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ABSTRACT. Peru holds a high mammalian diversity in its Amazonian region, with 326 species. However, our 
knowledge about the actual diversity is still considered incomplete, and the molecular information for those 
species in genetic databases is even less comprehensive. To assess the availability of genetic information for 
Peruvian Amazonian mammals relative to known diversity, we surveyed the Amazonian mammals with at 
least one molecular marker in the most widely used repositories for nucleotide sequences, GenBank and BOLD 
Systems. Our survey focused on widely used molecular markers in evolutionary biology—cytochrome b [cyt-b], 
cytochrome oxidase I [COI], 12S ribosomal RNA [12S], and the mitogenome [mit]—derived from Peruvian 
Amazon mammals. Additionally, to gain insights into the current mammalian sampling effort in Peruvian 
Amazonia, we generated a map of unique sampling localities and a heat map, utilizing 41951 records, which 
identified six major information gaps. This comprehensive analysis found 1597 genetic sequences corresponding 
to 180 mammalian species (55.2% of Peruvian Amazonian species): COI (38 species), cyt-b (167 species), 12S 
(56 species), and mitogenome (16 species). Taxonomically, Rodentia (53 species, four markers), Chiroptera (63 
species, three markers), and Didelphimorphia (27 species, four markers) represented most molecular data, with 
a concentration of molecular markers in the orders Chiroptera (703) and Rodentia (499). Geographically, the 
Loreto department has the largest genetic information (530 records, 99 species). These results confirm a worrying 
underrepresentation of Peruvian Amazonian diversity in molecular databases. Consequently, we advocate for 
the use of scientific collections as an alternative source to systematically generate genetic information for the 
Amazonian mammal diversity in Peru to compensate for the current underrepresentation.
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INTRODUCTION

The western Amazonian subdivision of the Neotropi-
cal lowland rainforests was defined by Wallace (1854) as the 
region that extends west of the Rio Negro and Rio Madeira. 

Zoogeographically, it was recognized as a western Amazo-
nian subregion by Voss and Emmons (1996). This subregion 
is renowned for its status as a biodiversity hotspot, particu-
larly for several faunistic groups (Erwin et al. 2004, Stotz et 
al. 1996, Young et al. 2004, Ceballos and Ehrlich 2006), and 
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it stands out as the most biodiverse Amazonian subregion 
for mammals (Voss and Emmons 1996, Arévalo-Sandi et al. 
2021, Pacheco et al. 2021).

Situated below 1000 m above sea level (m.a.s.l.), 
western Amazonia has an annual rainfall of more than 
2000 mm (FAO 1988, Voss and Emmons 1996, Cavalcante 
et al. 2020). Notably, unlike other Amazonian subregions, 
it presents extensive areas of intact tropical humid forest, 
and it is likely to maintain stable climatic conditions in the 
face of global warming (Killeen et al. 2007). However, the 
region faces significant threats from anthropogenic activities, 
including human population growth, an increase in trans-
portation routes (e.g., the Interoceánica highway), illegal 
mining, and deforestation. These activities cause pollution, 
habitat destruction, and biodiversity loss, which threatens 
the sustainability of resources in the region (Fearnside 
1996, 2006, García-Dávila et al. 2014, 2015) and the survival 
of many indigenous ethnic groups, which have proven to 
contribute with the conservation of biota (Orta-Martínez 
and Finer 2010, Fernández-Llamazares et al. 2021, Villén-
Pérez et al. 2022).

The Peruvian Amazonia has an area of 661,000 km2 

(Oliveira et al. 2007) and belongs to the Selva baja ecoregion 
(sensu Brack-Egg 1986). This ecoregion, characterized by a 
tropical lowland forest ecosystem situated on the eastern 
flank of the Andes, spans across several departments, includ-
ing Loreto, Ucayali, Madre de Dios, and portions of the Ama-
zonas, Ayacucho, Cajamarca, Cusco, Huancavelica, Huánuco, 
Junín, Pasco, San Martín, and Puno (Finer et al. 2008). Also, 
this ecoregion harbors an impressive diversity of mammals, 
with 326 species equivalents to 56.50 % of the total Peruvian 
mammal species (Pacheco et al. 2021, Rengifo et al. 2022). 
Despite this substantial diversity and the pivotal ecological 
roles played by mammals in their ecosystems, their current 
diversity is still underestimated (Pacheco et al. 2021) and 
their molecular information is even less comprehensive 
(Noreña et al. 2018). This lack of information is also mir-
rored at the regional level since the diversity of mammals in 
only two departments was thoroughly analyzed: the Loreto 
department with 261 species of mammals (Diaz et al. 2021, 
Graham-Angeles et al. 2021, Sánchez-Vendizú et al. 2021) 
and the Ucayali department with 192 species (Quintana 
et al. 2009); however, the molecular information available 
for the species of mammals occurring in both departments 
were not estimated.

Biodiversity assessments and the molecular infor-
mation on species are critical to prioritizing conservation 
strategies (Karp et al. 1997, Arif and Khan 2009). In this con-

tribution, we aim to update our knowledge of the diversity of 
mammals throughout the Peruvian Amazonia by identifying 
regions with limited or no mammal records, and assessing 
the quantity of genetic information available for mammalian 
specimens collected in the Peruvian Amazonian region in 
the most used public databases, Barcode of Life Data Systems 
(BOLD) and National Center for Biotechnology Information 
(NCBI; GenBank).

MATERIAL AND METHODS

Study area

The Peruvian Amazonian region encompasses the ter-
ritory on the eastern flank of the Andes, below 1000 m.a.s.l., 
which is equivalent to the “lowland rainforest” (sensu Voss 
and Emmons 1996). The biogeographic studies have also 
divided the lowland rainforest into two ecoregions: “selva 
baja” and “sabana de palmeras” (sensu Brack-Egg 1986) or 
recently into three: “Bosque Húmedo Amazónico”, “Bosque 
Muy Húmedo Premontano”, and “Bosque Seco Oriental” 
(sensu Britto 2017). The Peruvian Amazonia contains several 
major river basins, such as the Marañón River (1414 km) and 
the Ucayali River (1771 km), which join to form the Amazo-
nas River with an extension of 713 km in Peruvian territory.

Specimen records

A preliminary mammal species list was built based on 
Gardner (2007), Pacheco et al. (2009, 2020, 2021), and Patton 
et al. (2015). The records of these species were then down-
loaded from the online databases GBIF (https://www.gbif.
org) and VERTNET (http://vertnet.org). These include data 
from the most important worldwide collections, such as the 
American Museum of Natural History, New York (AMNH); 
Field Museum of Natural History, Chicago (FMNH); Muse-
um of Vertebrate Zoology, University of California, Berkeley 
(MVZ); Museum of Natural Science, Louisiana State Univer-
sity, Baton Rouge (LSUMZ); Florida Museum of Natural His-
tory, University of Florida, Gainesville (FLMNH); University 
of Kansas Biodiversity Institute, Kansas (KU); Natural His-
tory Museum of Los Angeles County, Los Angeles (LACM); 
Museum of Comparative Zoology, Cambridge (MCZ); Muse-
um of Southwestern Biology, Albuquerque (MSB); Michigan 
State University, East Lansing (MSU); Oklahoma Museum of 
Natural History, Norman (OMNH); Royal Ontario Museum, 
Toronto (ROM); The Texas A&M Biodiversity Research and 
Teaching Collections, Texas, formerly the Texas Cooperative 
Wildlife Collection, College Station (TCWC); Museum of 
Texas Tech University, Lubbock (TTU); Museum of Zoology, 
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University of Michigan, Ann Arbor (UMMZ); and the Na-
tional Museum of Natural History, Washington (USNM). A 
major source of information was the mammalian collection 
of the Museo de Historia Natural, Universidad Nacional 
Mayor de San Marcos, Lima (MUSM). The nomenclature 
was updated based Pacheco et al. (2020, 2021) and recent 
literature. Geographic coordinates, elevation, and locality 
data were verified using gazetteers in Gardner et al. (2007), 
Patton et al. (2015), Diaz et al. (2021), Graham-Angeles et 
al. (2021), and Sánchez-Vendizú et al. (2021). These data are 
contained in Supplementary File 1.

To gain a comprehensive understanding of mammal 
sampling area throughout the Peruvian Amazonia, we 
compiled a dataset encompassing all available mammalian 
records in these collections (Supplementary File 1). This 
dataset was used to prepare two maps. The first map shows 
a representation of unique localities (each record with dif-
ferent geographic coordinates) over the three ecoregions 
(sensu Britto 2017): Bosque Húmedo Amazónico (BHA), 
Bosque Muy Húmedo Pre-Montano (BMHP), and Bosque 
Seco Oriental (BSO). The second map (heat map), elaborated 
using the Kernel density method with 3 km cells and a 25 
km ratio, shows the areas with the largest concentration of 
collection records and those with gaps of information (i.e., 
areas with none or less than 1% of all records). Maps were 
built with ArcMap v.10.3. In addition, we scaled the availabil-
ity of records and unique localities per ecoregion, estimating 
the effort per area (1000 km2) in each case. Analyses were 
performed in ArcMap v.10.3.

Molecular data

The search in GenBank was carried out in the Nu-
cleotide database of NCBI (https://www.ncbi.nlm.nih.gov/
nuccore) using the advanced mode search tool, with the com-
mand (((genus) AND species) AND molecular marker). After 
entering the command, we carried out a manual search, 
looking for records from Peru. Because this geographic in-
formation is sometimes missing, we checked in the metadata 
for the catalogue number, the title of the journal article, or 
any other information that would indicate that the sequence 
was generated from a specimen collected in Peru. When a 
catalog number was available, we searched the online data-
base of the corresponding museum; and for journal articles, 
the accession number of GenBank was searched within the 
article or the supplementary information if needed. The 
search in BOLD (http://www.boldsystems.org) was carried 
out looking for “scientific name” + Peru using the search tool. 
The molecular markers assessed were cytochrome b (cyt-b), 

cytochrome oxidase I (COI), 12S ribosomal RNA (12S), and 
the mitochondrial genome (mit). The search process was 
done until the end of August 2023. Valid records were in-
terpreted as those with current scientific names, synonyms, 
and geographic data. Records obtained were sorted in a main 
database as follows: order>family>genus>species. A list of 
Amazonian mammalian species with records of nucleotide 
sequences per department and type of marker is presented 
in Supplementary File 2, that include recent taxonomic 
changes (Silva et al. 2022, Cláudio et al. 2023, Sandoval et al. 
2024). Moreover, a list of threatened and endemic Peruvian 
species from Amazonia was built, based on the Servicio 
Nacional Forestal y de Fauna Silvestre (SERFOR 2018), 
describing whether or not they have genetic information.

RESULTS

We assembled a comprehensive dataset of 41,951 mam-
malian records from 1237 unique localities for 326 species 
from the Peruvian Amazonia (Fig. 1A, Supplementary File 
1). Our data showed that the Bosque Húmedo Amazónico 
(BHA) and the Bosque Muy Húmedo Pre-Montano (BMHP) 
comprised most mammalian records with 65.7 and 43.2 re-
cords per 1000 km2, respectively (Fig 1A, Table 1), whereas 
only 8.8 records per 1000 km2 come from the Bosque Seco 
Oriental (BSO) (Table 1). However, estimates of the number 
of unique localities per 1000 km2 showed that the BSO (the 
smallest area) has the same number of unique localities sam-
pled per area (1.9) as the BHA (the largest area), whereas the 
BMHP has only 1.2 unique localities per 1000 km2 (Table 1).

The heat map showed several areas with none or 
less than 1% of mammalian records, which are considered 
major information gaps (Fig. 1B). These critical regions 
include: 1) Putumayo area; 2) northern Marañón area; 3) 
Marañón-Ucayali interfluvial area; 4) Yavarí-Ucayali interflu-
vial area; and 5) Ucayali and Madre de Dios area. The first 
four critical areas are mostly in the Loreto department, and 
the Ucayali and Madre de Dios area is in the Ucayali and 
Madre de Dios departments. All these critical areas are in 
remote areas relatively far from large cities. For example, 
area 5 is about 250 km from Puerto Maldonado, and area 1 
is about 400 km from Iquitos.

The molecular search in GenBank or BOLD recovered 
1597 DNA sequences (genes and mitochondrial genomes), 
which correspond to 180 of the 326 species of Peruvian 
Amazonian mammals (55.21%) (Supplementary Files 2–4). 
The orders Chiroptera (n = 703 sequences) and Rodentia 
(n = 499) had the largest number of DNA sequences, where-
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as no genetic data is available for Sirenia and Cingulata 
(Fig. 2A, Supplementary File 4). The orders Chiroptera and 
Rodentia had the largest number of species with sequence 
data (63 and 53 species, respectively), whereas the orders 
Pilosa (2), Lagomorpha (1), and Perissodactyla (1) showed 
the lowest number of species with sequence data (Fig. 2A, 

Supplementary File 4). The orders Artiodactyla, Didelphi-
morphia, Perissodactyla, Pilosa, and Rodentia have species 
with nucleotide sequences for all the molecular markers 
assessed in this study (12S, COI, cyt-b, and mit). The orders 
Primates and Chiroptera included species with sequences 
for three molecular markers (12S, COI, and cyt-b), Carnivora 

Figure 1. (A) Distribution map of unique localities sampled for mammals over the Peruvian Amazon ecoregions sensu Britto 
(2017). (B) Heat map of the Peruvian Amazonian region showing record densities of mammals available in collections. The 
red ellipses highlight major information gaps identified: 1) Putumayo area, 2) northern Marañón area, 3) Marañón-Ucayali 
interfluvial area, 4) Yavarí-Ucayali interfluvial area, 5) Ucayali and Madre de Dios area.

Table 1. Number of records and unique record localities for mammalian specimens from the Peruvian Amazonia by ecore-
gions sensu Britto (2017).

Ecoregion Area (km2) Number of records Records / 1000 km2 Number of unique localities Unique localities / 1000 km2

Bosque húmedo amazónico 540288.1 35490 65.7 1049 1.9

Bosque muy húmedo premontano 148947.8 6428 43.2 181 1.2

Bosque seco oriental 3731.5 33 8.8 7 1.9

Total 41951 1237

A B
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diversity was represented with two molecular markers (cyt-b 
and 12S) and Lagomorpha with only one molecular marker 
(Fig. 2B, Supplementary File 4).

Cytochrome b (cyt-b) was the molecular marker with 
the highest number of records (1411 records for 167 species), 
whereas the complete mitochondrial genome was the less 
frequent (23 for 16 species) (Table 2, Supplementary Files 
3, 4). The markers 12S and COI are represented by 70 (56 
species) and 93 sequences (38 species), respectively (Table 2, 
Supplementary Files 3, 4). By order, the cyt-b had the highest 
frequency in Chiroptera (623 sequences for 54 species) and 

Rodentia (437 sequences for 52 species), whereas the lowest 
number of cyt-b sequences was recorded for Artiodactyla (6 
sequences for 5 species) (Fig. 2B, Supplementary Files 3, 4).

The COI marker had the highest frequency in Chirop-
tera (56 sequences for 18 species) and the lowest in Perisso-
dactyla (1) and Didelphimorphia (1). The molecular marker 
12S registered the largest number of species in Rodentia (27 
sequences for 19 species) and Chiroptera (24 sequences for 
21 species), whereas Perissodactyla, Lagomorpha, and Pilosa 
had only one sequence each. The highest number of mitoge
nomes were found in Rodentia (17 in 10 species), whereas 

Figure 2. (A) Number of species per order of Peruvian Amazonia mammals and nucleotide sequences availability. (B) Num-
ber of nucleotide sequences per molecular marker and taxonomic order.

A

B
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Didelphimorphia, Pilosa, and Perissodactyla had only one 
mitogenome each (Fig. 2B; Supplementary Files 3, 4).

At the family level, Cervidae, Tayassuidae, Didelphi-
dae, Tapiridae, Bradypodidae, Cuniculidae, Echimyidae, and 
Sciuridae had species with nucleotide sequences for all the 
molecular markers assessed, whereas Felidae, Procyonidae, 
Atelidae, Pitheciidae, and Dasyproctidae had sequences only 
for cyt-b. The family Choloepodidae had sequences only for 
COI. The families Furipteridae, Leporidae, and Dinomyidae 
had sequences only for the marker 12S (Supplementary File 3).

Loreto is the department with the largest number of 
species with at least one molecular marker (99), followed 
by Cusco (56) and Madre de Dios (52) departments, whereas 
Ayacucho (3), and Pasco (3) departments have the lowest 
number of species (Table 3). Loreto is also the department 
with the highest number of sequences (530), followed by 
Cusco (141), and Madre de Dios (135), whereas Ayacucho and 
Pasco departments have the lowest number of sequences (3 
and 6, respectively) (Table 2).

According to SERFOR (2018), 22 Peruvian Amazonian 
species of mammals are considered threatened, and 11 of 
them are not represented by any molecular data obtained 
from Peruvian Amazonian specimens. With regard to ende-
mism, 3 of the 5 known endemic species are not represented 
by any molecular data (Table 4).

DISCUSSION

Peru is renowned for hosting an impressive array of 
mammalian species (579 species) and is the country with the 
highest mammalian diversity in western Amazonia (326 spe-
cies) (Pacheco et al. 2021, Rengifo et al. 2022). However, here 
we show that significant information gaps persist in at least five 
under-sampled areas across the Peruvian Amazonia (Fig. 1B). 
These areas situated at considerable distances from major cit-
ies, pose significant challenges to comprehensive sampling due 
to the extraordinary effort and costs required for access (Mena 
et al. 2021). Our identified information gaps align with previous 
analyses conducted for the Loreto and Ucayali departments 
by Quintana et al. (2009), Diaz et al. (2021), Graham-Angeles 
et al. (2021), and Sánchez-Vendizú et al. (2021). Among these 
areas, the Northern Marañón, the Marañón-Ucayali, and the 
Madre de Dios areas are of the greatest concern because very 
few or no records document their diversity.

The number of available sequences of Amazonian 
mammalian species deposited in genetic databases generat-
ed from Peruvian specimens (1597 DNA sequences for 180 
species) clearly is not representing the hyper diverse status 

recognized for the Peruvian Amazonia (326 species). This 
under representation can be attributed to various factors, 
including the inaccessibility of remote regions for specimen 
collection, resource limitations in generating genetic data 
within regional laboratories, scarcity of accessible laborato-
ries, or legal restrictions on genetic data access (Aguilar et 
al. 2010, Pacheco et al. 2021).

Our data is also consistent with earlier genetic assess-
ments emphasizing the scant representation of Peruvian 
mammalian species in genetic databases. Rojas et al. (2018) 
found that for all sequences of vertebrates available for the 

Table 2. Number of nucleotide sequences available for mam-
malian species from Peruvian Amazon listed by molecular 
marker and department.

Department 12S COI cyt-b mit Total

Amazonas 11 7 61 5 84

Ayacucho 0 0 3 0 3

Cajamarca 0 0 17 0 17

Cusco 15 7 119 0 141

Huánuco 1 5 60 0 66

Junín 0 0 12 0 12

Loreto 26 45 449 10 530

Madre de Dios 8 10 113 4 135

Pasco 0 0 6 0 6

Puno 1 1 13 1 16

San Martín 0 0 38 0 38

Ucayali 2 4 17 0 23

No locality 6 14 503 3 526

Total 70 93 1411 23 1597

Table 3. Number of mammalian species from the Peruvian 
Amazonia with nucleotide sequences available, arranged by 
molecular marker and department.

Department 12S COI cyt-b mit Sequenced species

Amazonas 10 6 33 4 39

Ayacucho 0 0 3 0 3

Cajamarca 0 0 7 0 7

Cusco 15 5 46 0 56

Huánuco 1 4 22 0 23

Junín 0 0 7 0 7

Loreto 23 17 88 7 99

Madre de Dios 7 7 49 3 52

Pasco 0 0 3 0 3

Puno 1 1 5 1 5

San Martín 0 0 12 0 12

Ucayali 2 4 8 0 12

No information 5 4 18 3 19

Total 64 48 301 18
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Loreto department, only 8.92% corresponded to mammals. 
On a different scale, Noreña et al. (2018) estimated that 
only 1.13 % of the Peruvian mammals are represented with 
genetic sequences in GenBank and only 13 records in BOLD 
System. We then posit that the low representation of Peruvi-
an biodiversity in genetic databases is of great concern. This 
becomes even more critical when considering nuclear data, 
which are generated in lower proportion than mitochondrial 
data. For example, only six new species of sigmodontine 
rodents described in the last decade have included nuclear 
data (Dalapicolla and Percequillo 2020).

The genetic marker most frequently employed for Am-
azonian mammals varied by taxonomic group. For example, 
cyt-b was largely the most frequent molecular marker for 
rodents and marsupials, likely due to the marker reliability 
in phylogenetic reconstructions and molecular identification 
at the species level (Graybeal 1993, Bradley and Baker 2001, 
Tobe et al. 2010). Whereas the marker COI was preferred 
for genetic identification of bats (Clare et al. 2011) due to 
the development of the Barcoding project and the BOLD 
system platform (Hebert et al. 2013). On the other hand, 
the low representation of mitogenomic sequences is likely a 
methodological constraint. Mitogenomes for mammals are 
on average ~18 to 20kb in size (Rand 1993) and are generally 

assembled either by whole genome sequencing (WGS) with 
genome skimming (Trevisan et al. 2019, Janiak et al. 2022), or 
by tiling PCRs where genomes are assembled in many pieces 
(Schenk et al. 2017, Totawa et al. 2020). WGS methods require 
high quality samples with unfragmented DNA, which are 
not easily available, and both methods require access to 
high throughput sequencing (HTS) capabilities. Although 
HTS has resulted in ways to generate full mitogenomes at 
low cost by multiplexing, the technology itself is not widely 
distributed globally (Watsa et al. 2020a, Urban et al. 2023), 
and difficult to access within Peru (Carrillo-Larco et al. 2022). 
Fortunately, the 17 mitogenomes generated for rodents show 
the transition to the Genomic era in rodent systematic as 
pointed out by Lessa et al. (2014) and D’Elía et al. (2019).

Regarding taxonomic level, our data showed the 
disproportion of genetic data available among taxonomic 
orders. The orders Chiroptera and Rodentia comprised the 
largest amount of genetic data (1202 sequences). Although 
these are the two most diverse orders in Peru (Pacheco et 
al. 2021), the genetic data represented only the 44.4% and 
79.1% of their species present in Peruvian Amazonia, respec-
tively. On the other hand, medium-size or large charismatic 
species such as primates and carnivores had comparatively 
little genetic data (only 235 sequences for only 64 species). 

Table 4. Threatened species of mammals from the Peruvian Amazonia according to SERFOR (2018), including information 
on endemism (E) and nucleotide sequences availability in genetic repositories. None = Lack of nucleotide sequences).

Order Family Species Threat category Endemic Nucleotide sequences in repositories

Artiodactyla Cervidae Blastocerus dichotomus VU None

Carnivora Canidae Atelocynus microtis VU None

Carnivora Mustelidae Pteronura brasiliensis EN GenBank

Chiroptera Phyllostomidae Vampyressa melissa VU GenBank

Cingulata Chlamyphoridae Priodontes maximus VU None

Didelphimorphia Didelphidae Marmosa andersoni EN E GenBank

Pilosa Myrmecophagidae Myrmecophaga tridactyla VU None

Primates Atelidae Alouatta seniculus VU GenBank

Primates Cebidae Aotus miconax VU E None

Primates Atelidae Ateles belzebuth EN GenBank

Primates Atelidae Ateles chamek EN GenBank

Primates Pitheciidae Cacajao calvus VU GenBank

Primates Pitheciidae Callicebus lucifer VU GenBank

Primates Pitheciidae Callicebus oenanthe CR E None

Primates Cebidae Callimico goeldii VU None

Primates Atelidae Lagothrix lagothricha EN None

Primates Cebidae Saguinus labiatus EN None

Primates Cebidae Saguinus tripartitus VU GenBank

Rodentia Dinomyidae Dinomys branickii VU GenBank

Rodentia Cricetidae Neusticomys peruviensis VU E GenBank

Rodentia Cricetidae Rhipidomys modicus VU E None

Sirenia Trichechidae Trichechus inunguis VU None

Molecular gap of Peruvian Amazonian mammals
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Apparently, there is still the perception that medium-size or 
large mammals lack taxonomic problems; therefore, studies 
of genetic structure and genetic variability have not been 
developed with similar intensity as in small rodents, bats, or 
marsupials. Recent publications on the felid genus Leopardus 
(Nascimento et al. 2021) and the howler monkeys of the 
genus Alouatta (Ruiz-García et al. 2017) that have analyzed 
the phylogeographic structure of these taxa have resulted 
in taxonomic changes. Also, the difficulty in obtaining col-
lecting permits for large species is a deterrent for scientific 
research (Gannon et al. 2007). Fortunately, non-invasive 
methods are now available to obtain genetic material, such 
as from hair, saliva, blood (Waits and Petkau 2005, Henry 
et al. 2011, Flagstad et al. 2012, Ferreira et al. 2018, Aylward 
et al. 2022), which help to partially overcome the need of 
collecting medium size or large mammals. However, vouch-
ers and associated information are desirable by museum 
collections, when possible, to carry on research that could 
be impossible or difficult without whole-organism specimen 
such as the discovery and description of new species, the 
origins and spread of infectious diseases among other topics 
(Bakker et al. 2020, Thompson et al. 2021, Johnson et al. 2023, 
Nachman et al. 2023).

From the conservation point of view, it is of great 
concern the lack of genetic information in three Amazo-
nian endemic species and 11 threatened species according 
to SERFOR (Table 4). We raise awareness of these concerns 
and call for an urgent program to study these important 
species. Several of these endemic and threatened species are 
difficult to find or collect because rareness, secretive habits 
or restricted by the Peruvian legislation, obtaining tissue 
samples from museum specimens is an alternative, since 
scientific collections are currently recognized as an import-
ant museomic resource (Gauthier et al. 2020, Jin et al. 2020, 
Castañeda-Rico et al. 2022, Fong et al. 2023). For example, 
several genes and mitogenomes have been obtained from 
Amazonian species from Peruvian scientific collections (e.g., 
Abreu-Jr et al. 2020, Ruelas and Pacheco 2022, Pacheco and 
Ruelas 2023). Museum collections have become an import-
ant and diverse genetic resource that can help fill the genetic 
information gaps of species for conservation, systematic, or 
economic purposes (Watsa et al. 2020b, Mulcahy et al. 2022).

We also found that our results for the Loreto depart-
ment (99 species with 530 sequences) are higher than the 
34 species and 175 sequences reported by Rojas et al. (2018), 
although this difference could be due to the search tool 
employed. Rojas et al. (2018) used a data mining algorithm 
implemented in the Rentrez package for R (Winter 2017), 

whereas our data was constructed using an exhaustive 
approach, analyzing species by species in the molecular 
repositories. Our data showed that the Rentrez algorithm 
in Rojas et al. (2018) recovered only 34.34 % of the genetic 
sequences available, mainly because some sequences on 
repositories have incomplete data. For example, if a se-
quence missed the word “Peru” it will never be recovered by 
informatic methods. Exhaustive search, species by species, 
although laborious, recovered 65.66 % more information 
than the Rentrez package. Therefore, we strongly suggest 
the researchers include complete geographic data of locali-
ties in GenBank and linked to the complete information of 
the museum or collection where the record was taken, as 
is currently done in BOLD System. The BOLD is a platform 
specifically built to work with biodiversity data (Hebert et 
al. 2013) and let to make updates since taxonomic changes 
could happens in the light of more genetic, morphological, 
or ecological information.

Our findings underscore a significant gap in the repre-
sentation of genetic information for the Peruvian Amazonia, 
indicating a lag behind contemporary research standards. 
The inclusion of molecular data from Peruvian Amazonia, 
in an integral approach with non-molecular data, could help 
to resolve the systematic status of several species complex 
(Sanchez-Vendizú et al. 2018, Velazco and Patterson 2019, 
Ruelas and Pacheco 2022). Moreover, what we know of the 
diversity of mammals in the Peruvian Amazonia remains 
notably incomplete. With only a fraction of the Peruvian 
Amazonian species documented in genetic databases, it 
is imperative to undertake swift and comprehensive mea-
sures. Urgent initiatives, expanded inventories, enhanced 
scientific collections and laboratories, and collaboration 
with government entities are essential to safeguard these 
species from extinction.
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