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ABSTRACT: An adequate mineral nutrition is essential for the development and productivity of pineapple. However, little is known about the 
nutritional and metabolic changes that occur in this crop in response to micronutrient deficiency or excess, particularly on tropical conditions. 
Thus, the objective of this study was to evaluate the application effects of micronutrients in soil and in leaf on biochemical responses of 
leaves during the development cycle of the pineapple crop. Samples were collected at 3, 6, 9, 12, and 17 months after transplantation. Leaf 
soluble carbohydrates and N-aminosoluble compounds were determined, as well as variations in the titratable acidity and pH. The soil and 
leaf micronutrient application increased the concentrations of carbohydrates and N-aminosoluble and reduced the leaf pH, and the changes 
were more significant in the last sampling (17 months after transplantation). Reductions in concentrations of carbohydrates and increase 
in the titratable acidity of the pineapple leaves collected at the end of the night were also observed, a fact that reflects the metabolism of 
Crassulacean acid metabolism species. The strategy of micronutrient application contributes positively to alter the metabolism of plants 
of pineapple cv. Victoria, especially during flowering and fruit development.
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The pineapple has always stood out in the horticulture, 
not only due to the qualities of its fruit, but also because of 
the high profitability and social importance, being an activ-
ity that requires labor-intensive in the field. Monitoring of the 
plant metabolism is important as vigorous plants with adequate 
mineral nutrition may produce a high-quality fruit (Soares 
et al. 2005, Agbangba et al. 2011).

When analyzing the photosynthetic metabolism, notably the 
cycle of carbon reduction, it was found that higher plants and algae 
developed mechanisms of CO2 concentration, which minimize 
losses related to photorespiration and enhance water use efficiency 
(Leegood 2002, Moroney and Ynalvez 2007). Crassulacean acid 
metabolism (CAM) is a striking example of convergent evolution 

that substantially improves plant water use efficiency, exceeding 
those of C4 and C3 plants by at least three and six times, respec-
tively, enabling partial or predominant uptake of CO2 at night. 
At least 343 genera in 35 plant families are known to engage this 
photosynthetic specialization (Borland et al. 2011).

Pineapple belongs to the group of CAM plants, whose 
main characteristic is to close their stomata during the day and 
open them at night in order to save water (Martín, Rius and 
Podestá, 2011). In  semiarid and arid conditions, similar to 
those of Northeast Brazil, CAM crops present comparative 
advantages, which enable them to produce food, paper, bever-
ages, and pharmaceutical extracts through consecutive seasons 
(Borland et al. 2011). Thus, pineapple is a CAM crop adapted 
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to maintain a positive carbon balance under a wide range of 
environmental stresses (Keller and Luttge 2005, José, Montes 
and Nikonova 2007).

The inadequate supply of a particular nutrient in the pine-
apple crop often results in metabolic and nutritional disorders 
that can compromise growth, yield, and fruit quality (Soares 
et al. 2005, Vieira et al. 2010). However, little is known about 
the nutritional and metabolic changes that happen in this crop 
in response to micronutrient deficiency or excess, particularly 
on tropical conditions (Siebeneichler et al. 2008, Feitosa et al. 
2011, Maeda et  al. 2011). The most important micronutri-
ents in pineapple are iron, zinc, copper, and boron (Su 1975). 
The supply of micronutrients in pineapple crop can be done 
by solid or liquid applications, the latter being the most used 
(Reinhardt and Cunha 2010). However, information that 
relates these types of micronutrient application with changes 
in metabolism during the development of this crop are rarely 
reported (Bartholomew et al. 2003). Therefore, the aim of this 
study was to evaluate the effects of soil and leaf application of 
micronutrients on leaf biochemical responses during the pine-
apple crop cycle.

The experiment was conducted from December 2008 to 
October 2010 in an irrigated area located in Marco county, at 
the Northern region of State of Ceará, Brazil (3°07’13’’S and 
40°05’13’’W). According to the Köppen’s classification, the 
climate type is Aw’ (tropical raining). The experimental area 
soil is classified as “Typic Quartzipsamment”, with a sandy 
texture and density of 1.590 kg m-3. The soil chemical char-
acteristics at 0 to 20 cm depth are: pH=5.8; EC=0.15 dS m-1; 
and 0.77, 0.30, 0.08, 0.02, and 0.75 cmolc kg-1 of Ca, Mg, K, 
Na, and Al, respectively.

The experimental design was in split plot with four levels 
of soil fertilization, four of leaf fertilization, and five sampling 
times with 90 days intervals, including five repetitions. Each 
plot consisted of four subplots, having four double rows with 
11 plants in each, and the evaluations were taken at the two 
central lines of every subplot. The experimental areas were 
mulched with bagana (the straw resulting from the extraction 
of the carnauba wax sheet) of carnauba (Copernicia prunifera).

For the soil fertilization, the commercial micronutrient 
formulation FTE-12 (9, 1.8, 0.8, 3 and 3% of Zn, B, Cu, Fe and 
Mn, respectively) was used. It was applied in the pits of each 
plot before planting at doses of 0, 60, 120, and 180 kg ha-1. The 
four levels of leaf fertilization were: LF0 (no fertilizer); LF1 
(15 leaf fertilization applications, using 1158.8, 844.7, 391.5, 
322.7, and 216.0 g ha-1 of Fe, Mn, Zn, Cu, and B, respectively); 
LF2 (15 leaf fertilization applications, using twice the quanti-
ties applied in LF1); and LF3 (15 leaf fertilization applications, 
using three times the amount in LF1).

The leaf fertilization with micronutrients was performed 
monthly, and the concentrations were defined having as reference 
the modified Murashige and Skoog (1962) nutrient solution. The 
concentrations of the salts used in the micronutrient solution for-
mulation in the first two applications are shown in Table 1. These 
initial ones were doubled in the three following usages, tripled in 
three other ones and quadrupled in the last seven. To facilitate 
uptake of micronutrients, it was used urea 2%, which was added to 
all treatments from the third to the last application. The total vol-
ume of the solution in each application was 463 L ha-1.

Macronutrients were applied to all plants via fertigation 
beginning two months after transplanting, following the same 
procedure done by producers. The total applied and the fertiliz-
ers used were as follows: 688, 797, 98, 80, 20 e 24 kg ha-1 of urea, 
K2SO4, H3PO4, NH4H2PO4, Ca(NO3)2 and MgSO4, respectively. 

Ninety days-old pineapple seedlings (Ananas comosus L. 
Merril) cv. Vitória , which is a cultivar resistent to fusariosis 
(Ventura et al. 2009), were transferred from trays to black poly-
ethylene plastic bags containing sand as substrate, with 800 g m-3 
of simple superphosphate. They were acclimated under shade 
cloth with 50% of shading for six months and irrigated twice a 
week with water (electrical conductivity of 0.44 dS m-1) during 
this period. Transplantation was performed in April 2009, when 
the plants reached about 150 mm; they were arranged in double 
rows, spaced 0.9 x 0.4 x 0.3 m, with an area of 19.2 m wide and 
44.0 m long, totaling 7,040 plants in 0.174 ha. 

The leaf samples were taken at 3, 6, 9, 12, and 17 months 
after transplantation (MAT), the first four coinciding with the 
period of vegetative growth and the fifth corresponded to 
the time of development of inflorescences, as it was done about 
a month before harvesting. In each period, two leaves “D” (the 
leaf of greater length among the youngest of pineapple) were 
taken randomly in two plants of each subplot. They were col-
lected in the late afternoon (between 4 and 5 pm) and in the 
end of the night (between 4 and 5 am). The environmental 
conditions in each sampling time are shown in Table 2.

The leaves were wrapped in foil and stored in a refrigerator 
at -20°C for about 72 hours. The frozen ones were ground in a 
mortar and whole juice from leaf tissues obtained was placed in 

Table 1. Salt concentrations (g L-1) used in the formulation of 
micronutrients solution in the first two applications for different 
treatments

Salts LF0 LF1 LF2 LF3
H3BO3 No application 0.062 0.124 0.186

CuSO4.5H2O No application 0.062 0.124 0.186

ZnSO4.7H2O No application 0.086 0.172 0.258

MnSO4.4H2O No application 0.169 0.338 0.507

FeSO4.7H2O No application 0.278 0.556 0.834
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Eppendorf tubes and immediately frozen to be used for deter-
minations of soluble carbohydrates (Dubois et al. 1956) and 
N-aminosoluble compounds (Yemm and Cocking 1955). The 
rest of the juice and the residue resulting from grinding were 
used for the measurement of pH and titratable acidity (TA). 
For these determinations, samples of 1.0 g were weighted and 

diluted with deionized water at a ratio of 1:50. The pH was 
determined by a pH meter. Then, three drops of a 1% phe-
nolphthalein solution were added for determination of TA by 
titration with 0.1 N NaOH solution (IAL 1985).

The data were submitted to analysis of variance (ANOVA), 
and the regression one was performed for data in which signif-
icant (p<0.05) effects occurred. 

The two forms of micronutrients application caused 
increases in the concentration of carbohydrates in both late 
afternoon and in the end of the night (Figure 1). Regarding the 
sampling times, it was found that the highest responses were 
obtained at 12 and 17 MAT. Furthermore, it was concluded 
that the concentrations of soluble carbohydrates at the late 
afternoon were higher than those at the end of the night, indi-
cating the consumption of carbohydrate in plant metabolism.

From the first to the last sampling time, the concentra-
tions of carbohydrates in the late afternoon, in relation to 

Table 2. Air temperature (T) and relative humidity (RH) at 5 and 
16  hours; the average temperature (TL) and relative humidity 
(RHL) of the light period; and the average temperature (TN) and 
relative humidity (RHN) at night.

Months
T16 T5 TL TN RH16 RH5 RHL RHN

(ºC) (%)
3 26.7 21.7 23.8 22.1 77 95 91.5 94.2
6 33.6 22.9 28.8 23.5 41 88 61.4 86.3
9 28.8 24.2 26.9 24.4 65 90 78.9 89.7
12 28.2 24.5 26.8 24.4 80 95 87.0 94.3
17 34.1 23.8 29.4 24.5 35 83 56.5 81.3
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Figure 1. Concentrations of soluble carbohydrates in the leaves of pineapple cv. Vitória as a function of FTE-12 (A and B) doses and 
levels of foliar fertilization (C and D) at five sampling times (3, 6, 9, 12, and 17 months after transplantation), analyzed at late afternoon 
(A and C) and at the end of the night (B and D). *p<0.05; **p<0.01.
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FTE-12 doses, ranged from 95.69 to 270.21 mM (1.8 times 
increase) at the dose of 0 and from 110.95 to 324.44 mM 
(1.9 times increase) for the treatment containing 180 kg ha-1 

FTE-12 (Figure 1A). At the end of the night, the variation was 
from 69.34 to 170.84 mM (1.5 times increase) for plants that 
were not receiving FTE-12, and from 75.73 to 190.87 mM 
(1.5 times increase) at the highest dose of this micronutrient 
formulation (Figure 1B). Similar results were observed when 
using increasing levels of leaf fertilization (Figures 1C and D).

Likewise the concentrations of soluble carbohydrates, leaf 
concentrations of N-aminosoluble compounds also showed 
increments provided by the two types of the micronutrient 
application (Figure 2), with the highest values ​​observed at 
12 and 17 MAT. The increase was linear for almost all plants, 
except for those subjected to treatment with FTE-12 at 12 and 
17 MAT in those harvested at late afternoon (Figure 2A) and to 

those taken at 3 MAT at the end of the night (Figure 2B), which 
showed quadratic behavior. 

Despite TA not be changed significantly throughout the 
crop cycle, there were increases in TA in both types of micro-
nutrient application (Figure 3), and the values​ ​at the end of 
the night were higher than those at late afternoon. The leaf 
pH values ​​found herein decreased with increasing doses of 
micronutrients applied (Figure 4). The average of leaf pH 
changed from 4.74 at late afternoon to 3.5 at the end of the 
night, noting that the oscillations in TA between nighttime 
and day time on the leaves of pineapple were consistent with 
the values ​​of pH in each period, therefore there is an inverse 
relationship between these variables.

Making up a joint analysis of variations in the concentra-
tion of carbohydrates between the end of the day and night, we 
observed that the largest differences occurred at the 12 and 17 
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Figure 2. Concentrations of N-aminosoluble compounds in leaves of pineapple cv. Vitória as a function of FTE-12 (A and B) doses and 
levels of foliar fertilization (C and D) at five sampling times (3, 6, 9, 12 and 17 months after transplantation), analyzed at late afternoon 
(A and C) and at the end of the night (B and D). *p<0.05; **p<0.01.
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MAT (Figure 5). While at the first sampling time this variation 
was 33.6 mM, it reached 116.5 mM at the last (Figure 5A). 

Analyzing the relative reductions in the concentrations of 
soluble carbohydrates (late night towards the end of the day), 
it was also observed that the largest reductions occurred at the 
last sampling time (Figure 5B); however, the differences were 
less pronounced than the changes in absolute terms (Figure 
5A). While in the first sampling time there is a reduction in 
carbohydrates concentrations of 30.9%, in the last sampling 
it reached a 38.7% value. On the other hand, variations in TA 
were relatively small throughout the crop cycle (Figures 5C 
and D). TA showed increases of over 70% during the night, 
indicating the occurrence of CAM metabolism.

The highest accumulation of carbohydrates observed at the 
last sampling (Figure 1) can be explained in part by the phys-
iological stage of plant development. During the formation of 

pineapple inflorescences, there is an increased demand for car-
bohydrate and other organic solutes. According to Carvalho 
et al. (1991), concentrations of total sugars in leaves of Smooth 
Cayenne pineapple were higher at the harvest of inflorescences.

The lowest leaf concentrations of soluble carbohydrates at 
night compared to day time (Figure 1) can be explained con-
sidering the nocturnal acidification of CAM plants (Ceuters 
et  al.  2009). According to Borland and Taybi (2004), the 
circadian clock plays a central role in controlling many of 
the metabolic, transport, and physiological components of 
CAM. The level of control exerted by the clock can range 
from transcriptional to post-translational regulation, depend-
ing on genes, proteins, and even plant species. Further con-
trol is provided by metabolites, including organic acids and 
carbohydrates, which show substantial reciprocal fluctua-
tions in content over the daily cycle.
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Figure 3. Titratable acidity (TA) in the leaves of pineapple cv. Vitória as a function of FTE-12 (A and B) doses and levels of foliar 
fertilization (C and D) at five sampling times (3, 6, 9, 12 and 17 months after transplantation), analyzed at late afternoon (A and C) and at 
the end of the night (B and D). *p<0.05; **p<0.01.
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The carbohydrate used for the synthesis of organic acids can 
vary between CAM species. While pineapple uses soluble car-
bohydrates, in most plants the starch is the source of hexoses for 
malate synthesis (Carnal and Black 1989, Cushman et al. 2008). 
Study conducted by Chen, Lin and Nose (2002) demonstrated 
in CAM plants the occurrence of increases in concentrations of 
glucose-6-phosphate, fructose-6-phosphate and glucose-1-phos-
phate at the early hours of the night and decreases at the end of 
this period. The results suggest that hexoses-P produced in gly-
colysis may be in more excess than that required to malate accu-
mulation during the first part of dark period, while the opposite 
may be the case during its latter part. These authors also found 
that the concentrations of the abovementioned three hexoses 
were higher in leaves of pineapple than in two other CAM spe-
cies: Kalanchoe daigremontiana and K. pinnata.

The highest leaf concentrations of N-aminosoluble com-
pounds at the last two sampling periods (Figure 2) may be 
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Figure 4. pH in leaves of pineapple cv. Vitória as a function of FTE-12 (A and B) doses and levels of foliar fertilization (C and D) at 
five sampling times (3, 6, 9, 12 and 17 months after transplantation), analyzed at late afternoon (A and C) and at the end of the night 
(B and D). *p<0.05; **p<0.01.

associated with reproductive stage of plants, which demand a 
larger amount of these solutes for flowering and forming inflores-
cences. Independent of the fertilizer type, the concentrations of 
N-aminosoluble compounds observed at the late afternoon were 
higher than those seen at the end of the night, mainly the ones of the 
two last samples (12 and 17 MAT). This indicates that amino acids 
can also have contributed to the production of organic acids during 
the night, using reversible reaction of Krebs cycle. N-aminosoluble 
compounds represent an important fraction of the pool of soluble 
nitrogen from leaf tissues and they are also important for maintain-
ing the pH of the cell, protecting macromolecules, and eliminating 
reactive oxygen species (Mansour 2000). In the present study, it 
was found that leaf concentrations of N-aminosoluble compounds 
(Figure 2) in pineapple plants cv. Vitória showed trends similar to 
those for concentrations of carbohydrates (Figure 1), which is an 
indication of the strong interaction between the metabolism of car-
bon and nitrogen (Huppe and Turpin 1994).
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Figure 5. Diurnal and nocturnal changes in concentrations of soluble carbohydrates (A) and titratable acidity (C) with their respective 
percentage of decrease or increase (B and D), in leaves of pineapple cv. Vitória at five sampling times (3, 6, 9, 12 and 17 months after 
transplantation).
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Changes in pH and TA between day and night (Figures 3 
and 4) reflect variations in acidity due to foliar CAM metabo-
lism, with malate being the primary organic acid associated 
with increased acidity in pineapple plants (Medina et al. 1993, 
Chen et al. 2002). Nievola et al. (2005) conducted a study with 
Smooth Cayenne pineapple seedlings under two temperature 
regimes, 28°C for 24 hours and 28/15°C day/night, and found 
an increase in TA only when there was a reduction in night tem-
perature. These authors concluded that pineapple plants acted as 
C3 ones when night temperatures remained high.

Differences in air temperature of about 5ºC between day 
and night were recorded throughout the crop cycle (Table 2), 
which may explain the increase in TA associated with CAM 
metabolism. However, it is possible the occurrence of C3 
metabolism, especially at the late afternoon, when the sup-
ply of CO2 generated by decarboxylation of organic acids, 
does not follow the demand of carbon dioxide for Calvin’s 
cycle (Borland et  al. 2011). According to Drennan and 
Nobel (2000) and Cushman (2001), when some CAM 
plants are under adequate soil moisture, the stomata can 
be opened during the day and closed at night; therefore, it 
presents metabolism similar to that of C3 plants. However, 
work conducted with three genotypes of pineapple plants 

demonstrated that they remained with the stomata closed 
most of the day, even with good water supply, and stomatal 
conductance equals to zero between 9 and 3 pm (Barreiro 
Neto et al. 2009). According to this study, the stomata began 
to open around 5 pm, stabilizing between 8 and 11:45 pm, 
with values ​​of stomatal conductance from 2.8 to 2.7 mm s-1 in 
Perola cultivar, 4.2 to 4.8 mm s-1 and 3.5 to 3.9 mm s-1 in the 
hybrid Purple of Smooth Cayenne.

The intensity of the CAM metabolism may vary with 
environmental conditions and the developmental stage of 
the plant, including low night temperatures and favoring 
CO2 absorption and organic acids production during the 
night (Nievola et al. 2005, Borland et al. 2011). In the pres-
ent study, there were no major changes in metabolism 
during the crop cycle, based on small variations in TA and 
pH between different samples (Figures 3 to 5). This con-
stancy in acidification during the night could be related, 
at least in part, to small variations in the nighttime tem-
peratures during the 17 months of observation (Table  2). 
It is noteworthy that only the TA and pH were evaluated 
and other biochemical variables, such as the activity of 
PEPCase, could help for better understanding the behavior 
of CAM metabolism over time (Nievola et al. 2005).
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Soil and leaf application of micronutrients pro-
vided increases in concentrations of carbohydrates and 
N-aminosoluble compounds and reduction in leaf pH of 
pineapple plants, in both diurnal and nocturnal evaluations. 
The effects provided by treatments with micronutrients in 
the plant metabolism studied were more significant at the 
last sampling (17 MAT), when plants required a greater 
amount of organic compounds for the final process of inflo-
rescence formation. Reductions in leaf concentrations of 
carbohydrates and increases in the acidity of leaves col-
lected at the end of the night confirm the CAM metabolism 
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