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1. Introduction

Soft depositional soils, in general, have very low strength 
and high compressibility and they may swell and shrink due 
to wetting and drying phenomenon. In permafrost regions, 
freeze-thaw phenomenon greatly affects characteristics of 
these soils. Thus, it is occasionally required to stabilize soft 
soils via mechanical or chemical techniques. In chemical 
techniques, additive materials such as lime, cement, etc. 
were added to soils (Sharma & Sivapullaiah, 2012), which is 
not reasonable since they release CO2 into the environment 
(Sharma & Sivapullaiah, 2012), thus encouraging engineers 
to find alternatives for these stabilizers.

On the other hand, in the world, annually large 
volumes of iron used in the steel industry produces waste 
and garbage of an undesirable type, called steel slag (SS) or 
industrial waste (Yong-Feng et al., 2020). Several researchers 
suggested using blast furnace slag for various applications 
in civil engineering. Some researchers have been focused on 
compaction, unconfined compressive strength, consolidation, 
CBR and Atterberg limit properties of soil-slag mixtures 
(Wild  et  al., 1996; Manso  et  al., 2013; Yadu & Tripathi, 
2013; Akinwumi, 2014; Goodarzi & Salimi, 2015; Sharma 
& Sivapullaiah, 2012, 2017; Chandra & Lavanya, 2017; 
Montenegro-Cooper et al., 2019; Mozejko & Francisca, 2020). 

Regarding compaction, SS inclusion increases maximum 
dry density and decreases optimum moisture of soils and 
the changes in these parameters are high as the slag amount 
increases (Yadu & Tripathi, 2013; Akinwumi, 2014; Chandra 
& Lavanya, 2017; Mozejko & Francisca, 2020).

Liquid and plastic limits of soils decrease by adding 
SS, and leads to reduce of plasticity index (Wild et al., 1996; 
Manso et al., 2013; Yadu & Tripathi, 2013; Akinwumi, 2014; 
Goodarzi & Salimi, 2015; Chandra & Lavanya, 2017).

Consolidation tests demonstrated that swelling pressure 
and free swelling index of soils reduce due to slag inclusion 
(Yadu & Tripathi, 2013; Sharma & Sivapullaiah, 2017; 
Afrasiabian et al., 2021) and their CBR values enhance (Yadu 
& Tripathi, 2013; Chandra & Lavanya, 2017; Bera et al., 
2019). Moreover, adding SS to soils improves their unconfined 
compressive strength (Wild et al., 1996; Manso et al., 2013; 
Yadu & Tripathi, 2013; Akinwumi, 2014; Goodarzi & Salimi, 
2015; Afrasiabian et al., 2021).

Previous researches revealed a lack of studies on the 
behavior of steel slag-stabilized soil under freeze-thaw cycles. 
The main objective of this research is to investigate the effect 
of SS on the physical properties including volume change, 
water absorption and durability of fine-grained soils due to 
freeze-thaw phenomenon. In addition to these tests, CBR 
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and unconfined compressive strength tests were performed 
on the soil-slag mixtures.

2. Materials and Methods

2.1 Materials and sample preparation

A high plastic cohesive soil was retrieved from the 
north east of Tabriz city in East Azerbaijan province, Iran. 
At shallow depth, this yellow soil has low strength, bearing 
capacity and high compressibility, and it is often subjected 
to periodically freeze-thaw phenomenon. About 93% of soil 
particles are finer than 0.075 mm, as per ASTM D422 (ASTM, 
2007), and its liquid limit and plasticity index are 87% and 
43%, respectively. According to Unified Soil Classification 
System, the soil categorized as CH according to ASTM 
D2487 (ASTM, 2017).

Steel slag with mean grain particle of 0.24 mm used as a 
soil stabilizer. Chemical components of SS are SiO2 (37.6%), 
Al2O3 (13.5%), CaO (38.23%), MgO (7.63%), Fe2O3 (0.6%), 
MnO (1.2%) and other (1.34%). Figure 1 presents the grain 
size distributions of Tabriz soil and steel slag.

The slag was added to clay in a weight percentage 
of 15%, 25%, 35%, 45% and 55% and the mixtures were 
named MS15, MS25, MS35, MS45 and MS55, respectively. 
The specific gravity of the natural soil was 2.41 and the 
values corresponding to the mixtures were 2.47, 2.53, 2.58, 
2.62 and 2.66, respectively (ASTM, 2014). For better moisture 
absorption, the mixtures were kept in plastic bags for 24 hours 
in 23 °C and, then, utilized to perform the tests. All samples 
for CBR, freeze-thaw and unconfined compressive strength 
(UCS) tests were prepared with 95% of maximum dry density 
(MDD) and at optimum moisture content (OMC).

2.2 Conducted tests

Plasticity characteristics of the samples were determined 
according to ASTM D4318 (ASTM, 2010) and Standard Proctor 

compaction tests were carried out on soil samples following 
ASTM D698 (ASTM, 2012) to obtain MDD and OMC. 
CBR of soaked samples was measured according to ASTM 
D1883 (ASTM, 2016a). Compressibility characteristics were 
evaluated in oedometer test on samples 75 mm in diameter 
and 21 mm in height, according to ASTM D2435 (ASTM, 
2020). Cylindrical specimens with 50 mm in diameter and 
100 mm in height were prepared for UCS tests, according 
to ASTM D2166/D2166M (ASTM, 2016b). Soil samples 
were compacted in four layers in a special mould, also 
scratching the interface of layers in a proper way to prevent 
the formation of weak planes.

Freeze-thaw tests were conducted on two similar 
compacted samples with 101.6 mm in diameter and 120.0 mm 
in height, according to ASTM D560 (ASTM, 2016c). After 
extraction, samples were placed on water saturated felt 
pads on the carrier. Both samples were kept in a freezer at a 
constant temperature of -23 °C for 24 h and, then, moved to 
a moisture room with the constant temperature of 23 °C for 
23 h. Eight freeze-thaw cycles were performed. Some of the 
samples deteriorated after five cycles. One of the samples was 
used to determine the volume change and water absorption 
by measuring its height, diameter and weight. The loss of 
soil weight during freeze-thaw cycles was measured in the 
other one.

3. Results and Discussions

3.1 Consistency characteristics

Liquid Limit (LL), Plastic Limit (PL) and Plasticity Index 
(PI) values explain that all plasticity parameters decreased 
with an increase in SS content (Figure 2). Maximum decrease 
was observed in the mixture with 55% SS, in which LL, PL 
and PI values reduced from 87%, 43% and 44% to 45%, 25% 
and 20%, respectively; therefore, slag inclusion decreased 
these parameters about 42%, 18% and 24%, respectively. 

Figure 1. Grain size distributions of Tabriz soil and steel slag.
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In fact, adding SS increased the coarse-grained part of 
mixture, and in turn reduced the liquid and plastic limits and 
plasticity index of the soil. A similar trend was observed by 
Sivrikaya et al. (2014).

3.2 Compaction characteristics

Compaction curves of the mixtures revealed that 
adding SS led to an increase in MDD and a decrease in 
OMC (Figure 3). Maximum increment and decrement in 
MDD and OMC values are those of the mixture including 
55% slag, which are about 15% and 56%, respectively. 
The increase in MDD by SS inclusion is mainly due to 
the higher specific gravity of the slag in comparison to the 
clay; on the other hand, coarse-grains need less water for 
compaction. The results reported on slag stabilized clay 
(Sivrikaya et al., 2014; Mozejko & Francisca, 2020) and on 
lime-slag treated black clay (Osinubi & Eberemu, 2006) are 
in agreement with those obtained in this research.

3.3 Consolidation test

Void ratio versus effective stress curves illustrate that 
the mixtures have different initial densities and void ratio at 
the end of loading step (Figure 4), implying that the samples 
exhibit different compressibility behaviour. Butterfield 
(1979) presented a method for interpreting the oedometer 
test result. So that one can be obtain the yielding point from 
the intersection of two straight lines from curve plotted as ln 
ν against log pʹ. In vertical axis ν is specific volume, which 
equals with 1 + e; in which e is void ratio.

The effect of slag was investigated using the intersection 
point of two lines, according to the method above (Figure 5a). 
It was observed that increasing slag content higher pressure 
was required to reach the yield point (Figure 5b). For example, 
by adding 55% slag the yielding point increased from 68 kPa 
to 98 kPa.

Both the values of the CC and CS decrease significantly 
when the percentage of SS varies from 0 to 55% (Figure 6a). 

This is due to the partial substitution of clay by the slag, 
which is less compressible.

Settlement of samples as a function of slag percentage 
under different stresses are seen in Figure 6b. In general, 
slag inclusion decreased the soil’s compressibility, with the 
decreasing rate depending on the stress level. For example, 
at p’ = 50 kPa, adding 55% slag reduced the settlement from 
0.461 mm to 0.221 mm. Similarly, the values at p’ = 1600 kPa 
reduced from 4.295 mm to 2.952 mm; therefore, 55% slag 
reduced the settlement about 52% and 31.2%, respectively. 
Since the slag particles have large stiffness as compared with 
the clay ones, thus by an increase in the slag content, total 
stiffness of the sample increased and consequently settlements 
reduced. Moreover, by raising the slag percentage, the mixture 
initial void ratio decreased (Figure 4). To explain the effect 
of slag on the compressibility of mixtures, the inter-granular 
void ratio (es), according to Monkul & Önal (2006), was 
computed using Equation 1:
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Figure 3. Effect of SS additive on the dry density-water content 
relation of soil.

Figure 2. Effect of SS content on the Atterberg limits of the used soil.

Figure 4. Void ratio versus stress curve.
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Figure 7 shows that by increasing the slag content the 
inter-granular void ratio decreases, which means that the 
slag grains tend to contact and the applied forces transform 
by the chain of slag grains, and as a result, the settlement 
decreased and strength improved.

In addition, due to adding 15% and 25% slag, free 
swelling of soil reduced about 58% and 92%, respectively, 
and samples with 35%, 45% and 55% slag did not show 
any swelling (Figure 8). The slag inclusion also diminished 
the soil’s swelling pressure. For example, adding 15% and 
25% of slag reduced the swelling pressure from 19 kPa to 
16 kPa and 6.9 kPa, respectively. In the other mixtures, the 
swelling pressure reduced to zero.

The decrease in compressibility and swelling characteristics 
of soil with an increase in SS content is due to replacing 
the clay particles by the SS material. This material has low 
compressibility and low water absorption, which has been 
led to mentioned results. These results are consistent with 
those reported for expansive soils by Rao et al. (2009).

3.4 CBR

CBR is one of the most important tests to assess 
bearing capacity of sub-base and base layers. As shown 
in Figure  9, applied stress to samples versus penetration 

values indicate that by increasing slag percentage in the 
sample, the amount of suffered stress increased. Moreover, 
CBR values corresponding to penetrations of 2.54 mm and 
5.08 mm indicated that slag addition improved the bearing 
capacity of the soil (Figure 9b). The highest improvement was 
observed for the mixture consisting of 55% SS, with values 
of 140% and 154%, respectively, for penetration of 2.54 mm 
and 5.08 mm. The reason for the CBR enhancement is due 
to increase in the maximum unit weight of the stabilized 
specimens and decrease in the void ratio of mixtures, due to 

Figure 5. (a) ln ν versus log p’ of samples; (b) Consolidation yield stress versus slag content.

Figure 6. (a) Compression and swelling indices; (b) settlement values; versus slag content.

Figure 7. Effect of slag content on the inter-granular void ratio.
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the addition of slag to clay. These results are in agreement 
with results reported by Laxmikant & Tripathi (2013), which 
worked on stabilization of soft soil with slag and fly ash, 
and by Takhelmayum et al. (2013), who researched the soil 
stabilization using fine and coarse GGBS.

3.5 Unconfined compression tests

Stress-strain curves of samples displayed that adding 
steel slag to the soil improves the strength and changes 
the behavior pattern of mixtures from ductile to brittle 
(Figure 10). Therefore, in the MS55 mixture the UCS value 
increased about 132%. The failure pattern of this sample is 

completely brittle as compared to the ductile behavior of 
plain clay. In general, when the samples are subjected to 
freeze-thaw phenomenon, their strengths drop off suddenly 
(Figure 10b). This reduction is relatively low for samples 
with high slag content. Effect of slag inclusion is obvious in 
improvement of strength after freeze-thawing phenomenon. 
For plain clay, by applying one cycle freeze-thaw, the UCS 
value diminished from 175 kPa to 50 kPa, while for MS55, 
it reduced from 406 kPa to 194 kPa. The reduction in UCS 
due to freeze-thaw was 71% and 52% respectively for NS 
and MS55.

The relationships of UCS, failure strain and secant 
deformation modulus of specimens with slag content for 

Figure 8. Effect of percentage of SS on: (a) the free swelling; (b) the pressure swelling.

Figure 9. (a) Stress-penetration depth of samples; (b) CBR values versus slag content.

Figure 10. Effect of slag content on the stress-strain behavior of soils: (a) without freezing and thawing cycles; (b) after cycles.
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unfrozen and frozen samples are presented in Figure 11. By use 
of a regression analysis, as listed in Table 1, linear functions 
suggested for UCS and failure strain parameters and a power 
function obtained for unconfined compression strength. R2 shows 
that these models may use as a useful engineering tool to 
describe the relationship between geotechnical characteristic 
in terms of slag percentage for clayey soils.

By adding more slag to clay, like that described for clay-
sand mixtures by Soroush & Soltani-Jigheh (2009), the soil 
structure becomes contact structure; in other word, when the 
slag content is high the slag particles are in contact together. 
In fact, as the slag percentage increases, the force applied to 
the soil mixture is sustained by the slag particles rather than 
clay particles. Therefore, the improvement in strength may 
be due to (i) decrease of fine-grained part of soil and increase 
of slag material with high friction and hardness, (ii) inducing 
soil cementation by pozzolanic compounds of soil and SS 
reaction (Yi et al., 2015; Yong-Feng et al., 2020; Mozejko 
& Francisca, 2020). It should be noted that the source of 
calcium is calcium hydroxide contributed by the slag.

The secant deformation modulus (E50) increased as the 
slag content increased. This means that the deformation and 
flexibility of the specimens reduced. For example, by increasing 
the 55% slag to the soil, the E50 value for unfrozen and frozen 
samples increased from 7.14 MPa to 27.1 MPa and 2.94 MPa to 
16.37 MPa, respectively. Regression analysis provided exponential 
functions for frozen and unfrozen samples as seen in Table 1.

3.6 Freeze-Thaw tests

The freezing-thaw cycle is a weathering process that 
significantly alters the geotechnical properties of the soil. 
This phonemonon changes the volume, strength, bearing 
capacities and microstructure of clays (Eigenbrod, 1996; 
Czurda & Hohmann, 1997). In this study, the water content 
of soil samples was measured during the freeze–thaw cycles 
(Figure 12a). The amount of water absorption during the tests 
decreased with increasing the amount of SS. Figure 12b shows 
that the soil samples volume also decreased with increasing 
number of freeze–thaw cycles. The highest reduction in 
volume change was obtained in the sample stabilized with 
55% SS content. Also it was observed that with increasing 
slag percentage freezing-thaw cycles has less effect on the 
volume changes and water absorption of the samples. Since 
water absorption of slag is less than that of the clay, SS 
behaves like sand and reduces water content and volume 
changes of mixtures.

Moreover, the weight loss of soil due to freeze-thaw was 
determined by weighing the specimen before and after brushing 
process for each cycle. The samples with a higher amount of 
slag are more resistant to brushing and lose less weight. Also 
with increasing slag the weight loss of samples decreases, so 
that, the weight loss in NS (natural soil) and MS55 is 68% 
and 26%, respectively. It should be noted that the pure sample 
and MS15 were destroyed in cycle 4 (Figure 13).

Figure 11. Relationship between slag content and: (a) UCS and failure strain; (b) E50.

Table 1. Linear regression of UCS and failure strain and E50 with SS content.
Samples y Parameter Correlation with SS (%)* Coefficient R2

Unfrozen UCS y = 4.2088 SS (%) + 170.6 0.996
Failure strain y = -0.0386 SS (%) + 3.8384 0.9764

E50 y = 6.7704e0.0243 SS (%) 0.9878
Frozen UCS y = 2.5873 SS (%) + 32.942 0.9093

Failure strain y = -0.0364 SS (%) + 3.362 0.9843
E50 y = 2.3881e0.0338 SS (%) 0.9352

*SS (%) refers to steel slage percentage.
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4. Conclusion

In this paper, a comprehensive experimental study 
conducted to know the stabilizing effect of steel slag on the 
properties plastic, strength and durability of fine-grained soils 
and the obtained main results are the following:

•	 By adding slag content from 0 to 55%, the liquid 
limit and plasticity index reduced 42% and 24%, 
respectively. Moreover, the addition of slag increased 
the MDD and decreased the OMC of the soil;

•	  In low stresses, the effect of steel slag on the settlement 
reduction was very high and by increasing of the stress 
level, its effect diminished. The compressibility and 
swelling indices of clay decreased by adding 55% 
slag about 34% and 67%, respectively;

•	 Adding 15% and 25% slag content, free swelling of 
soil reduced about 58% and 92%, respectively and 
clay mixtures with slag amount more than 25% did 
not show swelling;

•	 With increasing slag from 0 to 55% in clay, CBR 
values enhanced;

•	 The unconfined strength of clay increased from 175 
kPa to 406 kPa by adding 55% slag. Under frozen 
condition, the UCS values reduced to 50 kPa and 
194 kPa, respectively;

•	 The amount of water absorption and volume changes 
in freeze-thaw cycles decreased with increasing SS 
content; thus, the mixtures’ durability increased;

•	 Due to slag inclusion, the freeze-thaw induced weight 
loss of soil decreased, so that this parameter diminished 
from 68% to 26% by adding 55% slag to the clay.

To avoid accumulation of steel slag in the environment and 
solving the technical problems of the soil, the use of soil-slag 
mixture was developed as a way to stabilize the soil. Therefore, 
the use of slag as soil stabilizing materials to increase bearing 
capacity and strength as an appropriate method is suggested.
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List of symbols

CBR	 California bearing ratio
Cc	 Compression index
CH	 Fat clay
Cs	 Swell index
e	 Void ratio
e0	 Initial void ratio
es	 inter-granular void ratio
E50	 Secant deformation modulus
Fc	 clay content in the mixture
Gs	 Specific gravity
Gs(mix)	 specific gravities of the mixture
Gss	 Specific gravity of the clay
Gsc	 Specific gravity of the slag
LL	 Liquid limit
PI	 Plasticity index
PL	 Plastic limit

Figure 13. Effect of freeze-thaw cycles on soil loss weight of 
stabilized soil SS.

Figure 12. Effect of freeze-thaw cycles on: (a) water content change; (b) volume change.
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