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1. Introduction

Global development and the consequent demand for 
services and goods from the construction industry have caused 
an increase in the volume of so-called ‘construction and 
demolition waste (CDW)’. It is estimated that 10 billion tons 
of CDW are generated annually in the world and most of this 
waste has recycling potential (Wu et al., 2019). According to 
Peng et al. (1997), recycling these materials leads to a new 
possibility for the input market, and is an environmentally 
friendly alternative for the inadequate disposal of CDW. 
Therefore, CDW can be reintroduced into the geotechnical 
construction works.

Geosynthetics are products whose applications have not 
only entered the market in various sectors of the construction 
industry, because of their well-defined properties, but 
have also exceeded conventional products. The economic 
and environmental benefits have led to an increasing use 
of geosynthetics in geotechnical works (Koerner, 1990). 
Reduced energy consumption, low transportation costs and 
lower environmental impacts are some ecologically positive 
factors when comparing the use of these materials with the 
traditional ones found in retaining structures (Jones, 1994; 
Stucki et al., 2011; Heerten, 2012; Damians et al., 2016).

In most cases, soil-inclusion interaction can be pointed 
out as the main factor for the adequate performance of 
reinforced soil structures (RSS) because these materials show 

complementary behaviour. Bearing in mind that the use of 
recycled construction and demolition waste (RCDW) in RSS 
seems to be an interesting strategy to promote the concept of 
sustainability in the construction industry, it is essential to 
examine the characteristics of this non-conventional material 
and its interaction, under field and laboratory conditions, 
with geosynthetics.

1.1 Characteristics of RCDW used in geotechnical 
works

CDW is made up of different types of materials that 
are part of the building or infrastructure during construction, 
reconstruction, extension, alteration, maintenance, and 
demolition, which is the result of different activities and 
techniques in the construction industry (Kartam et al., 
2004; Esin & Cosgun, 2007; Wang et al., 2010; Vieira & 
Pereira, 2015; Di Maria et al., 2018; Rosado et al., 2019). 
It is worth mentioning that currently CDW does not have 
a consensus about its definition, varying from country to 
country (Domiciano et al., 2020). However, despite the 
heterogeneity of CDW, it can be observed that they mainly 
consist of crushed concrete, bricks, tiles, pieces of wood, 
glass, plastic, metal, and cardboard (Huang et al., 2002; 
Lai et al., 2016; Asgari et al., 2017; Di Maria et al., 2018).

The physical properties of RCDW depend mainly on 
their composition (Ossa et al., 2016), thus the composition of 
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CDW is decisive for the properties of the former. Materials 
derived from the incorporation of ceramic or asphalt materials 
usually present lower density, resistance to fragmentation 
and load capacity, given that they have a larger number 
of pores compared to those derived solely from Portland 
cement (Nagataki et al., 2004; Brito et al., 2005; Silva et al., 
2014). The issues surrounding RCDW are not only related to 
environmental aspects, but also to the mechanical properties 
that control their stiffness and resistance to permanent 
deformation (Niekerk et al., 2002).

Concerning the particle size distribution of the RCDW 
investigated for geotechnical purposes, it can be observed 
that there is a wide range of grain sizes. The variability of 
particle size distribution is usually affected by the techniques 
adopted at the recycling plant, such as crusher equipment, a 
set of sieves, and process quantity control (Nagataki et al., 
2004; Brito et al., 2005). Some studies revealed that RCDW 
collected at a recycling plant presented acceptable variabilities 
for geotechnical purposes, enabling their application in 
reinforced soil structures (RSS) (Santos & Vilar, 2008; 
Santos et al., 2010, 2013, 2014; Fleury et al., 2019). In addition, 
some characteristics encourage the use of RCDW in RSS: 
the specific gravity seemed similar to those found for soil, 
and non-plastic behaviour is highly recommended by some 
international standards (Santos and Vilar, 2008; Fleury et al., 
2019; Domiciano et al., 2020).

1.2 RCDW pull-out tests

According to Koerner (1990), reinforcing the soil with 
geosynthetics has become increasingly attractive and allows 
safer, more economical and audacious construction works. 
The strain responses of the structures, as well as the redistribution 
of stresses, depend on the shear strength properties of the soil, 
tensile properties of the inclusions, and the mechanism of 
stress transfer between soil and inclusions (Jewell et al., 1984; 
Palmeira, 1987; Gilbert et al., 1992; Teixeira et al., 2007).

Great efforts have been made in recent decades to 
understand the behaviour of RSS, and research has been 
conducted to investigate several aspects: i) performance 
against earthquake (Liu et al., 2014); ii) the influence of soil 
wetting (Chen and Wu, 2012; Balakrishnan & Viswanadham, 
2016) and iii) different faces (Rowshanzamir & Aghayarzadeh, 
2015). Studies involving the geosynthetic-RCDW interaction 
mechanism are quite scarce. The study carried out by Santos et al. 
(2010, 2013, 2014) investigated the use of RCDW as backfill 
material in two 3.6 m-high RSS. The authors pointed out that 
the performance and deformations of the wall, the durability 
of the reinforcement and the forces in the reinforcement were 
satisfactory and similar to the performance of comparable 
structures built with conventional granular embankments.

Designs or analysis parameters of RSS can be obtained 
by pull-out tests, thus determining the geogrid-soil interaction, 
which is the combination of frictional interaction and passive 
strength of the cross members happening simultaneously 

(Palmeira, 1987, 2004, 2009). Research has been conducted 
in different conditions to obtain these parameters: laboratory 
tests and in-field. Investigations in the laboratory are normally 
carried out with soils and geosynthetics in rigid metal boxes 
built with rectangular cross-sections and classified according 
to their size: i) large scale (Palmeira, 1987; Christopher and 
Berg, 1990; Farrag et al., 1993; Lopes & Ladeira, 1996; 
Palmeira, 2004, Teixeira et al., 2007; Chen & Wu, 2012; 
Sadat Taghavi & Mosallanezhad, 2017, for instance); and 
ii) small scale (Nakamura et al., 2003; Hataf & Sadr, 2014; 
Portelinha et al., 2018, for instance).

In a small-scale box, the short length of the testing sample 
and the difficulty of installing accessories, such as sleeves 
to reduce the effects of stress developed on the wall internal 
frontal face, can significantly increase the measured pulling 
force due to the increase in the normal stress on the geogrid 
surface (Farrag et al., 1993). In addition, experimental results 
have shown that boundaries above and below the reinforcement 
can lead to increases in the normal stress in the vicinity of the 
geogrid surface, especially when the soil thickness is small 
and the soil dilatancy restrained (Farrag et al., 1993; Palmeira, 
2004). Although a large-scale box is preferable due to the fact 
of low boundary condition effects, a small-scale box may be 
used to perform initial studies, mainly on a qualitative basis, 
on the interaction that occurs between the fill material and the 
geogrid when subjected to pull-out.

Laboratory pull-out tests have already been carried out 
aiming to analyse several influence factors on the strength 
parameters: i) system of confinement stress application 
(Palmeira & Milligan, 1989); ii) condition of the frontal face 
(Palmeira, 1987, 2004, 2009; Raju, 1995; Sugimoto et al., 
2001); iii) soil moisture content (Portelinha et al., 2018); iv) 
stiffness of the testing box walls (Farrag et al., 1993); v) grain 
size, geogrid aperture size and element thickness (Jewell et al., 
1984; Palmeira 2004, 2009); and others. However, there are 
few studies on pull-out tests using RCDW as fill material 
(Santos, 2007; Santos & Vilar, 2008; Vieira et al., 2016; Araújo 
Neto, 2017, for instance). Therefore, this fact highlights the 
importance of determining interaction parameters when using 
such unconventional backfill material in RSS.

2. Materials and methods

2.1 Materials

2.1.1 Granular materials

The RCDW used in the tests was provided by a 
recycling plant located at Aparecida de Goiânia-GO, Brazil. 
The RCDW is named by the company as “grey recycled sand” 
(GRS). This material (GRS) is obtained from the crushing 
(jaw crusher) and sieving processes of CDW predominantly 
comprised of concrete blocks.
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For the sake of comparison, another fill material was used 
in the pull-out tests, namely natural sand (NS) – material in 
accordance with the international standard recommendations 
for RSS works – which was purchased from a local supplier. 
In addition, a material produced in the laboratory, from sieving 
the GRS sample, was investigated. This material was called 
‘produced grey recycled sand’ (PGRS). It should be noted that 
PGRS was produced to present its particle size distribution 
to be as similar as possible to that of NS.

2.1.2 Geogrid

A polyester geogrid with high tenacity and low creep 
susceptibility, with a protective polymeric coating, was 
tested. Geogrid samples of the same length (1,200 mm) and 
width (200 mm). Figure 1 shows an image of the geogrid. 
Table 1 shows some properties of the geogrid tested.

2.2 Experimental program

2.2.1 Materials characterisation

To verify possible variability of RCDW, five samples 
were collected, and the sampling procedure was carried 

out in different parts of the waste pile (bottom, middle 
and top) following the Brazilian Standard ABNT NBR 
10007 (ABNT, 2004). An additional collection was made 
to investigate geotechnical properties and carry out the 
pull-out tests. The laboratory tests consisted of i) specific 
gravity, ii) grain-size distribution iii) Atterberg limits, iv) 
compaction test (standard Proctor), and v) maximum and 
minimum void ratios.

Direct shear tests were performed for different values 
of normal stresses: 50 kPa, 100 kPa, 150 kPa, and 200 kPa. 
The tests were performed using equipment with box 
dimensions equal to 60.00 mm (length) × 60.10 mm (width) × 
19.68 mm (height). Samples were tested at optimum (wop) 
and hygroscopic (w) moisture contents, and both conditions 
had a degree of compaction (DC) of 90%.

Scanning electron microscopy (SEM) and energy-
dispersive X-ray spectroscopy (EDS) tests were conducted 
with JSM-7100 F equipment (JEOL Ltd.) on the NS and 
GRS samples.

2.2.2 Laboratory pull-out test

The equipment (small scale) consists of a test box built 
with 3 mm-thick steel plates. It is 250 mm long, 300 mm wide 
and 150 mm high, resulting in a volume of approximately 
0.01 m3. The box has a 10 mm-high opening along its entire 
width on the frontal wall, through which the geosynthetic 
material is pulled out. The normal confinement pressure is 
applied by a pressurised rubber bag attached to the lid of the 
box. Figure 2 shows the equipment dimensions.

The granular materials were air-dried and sieved 
(aperture mesh of 4.8 mm) before being used. The NS 
was tested after being air-dried. The GRS and PGRS were 
tested in two moisture content conditions: i) at hygroscopic 
moisture; ii) at optimum water content. The compaction 
was performed in four layers by depositing the materials to 
obtain the compaction degree of 90% as this was the value 
obtained by Fleury et al. (2019) when investigating the use 
of RCDW as backfill material. A total pressure cell (TPC) 
was installed at the top of the second layer – in the centre 
of the box and 10 mm below the reinforcement – to monitor 
the internal stress development during the tests. The pull-
out force was applied using a universal test machine with 
300 kN capacity. All tests were carried out at the same speed 
of 4.6 mm/min, consistent with the displacement rate adopted 
by Teixeira et al. (2007). Figure 3 shows the testing setup.

The variable used for the pull-out test analyses consisted 
of the: i) filler material (recycled sands or natural sand); and 
ii) moisture content (hygroscopic moisture and optimum water 
content). All test scenarios were subjected to the following 
normal confinement pressure: 12.5 kPa, 25 kPa, 37.5 kPa, 
50 kPa, 75 kPa, and 100 kPa.

The authors acknowledge that the size of the equipment 
(0.01125 m3) is rather small compared to others in the 
literature (e.g. 0.03675 m3, Hataf & Sadr, 2014; 1.224 m3, 

Table 1. Geogrid properties (provided by the manufacturer).
Property Value

Polymer Polyester
Aperture size (mm × mm) 20 × 25
Ultimate tensile strength (kN/m) 35
Strain at rupture (%) < 10
Secant stiffness at 5% strain (kN/m) ≥ 350

Figure 1. Geogrid.
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Figure 2. Pull-out box: (a) Front view; (b) Top view; (c) Perspective view of the closed box; and (d) Rubber bag attached to the box cover.

Figure 3. Pull-out test setup: (a) general view and (b) detailed view.
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Lopes & Ladeira, 1996). Thus, some effects of boundaries 
would be expected. The internal frontal face of the box was 
covered by plastic layers and grease to minimise friction 
along that boundary. However, the main aim of the research 
was to validate the use of RCDW as fill material under 
similar conditions to other materials recommended and 
commonly used in practice. Therefore, the results must be 
seen as index and qualitative values, aiming to investigate 
the potential for using alternative fill materials as substitutes 
for conventional ones. In this type of investigation, using 
small equipment brings versatility and allows the execution 
of a large number of tests in less time, which is interesting 
for comparing different fill materials.

3. Analysis and results

3.1 Geotechnical analyses of granular materials

The GRS samples presented an average specific gravity 
(Gs) of 2.706, with a coefficient of variation (CV) of 0.28%. 
The NS and PGRS samples showed similar values of Gs 
equal to 2.713 and 2.710, respectively. Low variability 
value for Gs of RCDW collected at the same recycling plant 
was found by Fleury et al. (2019). The original features 
of CDW, such as material quality and particle sizes, and 
recycling procedures are factors that affect the Gs of RCDW 
aggregates (Silva et al., 2014). It is worth mentioning that 
the GRS presented the average Gs inside the range found for 
the local soil (tropical soil): from 2.664 (Silva et al., 2019) 
to 2.740 (Mascarenha et al., 2018).

An analysis of the grain size distribution of the GRS 
samples showed a low variability. However, sample GRS-
06 presented a grain size distribution distinct from the other 

ones. This fact can be explained due to changes adopted by 
the company in the recycling process. In addition, changes 
in the shape of the curves have been reported due to the 
variability of materials found in the samples of other recycled 
aggregates from the same recycling plant (Fleury et al., 
2019). The PGRS grain size distribution curve revealed that 
the attempt to construct it was successful, presenting a curve 
similar to the one of NS.

An analysis of the grain size distribution of GRS revealed 
that the GRS-06 sample was the one that best matched the 
specifications of standard BS 8006 (BSI, 2010), and manuals 
FHWA (2010) and NCMA (2010) for the selection of backfill 
material in RSS. Considering FHWA (2010) recommendations, 
it was observed that some granulometric corrections would 
be needed for the complete adjustment of the GRS material 
(Figure 4). The upper part of the GRS grain size distribution 
curves (defined by the grains greater than 0.3 mm) should 
be corrected to be within the limits recommended by all the 
mentioned standards.

It was also observed that the NS and PGRS samples 
presented curves that were within the range recommended 
by BS 8006 (BSI, 2010), but some granulometric corrections 
related to particles greater than 0.4 mm would be needed to 
attend the limits stated in FHWA (2010) and NCMA (2010) 
manuals, as can be seen in Figure 4. Table 2 presents the 
main properties of the fill materials.

In general, the SEM images revealed that both materials 
(GRS and NS) have grains with angular shapes and rough 
surfaces (Figure 5). Although the presence of cementitious 
material is verified on the surface of GRS grains, the effects 
of such an occurrence are not the focus of this study. Energy-
dispersive X-ray spectroscopy (EDS) tests for the same 
granulometric ranges identified the material composition 
of the GRS and NS samples (Figure 6). The EDS tests 

Figure 4. Grain size distribution curves versus standard limits for backfill material in RSS.
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performed at the GRS samples identified the predominant 
presence of silica (SiO2, quartz), calcium oxide (CaO), 
alumina (Al2O3), ferrous oxide (Fe2O3), potassium oxide 
(K2O) and magnesium oxide (MgO). The fact that GRS 
consists of Portland concrete and mortar justifies the presence 
of calcium. Studies on concrete-made aggregates revealed 

higher content of SiO2, Al2O3, and CaO (Angulo et al., 2009; 
Medina et al., 2014; Oliveira et al., 2020). The EDS tests on 
the NS particles revealed a predominance of silicon (Si) and 
aluminium (Al) components of silica (SiO2, quartz), which 
is consistent with the typical mineralogical composition of 
local natural sands (Figure 6).

Table 2. Geotechnical properties of fill materials.

Parameter Average Value
NS GRS PGRS

Specific gravity of the particles, Gs 2.71 2.71 2.71
D50 (mm) 0.34 0.28 0.28
D85 (mm) 0.84 1.36 0.84
CC 1.61 1.42 3.81
CU 4.20 24.07 13.60
emax 0.87 1.06 0.98
emin 0.58 0.69 0.64
Maximum dry unit weight, γdMax (kN/m3) n.a. 16.31 16.15
Optimum water content, wop, (%) n.a. 19.48 20.00
c (kPa) - wop n.a. 7.30 24.80
𝜙 (degrees) - wop

n.a. 37.90 41.00
c (kPa) - hygroscopic moisture 2.6 2.40 0.00
𝜙 (degrees) - hygroscopic moisture 39.4 44.10 46.40
Note: NS = natural sand; GRS = grey recycled sand; PGRS = produced grey recycled sand; n.a. = not available.

Figure 5. SEM images of GRS and NS samples of different granulometric size ranges (a) D < 0.075 mm; (b) 1.2 mm < D < 2.0 mm.



Oliveira et al.

Oliveira et al., Soil. Rocks, São Paulo, 2024 47(4):e2024004723 7

3.1.1 Analysis of pull-out force versus pull-out 
displacement

Materials tested with different moisture contents (dry 
or wet) and the same compaction degree (90%) allowed 
the geogrid pull-out at low values of normal confinement 
pressure (from 12.5 kPa to 37.5 kPa). There was a rupture 
of the fill material and greater mobilisation of the transverse 
elements nearest to the point of load application (box frontal 
opening), a characteristic behaviour of reinforcements with 
low tensile stiffness. At these low confinement stresses (from 
12.5 kPa to 37.5 kPa), all materials presented curves with 
typical behaviour, in which the applied force values increased 
until reaching a peak followed by a decrease in the value of 
the pull-out force (Figure 7).

Geogrids buried in NS experienced more damage 
during the pull-out tests than those buried in recycled sands. 
The exhumation of the geogrid tested with NS (Figure 8a) 
revealed great mobilisation of longitudinal elements located 
at the lateral edges of the specimen and some damage to 
the transverse elements (at some junctions, these elements 
were completely separated from the longitudinal members).

Results of the tests performed with normal confinement 
pressure equal to 50 kPa showed steeper curves compared to 
the curves of the tests with lower normal stress (Figure 9). 
A small portion of the specimen was mobilised, where the 
geogrid elements presented deformation – only at the external 
portion of the box. Thus, rupture occurred by an isolated 
tensile mechanism, in which the testing box worked as a 
clamp. Mobilisation of a few points of the buried portion 
of the specimen was observed in tests with NS, in which 
most elements remained intact (Figure 10a), which was 
the opposite behaviour compared to the test with normal 

confinement pressure equal to 12.5 kPa). Further studies on 
the geogrid damage during the pull-out tests are required.

Tests with normal confinement pressure equal to 75 kPa 
and 100 kPa showed no mobilisation of the specimens in their 
buried portions. Thus, the geogrid pull-out mechanism was 
not observed for all fill material types and test configurations. 
The rupture of the geogrid occurred in which the testing box 
worked as a clamp.

It was found that increasing the normal stress value 
and the value of the pull-out force caused an increase in the 
stiffness of the soil-geogrid system. This fact was previously 
verified in other studies (Alfaro et al., 1995; Ochiai et al., 
1996, for instance).

The geogrid tensile strength values obtained from 
those tests with high normal confinement pressure (75 kPa 
and 100 kPa) were lower than the nominal reference value 
provided by the manufacturer. This may be due to the fact 
that the geogrid elements experienced some localized 
damage during such tests, as it was observed that the material 
confinement worked as a jaw-type clamp. This probably 
generated a concentration of stresses in some regions of the 
geogrid, causing early failure of the elements in such regions.

Figure 11 shows the pull-out resistance envelopes for all 
tests performed using 200 mm-wide geogrids. It was observed 
that the highest pull-out resistances increased with the applied 
normal confinement pressure in those scenarios where the 
geogrid pull-out mechanism occurred. The stabilisation, observed 
for the highest normal confinement pressures, revealed that 
the geogrids were submitted to a condition similar to that of 
a conventional tensile test in isolation. Test results carried 
out with NS presented a higher value of pull-out resistance, 
even for the lowest normal confinement pressure. Regarding 
the performance of all the fill materials, three distinguished 
patterns were observed: i) pull-out without detachment of 
elements, ii) partial deformation zone with displacement of 

Figure 6. EDS results for fill material particles (2.00 mm < D < 
4.80 mm): (a) GRS and (b) NS. 

Figure 7. Pull-out test with normal stress of 12.5 kPa. Note: GRS = 
grey recycled sand; PGRS = produced grey recycled sand; NS = 
natural sand; 200 = two-hundred-millimetre width of the geogrid 
sample; W = optimum moisture; D = hygroscopic moisture.
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Figure 8. Exhumation of the geogrids used in the pull-out test (σ = 12.5 kPa): (a) NS and (b) PGRS-200-D.

Figure 9. Pull-out test with normal stress equal to 50 kPa. Note: GRS = grey recycled sand; PGRS = produced grey recycled sand; NS = 
natural sand; 200 = two-hundred-millimetre width of the geogrid sample; W = optimum moisture; D = hygroscopic moisture. 

Figure 10. Exhumation of the geogrids used in the pull-out test (σ = 50 kPa): (a) NS and (b) GRS-200-D.
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the geogrids and detachment of their elements and iii) no pull-
out, with damage to the geogrid elements near the external 
frontal face of the box. The investigated materials revealed 
the pull-out mechanism for different normal confinement 
pressure ranges, where the recycled sands (limits defined by 
the black dashed lines) presented a wide range compared to 
natural sand (limits defined by grey dashed-dotted lines).

3.1.2 Interface strength coefficient analysis

Tests revealed a tendency for the interface resistance 
coefficient values (f) to stabilise as the normal confinement pressure 
value increases (Figure 12), particularly under large confining 
stresses when tensile failure of the reinforcement prevails. This 
tendency was observed in other studies (Lopes & Ladeira, 1996). 
When testing the extensible geogrid, higher tangential stresses 

are generated along the soil-geogrid interface near the point of 
application of the pull-out force, and lesser mobilisation of these 
stresses occurs at the back of the reinforcement.

For normal confinement pressure below 37.5 kPa – at this 
value, the geogrid elements were detached – different values of 
f were found for the investigated materials. For higher normal 
confinement pressures, there was a tendency for the values of f 
to come closer because of tensile failure of the reinforcement. 
For normal confinement pressure equal to 100 kPa, they 
were practically the same regardless of the material and the 
moisture condition – at this normal confinement pressure, the 
rupture of the geogrid was observed. When reinforcement 
pull-out prevailed, higher values of interaction coefficients 
were obtained in tests with NS compared to those obtained 
with recycled sands, and this was observed mainly for the 
lower values of normal confinement pressure (Figure 12).

Figure 11. Soil-inclusion interface resistance envelope (pull-out tests performed using 200 mm-wide geogrid samples) and pull-out 
mechanism limits.

Figure 12. Variation of the interface coefficient (f) with normal confinement pressure. Where: f = (τ)/(σn.tgϕ); τ = tangential stress on 
the interface; σn = normal stress on the interface; ϕ = internal friction angle of the soil.
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PGRS presented slightly higher f values compared to 
GRS, either at optimum or hygroscopic moisture content. 
In general, for each recycled sand (GRS and PGRS), the tests 
performed at optimum moisture content showed slightly higher 
values than those performed at hygroscopic moisture. Values 
greater than one are due to the effect reported by Palmeira 
(1987) in tests with short grids with few bearing members.

3.1.3 Effect of moisture variation on the interface strength

The interface friction angles (δ) presented the same 
trend as the internal friction angles of the sands (𝜙), as it was 
observed that under dry and wet states, similar values were 
obtained. The lubrication between the grains at the interface 
contact with the geogrid elements was not sufficient to interfere 
with these values. Regarding adhesion (a), it is important to 
note that there was a significant increase in the wet conditions 
(at optimum water content). However, further studies on such 
aspects are needed. Table 3 shows the parameters obtained 
from the strength envelopes for the recycled sand-geogrid 
interfaces under pull-out (normal stresses of 12.5 kPa and 
25 kPa) and the shear strength parameters of the recycled 
sand obtained from direct shear tests.

Figure 13 shows that the maximum pull-out force was 
higher for GRS and PGRS when they were at the optimum 
moisture content. When the sands are compared at the same 

moisture content, it can be seen that PGRS presented higher 
values of pull-out strength, although the values for both 
materials (GRS and PGRS) were very close. In general, it 
was observed that for the range of values tested moisture 
content did not present significant impacts on the pull-out 
force for the investigated systems, especially for those where 
the geogrids were completely pulled out.

4. Conclusions

This paper investigated the interaction between geogrids 
and recycled sands by mean of pull-out tests. The tests were 
carried out on natural sand, grey recycled sand (as provided 
by the recycling plant) and laboratory-produced recycled grey 
sand (with the same grain size distribution in the natural sand), 
for varying moisture conditions. Based on the results obtained, 
the main conclusions are presented below.

1. There is a variability of the geotechnical characteristics 
of the recycled sands tested, but this would not 
prevent the application of this non-conventional 
material as backfill in GRS structures. After adequate 
characterisation, its grain size distribution can be 
adjusted to attend gradation limits recommended 
by technical standards;

2. The results of geogrid pull-out force versus 
displacement showed that the pull-out condition 

Table 3. Strength parameters for the tests with waste varying in moisture content.
Material 𝜙 (degrees) c (kPa) δ (degrees) a (kPa)

GRS-200-D 44 2.40 45 13.50
GRS-200-W 38 7.32 40 21.97
PGRS-200-D 46 0.00 40 24.22
PGRS-200-W 41 24.81 42 24.48

Note: GRS = grey recycled sand; PGRS = produced grey recycled sand; 200 = two-hundred-millimetre width of the geogrid sample; W = optimum moisture; D = hygroscopic 
moisture; 𝜙 = internal friction angle of the soil; c = cohesion; δ = interface friction angle; a = adhesion.

Figure 13. Maximum pull-out strength versus confining stress from tests with fill materials at different moisture contents.
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was observed only for lower normal confinement 
pressures at the sample top. For very high pressure, 
the pull-out box worked as a clamp, preventing the 
geogrid from being pulled out and yielding to its 
tensile failure;

3. Based on the effect of the normal confinement 
pressures adopted in the tests, behavioural zones were 
identified for different mechanisms. This conclusion 
encourages the use of the small box in pull-out tests 
as a way to obtain preliminary qualitative results, 
particularly when investigating the potential use of 
a non-conventional fill material in RSS. However, 
results from larger equipment should be used for 
design purposes;

4. The recycled sands tested at optimum moisture 
showed higher values of pull-out strength (considering 
the normal stress range in which full grid pull-out 
occurred).

Therefore, compared to the behaviour of natural sand, the 
recycled sands showed good strength properties, mechanical 
behaviour and interaction with a geogrid under a pull-out 
condition that encourages further studies on the use of such 
environmentally friendly material in RSS.
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List of symbols and abbreviations

a  Adhesion
c  Cohesion
emax Maximum voids index
emín Minimum voids index
f  Interface resistance coefficient
w  Water content
wop Optimum water content
Al Aluminium
Al2O3 Alumina
Ca Calcium
CaO Calcium oxide
CC Soil curvature coefficient (CC = D30

2 / D10.
D60)

CDW Construction and demolition waste
CU Soil coefficient of uniformity (CU = D60 / 

D10)
CV Coefficient of variation
D  Diameter of the particle (mm)
D  Hygroscopic moisture
DC Degree of compaction (%)
D50 Diameter of the particle for which 50% of soil in  

 mass is smaller (than that diameter)
D85 Diameter of the particle for which 85% of soil in  

 mass is smaller (than that diameter)
EDS Energy-dispersive X-ray spectroscopy
Fe2O3 Ferrous oxide
GRS Grey recycled sand
GRS-01 Grey recycled sand (sample 01)
GRS-02 Grey recycled sand (sample 02)
GRS-03 Grey recycled sand (sample 03)
GRS-04 Grey recycled sand (sample 04)
GRS-05 Grey recycled sand (sample 05)
GRS-06 Grey recycled sand (sample 06)
GRS-06-D Dry grey recycled sand (sample 06)
GRS-06-W Wet grey recycled sand (sample 06)
GRS-200-D Dry grey recycled sand sample with two- 

 hundred-millimetre width of the geogrid 
sample

GRS-200-W Sample wet grey recycled sand with two- 
 hundred-millimetre width of the geogrid 
sample

GS Specific gravity
K2O Potassium oxide
MgO Magnesium oxide
NCMA National Concrete Masonry Association
NS Natural sand
NS-D Dry natural sand sample
NS-200-D Dry natural sand sample with two-hundred- 

 millimetre width of the geogrid sample
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PGRS Produced grey recycled sand
PGRS-06-D Dry produced grey recycled sand (sample  

 06)
PGRS-06-W Wet produced grey recycled sand (sample  

 06)
PGRS-200-D Dry produced grey recycled sand sample  

 with two-hundred-millimetre width of the 
geogrid sample

PGRS-200-W Sample wet produced grey recycled sand  
 with two-hundred-millimetre width of the geogrid 
 sample

RCDW Recycled construction and demolition 
waste

RSS Reinforced soil structures
SEM Scanning electron microscopy
Si  Silicon
SiO2 Silica
SP Poorly graded sand
SP-SC Poorly graded sand with clay
TCP Total pressure cell
TSC Total stress cell
USCS Unified Soil Classification System
γdMax Maximum dry unit weight (kN/m3)
δ Interface friction angle
σ Normal confinement pressure
σn Normal stress on the interface
τ Tangential stress on the interface
𝜙 Internal friction angle of the soil
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