABG between January 2022 and 
December 2022. The flow of participants through the study is depicted in Figure 1. Baseline 
characteristics of both the training and validation cohorts, along with their unadjusted 
association with the primary outcome, are presented in Table 1. The characteristics of the 
training and validation groups were similar. The average duration of hospital stay was 14.8 
days (standard deviation – SD = 10.3) for the training cohort and 15.9 days (SD = 12.6) for the 
validation sample. Out of the total surgeries considered in this study, 55.9% (6,826 patients 
— 5,363 on the training and 1,463 on the validation dataset) were classified as non-elective 
procedures. Valve replacement was performed in 11.8% (1,436 patients — 1,136 on the 
training and 300 on the validation dataset) of the surgeries, and 52.0% (6,345 patients — 4,398 
on the training and 1,407 on the validation dataset) of the hospitalizations occurred within 
the Brazilian public health system (SUS). The average number of chronic health conditions 
per patient was 4.26 (SD = 1.97). Among the patients included in this study, 2,654 patients 
(21.7%) had more than five chronic health conditions. The in-hospital mortality rate for 
patients who underwent CABG was 6.5% (854 patients).

Model Performance

We trained three machine learning models (random forest, extreme gradient boosting 
and neural networks) and three traditional regression models (Poisson regression, linear 
regression, negative binomial regression) in the training dataset. The random forest model 
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Figure 1. Flow of participants throughout the study.

Table 1. Characteristics of patients used for algorithm training and validation.

Variable
Training database Validation database

Total
LOS 
(SD) 

Median 
LOS

p-valuea Total
LOS 
(SD)

Median 
LOS

p-valuea

Total admissions 9,584 14.8 (10.3) 12 - 2,627 15.9 (12.6) 12

Sex, n (%) < 0.001 < 0.001

Female 2,393 (25.0) 16.7 (12.3) 13 678 (25.8) 17.3 (11.6) 13

Male 7,191 (75.0) 14.2 (9.5) 12 1,949 (74.2) 15.5 (14.1) 12

Age at surgery, mean (SD), years 63.2 (9.6) - - - 63.7 (9.4) - -

Elective surgery, n (%) < 0.001 < 0.001

No 5,363 (56.0) 18.3 (11.1) 16 1,463 (55.7) 20.7 (13.7) 18

Yes 4,221 (44.0) 10.4 (7.2) 8 1,164 (44.3) 9.9 (7.5) 8

Payer source, n (%) < 0.001 < 0.001

Public health 4,938 (51.5) 16.9 (11.0) 15 1,407 (53.6) 19.3 (13.9) 16

Private health 4,559 (47.6) 12.7 (9.0) 10 1,220 (45.8) 12.1 (9.5) 9

Valve replacement < 0.001 < 0.001

Yes 1,136 (11.9) 17.5 (14.1) 13 300 (11.4) 18.7 (15.5) 14

No 8,448 (88.1) 14.5 (9.7) 12 2,327 (88.6) 15.6 (12.1) 12

Comorbidities

Heart failure, n (%) < 0.001 < 0.001

Yes 1,199 (12.5) 19.1 (12.8) 16 388 (11.4) 20.5 (14.8) 17

No 8,385 (87.5) 14.2 (9.7) 12 2,239 (85.2) 15.1 (11.9) 12

Non-STE ACS, n (%) < 0.001 < 0.001

Yes 4,628 (48.3) 16.1 (10.4) 14 1,249 (47.5) 17.6 (12.4) 15

Continue…

r f

CABG: coronary artery bypass grafting. RMSLE: root mean squared logarithmic error.

r
f
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Variable
Training database Validation database

Total
LOS 
(SD) 

Median 
LOS

p-valuea Total
LOS 
(SD)

Median 
LOS

p-valuea

No 4,956 (51.7) 13.6 (10.1) 10 1,378 (52.5) 14.4 (12.5) 10

STE ACS, n (%) < 0.001

Yes 707 (7.4) 20.5 (10.2) 19 212 (8.1) 25.3 (14.3) 22

No 8,877 (92.6) 14.4 (10.2) 12 2,415 (91.9) 15.1 (12.1) 11

Chronic kidney injury, n (%) < 0.001 < 0.001

Yes 435 (4.5) 21.2 (16.4) 17 127 (4.8) 23.4 (16.9) 18

No 9,149 (95.5) 14.5 (9.9) 12 2,500 (95.2) 15.4 (12.2) 12

AF/Flutter, n (%) < 0.001 < 0.001

Yes 843 (8.8) 18.5 (13.7) 15 255 (9.7) 20.7 (16.0) 16

No 8,741 (91.2) 14.5 (9.9) 12 2,372 (90.3) 15.4 (12.0) 12

Acute respiratory failure, n (%) < 0.001 < 0.001

Yes 300 (3.1) 22.3 (14.9) 18 112 (4.3) 29.4 (22.2) 23

No 9,284 (96.9) 14.6 (10.1) 12 2,515 (95.7) 15.3 (11.6) 12

Acute kidney injury, n (%) < 0.001 < 0.001

Yes 191 (2.0) 25.5 (15.1) 22 92 (3.5) 26.7 (17.7) 22

No 9,393 (98.0) 14.6 (10.1) 12 2,535 (96.5) 15.5 (12.2) 12

ID DM, n (%) < 0.001 < 0.001

Yes 844 (8.8) 17.4 (12.8) 14 229 (8.7) 20.7 (17.2) 16

No 8,740 (91.2) 14.6 (10.1) 12 2,398 (91.3) 15.5 (11.9) 12

COPD <0.001 < 0.001

Yes 370 (3.9) 19.0 (13.3) 16 112 (4.3) 24.2 (19.9) 18.5

No 9,214 (96.1) 14.6 (10.2) 12 2,515 (95.7) 15.6 (12.0) 12

Mitral valve disease, n (%) < 0.001 < 0.001

Yes 504 (5.3) 19.6 (15.2) 16 160 (6.1) 20.4 (15.4) 16.5

No 9,080 (94.7) 14.5 (9.9) 12 2,467 (93.9) 15.6 (12.3) 12

Dyslipidemia, n (%) < 0.001 0.003827

Yes 3349 (34.9) 14.2 (9.5) 12 807 (30.7) 15.0 (11.9) 11

No 6,235 (65.1) 15.2 (10.9) 13 1,820 (69.3) 16.3 (12.9) 13

Acute pulmonary edema, n (%) < 0.001 < 0.001

Yes 223 (2.3) 21.7 (17.3) 18 59 (2.2) 22.4 (13.7) 21

No 9,361 (97.7) 14.6 (10.1) 12 2,568 (97.8) 15.7 (12.5) 12

 Other arrhythmias, n (%) < 0.001 0.01154

Yes 252 (97.4) 18.5 (15.4) 15 61 (2.3) 20.5 (17.7) 16

No 9332 (2.6) 14.7 (10.2) 12 2,566 (97.7) 15.8 (12.4) 12

COVID-19, n (%) < 0.001 < 0.001

Yes 72 (0.8) 28.6 (17.5) 24 26 (1.0) 30.2 (12.5) 31.5

No 9,512 (99.2) 14.7 (10.2) 12 2,601 (99.0) 15.8 (12.5) 12

NID DM, n (%) 0.2925 0.1621

Yes 3,028 (31.6) 14.7 (10.4) 12 819 (31.2) 15.7 (13.5) 12

No 6,556 (68.4) 14.8 (10.3) 12 1,808 (68.8) 16.0 (12.1) 13

Hypertension, n (%) 0.3058 0.1462

Yes 7,510 (78.4) 14.7 (10.1) 12 2,014 (76.7) 16.0 (12.5) 12

No 2,074 (21.6) 15.2 (11.2) 12 613 (23.3) 15.5 (12.9) 12

Table 1. Characteristics of patients used for algorithm training and validation. Continuation.

Continue…
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had the best performance and was then validated in a new dataset, followed by the extreme 
gradient boosting model. 

The RMLSE of the random forest model was 0.412 (95%CI 0.405–0.419) on the training 
dataset, 0.429 (95%CI 0.417–0.440) on the hold-out and 0.454 (95%CI 0.441–0.468) on the 
validation on a distinct dataset collected between January 2022 and December 2022. The 
RMLSE of the top ten model was 0.485 (95%CI 0.470–0.500) on the validation on a distinct 
data set and was not significantly different from the model which included all the variables 
(Signed Wicoxon Test, p-value = 1). Model calibration curves on the validation dataset are 
shown in Figure 2. The model with the top ten variables is available for use through the link: 
https://rvsm.reiks.tec.br/

Feature Importance

The SHAP analysis showed that the variables with the greatest impact on the patient’s LOS 
in decreasing order of strength were non-elective surgery, admission to a public hospital, 
presence of heart failure, age, and Non-STE-ACS. The strongest variables for model prediction 
were similar in the training and validation datasets (Figure 3).

Figure 2. Calibration plot of validation dataset. Calibration curve demonstrating the predicted lenght 
of stay relative to actual lenght of stay for the model.

Variable
Training database Validation database

Total
LOS 
(SD) 

Median 
LOS

p-valuea Total
LOS 
(SD)

Median 
LOS

p-valuea

Obesity, n (%) < 0.001 0.001246

Yes 893 (9.3) 16.3 (11.3) 13 236 (9.0) 18.6 (16.3) 15

No 8,691 (90.7) 14.5 (10.2) 12 2,391 (91.0) 15.7 (12.1) 12

Drug use, n (%) < 0.001 0.02492

Yes 198 (2.1) 22.3 (9.7) 21 21 (99.2) 17.9 (6.9) 19

No 9,386 (97.9) 14.7 (10.3) 12 2,606 (0.8) 15.9 (12.6) 12

Table 1. Characteristics of patients used for algorithm training and validation. Continuation.

LOS: length of hospital stay; SD: standard deviation; Non-STE ACS: non-ST elevation acute coronary syndrome; STE ACS: ST elevation acute coronary 
syndrome; AF: atrial fibrillation; ID DM: insulin dependent diabetes mellitus; NID DM: non-insulin dependent diabetes mellitus; COPD: chronic 
obstructive pulmonary disease). 
aMann–Whitney test for significant differences between groups.
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Non STE ACS: non-ST elevation acute coronary syndrome; STE ACS: ST elevation acute coronary syndrome; 
SHAP: Shapley Additive Explanations. 
Note: Figure showing the importance of the input variables in the y-axis ranked by their mean absolute Shapley 
Additive Explanations values, in decreasing order of strength.

Figure 3. Shapley Additive Explanations analysis in validation dataset.

Non-STE ACS: non-ST elevation acute coronary syndrome; STE ACS: ST elevation acute coronary syndrome; 
SHAP:  Shapley Additive Explanations. 
Note: Figure shows input variables in the y-axis ranked by their mean absolute SHAP values, in decreasing 
order of strength. Each instance of the dataset is represented as a point. The points are distributed in the x-axis 
according to their SHAP value. The color represents the raw value of the instances, red indicates high (or having 
this condition, if the predictor is binary) and blue indicates low (or not having this condition).

Figure 4. Summary plot showing variables’ relative importance and their effect on the predicted 
outcomes within the model in the validation dataset.

https://doi.org/10.11606/s1518-8787.2024058006161 8
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A summary plot showing the variables’ relative importance and their effect on the predicted 
outcomes within the model in the validation dataset is shown (Figure 4).

DISCUSSION

The machine-learning system may experience diminished performance when there is a 
mismatch between the dataset with which it was developed and the data on which it is 
deployed, in a process called dataset shift15–17. A machine learning model trained on a specific 
population or healthcare structure can underperform when applied in a new setting8. To the 
best of our knowledge, this is the first predictive model developed to estimate LOS in patients 
undergoing CABG using a Brazilian database.

Our study used an administrative database to produce an machine learning model capable 
of estimating LOS in patients undergoing CABG with RMLSE = 0.454 for the validation 
of the model including all variables and RMLSE = 0.485 for the validation of the top ten 
model. The model can reliably predict the LOS in groups of patients, as demonstrated in the 
calibration curve. The algorithm was developed using data collected from multiple centers 
across all regions of Brazil, encompassing a large population. Through direct comparison of 
different predictive models of machine learning and traditional statistics, it was possible to 
avoid bias associated with algorithm selection. The random forest technique produced the 
model with the lowest error. Other strengths of our study include a large sample size and 
the utilization of LOS as a continuous variable rather than a categorical one. A model with 
the top ten variables was not significantly different from the model which included all the 
variables, improving usability. Our algorithm with the top ten variables is freely accessible 
via a provided weblink, facilitating the dissemination of the algorithm to centers that can 
utilize a model adjusted to local realities and further validate it.

Traditional statistics models may incorrectly presuppose linear interactions among the 
variables influencing outcomes, thereby constraining the effectiveness of predictive models18. 
In contrast, machine learning approaches consider the dynamic interplay of variables in 
ways that are nonlinear and nonparametric, leading to enhanced prediction tools19. Machine 
learning  employs more flexible techniques that facilitate the incorporation of extensive 
volumes of multidimensional data20. Supporting this assertion, the random forest technique 
yielded a model with better performance compared to the conventional statistical models 
(Poisson regression, linear regression, negative binomial regression) we developed in our 
database. 

The random forest algorithm is a powerful Machine learning technique that can be used for 
both regression and classification models. It is a special case of an ensemble method called 
«bagging» (bootstrap aggregating). Bagging involves training multiple models on different 
random subsets of the original dataset and combining their predictions to produce a more 
robust result. In  the case of random forest, bagging is applied to a set of decision trees. 
Multiple  training subsets are created from the original dataset using a technique called 
«bootstrap sampling» for each subset. For each training subset, a decision tree is trained. 
The predictions from all individual trees are combined to form a final prediction20. In the 
case of random forest, the combination often involves averaging (for regression) or voting 
(for classification) the predictions of individual trees. The key feature of random forest is the 
introduction of randomness during tree construction. This includes the random selection 
of features at each node split and the use of random feature subsets for each tree. The 
introduced randomness helps reduce the correlation between individual trees, making the 
ensemble more diverse and, therefore, less prone to overfitting. This diversity is fundamental 
for improving the generalization of the model19.

Most of the studies examining LOS in patients who undergo CABG solely focused on the 
duration of their stay in the intensive care unit21–24. Alshakhs et al.25 conducted a study 
with a predictive model using Machine learning for hospital LOS after CABG in Saudi 
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Arabia with 621 patients. In contrast to our study, LOS was categorized into high and 
low risk. The random forest technique also produced the model with the best accuracy. 
Osnabrugge et al.26 developed a predictive model for hospital LOS and costs in patients 
undergoing CABG using linear regression analysis in a large database. Triana et al.27 
developed a Machine learning model for LOS using data from a single institution’s 
Society of Thoracic Surgeons (STS) Registry. Our model had a better R² coefficient 
(R² = 0.277 for the validation of the model including all variables, R² = 0.1933 for the 
top ten model) than these other models that considered only preoperative variables 
(R² = 0.10 and R² = 0.058, respectively). Both studies also developed a model including 
preoperative, intraoperative, and postoperative variables, with R² values of 0.51 and 
0.232, respectively. Recognizing that predictions should be adjusted for variations in 
risk factors as opposed to differences in outcomes, we made a choice to exclude these 
variables. This decision aligns with a key focal point of our model, which is benchmarking 
to be used in management improvement programs and the establishment of pay-for-
performance mechanisms. It is important to highlight that the utilization of R² might not 
be the most suitable approach for assessing the predictive precision of intricate models 
such as random forests. R² quantifies the extent to which independent variables in the 
model account for the variability in the dependent variable. However, machine learning 
methods can grasp non-linear and interactive elements—features that conventional 
linear regression models might miss. This distinction leads to R2’s limitations when 
it comes to capturing the nuances of complex relationships that random forests can 
handle28.

The risk factors for prolonged LOS that we found are similar to previous studies. 
Osnabrugge et al.26 and Almashrafi et al.29 also described non-elective surgery as a risk 
factor for increased LOS. Patients with heart failure also had longer LOS in the studies 
conducted by Almashrafi et al.29 and Lazar et al.30 Combined CABG and valve surgery 
was also found to increase LOS in the study conducted by Almashrafi et al.29 Triana 
et al.27 also found age to increase LOS. One of the main risk factors for prolonged LOS 
found in our study was performing CABG in the public health system, which may reflect 
the influence of the low income of the population assisted in this system, or its poorer 
quality of structure and hospital processes. We did not find another study that analyzed 
this variable.

Our study has several limitations. Despite using a database collected in a different period to 
validate the model, this was a retrospective database collected from the same institutions 
where the model was trained. Furthermore, the characteristics of the patients in the 
training and validation samples are very similar, probably leading to overly optimistic 
results. It would be important to carry out an external and prospective validation, ideally 
assessing the application of the model by clinicians in clinical practice. Access to other 
variables could increase the explanatory power of our model. As this is a database collected 
for administrative purposes, we did not have access to risk factors that influenced LOS 
in other studies, such as the use of intra-aortic balloon pump, laboratory results, use 
of intravenous nitroglycerin and pulmonary artery systolic pressure22,24,25,27. Building a 
specific database for conducting studies in patients undergoing cardiac surgery could 
further enhance the predictive capacity of the model. Other studies have indicated that 
postoperative factors and adverse events are significant contributors to increased length 
of stay (LOS)26,27. However, incorporating such variables would hinder the model suitability 
for hospital benchmarking and pay-for-performance measures. We excluded non-survivors 
to predict LOS. Since the characteristics of patients who survive are different from those 
of patients who die in hospital, our findings could be altered in a population including 
non-survivors. This affects the generalizability of our algorithm.

Hospital LOS is an important marker of quality of care. The developed model can be used 
to compare the observed and expected LOS to generate LOS indices that could be used 
as markers of efficiency, allowing healthcare systems to manage resources and optimize 
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hospital payment models. In addition, identifying patients with the potential for prolonged 
hospitalization can help the institution in managing beds, scheduling surgeries, and allocating 
resources. The predictive model can also help in the psychological preparation and planning 
of the patient and his family.
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