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1. Introduction

The increasing demand for underground space in 
urban areas has posed significant challenges in designing 
tunnels and deep excavations due to unfavorable geological 
conditions and their proximity to existing infrastructure. 
To tackle these challenges, modern tunnel design in urban 
areas relies heavily on numerical modeling, leveraging 
recent advancements in soil modeling, software, and 
hardware. However, modeling procedures and verification 
guidelines for complex problems are scarce in this context. 
Consequently, numerical predictions can vary significantly 
among consulting firms, as Schweiger (2002) discussed, 
highlighting the need for comprehensive guidelines that 
are often lacking or not followed.

Ensuring numerical accuracy is crucial, particularly 
for highly nonlinear problems with complex boundary 

conditions. Shallow tunnel modeling, characterized by low 
cover-to-diameter ratios and weak soils, is typically highly 
nonlinear, leading to large plastic strains around the tunnel. 
Stability analysis for shallow tunnels is commonly conducted 
using the strength reduction method (SRM), where soil 
strength is gradually reduced until failure. In SRM, failure 
is indicated by the divergence of the numerical solution, 
signifying a violation of equilibrium. The strength reduction 
factor (SRF) at failure corresponds to the traditional factor 
of safety in geotechnical design. However, near collapse, 
the numerical analysis becomes highly nonlinear, posing 
challenges for numerical accuracy.

This paper addresses the modeling requirements to ensure 
accuracy in highly nonlinear shallow tunnel analyses using 
the implicit finite element method (FEM). The investigation 
focuses on a hypothetical scenario previously studied 
numerically and analytically by Carranza-Torres et al. (2013). 
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The tunnel stability is assessed using Caquot’s analytical 
solution, which is based on the lower bound theorem of 
plasticity and encompasses the limit state of equilibrium. 
Carranza-Torres  et  al. (2013) extended Caquot’s solution 
and conducted Finite Difference Method (FDM) analyses for 
such hypothetical scenario. In this study, the FEM is utilized 
to explore the same scenario and to provide insights into the 
requirements for accurate numerical solutions.

Mesh refinement and the utilization of high-order 
elements have been recognized as methods to enhance 
accuracy in numerical simulations, albeit at the cost of 
increased computational resources. In previous studies by 
Vitali et al. (2018a, 2021a), mesh optimization investigations 
were conducted for deep tunnel modeling, leading to the 
recommendation of employing higher-order elements due to 
their efficiency in handling highly nonlinear problems. Taking 
into account the dimensions and mesh refinement guidelines 
proposed by Vitali et al. (2018a), a similar approach was 
adopted for modeling both shallow and deep tunnels under 
complex anisotropic conditions (e.g. Vitali et al., 2018b, 
2019a, b, c, d, 2020a, b, c, 2021b, c, 2022). By adhering to 
these recommendations, the authors achieved a remarkable 
agreement between numerical and analytical solutions, as 
well as with the data obtained from instrumentation in real 
tunnel scenarios. However, their study did not address the 
mesh requirements for simulating the failure of shallow 
tunnels, where the numerical problem becomes significantly 
nonlinear, with extremely large plastic strains nearing 
tunnel collapse.

Therefore, this paper fills the existing research gap by 
examining the requirements for accurate numerical solutions in 
highly nonlinear shallow tunnel analyses. The work provides 
valuable insights derived from the implicit FEM analysis of 
the hypothetical scenario of Carranza-Torres et al. (2013). 
The accuracy of the numerical solutions is evaluated against 
Caquot’s analytical solution and the FDM model conducted 
by Carranza-Torres et al. (2013), allowing for a comparison 
and discussion of the discrepancies between analytical and 
numerical approaches.

2. FEM modeling and results

In this investigation, the hypothetical scenario of an 
infinite tunnel previously examined by Carranza-Torres et al. 
(2013) was selected. The scenario, including its dimensions, 
loads, and soil properties, is illustrated in Figure  1. The 
problem is treated as a 2D plane-strain analysis. The tunnel 
has a circular shape with a diameter of 2 m, and its crown 
is situated 2 m below the ground surface. A surcharge of 
72 kPa is applied at the ground surface, while a uniform 
pressure of 36 kPa is exerted along the tunnel perimeter. The 
soil properties chosen for this scenario represent soft ground 
conditions, with a friction angle of 30 degrees, cohesion of 
9 kPa, unit weight of 18 kN/m3, Young’s modulus of 3 MPa, 
and Poisson’s ratio of 0.25.

Based on the analytical solution developed by Caquot 
(1934) and extended by Carranza-Torres et al. (2013), the 
factor of safety for this specific scenario is determined to be 
1.71. In their study, Carranza-Torres et al. (2013) utilized 
the strength reduction method within the finite difference 
method (FDM) software FLAC3D and obtained a factor 
of safety of 2.01. They attributed the discrepancy between 
the analytical and numerical results to the conservative 
nature of Caquot’s analytical solution, which is based on 
the lower bound theorem of plasticity, while the numerical 
solution should approach the exact solution.

In the current study, the hypothetical scenario 
was modeled using the implicit finite element method 
(FEM) with the software Midas GTS NX. The analysis 
was conducted in a 2D plane strain configuration, taking 
advantage of the problem’s symmetry by modeling only 
half of the problem. Four different structured mesh 
refinements were investigated, namely: 8 divisions at half 
tunnel perimeter (Figure 2a), 16 divisions (Figure 2b), 
32 divisions (Figure 2c), and 64 divisions (Figure 2d). The 
mesh refinement near the tunnel, as shown in Figure 2b, 
corresponds to the recommendation made by Vitali et al. 
(2018a). The models were analyzed using 1st and 2nd-order 
elements, representing linear and quadratic interpolation. 
To facilitate comparisons, the size of the models was 
kept the same as that adopted by Carranza-Torres et al. 
(2013). Mesh discretization far from the tunnel was not 
investigated as it is likely to have minimal influence on 
the numerical accuracy of the model.

The numerical calculations were carried out in four 
steps. In the first step, the geostatic stress was generated, 
assuming a coefficient of earth pressure at rest (K0) 
of 1, consistent with Carranza-Torres et al. (2013). In the 
second step, a surface surcharge of 72 kPa was applied, 
and the displacements in the medium were reset to zero. 

Figure 1. Hypothetical scenario from Carranza-Torres et al. (2013).
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The tunnel excavation was simulated in the third step by 
deactivating the elements inside the tunnel while maintaining 
the nodal forces balancing the stresses at the tunnel perimeter. 
In the same step, the forces at the tunnel perimeter were 
gradually reduced to achieve a uniform internal pressure 
of 36 kPa. In the fourth step, the strength properties of 
the ground were progressively reduced until failure. This 
approach, known as the Strength Reduction Method (SRM), 
was implemented using the Midas GTS NX software. In the 
SRM method, failure is associated with the inability of the 
software to balance stresses, leading to divergence in the 
numerical solution due to the violation of equilibrium. The 
ground was modeled using an elastic-perfectly plastic model 
with the Mohr-Coulomb failure criterion with an associated 
flow rule, as both lower and upper-bound solutions were 
based on this flow rule.

Figure  3 illustrates the relationship between the 
strength reduction factor (SRF) and the normalized vertical 
displacement at the ground surface. Figure 3a displays the 
results obtained with the 2nd-order elements using the meshes 
shown in Figure 2, while Figure 3b presents the results with 
1st-order elements. The factors of safety obtained from the 
extended Caquot’s analytical solution (FS = 1.71) and the 
FDM model by Carranza-Torres et al. (2013), FS = 2.01, are 
also included in Figure 3.

In Figure 3a, it is evident that the displacements at the 
surface increase non-linearly as the shear strength properties 
of the ground are progressively reduced. The SRF at failure 
obtained with the 16 and 32 division meshes using 2nd-order 

elements are slightly higher than Caquot’s lower bound solution 
(i.e., 1.77 and 1.75, respectively). Further refining the mesh 
beyond 16 divisions (Figure 2b) does not yield significant 
improvements, as indicated by the negligible difference 
observed between the 16-division and 32-division meshes 
using 2nd-order elements (1% difference). Consequently, the 
64-division mesh (Figure 2d) was not analyzed with 2nd-order 
elements. The 16-division mesh with 2nd-order elements 
aligns with the mesh refinement recommendation from 
Vitali et al. (2018a). The SRF at failure for the 8-division 
mesh with 2nd-order elements (Figure 2a) is 1.83, which is 
slightly larger (4.6% larger) than the SRF at failure for the 
32-division mesh.

In contrast, when using 1st-order elements, the SRF 
at failure varies considerably with the mesh refinement, as 
shown in Figure 3b. As the 1st-order element mesh becomes 
finer, the SRF at failure approaches Caquot’s lower bound 
solution. For the coarser mesh (8 divisions, Figure 2a), the 
SRF increases non-linearly up to 2.5. Beyond this point, 
larger displacement increments occur as the strength is 
reduced, leading to the inability of the software to achieve 
equilibrium for an SRF of 2.93 (67% larger than the SRF at 
failure obtained with the 32-division mesh using 2nd-order 
elements). Using 2nd-order elements, the same mesh provides 
more reliable results, with an SRF at failure of 1.83. The 
SRF at failure for the 16-division mesh with 1st-order 
elements (Figure 2b) is 2.18, which is 24.6% larger than 
the SRF at failure obtained with the 32-division mesh using 
2nd-order elements.

Figure 2. Model size and mesh refinement. (a) 8 divisions; (b) 16 divisions; (c) 32 divisions; (d) 64 divisions.
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Interestingly, the most refined mesh using 1st-order 
elements (i.e., 64 divisions, Figure  2d) yields an SRF at 
failure of 1.80, which is close to the value obtained with 
the 16-division mesh using 2nd-order elements (i.e., 1.77, 
Figure 2b). These results indicate that significantly less refined 
meshes are sufficient to achieve accurate numerical results 
for highly nonlinear shallow tunnel analyses when 2nd-order 
elements are employed. Additionally, it is worth noting that 
even very refined meshes using 1st-order elements may not 
provide accurate results for highly nonlinear shallow tunnel 
analyses (e.g., the 32-division mesh with 1st-order elements, 
Figure 2c, yielded a factor of safety of 1.90, 8.6% larger than 
the value of 1.75 obtained with the 32-division mesh using 
2nd-order elements).

Carranza-Torres et al. (2013) employed a highly refined 
grid with 30 divisions around the half-tunnel perimeter. The 
FDM solution from Carranza-Torres et al. (2013) yielded a 
larger factor of safety compared to Caquot’s lower bound 
solution and the FEM solution with 32 divisions using 2nd-order 
elements (i.e., 2.01 instead of 1.71 and 1.75, respectively). 
Factors of safety around 2 were obtained with 16 and 32 
divisions using 1st order elements (Figures  2b  and  2c), 
indicating that the FDM analysis may be comparable to the 
FEM analysis using 1st-order elements.

Figure 4 depicts the distribution of equivalent plastic 
strains for various strength reduction factors. The plots were 
generated from the mesh with 32 divisions (Figure 2c) using 
2nd-order elements. The plastic strains are limited to 10% to 

enhance visualization of the plastic zone. Equation 1 provides 
the expression for the equivalent plastic strain.

2
3p ij ij dtε ε ε= ∫    	 (1)

For an SRF of 1, most of the ground surrounding 
the tunnel remains within its elastic regime. However, a 
localized plastic zone appears at the tunnel springline. As the 
strength properties are reduced by a factor of 1.2, the plastic 
strains intensify, and the size of the plastic zone expands. 
Figures 4c and 4d illustrate that as the strength reduction 
factor increases to 1.4 and 1.6, the plastic zone propagates 
from the tunnel springline toward the ground surface. Once 
the plastic zone reaches the ground surface, it continues to 
grow upwards, extending above the tunnel crown, as the 
ground strength properties further diminish.

Beyond an SRF of 1.75, the non-linear solution 
necessitates a significantly larger number of iterations to 
converge. Additionally, even minor reductions in strength 
lead to substantial displacement increments, as observed in 
Figure 3a. The non-linear solution fails to converge when the 
SRF reaches 1.7525. Consequently, the factor of safety of 
1.75 likely approximates the exact solution of the problem, 
which surpasses Caquot’s lower bound solution by 2.3%. 
These findings suggest that the lower bound solution for plane 
strain shallow tunnel stability analysis closely approximates 
the exact solution.

Figure 3. Strength reduction factor (SRF) plotted against the normalized vertical displacement at the ground surface above the crown (Sy) 
relative to the displacement for SRF=1 (Sy, SRF=1). Results are shown for meshes using 2nd-order elements (a) and 1st-order elements (b).
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3. Conclusion

In conclusion, this study employed the finite element 
method (FEM) to investigate the hypothetical scenario of 
tunnel instability initially explored by Carranza-Torres et al. 
(2013). A comparison was made between FEM models 
utilizing different mesh refinements and element orders and 
the analytical solution for shallow circular tunnels proposed 
by Caquot (1934) and extended by Carranza-Torres et al. 
(2013). Additionally, the results were compared with those 
obtained from the finite difference method (FDM) model 
used by Carranza-Torres et al. (2013).

The analytical solution, based on the lower bound 
theorem of plasticity, provides the factor of safety for shallow 
tunnels considering the ground’s strength properties, a uniform 
surcharge at the surface, and a constant internal pressure at 
the tunnel perimeter. To determine the factor of safety, the 
strength reduction method (SRM) implemented in the FEM 
software was employed. Four different mesh refinements 
were studied, consisting of 8, 16, 32, and 64 divisions along 
half of the tunnel perimeter.

The findings indicate that the numerical solution 
using FEM and SRM, with appropriately refined meshes 
and 2nd-order elements, yields a factor of safety slightly 
larger than Caquot’s lower bound solution (2.3% larger, 
to be specific). With 2nd-order elements, the select meshes 
demonstrate similar strength reduction factors (SRF) at 
failure, with the 32-divisions mesh resulting in an SRF at 

failure of 1.75 and the 8-divisions mesh yielding an SRF at 
failure of 1.83, a difference of 4.6%.

However, when 1st-order elements are used, the SRF 
at failure shows substantial variation depending on the mesh 
refinement. This contrasts with the consistent behavior 
observed with 2nd-order elements. For instance, the 64-divisions 
mesh with 1st-order elements produces an SRF at failure of 
1.80, while the 8-divisions mesh results in an SRF of 2.93. 
Notably, the most refined mesh with 1st-order elements (i.e., 
64 divisions along the half tunnel perimeter) generates results 
similar to those obtained with the 16-division mesh utilizing 
2nd-order elements.

These findings emphasize the criticality of utilizing 
2nd-order elements to achieve precise and reliable analyses 
for highly nonlinear shallow tunnels. Furthermore, the FEM 
results presented in this study suggest that the exact solution 
for shallow tunnel instability analysis closely aligns with 
Caquot’s lower bound solution.
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List of symbols

c	 Cohesion
E	 Young’s modulus 
FDM	 Finite Difference Method 
FEM	 Finite Element Method
FS	 Safety Factor
K0	 Coefficient of earth pressure at rest
ps	 Uniform internal pressure at tunnel perimeter
qs	 Surface surcharge
SRF	 Strength Reduction Factor
SRM	 Strength Reduction Method
εij	 Strain tensor
εp	 Equivalent plastic strain
φ	 Friction angle
γ	 Unit weight
ν	 Poisson’s ratio
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