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ABSTRACT. In this work, a primal hybrid finite element method for nearly incompressible linear elastic-
ity problem on triangular meshes is shown. This method consists of coupling local discontinuous Galerkin
problems to the primal variable with a global problem for the Lagrange multiplier, which is identified as
the trace of the displacement field. Also, a local post-processing technique is used to recover stress approx-
imations with improved rates of convergence in H(div) norm. Numerical studies show that the method is
locking free even using equal or different orders for displacement and stress fields and optimal convergence
rates are obtained.

Keywords: linear elasticity, discontinuous Galerkin method, stabilization hybrid method, locking free.

1 INTRODUCTION

Historically, many finite elements have been constructed, in the last decades, for the incom-

pressible and nearly incompressible linear elasticity materials, in order to avoid the “volumetric
locking” phenomena. This is an undesirable unphysical stiff response to deformation exhibited
when using the standard Galerkin method based upon the conventional displacement formulation

with low order elements and the Poisson’s ratio tends to 1/2. Many successful strategies to avoid
the locking effects based on mixed finite element methods [1–4], higher-order method [5], and
discontinuous Galerkin finite element methods [6–10] can be found in the literature.

Discontinuous Galerkin (DG) methods are naturally a suitable alternative for solving linear

elasticity problems. Robustness, local conservation and flexibility for implementing h and p-
adaptivity strategies are well known advantages of DG methods stemming from the use of fi-
nite element spaces consisting of discontinuous piecewise polynomials. A natural connection
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between DG formulations and hybrid methods have been exploited successfully in many prob-

lems [11–15] and they are still being developed. These hybrid formulations have improved sta-
bility, robustness and flexibility of the DG methods with reduced complexity and computational
cost. Hybrid finite element methods are characterized by the introduction of new unknowns vari-

ables, the Lagrange multipliers, defined at the edges of the elements to weakly impose continuity
on the element interfaces. Their reduced complexity and computational cost is obtained by elimi-
nating all degrees of freedom of the primal variables at the element level resulting a global system

only with degrees of freedom of the multipliers.

In this paper, we extend the studies presented in [16–18] considering a primal Stabilized Hybrid
Discontinuous Galerkin (SHDG) method, for the nearly incompressible linear elasticity problem
using triangular elements. The multiplier, identified with the trace of the displacement field, is

interpolated discontinuously. The method is stable for any order of interpolation of the displace-
ment field and the multiplier even for nearly incompressible materials. Stress approximations are
recovered by a local post-processing for both displacement and stress field using the multiplier

approximation obtained by the SHDG method. The residual form of the equilibrium equation at
the element level is added in this local post-processing leading to optimal rates of convergence of
the stress approximations in H(div) norm for compressible and nearly incompressible elasticity
problems with uniform meshes.

In the next section the equations that define the mechanical problem including the condition of
nearly compressibility is presented. In Section 3, we introduce the SHDG formulation for the
nearly incompressible linear elasticity problem based on displacement fields and the multiplier.
In Section 4, we show Linear elasticity, Discontinuous Galerkin method, Stabilization Hybrid

method, Locking free aspects related to the implementation and introduce a local post-processing
technique to recover the pressure field. In Section 5, some numerical examples showing the h-
convergence rates for the displacement field and the result of the post-processing technique for

the recovery of the stress field convergence rates. Finally we have some concluions in Section 6.

2 THE MODEL PROBLEM

Let � in R2 an open bounded domain with piecewise Lipschitz boundary �D = ∂� of an elastic

body subjected to external force f ∈ [L2(�)]2 where �D is the Dirichlet boundary. The kine-
matical model of linear elasticity problem in two dimensions consists in finding a displacement
vector field u satisfying

− div σ (u) = f in �,

σ (u) = Dε(u) in �,

u = g on �D,

(2.1)

where σ (u) is the symmetric Cauchy stress tensor, ε(u) = 1
2 (grad u+grad uT ) is the linear strain

tensor, D is the isotropic elasticity tensor and g is a given boundary displacement.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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For linear, homogeneous and isotropic material σ (u) is given by σ (u) = Dε(u) = 2με(u) +
λ(tr ε(u))I, where tr ε(u) = div u, I is the identity tensor and λ and μ are called the Lamé
parameters which are given in terms of elasticity modulus E and Poisson ratio ν by

λ = Eν

(1 + ν)(1 − 2ν)
and μ = E

2(1 + ν)
.

Nearly incompressible materials are modeled by Poisson ratio when ν → 1/2. It is well known
that in this limit classical Galerkin FEM approximations lead to volumetric locking.

3 THE SHDG FORMULATION

In this section we present the Stabilized Hybrid Discontinuous Galerkin (SHDG) formulation for
the linear elasticity problem based in [16]. Let T h be a finite element mesh on � consisting of
triangles {K }K ∈Th , Eh = {e : e is an edge of K for all K ∈ Th} denote the set of all edges of all

elements K of the mesh Th , and E0
h = {e ∈ Eh : e is an interior edge} is the set of interior edges.

In this primal hybrid formulation the multiplier λ is identified as the trace of the displacement
field. That is, u: λ = u|e on each edge e ∈ Eh .

To construct the primal hybrid formulation we introduce the following broken function space for

the displacement field

Vk
h = {vh ∈ L2(�) : vh |K ∈ [Sk(K )]2 ∀K ∈ Th}, (3.1)

where Sk(K ) = Pk (K ) (the space of polynomial functions of degree at most k in both variables)

and for the Lagrange multiplier the discontinuous space is

Ml
h = {λ ∈ L2(Eh) : λ|e = [pl(e)]2, ∀e ∈ E0

h}, (3.2)

with polynomial functions pl(e), of degree at most l, on each edge e.

In these finite dimension spaces, the SHDG method is formulated as:

Find the pair [uh , λh] ∈ Vk
h × Ml

h such that, for all [vh, μh ] ∈ Vk
h × Ml

h∑
K ∈Th

∫
K
Dε(uh) : ε(vh)dx −

∑
K ∈Th

∫
∂K
Dε(uh )nK · (vh − μh)ds

−
∑

K ∈Th

∫
∂K
Dε(vh)nK · (uh − λh)ds

+ 2μ
∑

K ∈Th

β

∫
∂K

(uh − λh) · (vh − μh)ds

=
∑

K ∈Th

∫
K

f · vhdx, (3.3)

where the stabilization parameter β depends on the mesh parameter h. Here, we have considered

the following definition for this stabilization parameter β = β0
h , ∀e ∈ Eh with β0 > 0. The

influence of β0 on the stability and accuracy of this primal hybrid formulation is analyzed in [16]
for the compressible elasticity problem.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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4 COMPUTATIONAL IMPLEMENTATION

Considering that vh , belonging to the broken function space Vk
h , is defined independently on each

element K ∈ Th , we observe that equation (3.3) can be split into a set of local problems defined

on each element K coupled to the global problem defined on Eh , as follow:

Local problems: Find uh|K ∈ Vk
h(K ) = Vk

h |K , such that, for all vh|K ∈ Vk
h(K ),

∫
K
Dε(uh) : ε(vh)dx −

∫
∂K
Dε(uh)nK · vhds

−
∫

∂K
Dε(vh)nK · (uh − λh)ds

+ 2μ

∫
∂K

β(uh − λh) · vhds =
∫

K
f · vhdx, (4.1)

Global Problem: Find λh ∈ Ml
h , such that, for all μh ∈ Ml

h ,

∑
K ∈Th

∫
∂K
Dε(uh)nK · μhds

−
∑

K ∈Th

2μ

∫
∂K

β(uh − λh) · μhds = 0, ∀μh ∈ Ml
h . (4.2)

Given that the multiplier of the proposed hybrid formulation is identified with the trace of the
primal variable u on the element edges, for appropriate choices of β, we can always eliminate

the degrees-of-freedom of the primal variable uh at the element level in favor of the degrees-
of-freedom of the multiplier leading to a global system in the multiplier only. Note that we can
adopt any (l) order of continuous or discontinuous interpolation functions to Lagrange multiplier

λh independently of the (k) order adopted for the primal variable uh . Here, we consider only
discontinuous interpolations for the Lagrange multiplier.

4.1 Stress and displacement local post-processing

In most engineering applications, stresses are the variables of main interest. Classically, in dis-

placement finite element formulation, stresses are computed indirectly using the displacement
approximation and the constitutive equation only. With this classical approach, the stress ap-
proximation is given by

σ h = Dε(uh ) (4.3)

which converges at best with the following rates in L2 and H(div) norms:

‖σ − σ h‖L2 = ‖Dε(u) − Dε(uh)‖L2 = Chk , (4.4)

‖σ − σ h‖H(div) = Chk−1 . (4.5)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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As an improved alternative to compute stress approximations, we propose a local post-processing

consisting in solving at each element K ∈ Th the local problem:

− div σ (u) = f in K ,

Aσ (u) = ε(u) in K ,

u = λh on ∂K ,

(4.6)

in stress and displacement fields, in which A = D−1 and λh is given by the solution of the global
problem. Stress and displacement approximations [σ pp, upp] for [σ , u], solution of (4.6), are
obtained in the finite dimension spaces

W
k
h(K ) = {τi j ∈ Sk(K ), τi j = τ j i , i, j = 1, 2} (4.7)

and
Vk

h(K ) = {vi ∈ Sk(K ), i = 1, 2}, (4.8)

respectively, considering the following residual form on each element K ∈ Th .

Given λh , find [σ pp|K , upp|K ] ∈ Wk
h(K ) × Vk

h(K ), such that

app([σ pp, upp], [τh , vh]) = f pp([τ h, vh ]) ∀ [τh |K , vh|K ] ∈ Wk
h(K ) × Vk

h(K ), (4.9)

with

app([σ pp, upp], [τh , vh]) =
∫

K
Aσ pp : τhdx +

∫
K

upp · div τ hdx

+
∫

K
div σ pp · vhdx + δ

2μ

∫
K

div σ pp · div τhdx

+ 2μ

∫
∂K

β upp · vhds (4.10)

f pp([τ h , vh]) =
∫

∂K
λh · τ hnK ds − δ

2μ

∫
K

f · div τ hdx

−
∫

K
f · vhdx + 2μ

∫
∂K

β λh · vhds (4.11)

For appropriate choices of the stabilization parameters δ, we have observed the following con-
vergence rate for the post-processed stress:

‖σ − σ pp‖H(div) = Chk (4.12)

which is one order higher than that observed for ‖σ − σ h‖H(div).

5 NUMERICAL RESULTS

In this section the behavior of the proposed formulation is tested to plane-strain problem, defined

on square domain � = (0, 1) × (0, 1) with homogeneous boundary conditions, considering the
elasticity modulus E = 1 and forcing term:

f1(x, y) = [2ν(2μ + λ) − (μ + λ)] sin(πx) cos(πy), (5.1)

f2(x, y) = [2ν(2μ + λ) − (3μ + λ)] sin(πy) cos(πx). (5.2)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The approximate solutions have been obtained using triangular elements Pk − pl where k and

l denote the degree of Lagrangian polynomial space for the displacement field and the La-
grange multiplier, respectively. The post-processed stress approximations are recovered with
Lagrangian polynomials of degree k + 1. Next, we present the incompressible elasticity prob-

lem, using uniform meshes, comparing the stress approximations σpp obtained from the local
post-processing (4.9), with σh , obtained by the constitutive equation (2.1).

5.1 h-convergence of displacement field

Figures (1) and (2) present h-convergence studies for uh and λh of SHDG approximations with

equal order (l = k) in L2-norm. In these experiments, we consider the parameters β = 20 and
ν = 0.3, 0.49, 0.499, 0.4999, 0.49999 (nearly incompressible) with triangular elements, P1 − p1

in Figure (1) and P2 − p2 in Figure (2). Optimal rates of convergence are observed in L2(�)-
norm, with O(h2) to P1 − p1, and O(h3) to P2 − p2 with little loss of precision for nearly

incompressible case.
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Figure 1: h-convergence study for uh and λh of primal SHDG approximations with ν = 0.3,

0.49, 0.499, 0.4999, 0.49999.

5.2 Convergence rates for the stress tensor

Figures (3)-(6) present the convergence rates in L2 and H (div) norm for the stress tensor approxi-
mations when calculated using the constitutive equation, σh , or by the post-processing technique,
σpp, as presented in Section 4.1, respectively. In this study, we consider the parameters β = 20,

ν = 0.3, 0.49, 0.499, 0.4999, 0.49999 (nearly incompressible) and the local stabilization pa-
rameter δ = 1 for all elements K ∈ Th . We use triangular elements Pk − pk with (k = 1, 2),
adopting same order of interpolations k for displacement field and the Lagrange multiplier. For

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 2: h-convergence study for uh and λh of primal SHDG approximations with ν = 0.3,

0.49, 0.499, 0.4999, 0.49999.

the stress field, we use k+1. As expected for k = 1, σh , calculated from the constitutive equation
does not converge in H(div) norm and for k = 2 converges with order O(h1). Improved rates of
convergence O(h1), for k = 1, O(h2), for k = 2 are obtained for σpp , calculated by the proposed
post-processing technique. Convergence rates are observed for all approximations σpp, indepen-

dent of ν, using triangular elements. Same accuracies are obtained for ν = 0.49, 0.499, 0.4999,
0.49999.
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Figure 3: h-convergence for σpp and σh aproximations, in L2 norm using k + 1 = 2 and ν =
0.3, 0.49, 0.499, 0.4999, 0.49999.
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Figure 4: h-convergence for σpp and σh aproximations, in H (div) norm using k + 1 = 2 and

ν = 0.3, 0.49, 0.499, 0.4999, 0.49999.
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Figure 5: h-Convergence for σpp and σh approximations in L2 norm using k + 1 = 3 and ν =
0.3, 0.49, 0.499, 0.4999, 0.49999.

6 CONCLUDING REMARKS

We have presented a Stabilized Hybrid Discontinuous Galerkin finite element formulation for in-

compressible linear elasticity problems, based in [16]. The method was developed from a primal
hybrid formulation, with the Lagrange multiplier identified with the trace of the displacement

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 6: h-Convergence for σpp and σh approximations in H (div) norm using k + 1 = 3 and

ν = 0.3, 0.49, 0.499, 0.4999, 0.49999.

field on the edges of the elements, leading to a set of local problems defined at the element level
and a global problem in the multiplier only. The formulation preserves the main properties of the

corresponding DG method, but with reduced computational complexity. Numerical experiments
confirm the locking free ability of the method for nearly incompressible problems. Accurate
approximations and optimal rates of convergence in L2 norm are obtained for triangular ele-

ments on uniform meshes.

A local post-processing based on residual forms of the constitutive and equilibrium equations
at the element level, and using the multiplier as a kinematic boundary condition, is presented
to recover stress approximations with improved stability, accuracy and robustness. Numerical

experiments show that, compared to the standard post-processing based on the constitutive law,
it retrieves optimal convergence rates in H (div) norm and improves accuracy using triangular
elements.
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RESUMO. Neste trabalho, um método de elementos finitos hı́brido primal para o problema

de elasticidade linear quase incompressı́vel em malhas triangulares é mostrado. Este método

consiste no acomplamento de problemas de Galerkin descontı́nuos locais para a variável pri-

mal com um problema global para o multiplicador de Lagrange, o qual é identificado como

o traço do campo de deslocamento. Além disso, uma técnica de pós-processamento local é
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usada para recuperar as aproximações das tensões com melhores taxas de convergência na

norma H(div). Estudos numéricos mostram que o método é “locking free” quando é usado

ordens iguais ou diferentes para os campos de deslocamento e tensão e taxas ótimas de con-

vergência são obtidas.

Palavras-chave: elasticidade linear, método de Galerkin descontı́nuo, método hı́brido de

estabilização, locking free.
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