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Homogenization theory and nonlinearities in Darcy’s law
Karl Igor Martins Guerra1# , Celso Romanel1 

1. Introduction 

After Darcy, mainly at the beginning of the 20th century, 
researchers such as Forchheimer and Kochina brought to 
light the emergence of a non-linear relationship between 
the hydraulic gradient and the flow velocity, a concept to be 
formally defined in this work. What should be emphasized 
here is that Darcy’s law loses its linear character from a certain 
hydraulic gradient, a quantity that is directly proportional to 
the pressure gradient of the fluid (Bear, 1985). By admitting 
that the non-linearity is relative to a critical hydraulic 
gradient and that the pressure gradient is dependent on the 
domain where it is being evaluated, and knowing that the 
flow does not occur through the solid particles, but through 
the pores of the material, the hypothesis of a study on the 
pore scale is valid. Therefore, a process of homogenization 
of the differential equations will be presented so that the 
mathematical objects living in the pore scale are captured 
on a larger scale, in real geotechnical problems.

For the arguments just presented, a mathematical 
analysis of the possible mechanisms and triggers of this non-
linearity is suggested, which will later be associated with a 
loss of hydrodynamic stability and a possible transition to the 
turbulent regime. To mathematically capture these phenomena, 
a rigorous study of the differential equations that govern 
the flow problem will be carried out throughout this work. 
Not only differential equations will be studied, but also the 
construction of numerical methods capable of exploring the 
behavior of the fluid in a tortuous and locally discontinuous 
domain such as the soil. This work will use arguments from 
functional analysis, general topology, dynamical systems 

and the modern theory of differential equations to support 
the simulations carried out by the Finite Element Method.

2. Proof of the convergence of the Stokes 
problem for unit cells with non-Dirichlet 
boundary conditions

Let the Stokes problem be studied by Allaire (1991a), 
being this:

Find ( ) ( ) ( )1 2
0,ε ε ε ε ∈ Ω × Ω 

N
u p H L  solutions of 

the problem (P1)

ε ε∇ − ∆ =p u f , at Ωε	

0 ε∇ ⋅ =u , at Ωε	 (P1)

With 0ε → , εp , εu  and f  being the pressure, velocity 
and the driving forces acting on the fluid. For the problem 
with non-Dirichlet conditions (slip condition) on part of 
the boundary and with Dirichlet conditions on the rest, the 

functional space ( )1
0 εΩH  is no longer adequate. Solutions 

must be sought in ( ) ( )1 2 .ε εΩ × ΩH L  Let be the variational 
formulation of the same problem (P1):

( )1

   

   

ε ε

ε

ε ε

ε

Ω Ω

Ω

∇ ⋅ − ∆ ⋅ =

⋅ ∀ ∈ Ω

∫ ∫

∫ N

p v dV u v dV

f v dV v H
, at Ωε	

( ) ( )20   
ε

ε ε
Ω

∇ ⋅ = ∀ ∈ Ω∫ q u dV q L , at Ωε	 (P2)
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Take εφ= kv w  and εφ= kq q  where ( )φ ∈ ΩD . The functions 

( )1
ε ε∈ Ω Nkw H  and ( )2

ε∈ Ωq L  are sequences whose 
convergence will be proved from some hypotheses. Allaire 
(1991a) assumed the problem in N , with no boundary 
conditions except on the surface of grains (holes) periodically 
distributed throughout the domain. In this work, we will assume 
that the problem is restricted to an open set Ω such that:

( )

1

 
ε

ε
ε

=

Ω = Ω +


N

i
i

T 	 (Property 1)

1

  ,    
=

∂Ω = Γ Γ ∩Γ = ∅ ≠


n

j i j
j

for i j 	 (Property 2)

 ε∂Ω∩∂ = ∅iT 	 (Property 3)

 Ω = Ω+ ∂Ω 	 (Property 4)

Integrating by parts (P2):

( )  ( )    
ε ε ε

ε ε ε
Ω ∂Ω Ω

− ∇ ⋅ + ⋅ + ∇ ⋅∇∫ ∫ ∫p v dV p v n dS u v dV 	

( )1   
ε

ε
Ω

= ⋅ ∀ ∈ Ω∫ Nf v dV v H , at Ωε	

( ) ( )20   
ε

ε ε
Ω

∇ ⋅ = ∀ ∈ Ω∫ q u dV q L , at Ωε	 (P2)

Note that the boundary condition was omitted in (P2) because 
the expression refers only to the functional inside the domain 
and not on its boundary. Replacing v and q by their previously 
given definitions and expanding (P2):

( )

( )

 
ε

ε

ε ε ε

ε ε ε

φ φ

φ φ

Ω

Ω

− ∇ ⋅ + ⋅∇ +

∇ ⋅ ∇ + ∇

∫

∫

k k

k k

p w w dV

u w w dV
	

( )1   
ε

ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ωε	

( ) ( )20   \
ε

ε ε εφ
Ω

∇ ⋅ = ∀ ∈ Ω∫ kq u dV q L R , at Ωε	 (P2)

Consider the following six hypotheses regarding the functions 
ε
kw  and ε

kq , based on the work of Allaire (1991a):

( ) ( )1 2 , ε ε∈ Ω ∈ ΩNk kw H q L 	 (Hypothesis 1)

0      ε ε∇ ⋅ = Ωk k
iw at and w insideT 	 (Hypothesis 2)

( )
( )

1

2

     

0   
ε εΩ

Ω

 

k k
kw e weakly in H and q

weakly in L
	 (Hypothesis 3)

( )1, µ − ∞∃ ∈ Ω N
k W 	 (Hypothesis 4)

For every sequence εv  and for every v such that:

( )1   , 

 0  
ε

ε
ε

Ω

=



N

i

v v weakly in H

v atT
	 (Hypothesis 5.a)

And for each ( )φ ∈ ΩD , holds:

( )

( )

1 1

1 1

,

,

( , )

( , )

ε ε εφ

µ φ

−

−

Ω

Ω

∇ −∆ N

N

k k
H H

k H H

q w v

v
	 (Hypothesis 5.b)

There exists and extension linear operator εR  such that:

( ) ( )( )1 1 ;ε ε∈ Ω Ω NNR L H H 	 (Hypothesis 6.a)

( )1  ε ε∈ Ω ⇒ =Nu H R u u , at Ωε	 (Hypothesis 6.b)

( )0  0 at ε ε∇ ⋅ = Ω⇒∇⋅ = Ωu at R u 	 (Hypothesis 6.c)

( ) ( )1 1   ,   independent of   
ε

ε εΩ Ω≤H HR u Cu C 	 (Hypothesis 6.d)

The functions ε
kw  and ε

kq , 1≤ ≤k N  are test functions for the 
homogenization process by the energy method. In Allaire’s 
work (1991a) all elements of the Hilbert spaces cited in the 
hypotheses are functions with compact support in Ω. The aim 
of this section is to prove that convergence also occurs for 

1H  spaces with functions that guarantee specific boundary 
conditions that are not of the Dirichlet type. Rewriting (P2) 
with respect to the six hypotheses presented, we have:

  
ε ε

ε

ε ε ε ε

ε ε

φ φ

φ

Ω Ω

Ω

− ⋅∇ + ∇ ⋅ ∇ +

∇ ⋅∇

∫ ∫

∫

k k

k

p w dV u w dV

u w dV
	

( )1  ,   
ε

ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ωε	

( ) ( )20,   
ε

ε ε εφ
Ω

∇ ⋅ = ∀ ∈ Ω∫ kq u dV q L , at Ωε	 (P2)
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The case studied here has four boundaries where two of them 
receive Dirichlet conditions (for pressure) and the other two 
receive slip conditions (free shear stress). Figures 1  to  3 
illustrate the problem to be passed to the limit.

Let be the following boundary conditions (BC) for εΩ :

1  ε εΓ ⇒ = inp p  (BC 1)	

( )( )2 0 ε ε εµΓ ⇒ − ⋅ − + ∇ +∇ ⋅ =Tn p I u u t 	 (BC 2)

3 ε εΓ ⇒ = outp p 	 (BC 3)

4 2Γ = Γ 	 (BC 4)

5  0εΓ ⇒ =u 	 (BC 5)

How then does the functional behave for each boundary? 
Intuitively, different functionals are expected to act on each type 
of boundary. It remains to be seen whether they are compatible.

On the boundary 1Γ  one can write the inlet pressure 
from the Bernouilli relation such that:

2
0

1
2ε ε ερ= +p p u 	 (1)

Where εp  is the stagnation pressure imposed on the boundary 
and p is the static pressure on the boundary. It is important to 
point out at this point that there are no boundary conditions 
for pressures in the Stokes and Navier-Stokes equations; for 
this, the Bernoulli’s relation is assumed. Assuming 1ρ = , the 
pressure boundary condition becomes a Dirichlet condition 
for velocities, such that the imposed velocity is:

( )
1 0| |  2  ε ε εΓ = −u p p 	 (2. a)

Assuming that this input velocity is purely horizontal, it 
becomes possible to construct the velocity vector from its 
magnitude such that:

( )
1 0

1
2  ,   

0ε ε εΓ
  = − =     

k ku p p e e 	 (2. b)

Note that for the equality in (2.b) to be true, the right-hand 
side must also be in 1H . It is known that ( )2

ε ε∈ Ωp L  and 

that, being ( )2
0ε ε∈ Ωp L  then, by the linearity of space, 

( )  ( )2
0 ,ε ε ε ε− = ∈ Ωp p p L  therefore, every sequence or 

subsequence εp  is continuous in εΩ .
On the boundaries 2Γ  and 4Γ , the free sliding condition 

operates, where the shear stress is considered zero. This condition 
comes from Navier’s hypothesis about the proportionality 
between sliding velocity and shear stress. One has:

( )( )2 0 µ β⋅ − ⋅ − ⋅ =Tn u pI t u t 	 (3. a)

where

( ) ( ) µ= ∇ +∇ TD u u u 	 (3. b)

Where β is the coefficient of friction between the fluid and the 
boundary, so 0β =  indicates free sliding. It is important to point 
out that the imposition of a slip boundary condition affects the 
very formulation of the variational problem, as the condition acts 
on the stress tensor itself, thus necessitating another variational 
formulation for this specific boundary. Allaire (1991b), in another 
work on homogenization with slip conditions at the boundary 

Figure 1. Periodically perforated domain.

Figure 2. Unit cell.
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of the obstacle (hole), proved the coercivity and convergence of 
the Stokes system to a Brinkman-type law. Here, the free-sliding 
condition is imposed on the domain boundary and not on the 
grain surface (which is maintained with Dirichlet), but the result 
applies equally. It can be proposed that, by 0∇⋅ =u , we have:

( )2ε∆ = ∇ ⋅u D u 	 (4)

The term corresponding to the Laplacian in the variational 
becomes:

( )2  
εΩ

∇ ⋅ ⋅∫ u v dV 	 (5)

whose integration by parts results in:

( ) ( )
2,4

2   2  
εΩ Γ

− ⋅∇ + ⋅ ⋅∫ ∫u v dV u v ndS  	 (6)

The first term, by symmetry, can be rewritten as:

( ) ( )

( ) ( ) ( )

   
2

  
2

ε ε

ε ε

Ω Ω

Ω Ω

∇
⋅∇ = ⋅ +

∇
⋅ = ⋅

∫ ∫

∫ ∫
T

vu v dV u dV

vu dV u v dV

 

  
	 (7)

Because, by symmetry, ( ) ( )=Tu u  . Knowing that the 
Stokes equation can be rewritten with the explicit tensor:

( )( )µ∇ ⋅ − =pI u f 	 (8)

The variational formulation can then be rewritten as:

( )( )    
ε ε

µ
Ω Ω

− ∇ ⋅ − + ⋅ = ⋅∫ ∫pI u v dV f v dV 	 (9. a)

( )( )    
ε ε

ε µ
Ω Ω

− −∇ + ∇ ⋅ ⋅ = ⋅∫ ∫p u v dV f v dV 	 (9. b)

( )     
ε ε ε

ε µ
Ω Ω Ω

∇ ⋅ − ∇ ⋅ ⋅ = ⋅∫ ∫ ∫p v dV u v dV f v dV 	 (9. c)

( )

( ) ( )

( )

2,4

2,4

1
2 4

  2

  2  

  ,   

ε ε

ε

ε ε ε

ε

ε ε

µ

µ

Ω Γ Ω

Γ

Ω

− ∇ ⋅ + ⋅ + ⋅

+ ⋅ ⋅

= ⋅ Ω ∪Γ ∪Γ ∀ ∈ Ω

∫ ∫ ∫

∫

∫

p vdV p v n dS u

v dV u v n dS

f v dV at v H



  	 (9. d)

The above expression can be further condensed by joining 
the terms on the boundary, such as:

( ) ( )

( )( )
2,4

2   

 2   

ε ε

ε

ε ε

ε ε

µ

µ

Ω Ω

Γ Ω

− ∇ ⋅ + ⋅ −

− + ⋅ = ⋅

∫ ∫

∫ ∫

p vdV u v dV

p I u v dS f v dV

 


	 (9. e)

By decomposing ( )1
ε∈ Ωv H  at the boundary into its normal 

and tangential components:

( )
1

1

1

 ,  ε

−

=

= ⋅ + ⋅ ∈ Ω∑
N

N

i

v v n v t v H 	 (10)

The variational formulation becomes:

( ) ( )

( )( )

( )( )
2,4

2,4

2   

 2  

 2   

ε ε

ε

ε ε

ε ε

ε ε

µ

µ

µ

Ω Ω

Γ

Γ Ω

− ∇ ⋅ + ⋅ −

− + ⋅

+ − + ⋅ = ⋅

∫ ∫

∫

∫ ∫

T

T

p vdV u v dV

n p I u nv n dS

n p I u tv t dS f v dV

 





	 (11)

Figure 3. Homogenized domain.
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Where by the impenetrability of the boundary, the variational 
is reduced to:

( ) ( )

( )( )
2,4

2  

 2  

 

ε ε

ε

ε ε

ε ε

µ

µ

Ω Ω

Γ

Ω

− ∇ ⋅ + ⋅ +

− + ⋅

= ⋅

∫ ∫

∫

∫

T

p vdV u v dV

n p I u tv t dS

f v dV

 

 	 (12)

Being, by condition imposed on the border, 0β =

( )( )
2,4

 2  0 ε εµ
Γ

− + ⋅ =∫ Tn p I u tv t dS 	 (13)

Thus, at 2 4 εΓ ∪Γ +Ω :

( ) ( )2   
ε ε ε

ε εµ
Ω Ω Ω

− ∇ ⋅ + ⋅ = ⋅∫ ∫ ∫p vdV u v dV f v dV  	 (14)

With that, one has the (apparent) result that such conditions 
on the boundary of Ω simulate (within a few possible 
adjustments) the condition of Allaire (1991a) on N  since 
the Dirichlet conditions are just inputs of “velocity at the 
infinity” and the slip conditions recover the Stokes partial 
differential equation itself. Soon, the problem becomes 
just a Stokes flow around the cylinder, from where we can 
henceforth analyze the grain size problem and the emergence 
of “strange terms”.

With the variational defined in εΩ , Ω (by extension to be 
used later) and its boundaries, it is assumed that ε φ= kv w  and 

ε φ= kq q  with hypotheses similar to those of Allaire (1991a). 
It is verified that the variational generated above converge 
to a Brinkman-type equation, regardless of whether it is on 
the boundary or inside the domain.

For the variational referring to εΩ :

 

 

ε ε

ε

ε ε ε

ε ε ε

φ

φ φ

Ω Ω

Ω

− ⋅∇ + ∇ ⋅

∇ + ∇ ⋅∇

∫ ∫

∫

k

k k

p w dV u

w dV u w dV
	

( )1  ,   
ε

ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ωε	

( )1  ,   
ε

ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ωε	 (P2)

Note that the third term to the left of the equality has the 
following identity:

 

 

ε ε

ε

ε ε ε ε

ε ε

φ φ

φ

Ω Ω

Ω

∇ ⋅∇ + ∇ ⋅∇ =

− ⋅∆

∫ ∫

∫

k k

k

u w dV u w dV

u w dV
	 (15)

Up to one term on the boundary that disappears because 
it is a functional on εΩ . Therefore, the same term can be 
replaced by:

  
ε ε

ε

ε ε ε ε

ε ε

φ φ

φ

Ω Ω

Ω

∇ ⋅∇ = − ∇ ⋅∇ −

⋅∆

∫ ∫

∫

k k

k

u w dV u w dV

u w dV
	 (16)

Integrating by parts the continuity equation (div-free condition):

( ) ( )2 0,   
ε

ε ε εφ
Ω

∇ ⋅ = ∀ ∈ Ω∫ kq u dV q L , at Ωε	 (17)

Expanding it as:

( )2

  

0,   \
ε ε

ε ε ε ε

ε

φ φ
Ω Ω

∇ ⋅ + ∇ ⋅ =

∀ ∈ Ω

∫ ∫k kq u dV q u

q L R , at Ωε	 (18)

Because we are in a strictly real Hilbert space, the order of 
φ  in the first integral does not change the result, so:

( )2

  0, 

  
ε ε

ε ε ε ε

ε

φ φ
Ω Ω

∇ ⋅ + ∇ ⋅ =

∀ ∈ Ω

∫ ∫k kq u dV q u

q L , at Ωε	 (19)

The continuity equation is part of the PDE system and 
therefore, by linearity, the Stokes equation can be added, 
thus generating the PDE:

  

  

ε ε

ε ε

ε ε ε ε

ε ε ε ε

φ φ

φ φ

Ω Ω

Ω Ω

− ⋅∇ + ∇ ⋅ ∇

− ∇ ⋅∇ − ⋅∆

∫ ∫

∫ ∫

k k

k k

p w dV u w dV

u w dV u w dV
	

   
ε ε

ε ε ε εφ φ
Ω Ω

+ ∇ ⋅ + ∇ ⋅∫ ∫k kq u dV q u dV 	

( )1  ,  
ε

ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ωε	 (20)

The PDE (20) is only in εΩ . The decision is then made to 
use the linear extension operator to evaluate the behavior of 
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the PDE in Ω. By the sixth hypothesis, when applying the 
operator in all terms of EDP (6.20), one recovers:

( ) 

 

   

 

ε ε ε ε ε

ε ε ε ε

φ φ

φ φ

Ω Ω

Ω Ω

− ⋅∇ + ∇ ⋅ ∇ −

∇ ⋅∇ − ⋅∆

∫ ∫

∫ ∫

k k

k k

P p w dV u w dV

u w dV u w dV 	

    ε ε ε εφ φ
Ω Ω

+ ∇ ⋅ + ∇ ⋅∫ ∫k kq u dV q u dV 	

( )1  ,  ε εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ω	 (21)

Regrouping some terms, specifically the fourth and fifth term 
to the left of the equality:

( ) 



  

 

ε ε ε ε ε

ε ε

φ φ

φ

Ω Ω

Ω

− ⋅∇ + ∇ ⋅ ∇

− ∇ ⋅∇

∫ ∫

∫

k k

k

P p w dV u w dV

u w dV
	

( )     ε ε ε ε εφ φ
Ω Ω

+ ∇ −∆ ⋅ + ∇ ⋅∫ ∫k k kq w u dV q u dV
	

( )1  ,  εφ
Ω

= ⋅ ∀ ∈ Ω∫ Nkf w dV v H , at Ω	 (22)

Where one immediately recognizes the pair of dualities:

( ) 



( ) ( )1 1,

  

(  ),  

ε ε ε

ε ε ε

φ

φ −

Ω

Ω Ω

∇ −∆ ⋅ =

∇ −∆

∫ k k

k k
H H

q w u dV

q w u
	 (23)

Let the following convergences (C) be:

 ( )1  weaklyε ∈ Ω

Nu u H 	 (C1)

( )1  weaklyε ∈ Ω

Nk
kw e H 	 (C2)

( )2 0  weaklyε ∈ Ω

kq L 	 (C3)

( ) ( )2  weaklyε ε ∈ ΩP p p L 	 (C4)

Finally, the functional on ε  converges to a functional on 
Ω in the form:

  φ φ
Ω Ω

− ⋅∇ + ∇ ⋅ ∇∫ ∫k kpe dV u e dV
	

( ) ( )1 1, ,  µ φ − Ω Ω+ k H Hu 	

( )1  ,  φ
Ω

= ⋅ ∀ ∈ Ω∫ N
kf e dV v H , at Ω	 (24)

Since 0∇ =ke . Integrating by parts and passing to the limit 
in Ω:

  φ φ
Ω Ω

∇ ⋅ − ∆ ⋅∫ ∫p dV u dV 	

( ) ( )1 1,(  ,  )φµ − Ω Ω+ k H Hu
	

( )  ,  φ φ
Ω

= ⋅ ∀ ∈ Ω∫ kf e dV D , at Ω	 (25)

Thus:

∇ −∆ + =p u Mu f , at Ω	 (PDE. a)

0 ∇⋅ =u , at Ω	 (PDE. b)

Where M is independent of u.
Now, let’s focus on the free-sliding boundaries. Let be 

the variational formulation on the boundary:

( ) ( )2  

 

ε ε

ε

ε εµ
Ω Ω

Ω

− ∇ ⋅ + ⋅ =

⋅

∫ ∫

∫

p vdV u v dV

f v dV

 

	 (26)

Replacing v with its previously established definition:

( ) ( ) ( )2  

 

ε ε

ε

ε ε ε ε

ε

φ µ φ

φ

Ω Ω

Ω

− ∇ ⋅ + ⋅ =

⋅

∫ ∫

∫

k k

k

p w dV u w dV

f w dV

 

	 (27)

The first term to the left of the equality has already been 
discussed previously for the functional on εΩ . We must now 
analyze the second term to the left of the equality, referring 
to the stress tensor, specifically its deviatoric part. At this 
point, it seems difficult to extract any property from the 
functional above that might resemble the results obtained 
so far. However, it is enough to go back a few steps in the 
development of the variational formulation so that one can 
take advantage of the incompressibility of the test function 
field and the velocity field itself.

It is known that:

( ) ( ) ( ) ( ) ( )2  2  ε ε ε εφ⋅ = ⋅ = ⋅∇kD u D w D u D v D u v 	 (28)
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From this, the following integration by parts follows naturally:

( ) ( )

( )
2,4Ã

1  
2

1  
2

ε ε

ε

ε ε ε

ε ε

Ω Ω

∂Ω =

⋅∇ =− ∇ ⋅ ∇ +∇ ⋅

+ ∇ +∇ ⋅ ⋅

∫ ∫

∫

T

T

u v dV u u

v dV u u v n dS



	 (29)

Where the last term to the right of the equality vanishes 
because 0⋅ =v n  in 2,4Γ . Regarding the first term to the right 
of the equality, it is known that:

ε ε∇ ⋅∇ = ∆u u 	 (30. a)

( ) 0 ε ε∇ ⋅∇ = ∇ ∇⋅ =Tu u 	 (30. b)

Then:

( )     

 

ε ε

ε

ε ε

ε εφ

Ω Ω

Ω

⋅∇ =− ∆ ⋅ =

− ∆ ⋅

∫ ∫

∫ k

u v dV u v dV

u w dV



	 (31)

Then, the variational formulation is rewritten such that:

( )  

 

ε ε

ε

ε ε ε ε

ε

φ µ φ

φ

Ω Ω

Ω

− ∇ ⋅ − ∆ ⋅ =

⋅

∫ ∫

∫

k k

k

p w dV u w dV

f w dV
	 (32)

Where Stokes is recovered for every test function εφ= kv w . Once 
you have the Stokes system in hand, for such test functions, 
ones arrive at the same homogenized equation:

 ,  1 µ∇ −∆ + = =p u Mu f 	 (33)

This time, developed on the boundary and with the same 
matrix M. This result is the core of the question about the 
compatibility of variationals on the boundaries and in the 
domain, for non-Dirichlet boundary conditions.

The results obtained refer to the open Ω  problem 
composed of εΩ  and ε

iT . According to the procedure 
established by Allaire (1991a), the cell problem must be 
a microscale representation of the global problem, that 
is, the Stokes problem must be solved in a domain whose 
boundary conditions reflect (or simulate) the conditions 
in the macroscopic problem. For a bounded open domain, 
how should the cell problem be formulated? This issue will 
be addressed in the next section and, with it, results on the 
limits of M in relation to grain size.

2.1. The cell problem

Paraphrasing Allaire (1991a), “the functions ( )1
ε ε∈ Ωkw H  

and ( )2  ε ε∈ Ωkq L  seem mysterious at first glance. But these 
have physical meaning.” In fact, these need to make physical 
sense and this condition will be dealt with in this session. 
Unlike a generic variational problem, the test function in an 
energy homogenization problem is a specific function, carefully 
chosen to satisfy both mathematical (regularity) and physical 
(coherence with the model) criteria.

Despite the numerical nature of this work, the analysis 
of the convergence of the Stokes problem for one of its three 
possible limits – Stokes, Brinkman or Darcy – must be done 
from the analytical solution. This subsection will then be 
dedicated to presenting the hypotheses that will allow the 
resolution of the Stokes system in the unit cell, inspired by 
the hypotheses presented by Allaire (1991a) and Cionarescu 
& Murat (1982). Let the following differential problem be:

Find ( ) ,  ε ε
k kw q  solutions of the system:

0 ,   ε ε ε∇ − ∆ = Ωk k unitq w at 	 (Cell - problem. a)

 ,   ε ε∇ ⋅ Ωk unitw at 	 (Cell - problem. b)

With the following conditions (Cond.):

0 ,   ε ε ε∇ − ∆ =k k kq w at B 	 (Cond. 1)

0 ,   ε ε=k kw atT 	 (Cond. 2)

 ,   ε ∞ ε=k kw U at D 	 (Cond. 3)

 ,   ε ∞ ε= ∂Ωk unitw U at 	 (Cond. 4)

But here, consider the problem in polar (radial) coordinates 
and that the pressure field has a previously known “behavior”. 
A periodic pressure field will be adopted such that:

( )
1

 
∞

ε
ε ε

=

= =∑
ir kk

k

q q e f r 	 (34)

Symmetric (does not depend on φ or θ) and k is the spatial 
frequency of the solution. Hence, the problem to be solved 
becomes a Poisson problem on the ring, such that the solution 
satisfies:

( ) ,   ε ε∆ =k kw f r at B 	 (Cond. 5)

0 ,   ε ε=k kw atT 	 (Cond. 6)

 ,   ε ∞ ε=k kw U at D 	 (Cond. 7)

 ,   ε ∞ ε= ∂Ωk unitw U at 	 (Cond. 8)
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The problem can be further rewritten as:

( )
2

2
1 ,   ε ε

ε
∂ ∂

+ =
∂∂

k k
kw w

f r at B
r rr

	 (35. a)

Alternatively

2

2
1

1 ,   
∞

ε ε ε
ε ε

=

∂ ∂
+ =

∂∂ ∑
irk k k k

k

w w
q e at B

r rr
	 (35. b)

With same conditions. The right-hand side of the PDE can 
be rewritten according to the Voss-Weyl formula such that:

1

1  ,   
∞

ε ε
ε ε

=

 ∂∂
=  ∂ ∂ 
∑

irk k k

k

w
r q e at B

r r r
	 (36)

The general solution becomes easier to find from this 
approach, as follows:

( )

( )

2

2

1 2

,  

log

ε
ε εθ

ε

ε

 =− + 
 

  + + 
 

k
i

i

i ikrw r E
k k

ikrE C r C
	 (37. a)

Where ( )iE r  is the exponential-integral function that can be 
expressed by the convergent Ramanujan series (for small r):

( ) ( ) ( ) 1
2

1
1

1
2

0

1
ln

!2

1  
2 1

∞

γ
−

−
=

−

=

−
= + +

+

∑

∑

nr n

i n
n

n

k

r
E r r e

n

k

	 (37. b)

with γ  being the Euler-Mascheroni constant.
Note that applying the boundary conditions on ε=r a  

and ε=R , considering that:

( )
1

1 2
2 2

1
1 0

1 1
2 1!2

∞

α

−
−

−
= =

−
→

+∑ ∑
n

nr rn
p

n
n k

r
e r e

kn
	 (38)

For large n, k, a result of the form is expected:

( )

( )

2

2
21 2

1 2

ln

,   
ln

log

ε

∞

ε
ε

ε γ α
ε

θ ε γ α
ε

=

   − + +    
=    + + +    

+ +

∑

ikr
p

k ikr
p

k

i ikr ikr e
k

w r ikr ikr e
k

C r C

	 (39)

Simplifying:

( )

( )

2

2
1

2
1 2

,

ln log

∞

ε

ε

ε εθ

γ α
ε

=

 
= − +  

 
   + + + +    

∑k

k
ikr

p

iw r
k k

ikr ikr e C r C

	 (40)

generates:

( ) 2

22

2
2

1

1 2

ln

,  

log

ε

ε

∞ β
ε εε

ε

β
γ

εε ε

βθ α
ε

β
ε

=

  + +  
    − +       =     

 + + 
 

∑
ik ap

k

k

ik a

i
k k aw r ik e

a
C C

	 (41)

For β ∈. Where it is noted that the bounding of the solution 
will explicitly depend on the relationship between the radii 
(grain and unit cell) and that this ratio will be controlled by 
the product of r by the logarithm of the ratio. This result is 
very similar to that found by Allaire (1990, 1991a). Here, 
precisely, one can estimate the convergence for the limits 
0, +∞ or 00 < < +∞C :

1

ln  , εε
ε

+  ∈ 
 

pa
p  	 (42)

3. The particle size distribution function and 
the grain size decay

In geotechnical engineering, it is common to classify 
soils based on their granulometric distribution, that is, to 
analyze the composition of the soil according to the size 
(diameter) of the grains that compose it. Figure  4 is an 
example of this type of test.

Some parameters can be extracted from this type of 
analysis, such as the coefficient of uniformity ( uC ) and the 
coefficient of curvature ( cC ), calculated as:

60

10
=u

D
C

D 	 (43. a)

2
30

60 10
=

×c
D

C
D D

	 (43. b)

Where D60, D10 and D30 indicate that 60%, 10% and 30% of the 
grains have a diameter smaller than X mm. Both parameters 

uC  and cC  characterize how uniform a soil is, that is, how well 
distributed its granulometry is. The ABNT-NBR-6502/22 
(ABNT, 2022) proposes that a soil is considered uniform if 
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5<uC . ASTM-D2487-17 (ASTM, 2017) proposes that a soil 
is uniform if 3>cC  or 1<cC . With these definitions known, 
we propose the following ansatz that will be justified later:

Ansatz (grain size decay): the function a(ε) used in 
homogenization theory can be represented as:

( ) εε
−

=
u

Cc

C

a e 	 (44)

Where ε must be understood as the size of the representative 
elementary volume.

Applying Equation 44 directly to the critical grain size 
Equation 42, using p = 2 as suggested by Allaire (1991a), 
taking ε→0, we have:

2 0 ,  2 (Darcy)σ → <cC 	 (45. a)

2  ,  2 (Navier-Stokes)σ → +∞ >cC 	 (45. b)

2
00  ,  2 (Brinkman)σ → < < +∞ =cC C 	 (45. c)

It is now up to prove that these limits make some physical 
sense in this new proposed approach. Before proving, the 
following geotechnical analogue can be made:

-	 Situation 1: 2<cC  implies a well-graded soil, making 
it possible to observe grains for any sample size. 
Therefore, the voids of the larger grains are occupied 
by smaller grains, increasing the total specific surface, 
consequently increasing the friction of the fluid in the 
solids, and preventing the development of nonlinearities 
at high speeds. Darcy’s law is then formed.

-	 Situation 2: 2>cC  implies a uniform soil, poorly 
graded, meaning that from a certain size of ε small 
enough, no more grains are observed, but free fluid. 
The pores become larger, and the total specific surface 

does not reach high values. The fluid percolates 
almost freely, similar to flow governed directly by 
Navier-Stokes. The term “similar” here becomes 
necessary as it will later be proved that the presence 
of grains will generate an apparent viscosity for the 
flow.

-	 Situation 3: 2=cC  implies a medium uniform soil. 
It is the critical distribution for it to be neither a free 
flow nor a diffusion flow as envisaged by Darcy. 
There is a flow of the Navier-Stokes type, but with 
the presence of a drag term, multiplying the velocity, 
as a form of damping generated by the presence 
of some grains. However, nonlinear terms remain 
relevant.

It is relevant to comment that, physically, a sample 
with size ε→0 does not exist. This problem will also appear 
when the problem is treated numerically, since there is a 
computational limit that does not allow taking the grain 
size to zero.

So let Equation 42 be rewritten as:

( )
1
2

ln εσ ε ε
ε

 =  
 

a 	 (46)

The different limits of (48) are represented in Figure 5.

4. Numerical convergence of the 
homogenization problem of Navier Stokes 
equations in two dimensions

It is proposed in this brief introduction that, for reasons 
of numerical limitation, Allaire’s theory of homogenization 
(1991a) had to be modified in fundamental aspects, affecting 

Figure 4. Particle size distribution of soils
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the hypotheses about the test functions that will no longer 
be able to adopt certain limits.

4.1 The first steps and first struggles

Let the following problem be numerically homogenized 
by the conventional finite element method:

Find ( ) ( ) ( )1 2
0,ε ε ε ε ∈ Ω × Ω 

N
u p H L  solutions of 

the problem (P1-Num)

( )  ,   ε ε ε ε ερ ⋅∇ +∇ −∆ = Ωu u p u f at 	 (P1 - Num. 1)

0  ,   ε ε∇ ⋅ = Ωu at 	 (P1 - Num. 2)

1 ,   ε = Γinp p at 	 (P1 - Num. 3)

3 ,   ε = Γoutp p at 	 (P1 - Num. 4)

2 40,     ε = Γ Γu at e 	 (P1 - Num. 5)

So that when ε→0, ( ) ( ) ,  ,ε ε u p u p  weakly, in some sense. 
In the theory of analysis in abstract spaces, it was possible 
to set the size of the grain, or the hole, to zero. However, 
when dealing with the numerical problem, the grain size 
cannot be taken to zero.

It is known that a fluid loses energy when percolating 
through a porous medium by friction with the solid walls. 
Therefore, it is known that the greater the specific surface of 
the grain, the greater the friction with the fluid and the greater 
the dissipation of energy during percolation. A greater loss of 
energy, induces in geotechnical theory, a lower permeability 

coefficient, if Darcy’s law is assumed as true. The numerical 
consequence is relevant: since it is not possible to disappear 
with the grains in the limit ε→0, each simulation with smaller 
grains increases considerably the specific surface no matter 
how much the porosity is maintained.

In Allaire’s theory (1991a), a cell problem with a single 
obstacle is proposed, in order to represent in a unitary cell, 
the same porosity of the total domain, since this is just an 
infinite and periodic repetition of these cells. In the numerical 
treatment carried out here, it was necessary to find a way to 
introduce the specific surface of the grains and the porosity 
in the unit cell. How to do?

4.2 The multigrain cell problem

With the mathematical impasse raised in the previous 
paragraph, it became necessary to propose a new way of 
representing the unit cell, contemplating the porosity and the 
specific surface of the grains. The proposal is to use more 
than one grain in the unit cell periodically and symmetrically 
distributed. To do this, simply solve the following nonlinear 
system of two algebraic equations:

21 π φ− =n r 	 (47. a)

2
= unit

s
n M
r

	 (47. b)

Where (49.a) is the porosity for a square domain of unitary 
sides and (47.b) represents the unit specific surface of the 
grain. This second equation needs a more detailed explanation.

Figure 5. Limits for a(ε) and σ(ε).



Guerra & Romanel

Guerra & Romanel, Soil. Rocks, São Paulo, 2024 47(4):e2024012622 11

Suppose you want to generate a unit cell with only one 
grain that meets the requirements of porosity and specific 
surface. Also suppose that this problem has a solution for a 
certain radius r of the grain. Therefore, the specific surface 
of this grain is calculated, in two dimensions, as:

2
2 2π
π

= = =unit s
s

s

A rM
V rr

	 (48)

But it was said earlier that it is unlikely, unless a coincidence, 
that a radius r fulfills the requirements of porosity and 
specific surface. Therefore, it becomes natural to question 
whether it is possible to divide this grain into grains of 
smaller radius so that a greater number of grains fulfills the 
two aforementioned requirements.

A cell with more than one grain is generated, as 
represented by Figure 6.

In the unit cell, the following problem is solved:
Find ( ),  w q  solutions of the problem (P1-Num)

( )  ,   ρ ⋅∇ +∇ −∆ = Ωunitw w q w f at 	 (PCel - Num. 1)

0  ,   ∇⋅ = Ωunitw at 	 (PCel - Num. 2)

0 1 ,   = Γw w at 	 (PCel - Num. 3)

0 3 ,   = Γw w at 	 (PCel - Num. 4)

( )( ) 2 42 0 ,     µ β⋅ − ⋅ − ⋅ = Γ ΓTn w qI t w t at e 	(PCel - Num. 5)

It is notable that ( ),w q  are analogous to the velocity and 
pressure fields mentioned on the global scale εΩ . The domain 

in which one wants to solve the problem ( −CelP Num) is 
graphically represented in Figure 7.

4.3 Homogenization via direct numerical simulation (DNS)

The objective of this subsection is to investigate the 
convergence, in whatever sense, of a homogenization process 
by direct numerical simulation, that is, gradually decreasing 
the size of the grains in relation to the domain, increasing their 
quantity to maintain the porosity and respecting a specific 
grain size decay function.

Let the problem (P1-Num) be the one we want to solve 
using the conventional finite element method. The momentum 
conservation equations can be written in a variational form 
such that:

( )
 

ö   

    

ε ε

ε ε

ε ε ε ε ε

ε ε ε

ρ ϕ

µ ϕ ϕ

Ω Ω

Ω Ω

⋅∇ ⋅ Ω + ∇ ⋅ Ω −

∆ ⋅ Ω = ⋅ Ω

∫ ∫

∫ ∫

u u d p d

u d f d
	 (49. a)

where, integrating by parts:

( )
 

   

  

    

ε ε

ε

ε ε ε

ε ε ε ε ε

ε ε

ε ε ε

ρ ϕ

µ ϕ

ϕ µ ϕ ϕ

Ω Ω

Ω

∂Ω ∂Ω Ω

⋅∇ ⋅ϕ Ω − ∇ ⋅ Ω

+ ∇ ⋅∇ Ω

+ ⋅ + ∇ ⋅ ⋅ = ⋅ Ω

∫ ∫

∫

∫ ∫ ∫

u u d p d

u d

p n dS u n dS f d

	(49. b)

One then has ( )1
ε ε∈ Ωu H  and ( )2

ε ε∈ Ωp L , at least. Let 
( )1

ε⊂ ΩV H  be a linear subspace. Having V finite dimension, 

Figure 6. Representation of the unit cell with more than one grain. Figure 7. −CelP Num domain.
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taking advantage of the properties of orthogonal projection 
in Hilbert spaces, an element of V is proposed as:

'

0

 ,  ε
=

= Φ < +∞∑
N

n n
n

u U N 	 (50)

With ∈ N
nU   and 1Φ ∈ ⊂n V H . Similarly, there is an 

element of V:

'

0

 ,   ε
=

= Φ <∑
M

n n
n

p P M N 	 (51)

With ∈ M
nP  . By the orthogonality of V in relation to 

( )1
εΩH , it is known that:

' '
2 2 ε ε ε ε ε ε− + − ≤ − + −u u p p z u w p 	 (52)

,  ∀ ∈z w V 	

That is, '
εu  and '

εp  minimize the solution approximation error.
The continuity equation can be formulated in its 

variational form as:

( )  0
ε

ε ε
Ω

∇ ⋅ Ψ Ω =∫ u d 	 (53)

Where Ψ∈E, being ( )2
ε⊂ ΩE L .

For the direct numerical simulation, a first-order 
polynomial function (Lagrange polynomial) was used for Φn  
and a constant, merely continuous function for Ψn. In terms 
of finite element theory, triangular elements of type T2 were 
chosen, that is, triangular elements with three nodes per side 
through which a first-order polynomial for the velocity and 
a zeroth order polynomial for pressure pass. 

The formulation assumed that the characteristic size of 
the elements was 1% of the domain size, yielding about 410  
elements in a square domain of unit sides. Close to the holes, 
the mesh was refined to 1% of the hole perimeter (Figure 8). 
The non-linearity of the convective term was treated with the 
Newton-Raphson iterative method. In other words, the residual 
of each component of the variational formulation was iterated 
with changes in the nodal value until a minimum was reached. 
The element used in the approach is shown in Figure 9.

4.4 Error estimation and the influence of convective 
nonlinearity: a compact perturbation

To estimate the error due to approximation of the 
solution, a theorem is needed (Brenner & Scott, 2008):

Theorem (error estimate): Suppose the relation in 

(8.6) is true. Let ( )∈ Ωku H  and also ( )∈ Ωsu H . Also let 

< <m s k . Then ( )∀ ∈ Ωsu H :

( ) ( )
−

Ω Ω− ≤m s
s m

hH Hu u Ch u
	

(Theorem)

Where ( ).∈ ⊂ Ωm
hu M H

The proof of this theorem can be found in (Brenner & 
Scott, 2008). The theorem also applies to Sobolev spaces 
and allows one to obtain:

( ) ( )1
1−

Ω− =
p

s
hWu u o h 	 (54)

Applying it to the problem to be solved in this work, we obtain:

( ) ( )1
å

' 2 1
ε ε

−
Ω− =Hu u o h 	 (55. a)

Figure 8. Discretization of the finite element space.
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Since ( )2
ε ε∈ Ωu H . Assuming a square domain of unit sides 

and a mesh with a characteristic size of 1% of the domain size:

( ) ( )1
å

' 10,01ε ε Ω− =Hu u o 	 (55. b)

That is, the calculated velocities have an error bounded above 
by 1% of the actual value.

The convective term is classified as a compact 
perturbation. In other words, the operator:

( )'  ' '  
ε

ε ε ε ε
Ω

= ⋅∇ ⋅Φ Ω∫Tu u u d 	 (56)

It is said to be compact because it belongs to the space of 
linear operators of ( )1 ε⊂ ΩV H . The space V is compact and 
therefore every linear operator in its dual is also compact.

4.5 Simulation script

First, a square domain of unit dimensions of 1m x 1m 
is constructed. Next, the grain size decay function is chosen. 
Adopt, for example, the equation given by ansatz (44), such 
that (42) tends to zero for ε → 0, with p = 2. Take an initial 
value of ε < 1 (less than the whole domain) and calculate 
the grain size. Then, choose a porosity ϕ and using relation 
(47.a), determine how many grains will be needed to fulfill 
the desired porosity.

A mesh is generated with a characteristic size of 1% of 
the domain size, as well as the hole perimeter is discretized 
with 1% of its size to refine the mesh in the vicinity of the 
hole. The parameters ρ = 1000 kg/m3 and μ = 0,001 Pa⋅s are 
determined. Using Figure 1 as a reference, the following 
boundary conditions are imposed:

2 40 , at  and ε = Γ Γu 	 (BC 6)

30 ,  at ε = Γp Pa 	 (BC 7)

0 1 , at ε ε= Γp p 	 (BC 8)

Where the value of 0εp  is gradually increased to investigate 
the evolution of the velocity field with the variation of the 
hydraulic gradient. As the speed varies pointwise, it was 
determined that the average velocity in the domain would 
be used as a reference, that is:

1  
ε

ε ε ε
Ω

= Ω
Ω ∫u u d 	 (57)

Assuming a flow fundamentally horizontal (gravitational 
forces are neglected), the hydraulic gradient is written in 
simplified form as:

0
0

1  
1
ε

ε ε ε= ∇ ≅ ≅ =
p

i p p p
L

	 (58)

So, one is looking for something like:

ε =u Ki 	 (59)

The simulation is performed, (57) and (58) are calculated, 
then the value of K is determined from (59). The value of 0εp  
is increased and the process is repeated until a curve of the 
relationship between the average velocity and the hydraulic 
gradient is constructed. The results are presented in the figures 
Figure 10 and Figure 11. Note that the behavior of the curve 
corresponding to a porosity of 0.7 differs from the rest. It 
is believed to be the beginning of an oscillatory behavior 
that could not be captured by the numerical scheme used. 
Note also that in Figure 10, only one of the tests starts with 
ε  close to 1. This is due to the required computational cost 
for such situation. For such porosity values (0.3), the amount 

Figure 9. T2-type element. Figure 10. DNS convergence for Darcy.
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of elements needed for a low enough epsilon exceeds the 
limits of the machine used for the simulations. Therefore, it 
was preferred to evaluate the convergence trend for higher 
epsilon values.

4.6 Homogenization using the multigrain cell problem: 
the Darcy case

Assume a grain size decay function a(ε) that makes 
σ(ε)→0 to ε→0. For the sake of simplicity, assume the case 
ϕ = 0,6 and σ(ε)→0.

First, the number of grains and their radius must 
be calculated so that the multigrain unit cell is created. 
Assuming that the direct numerical simulations were able 
to go up to ε = 0.0833m and that the function that defines 

the grain size is a(ε)=0.2√ε and ( ) ( )
1
2

ln
ε

σ ε ε
ε

 
=   

 

a
, one 

has ( ) ( )0.0833 0.0577ε = =a a m.
Knowing that ϕ = 0.6, then the nonlinear system to be 

solved becomes:

21 0.6π− =n r 	 (60. a)

2 2
0.0577

=
n
r

	 (60. b)

Resulting in n = 3.369 grains and r = 0.1944 m. As it is not 
possible to obtain a non-integer number of grains, the value 
of the nearest integer is assumed, therefore, n = 3. A unitary 
cell is then built with three grains of radius 0.1944 m, where 
the problem specified by the equations of ( )−CelP Num  and 

its due boundary conditions are solved. Once the velocity 
field solution is in hand, M0 is calculated, given by:

0  :  
Ω

= ∇ ∇ Ω∫
unit

unitM w w d 	 (61)

Where the tensor product of the integrand, in two dimensions, 
is written in extended form as:

( ) ( ) ( ) ( )2 22 2
0   

Ω

= ∂ + ∂ + ∂ + ∂ Ω∫
unit

x y x y unitM u u v v d

	
(62)

Where 0 ∈M . Remember here that the tensor product A:B 
for dim(A) = m and dim(B) = n has dimension dim(A : B) = 
m + n - 4.

The value found was 0 46.40=M . It is known that:

1
0

2
µ
σ

−
 =  
 

M
K 	 (63)

Therefore, 0 0.001 46.40 0.04640µ = × =M  is already  
known. It is then enough to find the value of σ(ε) taken 
directly from the curve:

( ) ( ) ( )
1
20.0833

0.0833 0.0833 ln 0.05045
0.0833

σ ε σ
 

= = =  
 

a 	 (64)

thus

2 20.05045 0.00254σ = = 	 (65)

Figure 11. DNS convergence for Navier-Stokes.
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Then:
10.04640 0.0549 

0.00254

−
 = = 
 

K 	 (66)

The mean value found by the direct numerical simulation 
was 0.0604. Figure 12 shows the convergence of the DNS 
to the predicted limit.

5. Homogenization for different Darcy limits: 
Navier-Stokes apparent viscosity and the 
Brinkman problem

It has been mentioned that the limits found by Allaire 
(1991a) cannot be obtained numerically due to limitations of the 
machines used. For equivalent limits to be reached, modifications 
in the theory will be proposed here. These modifications act at the 
core of Allaire’s deduction, making terms that once disappeared 
in his work, gain non-negligible importance in the solution of 
the partial differential equations presented here.

Let the coefficient 0µ=M M  where 0M  is:

0  :  
Ω

= ∇ ∇ Ω∫
unit

unitM w w d 	 (67)

Where ( )1∈ Ωunitw H  and it is known that ( ) ( )1
εφ φ= ∈ Ω ∀ ∈ Ωv w H D

( ) ( )1
εφ φ= ∈ Ω ∀ ∈ Ωv w H D . By the Riesz representation theory, 

( )1! ε∃ ∈ Ωz H  such that:

 
ε

ε ε εβ
Ω

⋅ Ω = ∆∫ z u d u 	 (68)

For β ∈. The above result is also verified for the extension 
in Ω by the linearity of Hilbert spaces. Realize now that:

( )1
2 :  µ

σ
Ω

∇ ∇ Ω = ∈ Ω∫
unit

unit unitw w d z H 	 (69)

Ωunit  being a homeomorphism of εΩ , and the PDE in the 
unit cell being identical to the PDE in the perforated domain, 
except for the viscosity and density constants which are 
obviously limited. With that, it is deduced that:

0
2  

µ
β

σ
= ∆

M
u u 	 (70)

Making the general homogenized PDE (PDE):

( ) ( )ρ µ β⋅ ⋅∇ +∇ − + ∆ =u u p u f 	 (71)

Note that for the limit in Navier Stokes found by Allaire 
(1991a), β→0 for 2σ ∞→ + . Equation (71) can be interpreted 
as a Navier-Stokes system with an apparent viscosity, which 
is greater than the actual viscosity of the fluid:

( ) *ρ µ⋅ ⋅∇ +∇ − =∆u u p u f 	 (72)

Figure 12. DNS convergence for Darcy with calculated limit.
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This apparent viscosity only exists in the numerical problem 
because the grains do not reach the limit of zero and therefore 

sM  starts to have a drag and friction effect large enough in 
the solution to be neglected.

To exemplify the procedure and make it less abstract, consider 

the case of a soil with porosity 0.5φ =  and ( ) 2.1
0.8
εε

−
=a e , that is, 

with a limit at Navier-Stokes. The direct numerical simulation 
managed to reach the value of 0.5 ε = m . Thus, the value of 
( ) ( )0.5 0.033ε = =a a .

The unit cell must be constructed for 0.5φ =  and 
2 60.60

0.033
= =unit

sM . The solution of the system of non-

linear algebraic equations to define the unit cell configuration 
resulted in n = 5.267 and r = 0.174. The value of 0M  calculated 
in the unit cell was 11931.06. Furthermore, 0.99σ =  was 
found, so:

* 0
2 2

0,001 11931.06 11.93
0.99

µ
µ

σ
×

= = =
M 	 (73)

Using 11.93 as apparent viscosity and calculating the average 
velocity within the domain, with a hydraulic gradient ranging 
from 151 10 / ²−× Pa m  to 21 10  / ²−× Pa m , a value of average 
permeability coefficient of 0.007892. Direct numerical 
simulations (DNS) showed a permeability coefficient tending 

to a limit at 0.01. Convergence is graphically represented 
in Figure 13.

5.1 Brinkman’s limit: a gray area between Darcy and 
Navier Stokes

So far only numerical convergence for Darcy and 
Navier-Stokes has been presented. These two limits are 
the two extremes to which the Navier Stokes equations 
can converge when treated by the homogenization process 
by the well-known energy method. However, as initially 
raised by Allaire (1991a) and studied more closely by 
Cionarescu & Murat (1982), there is a limit for Brinkman 
when 00σ ∞→ < < +C . How then to identify this limit in 
the numerical approach proposed here?

Sticking directly to Allaire’s theory (1991a), the only 
way to achieve convergence for Brinkman would be with a 
function of the kind:

( ) 2
α
εε

−
=a e 	 (74)

Where α can be any positive real, but the exponent of ε must 
necessarily be 2. This is due to the fact that σ(ε) is written in 
the form of a natural logarithm raised to the 1/2 power. When 
trying to bring this concept to a more applied perspective, 

Figure 13. DNS convergence for Navier-Stokes with calculated limit.
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only soils whose grain size variation varied exactly with 
expression (74) would be treated with Brinkman’s formulation.

The hypothesis that arises is that for some soils, 
depending on the size of the representative volume, a function 
a(ε) equal to (74) or with exponents close to 2, would 
generate approximately the same value of 2σ . This would 
suggest that soils with theoretical limits in Navier Stokes 
could be represented by Brinkman. What is suggested is 
that the Brinkman limit, in the numerical approach, is just a 
transitional regime between Navier Stokes and Darcy, acting 
as an overlap between these two limits.

6. Comparison with laboratory results

It should not be forgotten that this work is a paper 
in geotechnical engineering. Theoretical results are good, 
but results that match reality are even better. In this sense, 
this section will be devoted to the construction of a simple 
mathematical model for predicting hydraulic conductivity, 
based on the results of Allaire’s theory of homogenization, 
using parameters known from geotechnical engineering.

6.1 A hydraulic conductivity model based on D50, Cu 
and Cc

Let the definitions of cC , uC  and σ(ε) be given in (45.a), 
(45.b) and (46). The model that is proposed from here on 
will depend only on these parameters and on a characteristic 
size of the soil particles, represented by the D50.

It is intended to predict the hydraulic conductivity 
of a homogeneous and isotropic soil from the following 
sequence of steps:

•	 From the granulometric curve of the soil in question, 
identify the values of D10, D30, D50 and D60 so that 
the values of Cu and Cc can be calculated.

•	 The typical grain size decay curve as a function of 
the size of the elemental representative element will 
be given by (46), that is:

( ) εε
−

=
u

Cc

C

a e 	 (75)

•	 The value of ε that represents the chosen sample 
will be arbitrated as six times the value of D50, that 
is, 506ε =ref D . This approach is not ad-hoc. The 
work of Hattamleh et. al (2009) points out that this 
relationship is feasible for granular soils.

•	 The value of σ(ε) will be adjusted by a function A 
that depends only on the ratio of /u cC C . Otherwise, 
we have:

( ) ( )*σ ε σ ε
 

=  
 

u

c

C
A

C 	 (76)

•	 Knowing the porosity of the soil and calculating the 
unitary specific surface as:

2
50

2 r 2 4
r
π

= = =
π

unit
sM

r D 	 (77)

•	 The nonlinear system of equations proposed in (60.a) 
and (60.b) is solved to find the radius and the number 
of grains used in the multigrain unit cell.

•	 In the multigrain unit cell, the problem ( )−CelP Num  
is solved with 0 1=w  and the value of 0M  given by 
(67) is calculated.

•	 The value of the average hydraulic conductivity of 
the soil, directly in cm/s, is given by:

( )*2

0

σ ε
µ

=K
M

	 (78)

Being μ the viscosity of the fluid that saturates the soil, in Pa⋅s. 
Remember here that the relationship between permeability 
and hydraulic conductivity is given by /ρ µ=K k g  where 
K, k, μ, ρ and g are respectively the hydraulic conductivity, 
intrinsic permeability, fluid viscosity, fluid density and the 
gravitational constant.

Note that this procedure provides an average hydraulic 
conductivity value, i.e. independent of the limiting equation. 
If one wants to know the point of non-linearity, one must 

simulate the problem (PDE) assuming * 0
*2

µ
µ

σ
=

M  as 

increased viscosity for Navier Stokes or 0
*2

µ
σ

=
M

M  for 

the drag (damping) term in the Brinkman limit.

The equation 
 
 
 

u

c

C
A

C
 was adjusted for 36 different 

permeability tests (as shown in Table 1), with soils of different 
porosities and granulometric curves. The adjustment was 
made by checking for which value of A, the value of K 
corresponded to that found in the laboratory. Then, graphs of 
A were drawn in relation to the specific surface of the grains, 
porosity and average grain size. None of these relationships 
offered a fit result with 2R  close enough to 1 to establish a 
correlation. However, when comparing A with /u cC C , a power 
law curve with 2R  above 0.46 was obtained, even with tests 
whose values were drastically different from those expected 
for the material tested. The function found for A was:

1.754

 0.0428
−

   
=   

   
u u

c c

C C
A

C C
	 (79)

The relationship between parameter A and the value of the 
ratio between Cu and Cc is graphically represented in Figure 14. 
Note that the value of A tends to a vertical asymptote for 
Cu/Cc →3/2. For the Cu/Cc range between 2 and 4 with 
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permeability values lower than expected, the tested soils had 
a fines content that may have affected water transport. Soils 
with high fines content do not have a predictable hydraulic 
behavior by the model.

Figure 15 shows two different data sets. The blue dots are 
the hydraulic conductivity values measured in the laboratory 
for 36 different tests. These same data were used to feed the 
model. The orange dots represent the prediction of these 
permeabilities by the model itself. The power law curve fit for 
both cases (prediction and measured) highlights the similar 
behavior between the laboratory data and those predicted by 
the proposed model. Note also that for high values of Cu/Cc we 
have the lowest model errors. This means that for soils with 
a tendency to converge to Darcy, the model is more accurate.

Figure  16 shows the results of direct numerical 
simulations of the Navier-Stokes equations with varying 
viscosity, thus simulating the various scenarios of increased 
viscosity. It is noticed that non-linearities appear quickly 
for low viscosity values and that, for soils with increased 
viscosity above 100, the relationship between the hydraulic 
gradient and the flow velocity is perfectly linear for gradients 
up to 1000 Pa/m.

It was identified in Figure 17 for which gradient values 
the non-linearity begins to be observed. Relating these values 
to their respective Cu/Cc values identifies a power law behavior 
with 2 0.9816=R . The same relationship occurs between the 
critical gradient and the hydraulic conductivity of the soil. 
This relationship is represented in Figure 18.

Table 1. Laboratory tests used for calibration of the model.
Reference e ф D50 (mm) Cc Cu A K-Lab (cm/s)
Yang et al. 

(2016)
0.525 0.34426 0.5 0.75 3 0.0055 1.84e-3
0.525 0.34426 1 1.03 5.6 0.002 3.83e-3
0.525 0.34426 2 1.45 11 0.0015 3.68e-3
0.559 0.35856 2 0.75 5.6 0.0017 1.23e-3
0.559 0.35856 0.5 1.03 11 0.001 3.35e-3
0.559 0.35856 1 1.45 3 0.0011 8.99e-3
0.572 0.36387 1 0.75 11 0.002 1.36e-3
0.572 0.36387 2 1.03 3 0.0006 3.18e-2
0.572 0.36387 0.5 1.45 5.6 0.0002 9.44e-4

Akbulut et al. 
(2014)   

0.664 0.39904 1.27 2.14 7.41 0.001 1.89e-1
0.796 0.44321 1.63 0.89 1.35 0.075 1.26
0.892 0.47146 0.84 0.93 1.41 0.05 4.18e-1
0.641 0.39062 1.27 2.14 7.41 0.007 1.73e-1
0.788 0.44072 1.63 0.89 1.35 0.073 1.23
0.843 0.45741 0.84 0.93 1.41 0.05 3.75e-1
0.495 0.3311 1.27 2.14 7.41 0.001 1.39e-1
0.645 0.3921 1.63 0.89 1.35 0.07 1.07
0.707 0.41418 0.84 0.93 1.41 0.05 3.96e-1
0.966 0.49135 1.27 2.14 7.41 0.001 2.69e-1
1,059 0.51433 1.63 0.89 1.35 0.09 1.46
1,153 0.53553 0.84 0.93 1.41 0.07 5.97e-1

Calabar & 
Akbulut 
(2016)

0.86 0.46237 3.1 0.93 1.5 0.03 1.61
0.82 0.45055 1.63 0.89 1.35 0.036 0.35
0.77 0.43503 0.84 0.93 1.41 0.034 0.13
0.72 0.4186 0.5 1 1.19 0.02 0.05
0.6 0.375 0.35 0.98 1.16 0.018 0.03
0.87 0.46524 1 0.73 4.39 0.011 0.03
0.82 0.45055 0.69 1.01 3.63 0.006 0.02
0.79 0.44134 0.5 1.44 3.47 0.011 0.02
0.7 0.41176 0.39 1.74 3.27 0.0004 0.02
0.63 0.3865 0.32 1.29 3.09 0.0015 0.01
0.56 0.35897 0.16 0.92 2.07 0.012 0.01
0.74 0.42529 2.2 0.98 2.6 0.015 0.26
0.67 0.4012 1.18 0.88 1.93 0.022 0.12
0.52 0.34211 2 1.22 3.28 0.0083 0.14
0.7 0.41176 0.99 0.8 2.41 0.025 0.06
0.55 0.35484 0.7 0.93 1.71 0.016 0.04
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Figure 14. Relation between A and Cu/Cc.

Figure 15. Comparison of laboratory results and model prediction for K.

Figure 16. Loss of linearity in function of the hydraulic gradient for different augmented viscosities.
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Using the formulation presented in Bear (1985) for 
the Reynolds number in porous media, it was calculated for 
which Reynolds values the linearity of Darcy’s law ceases 
to apply. Take:

50 50  
µ ν
ρ

= =e
uD uD

R 	 (80)

Reynolds values 1 ≤ Re ≤ 10 indicate transition from linear to 
non-linear regime, i.e., Darcy’s law would no longer apply. 
Comparing this limit interval range with those found in the 
numerical simulations and listed in Tables 2 and 3, it can 
be seen that these Reynolds values are those calculated for 
the last limit in Navier-Stokes and the limit in Brinkman. In 
the numerical experiment, soils that lost the linearity of the 

Figure 17. Relation between the ratio Cu/Cc and the critical hydraulic gradient.

Figure 18. Relation between the estimated hydraulic conductivity and the critical hydraulic gradient.

Table 2. Relation between augmented viscosity and the PDE limit.

u* M0 Cc a(ε) (mm) ε (mm) A σ2 σ2 - fit Limit model
0.001 12848.4 27.3 1 6 14.14 912.12 908.6 NSI
0.01 12848.4 14.2 1 6 4.49 289.82 285.95 NSI
0.1 12848.4 7.3 0.99 6 1.39 90.21 91.86 NSI
1 12848.4 3.8 0.99 6 0.44 28.72 28.87 NSI
10 12848.4 1.95 0.97 6 0.14 9.05 9.3 Brinkman
100 12848.4 1 0.84 6 0.04 3.01 3 Darcy
1000 12848.4 0.5 0.66 6 0.012 1 1.01 Darcy
10000 12848.4 0.25 0.53 6 0.003 0.33 0.3415 Darcy
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relationship between hydraulic gradient and flow velocity 
had a relationship 0.26 < Cu/Cc < 0.52.

7. Conclusion

A numerical homogenization process was proposed, 
based on the finite element method, in its standard formulation 
(Bubnov-Galerkin). Homogenization in a limited domain 
had its existence driven by the need to impose conditions 
on the boundaries of a finite element space. This process 
consists of the direct numerical simulation (DNS) of a 
multigrain unit cell, which takes into account two main 
variables that affect soil permeability: porosity and the 
specific surface of the grains. From the resolution of a system 
of algebraic equations, it is determined how many grains 
must be placed symmetrically in the unit cell and what is 
the radius of these grains. In the unit cell, a horizontal flow 
is simulated with specific boundary conditions justified 
throughout the thesis. With the calculated velocity field, 
the tensor M is determined.

In Allaire’s theory, the M tensor is divided by a 
factor 2σ  which is a way of measuring the ratio between 
grain size and domain size. The value of σ depends on the 
grain decay curve and can have its limit going to +∞ ,0 or 
0 < C0 < +∞. In the first case, the PDE would converge to 
Navier-Stokes, in the second to Darcy and in the third to 
Brinkman. Since the grains can become very small, but 
not zero, the specific surface in numerical simulations 
assumes large, non-negligible values. What was proposed 
in this work was:

•	 Modify the measure σ(ε) by a pre-factor 
 
 
 

u

C

C
A

C .

•	 Define a size for the representative elementary 
volume from the average grain size, more specifically 

506ε = ×D .
•	 Calculate σ(ε) and divide the value of M found by 

the value of 2σ .
Depending on the value of Cc, define whether the 

value of 2/σM  will be used as increased viscosity for 
Navier-Stokes, Brinkman drag coefficient or the inverse of 
the hydraulic conductivity in Darcy.
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List of symbols

( )εa 	 Grain size decay function
i	 Hydraulic gradient
k 	 Intrinsic permeability
r	 Grain radius
ε
kw 	 Test function depending on ε

A	 Correction function depending on the grain size  
	 distribution

cC 	 Curvature coefficient
uC 	 Uniformity coefficient

( )ΩD 	 Space of infinite differentiable functions with  
	 compact support

0
kH 	 Hilbert space of functions k-times differentiable  

	 and compact support
kH 	 Hilbert space of functions k-times differentiable

K 	 Hydraulic conductivity
pL 	 Lebesgue space with p Hölder coefficient

0M 	 Measure of the tortuosity based on the velocity  
	 gradient

unit
sM 	 Unitary specific surface area

eR 	 Reynold’s number
,p qW 	 Sobolev space with conjugated p-q Hölder coefficients

Table 3. Critical Reynolds number in function of the ratio Cu/Cc.

Cc Cu Cu/Cc i-critical μ* K (cm/s) u-critical 
(m/s) Re Limit model

27.3 1 0.03663 1.00E-05 0.001 70.71 7.00E-07 7.07E-04 Navier-Stokes
14.2 1 0.07042 1.00E-04 0.01 22.25 2.23E-06 2.23E-03 Navier-Stokes
7.3 1 0.13699 1.00E-03 0.1 7.149 7.15E-06 7.15E-03 Navier-Stokes
3.8 1 0.26316 1 1 2.247 2.25E-03 2.23E+00 Navier-Stokes
1.95 1 0.51282 1.00E+02 10 0.724 7.24E-02 7.24E+01 Brinkman

1 1 1 1.00E+04 100 0.233 2.34E+00 2.34E+03 Darcy
0.5 1 2 1.00E+06 1000 0.078 7.88E+01 7.88E+04 Darcy
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µ 	 Fluid viscosity
*µ 	 Augmented viscosity

∆	 Laplacian operator
σ 	 Measure of the ratio between the size of the grains  
	 and the size of the domain
φ 	 Test function or porosity 
Ω 	 Domain

εΩ  	 ε -dependent domain
∂Ω	 Boundary of the domain

N 	 N-dimensional space of the reals
⋅X 	 Norm of a X-space
∇	 Nabla operator

 ε 	 Size of the representative element volume. 
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