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Closed-form consolidation solutions for known loading 
functions
Raphael Felipe Carneiro1# , Karl Igor Martins Guerra1 , Celso Romanel1 ,  
Denise Maria Soares Gerscovich2 , Bernadete Ragoni Danziger2 

1. Introduction

Terzaghi & Fröhlich (1936) consolidation theory provides 
an equation for the excess pore pressure zu  at any depth z and 
time t, generated by a uniform load qc. The solution follows:
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And the Time Factor T is defined as:
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The depth-dependent degree of consolidation zU  is given by:
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For practical problems, the particular interest is the average 
degree of consolidation U, given by:
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The classical theory uses several simplifying assumptions; 
among them, the load is instantaneously applied. In practice, 
however, the increment of total vertical stress often varies 
with time.

Several empirical and theoretical methods have been 
proposed to address non-instantaneous load conditions for 
1D analyses (Terzaghi & Fröhlich, 1939; Terzaghi, 1943; 
Schiffman, 1958; Schiffman & Stein, 1970; Zhu & Yin, 
1998; Jimenez et al., 2009; Liu & Ma, 2011; Qin et al., 2010; 
Razouki et al., 2013; Verruijt, 2014; Liu & Griffiths, 2015; 
Gerscovich et al., 2018).

The ramp loading (Olson, 1977) is the simplest way 
to address non-instantaneous loading. But some projects 
impose complex loading sequences. Soil foundations of 
silos, tanks, highway embankments, etc. undergo cyclic 
loading. Construction sequences with variable speeds can 
be represented by non-linear loads.

Hanna et al. (2013) used the concept of discretization of 
the applied load into infinitesimal increments to easily achieve 
Olson (1977) solution during construction. Carneiro et al. 
(2021) demonstrated that Hanna  et  al. (2013) method is 
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capable to provide Olson (1977) solution for periods after 
construction as well. Conte & Troncone (2006) proposed a 
calculation procedure for a general time-dependent loading, 
making use of the Fourier series.

This paper presents an extension of and an alternative to 
the methodologies developed by Conte & Troncone (2006), 
Hanna et al. (2013), and Carneiro et al. (2021). The solution 
is a closed-form consolidation equation for different loading 
functions.

2. Proposed method

In this study, all the simplifying assumptions of the 
classical theory (Terzaghi & Fröhlich, 1936) are valid. 
The only exception is the applied vertical load, which is no 
longer constant but varies up to a Time Factor Tc. All equations 
for excess pore pressure and degrees of consolidation that 
refer to non-instantaneous loading are represented below 
with an apostrophe.

Let the total vertical stress increase Δσ(T) be a function 
of T:

( ) ( )T q Tσ∆ = if cT T≤
	 (6)

( ) ( )c cT q T qσ∆ = =  if cT T>

For the purpose of this development, it is assumed that 
Δσ(0) = q(0) = 0.
Now let f(T) be the derivative of q(T), that is:

( )dq f T dT= 	 (7)

During an infinitesimal dimensionless period dT, the 
total stress increase dq = f(T)dT is instantaneously applied. 
Therefore, the initial increase of pore water pressure duz is 
also f(T)dT. For ramp loads, for example, the load increment 
(f(T) = qc/Tc) is constant.

As shown in Figure  1, for a Time Factor Ta ≤ Tc 
before the end of construction, the infinitesimal loads were 
applied at an infinite number of times, from T = 0 to T = Ta. 
The infinitesimal excess pore pressures dissipate and contribute 
with dU’z to compute the degree of consolidation U’z at the 
given Time Factor Ta. This infinitesimal increasing of the 
degree of consolidation dU’z at Ta is given by the ratio of the 
dissipated amount of excess pore pressure within the Time 
Factor interval up to Ta, and the total load.
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Where Uz is given by classical theory (Equation 4).
Considering all time intervals up to Ta, the degree of 
consolidation U’z takes into account all infinitesimal loads 
applied, that is:
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Equation 9 holds for any Ta ≤ Tc. This equation is characterized 
as a convolution of the functions of zU  and f . Solution can 
be obtained via Laplace transform :
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Laplace transform of Uz is given by:
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Where s is the Laplace parameter.
Denoting { } ( )f F s= , Equation 10 can now be rewritten as:
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Applying the inverse Laplace transform, one has:
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After the end of construction, for a Time Factor Tb ≥ Tc 
shown in Figure 1, solution uses the principle of superposition. 
The degree of consolidation at a Time Factor Tb is calculated 
by subtracting the exceeding loading, calculated as if the 

Figure 1. Total stress increase applied into infinitesimal increments 
[adapted from Hanna et al. (2013), and Carneiro et al. (2021)].
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time-dependent loading has not finished, from the actual 
final value qc.

Thus, the degree of consolidation is calculated by:

( ) ( ) ( )1 2' ' 'z b z b z bU T U T U T= − 	 (14)

The expression of U’z1 is given by Equation 13 for T = Tb. For 
U’z2, the origin is now at Tc, thus T = Tb − Tc. So, Equation 9 
must be rewritten as follows:
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Denoting the shifted function f(T + Tc) = g(T), Equation 15 is 
the convolution of Uz and g. Applying the Laplace transform:
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Where ( ) { }G s g=  . Applying the inverse Laplace transform, 
the solution is:
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Finally, Equation 14 can be expressed as:
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Equations 13 and 18 provide the degree of consolidation 
for periods before and after the end of construction, respectively. 
For any loading function q(T), its derivative f(T) and the 
function g(T) = f(T + Tc) are known. Once F(s) and G(s) are 
determined, solution is obtained. Equations 13 and 18 are 
coincident for T = Tc.

From Equations 13 and 18, the excess pore pressure 
can be found:
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The average degree of consolidation U’ provides the sum 
of the vertical compressions throughout the depth, and it is 
calculated by:
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Which gives:
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While the loading in Figure 1 was represented as linear 
for simplification, the mathematical development allows to 
find general equations to compute the excess pore pressure 
(Equation 18) and the average degree of consolidation 
(Equation 21) for any loading function.

3. Applications

This section presents several applications of the 
equations. Calculations are detailed in Appendix 1.

Since the development was based on the simplifying 
assumptions of the classical theory, the solutions herein 
presented are limited to uniform initial excess pore pressure. 
The drainage conditions can be single or double.

3.1 Single ramp load

The consolidation theory for an increasing linear 
loading was primarily solved by Terzaghi & Fröhlich 
(1939), and later by Olson (1977). The function q(T) is 
given by q(T) = c

c

q
T

T, and, therefore, f(T) = c

c

q
T

 is a constant. 

The solution of Equations 19 and 21 give the excess pore 
pressure and the average degree of consolidation before and 
after construction. It worth mentioning that the solutions 
coincide with Olson (1977).
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3.2 Multiple ramp load

Embankments are typical examples of multiple ramp 
load constructions. The loading rate and the time interval 
between load sequences vary. The final load is achieved 
after n ramp loads intercalated with n − 1 pause periods. 
The end of construction corresponds to the n-th pause period. 
As illustrated in Figure 2, each ramp load may have a different 
inclination αi, with i varing from 1 to n.

Assuming that the Time Factor at the beginning of a 
ramp load is defined as T2i−2, and T2i−1 is the corresponding 
value at its end (or at the beginning of a pause period), the 
derivative f(T) of the loading function q(T) can be expressed as:

( ) ( ) ( )2 2 2 1
1

n

i i i i
i

f T T T T Tα α− −
=

= − − −∑   	 (23)

Where the Heaviside function ( )T  yields zero or one, 
depending on the argument be negative or positive.

For simplification, it is beneficial to consider that the 
n-th pause period is still part of the construction, and the end 
of construction occurs at Tc = T2n → ∞. It is an equivalent 
configuration that allows using only one equation for the 
average degree of consolidation instead of two, since g(T) 
is no longer needed.

Thus, the average degree of consolidation is:

( ) ( )
( ) ( )

( ) ( )

2
2 2

2
2 1

2 2

4
0 1 2 1

1 e
1 2'

1 e

i

i

M T T
n i

i
M T Tc c m i i

T Tq T
U T

q q M T T
α

−

−

− −
∞ −

− −
= = −

  − − −      = −   
    − −    

∑ ∑



	(24)

For n = 1, Equation 24 coincides with Olson (1977) solution 
during and after construction. In this scenario, T1 = Tc and 
αi = c

c

q
T

. For n > 1, it coincides with Olson (1977) proposition 

of adding the solutions for each ramp load.

3.3 Other single load functions

In some geotechnical problems, like embankments built 
at a given rate, loading sequences can be better reproduced 
by non-linear loads, depending on the speed of construction. 
Jimenez et al. (2009) studied parabolic loading for vertical 
and radial consolidation combined. Qin et al. (2010) studied 
exponential loading for unsaturated soil.

In the case of a quadratic function (parabola), the 
loading is given by
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Now the rate of loading is no longer constant, since 
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T, and the shifted function is f(T) = 2
2 c

c

q
T

(T + Tc). 

Combining Equation 21 to Equation 25, the average degree 
of consolidation is expressed by:
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If the loading is better reproduced in the form of a sinusoidal 
function until the end of the construction, that load can be 
represented by:
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Substituting these equations into Equation 21, the solution 
for U’ is given by:
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Figure 2. Construction sequence with n = 5 ramp loads.
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In the case of exponential load function, the load expression is:
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For this loading condition, the average degree of consolidation 
is expressed by:
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Equation 29 is able to reproduce other loading conditions. 
At the upper limit (β → ∞), the equation is equivalent to an 
instantaneous load applied at T = 0. On the other hand, if 
β → −∞ the equivalence occurs as if the instantaneous load 
was applied at cT T= . If 0β → ., the equation reproduces a 
ramp load.

Figure 3 compares the average degree of consolidation 
versus Time Factor for different loading conditions. The end 
of construction was set at Tc = 0.126 for all non-instantaneous 
loads. The exponential function was analyzed for β = 40 and 
β = −40 (Equation 29).

In the upper part of Figure 3, the time-dependent loads 
are shown. Exponential (β = 40) and sinusoidal loading indicate 
higher speed at the beginning of construction. Exponential 
(β = −40) and parabolic loading indicate higher speed at 

the end of construction. The results showed consistency: 
the greater the rate of loading the faster the consolidation.

The influence of the construction sequence on the degree 
of consolidation decreases with time. However, during the 
construction period, there is a significant difference among 
the curves. In the comparison shown in Figure 3, the absolute 
difference between the average degrees of consolidation 
of both exponential loadings at the end of construction is 
around 20%.

3.4 Haversine repeated load

Several geotechnical engineering phenomena can produce 
repeated or cyclic loading, such as vehicular traffic, wind 
waves, sea waves, etc. (Mitchell, 1993). Huang (1993) studied 
the influence of the wheel load on highways and airports and 
proposed the use of a haversine repeated loading given by:
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Equation 31 assumes that the loading-unloading sequence 
does not reach an end; that is, the “end of construction” is 
at infinity. Thus, qc should now be interpreted as the load 
amplitude, and the excess pore pressure can only be calculated 
for T ≤ Tc. Since the derivative of q(T) is f(T) 2sincq Tπ π

τ τ
 =  
 

, 
the excess pore pressure (Equation 19) is solved and agrees 
with Razouki et al. (2013) solution:
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Results for τ = 0.15 are presented in Figure 4. The upper 
part shows the time-dependent load. The lower part compares 
the analytical solution, obtained by the present method and 
by Razouki et al. (2013), with Razouki & Schanz (2011) 
numerical solution.

3.5 Damped cyclic load

The damped cyclic load may be generated by an 
instantaneous load that causes a damped oscillation of the 
applied stress. As shown in Figure 5, the waves have higher 
amplitude at the beginning, and converge to a residual load 
after some oscillations.

This loading condition can be represented by a product 
of functions, such as:

Figure 3. Consolidation curves for parabolic, sinusoidal, exponential, 
instantaneous and linear loading.
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( ) 1 sinT
cq T q e Tβ π

τ
−  = +  

  
	 (33)

Since there is load being applied instantaneously, it is convenient 
to separate the function into two parts: i) instantaneous and 
ii) time-dependent. The instantaneous load is governed by 
classical theory, while the time-dependent load is obtained by 
the method herein proposed. In this case, the time-dependent 
function is given by:

( ) sinT
cq T q e Tβ π

τ
−  =   

  
 	 (34)

Similar to the previous example, the solution is only needed 
for T ≤ Tc. Combining Equation 34 with Equation 19, the 
time dependent solution is given by:

( ) 2

0

' 2 sin cos sinz T T M T

c dm

u T Mz Xe T Ye T Xe
q M H

β βπ π
τ τ

∞
− − −

=

      = + −      
     

∑ 	 (35)

And the final solution, combined with the classical theory 
(Terzaghi & Fröhlich, 1936) to include the instantaneous 
load part, is expressed by:

( ) ( )
2

0

' 2 sin cos sin 1z T T M T

c dm

u T Mz Xe T Ye T X e
q M H

β βπ π
τ τ

∞
− − −

=

      = + + −      
     

∑ 	 (36)

Where:

2

2
2 2 42

M
X

M M

π
τ

πβ β
τ

 
 
 =

 + − + 
 

	 (37)2
2 2

2
2 2 42

M
Y

M M

πβ β
τ

πβ β
τ

 + − 
 =

 + − + 
 

The solution was applied to a hypothetical example, 
consisting of a damped cyclic load on a single drainage clay 
deposit. The parameters of this cyclic loading (Equation (34)) 
are β = 1.8 and τ = 0.1. Figure 5 shows the normalized excess 
pore pressure (u’z/qc) at the bottom of the clay deposit (z = H). 
As expected, the excess pore pressure tends to hover around 
Terzaghi & Fröhlich (1936) solution over time (Equation 1).

A numerical finite difference solution was developed to 
solve the governing differential equation, in order to verify 
the behavior of the consolidation process. The thickness 
was divided so that each subdivision measured 0.005. 
A dimensionless time interval of 0.05 was adopted. It can 
be seen in Figure 5 that there is a great agreement between 
analytical (Equation 36) and numerical solution.

Figure 4. Normalized excess pore pressure versus time factor for the 
Haversine repeated load [adapted from Razouki & Schanz (2011)].

Figure 5. Variation of excess pore pressure due to a damped cyclic 
loading.
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It can be noticed that the excess pore pressure eventually 
becomes negative due to the loading-unloading sequence. 
Negative excess pore pressure is a common issue in cyclic 
loading cases (Razouki & Schanz, 2011). That phenomenon is 
controlled by β, so the smaller the β value, the more negative 
the excess pore pressure during the unloading phases.

4. Case study

Nascimento (2016) describes a case of an instrumented 
experimental embankment built on soft soil in Macaé, Rio de 
Janeiro. The clay layer is 7.85 meters thick, double-drained, 
and laboratory tests provided a coefficient of consolidation 
of 10-7 m2/s.

The embankment reached a final height of 3.1 m in about 
1 month. For the present study, the construction sequence 
was approximated to an exponential (Equation 29) with 
β = 80, as shown in the upper part of Figure 6. Nascimento 
(2016) estimated an immediate settlement of 0.15 m, and a 
primary settlement of 2.16 m.

The settlement estimate was compared with the 
readings of settlement plates, in the lower part of Figure 6. 
Immediate settlement was distributed over the construction 
period in proportion to the calculated embankment height. 
The results show a good approximation between settlement 
estimate and plate readings.

5. Conclusions

This study presented a closed-form consolidation 
solution for a time-dependent loading function. Two sets 
of equations were established to determine the excess pore 
pressure and the average degree of consolidation during 
construction and after construction.

The method is easy to apply and does not require the 
development of any differential equation. Solutions for single 
load functions (linear, parabolic, sinusoidal and exponential) 
and cyclic loads (haversine and damped) were presented. 
Results were consistent with the physical consolidation 
phenomena and agreed with some known analytical solutions 
and also with a numerical solution.

A case study with an approximately exponential 
construction sequence was analyzed. A comparison between 
the settlement plate readings and the solution proposed in 
the present paper was made, with good results.
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List of symbols

cv	 coefficient of consolidation
f	 rate of loading function
g	 shifted rate of loading function
i	 index
m	 count parameter

Figure 6. Settlement prediction for Macaé clay (Nascimento, 2016) 
with a construction sequence approximated to an exponential.
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n	 number of ramp loads
q	 load function
qc	 total load
s	 Laplace parameter
t	 time
uz	 excess pore pressure for instantaneous loading
u’z	 excess pore pressure for time-dependent loading
z	 depth
F	 Laplace transform of f
G	 Laplace transform of g
H	 total thickness of the clay layer
Hd	 maximum length of drainage path
M	 count parameter
T	 time factor
Ta	 time factor before the end of construction
Tb	 time factor after the end of construction
Tc	 time factor at the end of construction
U	 average degree of consolidation for instantaneous 

loading
U”	 average degree of consolidation for a time-dependent 

loading
Uz	 depth-variable degree of consolidation for instantaneous 

loading
U’z	 depth-variable degree of consolidation for a time-

dependent loading
α	 inclination of a ramp load
β	 fit parameter
Δσ	 total vertical stress increase
τ	 dimensionless half-period of a sinusoid function
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Appendix 1. Laplace Transform calculations.
The following equations were used during the development of the solutions presented in this study. The terms 

( )
2

F s
s M+

 and 
( )

2

G s
s M+

 are already rewritten as a sum of fractions.

▪ Ramp load

( ) ( ) c

c

q
f T g T

T
= =

	

(38)
( ) ( ) 1c

c

q
F s G s

T s
= =

( ) ( )
2 2 2 2

1 1 1c

c

F s G s q
T ss M s M M s M

 = = − + + + 

( ) ( ) ( )21 1
2 2 2

1 1 M Tc

c

F s G s q
e

Ts M s M M
− − −      = = −   

+ +      
 

▪ Multiple ramp loads

( ) ( ) ( )2 2 2 1
1

n

i i i i
i

f T T T T Tα α− −
=

= − − −∑  
	

(39)( ) ( ) ( )2 2 2 1

1

exp expn
i i

i i
i

sT sT
F s

s s
α α− −

=

− −
= −∑

( ) ( ) ( )2 2 2 12 2 2 2
1

1 1 1 1exp exp
n

i
i i

i

F s
sT sT

s ss M M s M s M
α

− −
=

    = − − − − −    + + +    
∑

( ) ( ){ } ( ) ( ){ } ( ){ }1 2 2
2 2 2 2 2 1 2 12 2

1

1 exp 1 exp
n

i
i i i i

i

F s
M T T T T M T T T T

s M M
α−

− − − −
=

      = − − − − − − − − −     +  
∑  

▪ Parabolic load

( ) 22 c

c

q
f T T

T
=

	

(40)

( ) 2 2
12 c

c

q
F s

T s
=

.
( ) 2

2 2 4 2 2
1 1 1 12 c

c

F s q
M

ss M T M s M s
 = − + + + 

( ) ( )21 2
2 2 4

12 1M Tc

c

F s q
e M T

s M T M
− −   = − + 

+  


( ) 2 2
1 12 c

c
c

q
G s T

sT s
 = + 
 

.

( ) 2
2 2 4 2 2 2 2

1 1 1 1 1 12 c c

c

G s q T
M

s ss M T M s M s M s M
    = − + + −    + + +     .

( ) ( ) ( )2 21 2
2 2 4 2

12 1 1M T M Tc c

c

G s q T
e M T e

s M T M M
− − −     = − + + −   +    

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▪ Sinusoidal load

( ) cos
2 2c

c c
f T q T

T T
π π 

=  
  	

(41)

( ) 2
2

2

2

c
c

c

sF s q
T

s
T

π

π
=

 
+  
 

( ) 2 2
2 2 2 2 2

4 2 2

2 2 1
2

2 2 2

c
c c

c

c c c

q
F s T T sM M

Ts M s M
M s s

T T T

π π
π

π π π

 
 
 

= + − 
+ +      

+ + +      
      

( ) 21 2 2
2 2

4

2
sin cos

2 2 2

2

c
M Tc

c c c

c

q
F s T

T M T M e
T T Ts M

M
T

π
π π π

π

− −        = + −     
+          

+  
 



( ) ( )cos sin
2 2 2 2c c c

c c c c
g T q T T q T

T T T T
π π π π    

= + = −    
     

( ) 2
2

2
2

2

c
c

c

c

T
G s q

T
s

T

π
π

π
= −

 
+  
 

( ) 2
2 2 2 2 2

4 2 2

2 2 1
2 2

2 2 2

c
c c

c c

c c c

q
G s T T sM

T Ts M s M
M s s

T T T

π π
π π

π π π

 
 −
 

= − + 
+ +      + + +      

      

( ) 21 2
2 2

4

2
sin cos

2 2 2 2

2

M Tc

c c c c

c

q
G s T

M T T e
T T T Ts M

M
T

π
π π π π

π

− −
−         = − +     

+          
+  
 


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▪ Exponential load

( )
1 c

Tc
T

q
f T e

e
β

β β −
−

=
− 	

(42)

( ) 1
1 c

c
T

q
F s

se β β
β−

=
+−

( )
2 2 2

1 1
1 c

c
T

F s q
ss M M s Me β

β
ββ−

  
= −    ++ − +−   

( ) ( )21
2 21 c

T M Tc
T

F s q
e e

s M Me
β

β
β

β
− − −

−
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
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T T T Tc c
T T

q q
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β β β
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▪ Haversine repeated load
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τ τ
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▪ Dumped cyclic load

( ) sin cosT T
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τ τ τ
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