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1. Introduction

The micropile was first conceived in Europe in the 
1950s, when Fernando Lizzi developed the pali radice as a 
foundation technique. The main characteristic of the micropile 
installation technique is the performance of this type of deep 
foundation in high-resistance soils (including rocks), spaces 
with low ceilings and places with uneven surface (FHWA, 
2005). Due to the small diameter (typically around 0.3 m) or 
the difficulty of assuring adequate cleaning of the borehole, 
tip resistance is generally disregarded and only load transfer 
by skin friction is considered (Allen et al., 2004). According 
to Choi & Cho (2010), neat cement grout injection may 
increase the load capacity of the micropiles by more than 
100%, both in soil and rock.

Some authors (Finno et al., 2002; Holman & Barkauskas, 
2007) point out that a relative displacement between the steel 
casing and the neat cement grout may occur. Allen et al. 
(2004) and Holman & Barkauskas (2007) suggest that this 
phenomenon, called debonding effect, results from inadequate 

preparation of the pile head or from eccentric loads. According 
to FHWA (2005), the debonding effect may be disregarded, 
and adhesion between the smooth metal tube and the neat 
cement grout varies from 1 to 1.75 MPa. Fiscina et al. (2021) 
conclude that the mobilized skin friction of the soil-micropile 
interface was 2.4 and 1.7 higher than other types of piles 
installed in similar underground conditions.

FHWA (2005) classifies micropiles into four types 
based on the injection technique and on the applied pressure. 
Table 1 shows these classifications.

Due to its complex behavior, several studies seek to 
understand the behavior of these deep foundation elements 
by using numeric tools, analytical models, or load tests. 
Numerical modeling is a widely employed tool for evaluating 
the pile load capacity and its load transfer mechanisms 
(Loukidis & Salgado, 2008; Han et al., 2017; Mendoza et al., 
2017; Khanmohammadi & Fakharian, 2019; Ong  et  al., 
2021). Park  et  al. (2012), Dias & Bezuijen (2018) and 
Kim  et  al. (2020) achieved acceptable results evaluating 
the load transfer mechanism of piles by using analytical 
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models with emphasis in the discrete formulations, which 
considers different properties along the depth of the pile. 
Load tests are widely employed to understand the behavior 
of the piles and to validate computational tools and empirical 
and semiempirical calculation methodologies (Russo, 2004; 
Ko et al., 2018; Wan et al., 2019; Fattah et al., 2020; Freitas 
Neto et al., 2020).

Several papers evaluate the accuracy of empirical or 
semiempirical methods by using the results of load tests as 
a validation technique. In general, they suggest correction 
parameters to adjust the geotechnical characteristics of the 
subsoil conditions and the mechanical properties of the 
piles (Titi & Abu-Farsakh, 1999; Décourt, 2008; Niazi & 
Mayne, 2013; Wrana, 2015; Ebrahimian & Movahed, 2017; 
Eid et al., 2018; Moshfeghi & Eslami, 2018; Song et al., 
2020; Jeong et al., 2021). Some methods were developed 
specifically for micropiles, such as: Bustamante & Doix 
(1985), Lizzi (1985) and FHWA (2005). Thereby, this study 
aims to present a new micropile technique in Brazil, evaluate 
its performance in a tropical soil by using instrumented load 

tests and compare its results with other piles installed in the 
same geological-geotechnical context.

2. Geological and geotechnical site 
characteristics

The load tests were performed at the Experimental Site 
III (ES III) of the University of Campinas, located in the city 
of Campinas, in the state of São Paulo, Brazil. Information 
on the site is provided in Albuquerque (2001), Castro Neto 
(2021), Fiscina (2020), and Fiscina et al. (2021).

Figure 1 shows the NSPT, qt, and fs variation graphs based 
on five Standard Penetrations Tests (SPT) and two Piezocone 
Penetration Tests (CPTu). The upper layer is composed of 
porous silty clay (colluvial soil) about 5 m in depth, followed 
by ~25 m of silty clay (diabase residual soil). Lateritic 
concretion lenses of around 0.5 m were observed at a depth 
of 7 m. Such material can be identified in the peak values 
provided by the CPTu (qt and fs) along the test depth. Finally, 
the groundwater table (GWT) was found at a depth of 18 m.

Table 1. Micropile classification (FHWA, 2005).
Type of 

micropile Description

Type A Neat cement grout is tremied into the borehole. It does not use pressure grouting injection (Gravity Fill Technique).
Type B Pressure grouting injection during withdrawal of the steel casing (0.5 to 1 MPa).

Type C IGU First, the borehole is filled with neat cement grout. Then, neat cement grout is pressure injected from the head of 
the pile through a tube with valves (Post-grouting technique with pressures above 1 MPa).

Type D IRS
First, the annulus shealth is formed with neat cement grout via a single packer. Afterwards, neat cement grout is 
pressure injected, locally, via a double packer (pressures up to 2 MPa). The injection phases are usually spaced 24 
hours apart and the process may be repeated up to four times. Lastly the borehole is filled with neat cement grout.

Figure 1. Physical and mechanical properties of the layered soil at ESIII.
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Figure 2 shows the average geotechnical characteristics 
of the soil layers and the total length of the piles after their 
installation. The piles had a post-injection diameter of 0.3 m 
and lengths of 21 m (MC1) and 19.4 m (MC2). Both were 
installed according to the Type D methodology conforming 
to FHWA (2005). However, only the MC1 micropile had its 
manchette valves opened during the construction process.

3. Experimental set-up

The micropile in the present study is the result of a new 
construction technique that employs a special steel tube (ϕ = 
200 mm - API N-80) with four main functionalities: drilling tool, 
casing protection, injection device (manchette valves system 
installed on the steel tube surface), and structural element. A brief 
description of the construction technique is presented below:

a)	 The first step is drilling by roto-percussion and water 
circulation using segments of steel tubes with threads. 
The initial segment has a drilling crown (Figure 3a) 
to facilitate cutting the soil. Tricone or eccentric bits 
with diamond or widia components can be used in 
case of more resistant bearing strata;

b)	 Then, a single packer (Figure 3b) is inserted inside 
the tube, at the tip of the micropile. Neat cement grout 
is injected with an ascending flux to fill the annulus 
space between the tube and the soil, constituting the 
annulus sheath, and removing any residual debris 
from drilling;

c)	 After the cure of the annulus sheath, a double 
packer (Figure 3c) is inserted for the post-grouting 
treatment. It is positioned at predetermined locations 
(starting from deeper positions), with the procedure 
being carried out from the bottom up. Note that 
the pressure injection can be carried out more than 

once – 1st phase, 2nd phase etc. – depending on the 
project/geotechnical consultant specifications;

d)	 Lastly, the steel tube is filled with neat cement grout 
from the bottom up. Figure 4 shows all phases of 
the construction process.

Figure 2. Estimated geotechnical profile of Experimental Site III.

Figure 3. Tools used for the micropile construction: (a) tube coupled 
to the drill, (b) single packer and (c) double packer.

Figure 4. Micropile construction phases (Fiscina et al., 2021).
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It is worthy to state that the manchette valves are 
previously installed in the walls of the steel tubes, in groups 
of four, diametrically opposed and vertically spaced by 0.5 m 
(industrial process). They have an aluminum body and a 
rubber packer, which opens with pressures up to 2 MPa, 
approximately (Figure  5). They close immediately after 
the pressure is released, preventing the neat cement grout 
from flowing back into the steel tube. To assure the correct 
operation of the device, the neat cement grout must have a 
cement-water factor of 0.5.

The instrumentation of the micropiles was performed 
using strain gages previously installed in steel bars of 12.5 mm 
in diameter and 0.5 m in length (instrumented bars). They 
were inserted after the post-grouting treatment (between 
Phase III and IV – Figure 4). Figure 6 shows the position of 
the instrumented bars alongside the pile depth, highlighting 

the MC1’s manchette valves which opened after receiving 
the post-grouting treatment. Post-grouting injections were 
not performed for MC2 pile.

The reaction system of the load tests was designed to 
apply a maximum load of 3000 kN. It was composed of four 
reaction micropiles, a steel double I-beam, a hydraulic jack 
and a load cell (Figure 7). The static load-maintained test 
(SLMT) was conducted according to the instructions of the 
Brazilian Standard ABNT NBR 12131 (ABNT, 2006) with 
load increments of 130 kN.

4. Analysis and results

Figure 8 shows the load vs movement curve of the 
micropiles studied. The MC1 reached a maximum load of 
2210 kN with a movement of 24 mm while the MC2 reached 
a load of 2470 kN and a movement of 26 mm. The SMLT for 
MC1 was paralyzed due to a sudden failure of the pile cap/pile 
system, similar experience was evidenced by Fiscina et al. 
(2021). For MC2, the movement evolved continuously with 

Figure 6. Instrumentation levels.

Figure 7. Load test assembly scheme (adapted from Fiscina et al., 
2021).

Figure 8. Load-displacement curves for micropiles.

Figure 5. Neat cement grout injection valve.
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the increase of the load without characterizing a conventional 
failure (close to 10% pile diameter). The test was stopped 
due to excessive deformation of the reaction system.

Since the results do not characterize a geotechnical 
failure, the Van der Veen (1953) method modified by Aoki 
(1976) was employed to extrapolate the data results, which 
resulted in an ultimate load capacity of 2560 kN and 2764 kN 
for the MC1 and MC2 micropiles, respectively. The ultimate 
load capacity was also estimated by the Bustamante & Doix 
(1985), Lizzi (1985) and FHWA (2005) semiempirical methods. 
Table 2 shows the results obtained by those methods.

Figure 9 presents the ratio of the estimated values for 
ultimate load capacity to the experimental ultimate load 
capacity obtained via SMLT. The FHWA (2005) and Lizzi 
(1985) methods showed similar results for both micropiles. 
This did not occur for the Bustamante & Doix (1985) method, 
which considers the initial annulus sheath volume and the 
post-grouting phases. Moreover, the Bustamante & Doix 
(1985) method also considers the tip resistance in the overall 
pile capacity calculation while the FHWA (2005) and Lizzi 
(1985) methods do not take it into account. The FHWA (2005) 
method showed results in the range of ± 20% of the variation 
which indicates to be a fit model to predict the geotechnical 
capacity of these types of piles embedded in tropical soil.

Figure 10 shows the load vs deformation curves along the 
micropile depth. The reference section exhibits deformations 
with an elastic behavior up to 1800 kN (25 MPa stress at 
the cross-section area, approximately), manifesting a creep 

response from this load up. Note that the MC2 micropile 
showed an unexpected behavior at level N2, with progressive 
stiffness loss after the tenth stage load.

The pile stiffness was obtained using the Incremental 
Stiffness Method (Fellenius, 1989; Fellenius, 2021) modified 
by Komurka & Moghaddam (2020). The tangential stiffness 
vs strain graphs (Figure 11) had a linear trend after 500 µε, 
indicating that the skin friction was fully mobilized for the 
three upper levels (SR, N1, and N2). According to Fellenius 
(1989, 2001, 2021), after the graph converges to a straight 
line, the deep foundation element has the mechanical behavior 
of a column, so the calculated deformation module does not 
suffer interference from the surrounding soil. Therefore, 
considering the micropile diameter as 0.3 m, the deformation 
module of the micropiles is approximately equal to 11 GPa 
and 16 GPa for MC1 and MC2, respectively. These values 
are inferior to those of concrete piles, which are, in general, 
around 20 to 25 GPa (Albuquerque, 2001; Albuquerque et al., 
2007, 2014). This can be explained by the fact that the neat 
cement grout does not use aggregates in its composition, 
which reduces the overall pile stiffness (Laister et al., 2014).

Figure 9. Comparison of estimated results.
Figure 10. Load vs deformation graphs for micropiles (a) MC1 
and (b) MC2.

Table 2. Ultimate load capacity of the micropiles.
Method MC1(in kN) MC2(in kN)

FHWA (2005) 2555 2339
Lizzi (1985) 2227 2000

Bustamante & Doix (1985) 5518 4920
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micropile interface is progressively reduced until reaching a 
constant value at the last load stage, i.e., at this region there 
is no load transfer from the pile to the soil. This is probably 
due to excessive fissuring of the neat cement grout, which 
may have compromised the adhesion between the pile and 
the surrounding soil. According to Gomez et al. (2003) and 
Fiscina et al. (2021), this phenomenon is called debonding 
effect and happens when the pile-soil interface is unable to 
retain significant shear resistance. It is worth mentioning 
that the strength values of the neat cement grout at 28 days 
used in the present study (approximately equal to 15MPa) 
were below the values recommended by the FHWA (2005), 
which vary between 28 MPa to 35 MPa. The maximum tip 
load was 63 kN and 75 kN for MC1 and MC2, respectively, 
which in terms of the overall pile capacity is negligible.

Figure 13a shows that the maximum mobilized skin 
friction on the MC1 micropile was in the region treated 
with neat cement grout (3 m to 7 m from the top of the 
pile), reaching a value equal to 150 kPa (last load stage). 
In addition, the weighted average skin friction along the 
micropiles depth was equal to 112 kPa (last load stage). For the 
MC2 micropile, the highest mobilized skin friction value 
was 222 kPa, in the region from 7 m to 14 m from the top 
of the pile (Figure 13b). At the last load stage, the weighted 
average skin friction along the length of the micropile was 
137 kPa, showing that the post-grouting treatment with high 
pressures does nt necessarily guarantee the increasing of the 
skin friction of the micropile.

Figure 14 presents that the development of the unit 
skin friction (average value) with the displacement of the 
shaft follows the same trend for both piles, as verified by the 
B parameter (MC1 = 32 kPa/mm and MC2 = 38 kPa/mm). 
Also, the displacements for mobilizing the maximum skin 
friction were around 1.2% and 0.7% of the pile diameter for 
the MC1 and MC2 micropiles, respectively. These values 
are in accordance with the findings of Albuquerque (2001), 
Wada (2004) and Meyer & Żarkiewicz (2018).

Figure 15 shows the stiffness trend of current post-
grouted micropile compared with other types performed at the 
Experimental Site I (Albuquerque, 2001; Albuquerque et al., 

Figure 12. Load transfer for micropiles (a) MC1 and (b) MC2.

Figure 11. Incremental stiffness vs strain graphs for micropiles (a) 
MC1 and (b) MC2.

Figure 12a shows the load transfer along the depth 
of the MC1 micropile. It indicates a linear behavior after 
1820 kN and constant skin friction up to 14 m of depth. 
According to Figure  12b, the micropile MC2 presented 
a variation of the load transfer mechanism after the load 
stage of 1170 kN (between 3.0 and 7.0 m), which indicates 
a loss of friction in that region. The load transfer in the soil/
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2005, 2007; Albuquerque & Carvalho, 2017; Fiscina et al., 
2021). The upper stiffness bound varies between 45 and 
25 kPa/mm and the lower bound between 25 and 5 kPa/
mm, with the trend line varying between 35 and 15 kPa/
mm. Traditional bored piles fully mobilized the skin friction 
for shaft displacements inferior to 1 mm, whereas root piles 
developed displacements close to 6 mm to mobilize the 

maximum skin friction. The micropiles presented in this study 
were close to the upper stiffness bound with displacements 
between 2 mm and 4 mm.

Figure 16 presents the maximum skin friction variation for 
the piles performed at the ES I and the ES III. The maximum 
skin friction for the first layer of ES I (silty clay / depth of 
0 to 5m / NSPT = 4 blows) had an average value of 56 kPa 
(coefficient of variation = 34%). However, the same layer in 
the ES III – adding the results from Fiscina et al. (2021) for 
a micropile (MC 0) with ϕ = 0.3 m and L = 17 m – shows 
higher maximum skin friction in the first layer compared 
with that obtained for the piles installed at the ES I, with an 
average value of 101 kPa (CV = 22%). This value is 80% 
higher than the mobilized skin friction values from the 
ES1, showing that the construction process influences the 
performance of the pile. The first layer is a tropical lateritic 
soil, which, despite presenting low resistance values in the 
CPTu and SPT tests, results in higher skin friction due to 
the internal cementation inherit from this type of soil. This 
phenomenon was also observed by Décourt (2008), Schulze 
(2013) and Albuquerque et al. (2007) with piles performed 
in the same type of soil.

Figure 13. Maximum skin friction along depth for micropiles (a) MC1 and (b) MC2.

Figure 14. Average maximum unitary friction vs average shaft 
displacement for micropiles (a) MC1 and (b) MC2.

Figure 15. Variation in B parameter of piles performed at ESI.
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Regarding the second representative soil layer, the 
piles installed in the ES I exhibit a maximum length of 
12 m, with 7 m embedded in the residual soil layer with 
NSPT,ave = 8 blows, whereas in ES III, the micropiles vary 
between 16 and 21 m in length, with 11 to 16 m embedded 
in that same soil layer but with an NSPT,ave = 20 blows, which 
prevents a quantitative comparison. However, it was observed 
that, excluding the micropile MC2, the behavior was similar 
to that of omega piles from the ES I, with friction values 
around 110 kPa (114 kPa).

5. Conclusions

This work presented a new post-grouted micropile 
type installed in a tropical soil. Two instrumented static 
load-maintained tests were performed to verify its behavior 
and design parameters, and results were compared with other 
types of piles installed in the same subsoil profile. Main 
conclusions from results are as follows:

- The FHWA (2005) method of estimating the ultimate 
geotechnical pile capacity best fitted with the values from 
the load tests. The authors recommend using the average 
values of qs suggested by the FHWA (2005) for this type of 
soil (tropical lateritic soil) and micropiles aiming to estimate 
the geotechnical capacity for future designs. The Bustamante 
& Doix (1985) method showed that the volume and injection 
correction parameters would be inadequate for the studied 
micropiles and for the local condition, thus requiring further 
studies. In addition, pile tip resistance can be ignored for 
these types of piles. The Lizzi (1985) method, despite being 
developed for root piles and showing results outside the ± 
20% range, proved to be a usable method. However, further 
studies are required to propose a correction coefficient for 
this method.

-	 Comparing the maximum skin friction calculated 
from the method suggested by the FHWA (2005) 
and the values obtained from the load tests, the 
calculated values are lower, especially in the layers 
up to 7 m of depth. This suggests that this specific 

layer contain additional resistance due to its natural 
cementation (typical of lateritic soils).

-	 The instrumentation technique used was efficient. 
For stresses above 25 MPa, the instrumentation 
presents a creep response, indicating that the load vs 
deformation mechanism stops being proportional for 
values beyond that point, which should be avoided in 
load tests. The incremental stiffness method proposed 
by Komurka & Moghaddam (2020) is appropriate, 
considering that the behavior is non-linear and the 
transversal section is irregular;

-	 The deformation modules were inferior to those 
obtained for concrete piles, which was expected due 
to the use of neat cement grout instead of concrete 
(Fiscina et al., 2021). The loss of stiffness in part of 
the shaft of one of the piles suggests the occurrence 
of the debonding effect caused by the low resistance 
of the neat cement grout, which was lower than the 
values suggested by the FHWA (2005) standards.

-	 The piles showed that the maximum skin friction 
was mobilized for average shaft displacements of 
around 1% of the pile diameter (300 mm), similar 
to the behavior of other types of piles performed 
at Unicamp, which work mostly by friction. The 
stiffness of the micropiles showed higher values 
compared to the other piles installed at Unicamp, 
indicating that the installation process improves the 
friction performance.

-	 The new micropile construction methodology proved 
to be promising in terms of improving the shaft 
resistance, showing average skin friction above 110 
kPa, which is 1.3 to 3.8 times higher than the average 
friction observed in other types of piles performed 
in similar ground conditions. However, there was 
no effective gain of resistance by lateral friction due 
to the post-grouting treatment, which indicates that 
only the injection of the annulus sheath is indicative 
of improvement in the performance by friction.
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List of symbols

qt	 Measured cone resistance
fs	 Unit sleeve friction resistance
API	 American Petroleum Institute
B	 Stiffness
CPTu	 Cone Penetration Test
CV	 Coefficient of variation
ES I	 Experimental Site I
ES III	 Experimental Site III
MC 1	 Micropile 1
MC 2	 Micropile 2
NSPT	 Standard Penetration Test blows count
Qest	 Estimate Load by Method
QSMLT	 Load Test Load Measured
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SR	 Reference Section
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