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ABSTRACT: There is an increasing interest in the application of geophysical surveys to as-
sess the soil water content (SWC) variation in both spatial and temporal scales. In this work, a 
geophysical survey was carried out at an experimental farm in dry and wet conditions. We de-
termined the SWC data measured with the gravimetric method, apparent electrical conductivity 
by electromagnetic induction (EMI) and amplitude of Ground Penetrating Radar (GPR) data at dif-
ferent frequencies. Geophysical sensors are an efficient tool for soil mapping at high resolution; 
however; there is a need to improve the knowledge on their capabilities and limitations under 
field conditions, especially for GPR. The geophysical survey provides an example of the applica-
tion of these techniques to evaluate the spatial variability of SWC in two different water condi-
tions. The contribution of geophysical data in understanding the spatial variability of SWC was 
investigated applying both the traditional analysis and spatial techniques. The results indicated 
that the geophysical data captured the spatial variation of SWC in non-invasively way especially 
in dry condition. However, they also showed the complex interplay between factors controlling 
SWC and geophysical responses and the drawbacks of geophysical sensors under inhomoge-
neous water conditions. Our findings also highlighted that EMI survey provides the potential to 
map the SWC variability within a relatively short time. The results obtained in this research are 
important from the agronomical viewpoint, since they allow increasing efficiency of irrigation 
practices, which is important in times characterized by climate change.
Keywords: electromagnetic induction, ground penetrating radar, spatial and temporal variability, 
cross correlogram
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Introduction

Soil water content (SWC) is a key component of 
the hydrological cycle, since it controls evapotranspira-
tion, groundwater recharge and generation of runoff 
(Vereecken et al., 2014). Understanding the variation of 
SWC is important for the management of agricultural 
fields to maximize yields, apply irrigation systems and 
minimize the impacts of farming practices (Brocca et al., 
2009). Investigation of the spatial pattern of SWC is hav-
ing more attention with the increase in the availability of 
non-invasive soil sensors that integrate sparse direct sam-
pling (Landrum et al., 2015). Geophysical sensors, such 
as electromagnetic induction (EMI) and ground penetrat-
ing radar (GPR), are gaining interest as tools to obtain 
spatially distributed data that could be correlated with 
soil and hydrologic properties (Zhu et al., 2010; Minet 
et al., 2013). The EMI methods are widely used for soil 
mapping, given the high density “on-the-go” surveys of 
soil apparent electrical conductivity (ECa) (Adamchuk et 
al., 2004). EMI studies have been conducted to estimate 
the spatial variability of SWC (Martínez et al., 2010; De 
Benedetto et al., 2013) and it seems that the method al-
lows mapping the soil properties with high spatial reso-
lution (Martini et al., 2017; Pedrera-Parrilla et al., 2017). 
Time-lapse EMI measurements allow separation of the 
temporally stable contribution of static properties (e.g. 
texture) from the temporally dynamic contributions of 
SWC to the measured ECa (Robinson et al., 2009). Con-

versely, research on GPR amplitude data is limited due to 
the complexity of data acquisition and processing. How-
ever, its application might provide important information 
because GPR data are sensitive to both soil EC and di-
electric permittivity, primarily depending on SWC. GPR 
amplitude and measurements repeated in different water 
conditions could provide information on highly dynamic 
soil properties (Knight et al., 1997; De Benedetto et al., 
2013). Although these technologies have potential to indi-
cate features that influence the water movement, there is 
a need to further the knowledge on their capabilities and 
limitations under field conditions, especially for GPR ap-
plications. This study provides an example of geophysical 
application to evaluate GPR contribution in understand-
ing the spatial variability of SWC in two different water 
conditions applying both the traditional analysis and spa-
tial techniques, aimed at improving the use of EMI and 
GPR maps to describe spatial SWC patterns.

Materials and Methods

Study site and Data collection
The research was carried out at the experimen-

tal farm located in Metaponto (MT), southern Italy (lat. 
40°24’ N; long. 16°48’ E; elev. 5 m asl). The study was 
conducted in the MITIORG experimental device (Long-
term climatic change adaptation in organic farming: syner-
gistic combination of hydraulic arrangement, crop rotations, 
agro-ecological service crops and agronomic techniques), 
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which consists of a long-term field trial in organic horti-
culture ongoing since 2013 and tests different agro-eco-
logical techniques and conservation farming best prac-
tices (Diacono et al., 2016). The Soil, classified as Typic 
Epiaquerts (Soil Survey Staff, 1999), is poorly drained, 
consisting mostly of swelling clays, with the clay (about 
60 %) and silt (30 %) contents increasing with depth.

The experimental device combines a suite of 
functionally integrated techniques from which the soil 
hydraulic arrangement obtained by means of soil sur-
face shaping as a kind of ridge system, where different 
vegetable crops are cultivated both above three raised 
beds (ridges 2.5 m wide) and in four 2.5 m flat areas (or 
strips) between them (Figure 1A). This arrangement al-
lows to increase the rooting depth layers in periods with 
high rainfall, eliminating the risk of water stagnation 
and making easier the lateral outflow of excess water 
(Diacono et al., 2016).

In July and October 2016, 36 geo-referenced soil 
samples were collected from the soil surface at 0.30 m 
depth at the four flat strips. The SWC was measured with 
gravimetric method. The samples were georeferenced us-
ing a Differential Global Positioning System (DGPS) with 
accuracy of altimetric and planimetric centimeter (Figure 
1A). The dry conditions of July characterized the first data 
acquisition, whereas the Oct survey was characterized by 
large previous precipitation events (the last rainfall event 
occurred one week before the survey, about 21 mm). A 
Digital Elevation Model (DEM) was previously construct-
ed (Figure 1B) and the elevation ranged from about 4 to 5 
m above sea level (De Benedetto et al., 2017).

Geophysical investigations
The experimental field was surveyed using an EMI 

sensor connected to the DGPS. The system is composed 
of two units mounted perpendicularly to each other, 
which allows simultaneous measurements of ECa at two 
depths for each measurement site. In the vertical dipole 
mode (V), the theoretical maximum sensitivity and in-

vestigation correspond to the depth of 0.40 and 1.50 m, 
respectively. In the horizontal dipole mode (H), device 
sensitivity decreases at depth to a theoretical maximum 
depth of investigation of 0.75 m (McNeill, 1980). The 
survey was conducted using a non-metallic platform and 
a wood cover (to avoid any magnetic interference and 
thermal drift of the sensor) and the sensor was towed 
behind a tractor at a distance of about 5 m, along 8 paral-
lel longitudinal transects (approximately 1.5 m apart in 
each strip) (Figure 1A). The EMI sensor was calibrated 
and zeroed according to the manufacturer instruction 
before starting the measurements. The ECa in both ori-
entations (ECa-H and ECa-V) was recorded every second, 
resulting in an average spatial resolution of 0.5m along 
the transect.

The GPR survey was carried out immediately after 
the EMI survey, along 4 parallel longitudinal transects, 
about 8 m apart (Figure 1A). The GPR data were collect-
ed using a Multifrequency Array Radar-System, with two 
frequencies of antennas of 600 and 1600 MHz, operating 
in mono-static way. The GPR produces a short-pulse of 
high-frequency (10-1000 MHz) electromagnetic energy, 
which is transmitted into the ground. The propagation 
of the radar signal depends on the electrical properties 
of soil and are primarily controlled by the water content. 
Variations in the electrical properties of soils are usu-
ally associated to changes in volumetric water content, 
which, in turn, originates radar reflections (Davis and 
Annan, 1989). The GPR data were collected with trace 
increments of 0.024 m and time increments of 0.05 ns 
and connected with DGPS. The received signals were 
displayed as a function of their two-way travel in the 
form of radargram (Davis and Annan, 1989). 

Statistical analyses
Descriptive statistical analyses were calculated 

and used to evaluate the magnitude of data dispersion. 
Since the condition of normality, checked by the Shapiro 
normality test, was not fulfilled, a non-parametric test, 

Figure 1 – (A) The experimental device with the sampling locations (green dots) and the EMI and GPR acquisitions (red and blue lines, respectively); 
(B) Spatial estimates of DGPS height.
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Spearman’s rank correlation coefficient, was calculated 
to correlate the variables at different times and their re-
lationship to other soil properties. The statistical analy-
ses of data were performed using the software package 
XLSTAT (Addinsoft SARL, Paris, France).

Pre-processing of geophysical data
The preliminary data analysis included both qual-

ity check and cleaning procedure. For EMI data, it is 
important to remove any points where the instrument 
was stationary. Any negative values were removed.

In this study, the processing of GPR data consisted 
of extracting quantifiable variables, such as attenuation 
and displaying GPR data in horizontal maps at a speci-
fied time (or depth). The pre-processing of GPR signal 
amplitude data also included the following set of filters 
(De Benedetto et al., 2015): static correction, dewow fil-
ter and trapezoidal bandpass filter and, finally, the in-
stantaneous amplitude or envelope of data was calcu-
lated using a quadrature filter (Hilbert transformation). 
After that, the GPR data were reduced with a compres-
sion filter in distance–direction with an increment of 1 
m. Amplitude maps (time slices) were built averaging 
the amplitude of the radar signal within a range of Δt 
width equal to the order of the dominant period of the 
antennas (2 ns and 1 ns for 600 and 1600 MHz antennas, 
respectively) by increasing time intervals up to 10 ns 
(about 0.5 m depth) and 5.5 ns (0.25 m depth) for 600 
and 1600 MHz antennas, respectively. A mean velocity 
of 0.1 m ns–1 was calculated by means of the analysis of 
hyperbolae and the depth intervals were 0.1 m and 0.05 
m for the both frequencies used. The data pre-process-
ing was performed with ReflexW Software (Sandmeier 
Scientific Software, 2012).

Temporal variability analysis
In this study, the temporal persistence of a spa-

tial pattern was investigated using the traditional time 
stability analysis, which consists in the computation of 
mean and standard deviation over time of the relative 
differences in SWC (Vachaud et al., 1985). The mean 
relative difference in soil water content dSWC and the 
standard deviation of the relative differences s(dSWC) are 
given by:
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where ni is the number of locations within the field 
where the data were interpolated. The negative or posi-

tive values for the mean suggested that the variable mea-
sured both at a location and a specific date was always 
smaller (or greater) than the spatial mean obtained on the 
same date. The standard deviation of the relative differ-
ence s(dSWC) gives its degree of variation. The temporally 
stable locations should have the mean relative difference 
close to zero and with the minimum associated standard 
deviations (Martínez-Fernández and Ceballos, 2005; Cop-
pola et al., 2011). An important insight can be derived 
by considering the spatial distribution of mean and stan-
dard deviation. Therefore, these outcomes were spatially 
displayed in raster format (0.5 × 0.5-m grid). The same 
calculations were applied to EMI and GPR data.

Mapping data using Geostatistics
For each date, one SWC map was estimated from 

36 data points by ordinary kriging (OK) method (Math-
eron, 1963) on 0.5 × 0.5-m grid. The experimental var-
iograms were calculated and fitted using a linear model 
of coregionalization (LMCs) for EMI and GPR data for 
each measurement date. The fitting parameter, tested by 
using cross-validation and calculating mean error (ME) 
and mean squared standardized error (MSSE) within a 
typical used tolerance of 1±3Sqrt(2/N) (where N is the 
number of observations), were used to interpolate the 
data on the same grid using ordinary cokriging (CK) 
(Goovaerts, 1997). Even if ordinary kriging and cokrig-
ing did not require the data to follow a normal distribu-
tion, variogram modelling is sensitive to strong depar-
tures from normality, because a few exceptionally large 
values may contribute to very large squared differences. 
Therefore, all variables were transformed into Gaussian-
shaped variables through a procedure known as Gauss-
ian anamorphosis (Wackernagel, 2003). The Gaussian 
estimates were transformed back to the raw values 
through the Gaussian Anamorphosis model. All geosta-
tistical analyses were performed with ISATIS software 
(Geovariances, 2015).

Cross correlogram
A geostatistical tool named cross-correlogram was 

used, which evaluates the strength of the relationship 
between two variables (A and B) as a function of spatial 
increment or lag (h) separation. The cross-correlogram 
is calculated as:

r
A x B x

A x B x
c

i i i i

i i i i

( )
cov ( ), ( )

var ( ) var ( )
h

h

h
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where i indicates the observation at location xi (Webster 
and Oliver, 2001). It allows to examine the spatial as-
pects of the relationships, such as the range of distances 
over which the correlation between studied variables 
exists and the direction in space of the strongest and 
weakest correlation (Kravchenko et al., 2003). At zero 
distance, cross-correlogram is equal to the Pearson cor-
relation coefficient, and at any h≠0, cross-correlogram 
values depend on the direction of h. 
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The cross-correlogram analysis was applied to 
measure the spatial correlation of all variables (SWC, 
EMI and GPR data) between two consecutive time steps 
(De Lannoy et al., 2006). Time stability is determined 
by studying the apex of the cross correlogram between 
two time steps. In particular, if the cross correlogram 
exhibits symmetry about the apex, the spatial distribu-
tions are consistent between time steps and the sources 
of variation remain stable with time. If, instead, it is not 
symmetric and shows the maximum or minimum at 
h = 0, the presence of a delay means that the sources of 
variation for the two variables are not collocated, where-
as the range informs the length of the natural influence 
of the variables.

Results and Discussion

Soil water content results
The SWC ranged between 11 and 17 % in July and 

between 15 and 20 % in Oct, showing drier conditions 
in the first survey compared to second one. A very small 
range of spatial variation coefficient (CV = 9.42 for July 
and CV = 8.45 for Oct) was observed, which could be at-
tributed to the limited extension of the area as well as to the 
small heterogeneity of soil texture (Warrick and Nielsen, 
1980). However, as reported by Brocca et al. (2009), the 
CV tended to be higher when the SWC decreased, denot-
ing a larger soil moisture variability for drier conditions, as 
found in other studies (Famiglietti et al., 1999).

A variogram was fitted to the experimental vario-
gram for each date of survey (Table 1). It is worth noting 
that fitted the variograms were quite similar for the two 
dates, with respect to the structures and sill variances, 
which is indicative of the consistence of the main spatial 
dependence over time. The greater sill variance was as-
sociated to wet condition, in Oct, than during dry peri-
ods, confirming the findings of Western et al. (1998). The 
relatively small range (R = 32 m), observed in the wettest 
condition, could be attributed both to a higher variable 
soil water distribution and lateral movement of water af-
ter precipitation events, which lead to shorter spatial cor-
relation lengths of soil moisture (Western et al., 1998). In 
contrast, during period with less precipitation (July), the 
distribution of soil moisture was probably controlled by 

the differences in relatively stable properties (soil depth, 
texture and organic matter content) and, therefore, the 
spatial correlation length of the SWC was more localized 
and, thus, longer than for Oct (R = 60 m), (Zhu et al., 
2010). 

Both SWC maps estimated showed similar patterns 
with the wettest values located in the eastern part of the 
site as compared with the remaining part of it, where the 
driest values were observed (Figure 2). In the Oct map, 
the wettest SWC values were also encountered along the 
southern-western corner. However, the overall pattern of 
the SWC appeared visually similar, then, it was tempo-
rally stable. The part of the field with the highest SWC 
values corresponded mainly to lowest elevation values 
(Figure 1B) and there was a persistent wet area in this flat 
zone, although the slope is very gentle. The Spearman’s 
rank correlation coefficient between elevation and SWC 
was negative for the July survey (-0.32 with p < 0.0001) 
and positive in Oct (0.08 with p < 0.0001). Since there 
were no changes in elevation in the experimental field 
between July and Oct, as shown in De Benedetto et al. 
(2017), the observed weak correlation between elevation 
and SWC may also be the outcome of combined effects of 
soil properties (Zhao et al., 2011). In any case, this persis-
tent wet area reduced crop production, since the substan-
tial presence of water during the cropping cycles affected 
negatively the main agronomical properties (Diacono et 
al., 2017).

Figure 3A presents the locations that were consis-
tently higher and lower than the SWC average of the site. 
Persistently drier areas (dSWC )<0 or well drained areas 
were located in the central part of the site, whereas the 
wettest (dSWC )>0 areas were located in the southern-

Table 1 – Variograms fitted to the experimental variograms for SWC 
data in each survey. Mean error (ME) and mean standardized error 
(MSSE) are reported.

Date
Theorical variograms Cross validation

Sill Range ME MSSE 
July SWC Nugget effect 0.380

0.068 1.03
Spherical Model 0.990 60 m

Oct SWC Nugget effect 0.096
0.015 1.05

Spherical Model 1.107 32 m

Figure 2 – Spatial estimates of gravimetric SWC in July (A) and in Oct (B) at 0-0.30 m depth. The color scale uses iso-frequency classes.
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eastern border. In the eastern part of the field, there were 
both a depression and an increase of values from July to 
Oct, confirming the qualitative comments on the previous 
maps. The map in Figure 3B indicated the standard de-
viation over time of SWC differences to the field-average. 
The σ(δSWC) values were very low indicating a high time-
stability of soil moisture (Minet et al., 2013). However, 
slightly higher values were located in the western part 
and at northern-eastern border of the field. The areas with 
a major time variation were characterized by the highest 
and lowest elevation values, indicating that the variation 
between these two dates was likely, due to factors that 
influence the lateral and vertical distribution of water in 
the soil. This result is important from the agronomical 
point of view, since the knowledge of high time-stability 
of soil moisture and the variation of water distribution 
could support the choice of crops and the agronomical 
practices by the farmers, especially under climate change 
conditions (Diacono et al., 2016).

Figure 4 shows the cross-correlograms calculated 
for both consecutive surveys. The correlation coefficient 
at lag zero was high and positive (Pearson coefficient = 
0.6), indicating moderate temporal autocorrelation (Lan-
drum et al., 2016). The cross-correlogram was slightly 
asymmetric with the maximum value of correlation not 
centered at lag zero, indicating that the locations of the 
source of SWC variations were different from dry to 
wet conditions. This result could be due to the modifica-
tions in spatial structure (i.e. porosity). On the contrary, 
enough temporal persistence of spatial pattern might be 
more related mainly to soil texture. Since several factors 
influence the spatial variability of SWC, geophysical sur-
veys could be used to interpret these results.

Soil apparent electrical conductivity maps
The EMI data are presented after removing the 

largest outlier point data because they were assumed not 
to be caused by real change of soil properties, but errors 
in data recording (Robinson et al., 2009). The mean EC

a 
values varied from 75.28 to 84.94 mS m–1 for ECa-H and 
from 98.68 to 132.02 mS m–1 for ECa-V, showing a small 
range of spatial variation. This result could be mainly at-
tributed to the small variability of soil texture (Martini 

et al., 2017). The data recorded in Oct had lower means, 
standard deviations and CVs than in July, indicating a 
variability of ECa between survey dates and, in particular, 
less variability in the Oct survey.

The two EMI variables were generally strongly cor-
related to each other for each survey date (Spearman cor-
relation = 0.96 for July and 0.8 for Oct), suggesting ho-
mogeneity between shallow and deep horizons, although 
this correlation was partly due to deep ECa integrating 1.5 
m soil that includes the soil layer at 0.75 m (represented 
by ECa-H). However, the correlation in Oct was lower, 
indicating either a possible soil discontinuity or an inho-
mogeneous water condition at soil depth. Although dif-
ferent authors have reported higher values of ECa for wet 
surveys (Robinson et al., 2009; De Benedetto et al., 2013; 
De Caires et al., 2014), in this study, the statistics did not 
confirm these results. This could be at least partially at-
tributed to transient conditions of soil water status after 
precipitation events.

The high correlation observed justified the use of a 
multivariate approach and, therefore, the linear models 
of coregionalization (LMCs) were fitted to the experimen-

Figure 3 – Maps of the temporal stability: (A) the mean of relative difference of soil moisture to the field-average dSWC, (B) the standard deviation 
of the relative difference σ(δSWC).

Figure 4 –The cross correlogram between estimates of SWC for 
July and Oct.
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tal variograms for each date, including the Nugget effect 
and Cubic model (R = 100 m) and the Nugget effect and 
Cubic model (R = 52 m) for July and Oct surveys, respec-
tively. The different water conditions had not effects on 
the spatial structure of ECa variograms, because the same 
model was fitted. The relative nugget effect was almost 
identical for both surveys, indicating that the unstruc-
tured portion of the total spatial variability (about 10 % 
of the total variance) was independent of the general soil 
moisture conditions. On the other hand, differences in 
the range were observed, as reported for the SWC var-
iograms, showing a shorter range (R = 52 m) in the Oct 
survey and a longer one (about 100 m) in July. This last 
result suggests a control of the variable SWC on the ECa 
variability (Zhu et al., 2010).

The maps of ECa for each date (Figure 5) seemed 
to reveal a high level of spatial continuity along the soil 
profile, at least at ~1 m depth, because both ECa maps 
were visually quite similar. All the maps showed an area 
with higher electrical conductivities in the western por-
tion of the plot. The persistence of high values of ECa 
in this part of the field over time might be attributed to 
intrinsic properties of the soil, such as textural and topo-
graphic characteristics, whereas the differences between 
the values of both ECa variables were probably due to dif-
ferent moisture conditions at the soil/subsoil level (Brevik 
et al., 2006). This is confirmed by the Spearman’s rank 
coefficient (0.78 and 0.60 for ECa in vertical and horizon-
tal polarizations between values collected in July and Oct, 
with p < 0.0001). Changes in ECa-H were higher than in 
ECa-V, since the main causes of variability occurred espe-
cially in the topsoil.

The maps of means of the difference of ECa (Fig-
ures 6A and 6B) indicate a general increase in ECa from 
the northern to the southern part of the field. The maps 

also showed that the values of dECa were close to zero for 
a large portion of the field. The range of dECa was more 
than twice the range of dSWC  since, not only SWC, but 
also other soil properties could influence ECa (Pedrera-
Parilla et al., 2017). These maps of temporal stability also 
suggest a general transition in soil texture, because of sea-
sonal flooding in the study site, depositing the soil with 
fine texture along the field depression, as described in De 
Caires et al. (2014), and this was confirmed by soil sam-
pling. This result suggests the need to restore periodically 
the soil hydraulic arrangement by means of soil surface 
shaping in the experimental device tested to allow crops 
cultivation also in the case of extreme climatic events. 
Moreover, the standard deviation of the temporal stabil-
ity map for the ECa measurements (Figures 6C and 6D) 
showed that the sites with greater changes were associ-
ated to the lowest part of the field, where water accumu-
lated. Both maps exhibited similar spatial patterns, dem-
onstrating that the ECa patterns are independent from the 
depth of measurement, and these patterns could be used 
to map the study site (De Caires et al., 2014). Moreover, 
measurements of ECa should be taken into account dur-
ing the application of the usual agronomical practices.

Figure 7 shows the cross-correlograms of ECa calcu-
lated for both consecutive surveys in both polarizations, 
allowing a more objective visual comparison between 
maps. The correlation coefficients at lag zero were high 
and positive (Pearson coefficients were 0.59 and 0.77 for 
horizontal and vertical polarizations, respectively), indi-
cating moderate temporal autocorrelation. The cross-cor-
relograms were slightly asymmetric with the maximum 
value of correlation not centered at lag zero, which sug-
gests that the parameters driving conductivity variation 
were different on both dates. This is probably due to the 
interaction between SWC and other soil properties and 

Figure 5 – Spatial estimates of ECa in July survey in horizontal (A) and vertical (B) polarizations and in the Oct survey in horizontal (C) and vertical 
(D) polarizations, respectively. The color scale uses iso-frequency classes.
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topography (Zhu et al., 2010; Martini et al., 2017). The 
cross-correlograms showed that the data were spatially 
associated within a range of about 25 m, which corre-
sponded with the length of the cultivated sub-plots, indi-
cating the average size of the area where ECa values were 
high and low for different time steps.

The visual inspection of both estimated and tem-
poral maps of EMI and SWC data showed remarkably 
similar spatial patterns, where the western end of the 
field had the highest ECa and SWC values. However, the 
Spearman’s rank coefficient (with p < 0.0001) for the 
July survey was 0.64 between ECa-H and SWC and 0.52 
between ECa-V and SWC, proving that EMI data mostly 
reproduced the water patterns and confirming the homo-
geneity between shallow and deep horizons. On the other 

hand, for the Oct survey, a significant correlation with 
SWC was observed only for ECa in horizontal polariza-
tion, but it was very low (0.34) and not clearly defined, 
confirming the results of previous studies where the cor-
relation between ECa and SWC was lower when the soil 
had higher moisture (Costa et al., 2014). One possible rea-
son was the difference between the soil volume (0-0.30 
m) explored by EMI measurements, which reflected a dis-
tribution of soil properties throughout the entire profile. 
However, the response of the EMI sensor in horizontal 
polarization is obtained from the soil volume about 0.50 
m depth and thus the data related to horizontal polariza-
tion are at least partly influenced by values below 0.30 
m in the experimental field. This result implied that vari-
ability of the moisture content did not significantly influ-

Figure 6 – Maps of temporal stability: (A and B) the mean of relative difference of ECa for field average in horizontal ( dECa-H ) and vertical 
polarization ( dECa-V ) respectively, (C and D) the standard deviation of relative difference in horizontal (σ(δECa-H)) and vertical polarization (σ(δECa-H)), 
respectively.

Figure 7 – The cross correlograms between the estimates of ECa for July and Oct in both horizontal (A) and vertical polarizations (B).
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ence variability of ECa and probably the correlation was 
higher with other soil properties or that the sources of 
variation changed at these two dates. Therefore, not only 
the surface topography, but also soil discontinuities, plays 
a significant role in influencing spatial ECa variation thus 
confirming results of a previous work (De Benedetto et 
al., 2017). Since this type of sensor, which provides an 
integrated signal along the surveyed soil profile, is not ca-
pable of locating the discontinuity and displaying the ver-
tical stratification, a GPR was used because its outcomes 
can be located in a 3D space.

Ground penetrating radar results
The amplitude maps, one of the most impressive 

ways of displaying GPR data, were created. The mean val-
ues of the GPR time slices (values not reported) showed a 
clear attenuation of the signal at depth, as expected. Since 
the data still showed some departure from the normal dis-
tribution even after the removal of outliers (points outside 
± 2.5 standard deviations) and the hypothesis of normal-
ity was refused, these data were transformed into Gauss-
ian scores and an LMC was fitted to all experimental di-
rect and cross-variograms separately for each antenna.

The LMCs for 600 MHz antenna consisted of the 
following basic structures: (1) in the July survey: the 
Nugget effect, Spherical model (R = 10 m) and Spheri-
cal model (R = 33 m); (2) in the Oct survey: the Nugget 
effect, Spherical model (R = 8 m) and Spherical model 
(R = 33 m). Also for GPR, the different water condition 
had no effect on the fitted structures, suggesting consis-
tence of the main spatial dependence over time. How-
ever, the spatial structures decomposed the total variance 
into three components: uncorrelated error (about 29 and 
55 % for July and Oct, respectively), shorter-scale vari-
ance (about 46 and 15 % for July and Oct, respectively), 
longer-scale variance (about 25 and 30 % for July and Oct, 
respectively). The relative nugget effect was different for 
both surveys: in wet condition, the main component of 
variation was related to nugget variation, which can be 
ascribed to small variability of the scale and could be 
largely affected by error measurement. The processing of 
GPR data was identical for both surveys, suggesting that 
the unstructured portion of total spatial variability was 
dependent on the SWC. In particular, in the Oct survey, 
the spatial structures were not well defined, probably due 

Figure 8 – Estimated amplitude maps for 600 MHz antenna at 0.30 m in July (A) and in Oct (B). The color scale uses iso-frequency classes.

to an increase of soil inhomogeneity produced by water 
along the vertical profile, contrary to what was described 
in De Benedetto et al. (2013).

The amplitude maps estimated for both surveys at 
the depths investigated did not display consistency along 
the profile at 0.30 m depth, due to variations of soil depth 
of different interfaces recognized based on the pre-existing 
pedological profile (Ventrella et al., 2000). Only the map 
related to time slice at 6 ns (0.30 m depth) was reported 
here. The map in July (Figure 8A) showed the same field 
division observed in the SWC and EMI maps, with a ten-
dency towards low amplitude signals in the eastern part 
of the field, except for the third strip, due to the variations 
in soil depth (Ventrella et al., 2000). In particular, in the 
third strip, the area with higher values of amplitudes cor-
responded to higher ECa values in both polarizations. This 
result might be due to a high degree of soil compaction, 
which reflected the radar signal and it retained water, in-
dicating an increase in electrical conductivity. However, 
a relationship was calculated between SWC and GPR sig-
nals at 0.30 m depth in July and the correlation coefficient 
was negative (Spearman’s rank coefficient = –0.22 with 
p < 0.0001), as expected.

In the Oct survey, all depth slices were different 
from slices observed in July survey, confirming the previ-
ous findings on spatial components. The absolute values 
of amplitude at 0.3 m depth were higher than in July map 
and the areas with high amplitude values, in the eastern 
portion of the field, corresponded to the areas with higher 
SWC and ECa values (Figure 8B). In fact, the correlation 
coefficient was positive (Spearman’s rank coefficient = 
0.22 with p < 0.0001). In the wet condition, the GPR sig-
nal was less attenuate than in the dry condition, although, 
based on the physical principle, attenuation of the radar 
signal an increase as the soil water content rises. This is 
possibly because there is no direct and unique relation-
ship between the GPR signal and SWC or water condi-
tions were not homogenous and stable at the moment of 
the survey.

The LMCs for 1600 MHz antenna consisted of the 
following basic structures: (1) in the July survey: the Nug-
get effect, Spherical model (R = 9 m) and Spherical mod-
el (R = 33 m); (2) in the Oct survey: the Nugget effect, 
Spherical model (R = 10 m) and Spherical model (R = 
45 m). The 1600 MHz variograms were typically noisier 
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Figure 9 – Estimated amplitude maps for 1600 MHz antenna at 0.25 m in July (A) and in Oct (B). The color scale uses iso-frequency classes.

compared with those for 600 MHz antenna because of 
their finer spatial resolution. The unstructured portion of 
the total spatial variability was very high in both water 
conditions (about 57 and 67 % for July and Oct, respec-
tively) and the shorter-scale variance was about 21 and 
17 % and longer-scale variance was about 22 and 16 % for 
July and Oct, respectively.

The map of the estimated amplitude for 1600 MHz 
antenna at 0.25 m depth for July (Figure 9A) showed low 
amplitude signals in the first two strips (southern part of 
the field) and a relative high amplitude in the last two 
strips. The situation was opposite in the Oct survey (Fig-
ure 9B). Therefore, the maps of the estimated amplitude 
for 1600 MHz antenna did not show similar spatial struc-
tures compared with those for 600 MHz antenna, because 
of its finer spatial resolution. These differences might be 
due to the different water conditions producing a variabil-
ity in microstructures, as the GPR system for 600 MHz 
antenna did not detect because of their coarser spatial 
resolution. 

However, the correlation between GPR data at 
1600 MHz frequencies and SWC confirmed the positive 
correlation and, as a consequence, the higher values were 
observed in the dry condition.

The relationships between estimated amplitude in 
July and in Oct for both frequencies were calculated and 
the Spearman’s rank coefficients were negative and low 
(–0.09 and –0.3 for 600 MHz and 1600 MHz antenna, re-
spectively and with p < 0.0001). The maps of temporal 
stability (Figures 10A and 10B) indicated a general de-
crease in amplitude values for 600 MHz antenna in the 
western part of the field and showed that a large portion 
of the field had values close to zero for 1600 MHz an-
tenna. The ranges of dAmp  for both frequencies were 
greater than the range of dSWC  and dECa, suggesting 
that the amplitude was probably influenced by different 
soil properties. The standard deviation of the temporal 
stability maps (Figures 10C and 10D) showed the areas 
with greater changes in the western part of the field, 
where water distribution and EMI measurements were 

Figure 10 – Maps of the temporal stability: (A and B) the mean of relative difference of amplitude (Amp) for field average for 600 MHz (dAmp MHz600 ) 
and 1600 MHz (dAmp MHz1600 ) frequencies, (C and D) the standard deviation of relative difference for 600 MHz (σ(δAmp600 MHz)) and 1600 MHz 
(σ(δAmp1600 MHz)) frequencies.
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also subjected to change in time. Although the standard 
deviation of maps for temporal stability showed that the 
most field was stable in these consecutive time steps, the 
cross-correlograms (Figure 11) indicated that the relation-
ships at lag zero were negative and asymmetric reveal-
ing that variation sources for the GPR signal were shifted 
in this time step, probably due to transitory interaction, 
which spatially influenced the GPR signal. This geosta-
tistical tool added spatial information to the correlation 
coefficient calculated and the approach of Vauchad et al. 
Finally, the analysis of GPR data showed that SWC vari-
ability is best characterized using measurements obtained 
when the soil is dry.

Conclusions

The geophysical surveys conducted in two differ-
ent water conditions allowed to study the effects of SWC 
on geophysical data (ECa and GPR amplitude). Although 
the range of SWC variations was not large and the re-
sults showed a moderate time-stability, differences in 
EMI and GPR responses were observed. Moreover, this 
study proved that the integrating traditional approach 

(method of Vachaud et al.) and the geostatistical analy-
sis allow deeper understanding into the soil moisture 
patterns throughout time. The cross-correlogram is an 
effective approach to study time stability and provide 
information on sources of soil water variation, particu-
larly during a transitioning stage between soil wetting 
and drying phases. These findings are important in agri-
culture, since they help to maximize crop yield, increase 
efficiency of irrigation systems and minimize potential 
environmental effects of agricultural practices, espe-
cially during the current period characterized by climate 
change. The results showed that the soil moisture was 
not the only variable that influenced geophysical data. 
Therefore, in order to improve the correlation between 
SWC and geophysical values, the water condition should 
be as homogenous as possible within the study site to 
allow understanding and predicting soil moisture varia-
tion, which is important for farming activities. These 
findings justify the need for further research with re-
peated measurements over multiple wetting and drying 
cycles to clarify the relationship between these variables 
and understand long–term time stable characteristics of 
SWC.

The results obtained in this work also support the 
conclusion that EMI survey, much more than GPR, pres-
ents potential to map the SWC variability, non-invasively 
and with high spatial resolution, and to capture dynamic 
changes in soil moisture. However, to the best of our 
knowledge, there are no studies using temporal stability 
characteristics revealed by GPR surveys to investigate 
the temporal stability pattern of SWC. These results con-
firm the advantages of using different proximal sensors 
as a preliminary step for several agricultural applica-
tions where knowledge on the spatial distributions of 
SWC is critical. These results should be thus verified by 
conducting field acquisitions over larger areas, for differ-
ent topographies and surface conditions.
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