Acessibilidade / Reportar erro

Process parameters and tool geometry evaluation in the FSW of AA 5052 aluminum alloy

Welding of aluminum alloys with no considerable degradation of the properties of the base metal is a problem to be overcomed by industry manufacturing processes. In the aeronautical industry, no-melt joining processes such as adhesive bonding or riveting are often considered when designing aluminum connections. Alternatively, a welding process named Friction Stir Welding (FSW) is receiving crescent attention for its potential applications where heat input shall be minimized or when dissimilar metals must be joined. In this process a high strength rotating tool with a special profile is introduced at the interface of the materials to be joined and translated along the joint at controlled speeds. Heat generated softens the material and allows the tool to stir while traveling along the joint. This work aimed to product welds on AA 5052-H34 plates, 6.35mm (0,25 inches) thickness, using a conventional milling machine. In order to do that, three tool geometries were designed, manufactured and tested so as to define which welding parameters could generate the best results. Once these parameters were chosen, each tool produced three welds and their performance was evaluated. Transversal bending, tensile tests, micro-hardness measurements along the weld cross-section and macrographical analysis were carried out in order to assess weld properties. In addition, MIG welds were produced and subjected to the same test conditions. Considering yield stress as an efficiency parameter, all the tested tools presented similar results (around 80% of the base metal yield stress). However one of these tools showed inferior performance when considering elongation or transversal bending test as a comparison parameter due to the presence of a longitudinal groove, as observed in macrographical analysis. FS welded samples have not showed considerable variation along the different microstructure zones in micro-hardness measurements, while MIG welds presented well defined zones as characteristic to electric-arc processes.

Welding; Aluminum; MIG; Friction Stir Welding; Tool Geometry


Associação Brasileira de Soldagem Rua Dr Guilherme Bannitz, 126 conj 42, 04532-060 - São Paulo/SP Brasil, Tel.: (55 11) 3045 5040, Fax: (55 11) 3045 8578 - São Paulo - SP - Brazil
E-mail: abs@abs-soldagem.org.br