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ABSTRACT. This paper is based on a practical project jointly conducted by a major trucking company
and a renowned operations research consulting firm. It studies a large-scale, real-time truckload pickup and
delivery problem. A number of cost factors are carefully measured such as loaded/empty travel distance,
travel time, crew labor, equipment rental or operational cost, and revenue for completing the movements.
This paper proposes a generalized decomposition algorithm that is capable of considering sophisticated
business rules. The goal is to recommend executable and efficient truck routing decisions to minimize
operating costs. Numerical tests are conducted with operational data from J.B.HUNT. A fleet of 5,000
trucks is considered in this experiment. The test result not only shows significant cost savings but also
demonstrates computational efficiency for real-time application.

Keywords: Truck routing, decomposition algorithm, column generation.

1 INTRODUCTION

Research on vehicle routing has seen wide applications in the transportation industry such as
truck, railway, airline and pipeline, which saves on costs while covers more demands. The ob-
jective is to improve the fleet operational efficiency. This research is important within the con-
text of increasingly automated (or computerized) systems to support decision making for the
routing/scheduling routines. It can be easily extended to solving other problems that may look
seemingly different, but belong to the same family of NP-completeness (Li et al., 2010, 2012 and
2014). The social economic impact of this problem cannot be overestimated. In the past century,
especially during the last 60 years, numerous research efforts have been made specially to solve
the trucking industry’s routing problems.
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The main contribution of this paper is to introduce a decomposition algorithm based on a practical
project. The goal is to recommend executable and efficient truck routing decisions to minimize
operating costs. Numerical tests are conducted with operational data from J.B.HUNT. The test
result not only shows significant cost savings but also demonstrates computational efficiency for
real-time application.

Within the company, a fleet of vehicles are to be scheduled and routed to serve a known set of
loads, and each load is considered as a full truckload with an origin and a destination (OD) asso-
ciated with time window constraints for pickup and delivery. There are a finite number of drivers
(or, crew in general) available to be assigned. Each driver has to return home within a period of
14 days according to the company rule as well as union regulation to retain drivers (for example,
maximum consecutive hours of driving). A route consists of a sequence of moves to be fulfilled
by a single vehicle. A typical route needs to have a starting location the same as termination
location, which makes a tour to the associated vehicle. Depending on the service type, certain
vehicles or drivers may not be eligible. For example, Dedicated Contract Service is a service
primarily utilizes semi-trailer trucks to transport cargo across the country; Intermodal Service
partners with railways, commercial airlines or port authorities to move containers. Furthermore,
once the drivers are committed to certain loads, diversion is typically not allowed with the ex-
ception from management approval. For the convenient purpose, this study does not consider
diversion in the problem formulation and presentation.

The primary objective is to minimize the operation cost. In addition to cost of labor, other ma-
jor costs include fuel rate, travel distance, equipment rental and length of operation. Revenue
from serving each load can be considered as a positive profit or negative cost whenever a load
is covered or service is completed. Empty truck moves and empty driver moves (also called
deadhead moves) do not generate revenue, thus are only considered costs to the company. It
is expected that the developed algorithm is built into a decision making system to recommend
routings automatically.

2 LITERATURE REVIEW

In contrast to the less-than-truckload where each vehicle carries multiple customer demands,
truckload only allows a truck to serve a single customer demand each time. An example route
of a vehicle starts from depot (or source), loads goods at a factory or warehouse, moves to the
load destination facility, unloads the load before goes to another loading location and repeats the
same truckload movement. In the end, the vehicle returns to the depot (Labadie & Prins, 2012).
This is a typical vehicle routing/scheduling problem in literature.

There is a tremendous literature dealing with mathematical modeling of vehicle routing prob-
lems (VRPs), all of which imply that it is impossible to enumerate exhaustively all the possible
routes for the vehicles. Earlier efforts to solving VRPs are summarized in extensive reviews as
Desrochers et al. (1990) and Solomon (1987). Bramel et al. (1992, 1994) presented some prob-
abilistic analyses of earlier heuristics for the deterministic version of the problem. Later, VRPs
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with stochastic features drew more and more attention from the research community. These fea-
tures included but were not limited to stochastic load distributions (Golden & Stewart, 1978;
Stewart & Golden, 1983; and Bastian & Rinnooy Kan, 1992), stochastic travel time (Cook &
Russell, 1978; and Berman & Simchi-Levi, 1989), or stochastic locations (Laporte et al., 1994;
and Bertsimas & Howell, 1993). As the information technologies came into play, recent real-
time and dynamic VRP problems became increasingly important (Yang et al., 2004). Powell et
al. (1995) presented a survey of dynamic fleet optimizations dealing with some general issues.
Later work of Powell et al. (2000) developed a practical model to consider dynamic assignment
of drivers to known demands, which provided significant insights to our study problem here.
Re-optimization policies are further introduced and tested in Yang, et al. (1998). The most recent
reviews summarizing the state-of-art techniques are available in Laporte et al. (2013), Derigs et
al. (2013), and Braekers et al. (2016).

Published articles on implementation, however, are less popular compared with the counterpart
on theoretical studies. When it comes to practical VRP projects, people often look for details
about how algorithms are developed and implemented. This paper is originated from industry
projects within a major trucking company and focuses on proven practical techniques. Imple-
mentation details are revealed so that the readers can have a better understanding of the business
logic. It aims at utilizing a combined optimization method and advanced information technology
to develop a real-time dispatching system. The computational time invested in searching for bet-
ter decisions in terms of shorter routes and more revenue should be cautiously balanced with the
needs of coming up with a decision in a timely manner.

3 SOLUTION APPROACH

This decision support system requires a list of components to function properly. Information
is updated via continuous data feed, stored in a centralized data warehouse. Forecast mod-
ule provides projections on the existing truck moves and the estimation on the future demand.
Prepossessing module turns the raw data into the format that are favored by the optimizer. Opti-
mization component is the core module that handles the mathematical formulation and sophisti-
cated algorithm.

3.1 Information Updating

Although the information arrives all the time, it is not required to run optimizer over the entire
fleet all the time. Actually, there are two types of optimization jobs. First type of job is for plan-
ning purpose and runs daily. This is normally offline and is scheduled to run overnight or at
meal breaks, so that the results are immediately available to dispatchers when they start work
or resume work. Second type of job is for real-time optimization. This type of job only consid-
ers a smaller set of the fleet because most vehicles are already committed to their loads/route
and do not need re-optimization. This is normally triggered from managing team whenever
there is a need.
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3.2 Forecast Engine

Certain loads are visible before they become available for pickup. For example, the containers can
be moved by trains with a projected arrival time at the pickup location. The forecast engine would
gather the information from partnered carriers to make reasonable projections on the availability
of their own loads. This helps the optimization engine to look beyond the current demands and
make informed decision for the immediate future. Beyond the visible horizon, long term forecast
is also necessary to plan ahead in terms of fleet sizing and infrastructure change at strategic level.

3.3 Preprocessing

The preprocessor needs to selectively package the raw data into the network format that the
downstream optimizer requires. The basic elements in this network are link (edge) and node
(vertex), which are explained in section 5. Examining the feasibility of the links can reduce the
burden on the optimizer. For example, it needs to filter out an infeasible link that tries to merry
a wrong type of truck to a load. Each node represents an activity such as getting a truck, load
or unload. After excluding infeasible links, certain business rules will further reduce the number
of links by checking the distance, time or any other resource consumed between two nodes. If
certain link violates resource limit, then this link is also excluded. The ultimate goal here is to
allow the optimization module find reliable routes through the network easily.

3.4 Optimization Strategy

Due to the complicated resource constraints and business rules, it is inconvenient to formulate
this truck routing problem into a network flow model. The alternative approach is to apply parti-
tion or set-covering model, where the objective function minimizes the combined cost of routes
being selected.

An obvious difficulty here is the attempt to explicitly enumerate all the feasible routes, which
are typically required in a partition model. Given the total number of loads and available drivers/
trucks, the number of combination is extremely large and increases exponentially with the prob-
lem size. Additionally, the business rules are not easy to formulate, such as the maximum hours
each driver can take in a tour. Each tour must start and end at driver’s home terminal, and there
are specified time windows for pickup and delivery. Here we propose a decomposition method
to bypass the necessity of evaluating all possible combinations. During the iteration process, a
master problem picks the best set of routes to minimize the total cost and price each load in terms
of dual variables for the subproblem. The subproblem then updates the network and generates
better routes for master problem to consider with. A schema that describes the entire framework
of this column generation procedure is presented below in Figure 1. Here in this problem, one
can assume that a column refers to a route.
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Figure 1 — Dependency Diagram and Flow Chart.
4 MASTER PROBLEM FORMULATION

Minimize Z cjxj
jeu
subject to:
Z 8;)61' =1 VieN, dual 7;
jeu
x;j=0,1 Vje

where:
xj  decision variable, 1 if route j is selected, 0 otherwise

Qi the set of routes in the k-th iteration of the column generation procedure
c;j  the cost associated with route j (operating cost — load revenue)

N the set of loads

8ij if route j covers load 7, 0 otherwise

mr;  dual associated i-th constraint (for load i)

(1

2

3)

The objective is to minimize the total cost to cover a known set of load demands. The revenue

generated from moving a load is considered a negative cost when building the routes, and it

usually causes the total route cost to be negative, otherwise the route would not be profitable.

Equation (2) requires all the load movement to be assigned exactly once. Each load has a dual

value 7r; associated with it, which is the shadow price the load given the current master problem.
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It is important to note that during the iteration, the master problem is solved as linear program-
ming relaxation to get dual values. The side constraints are conditional and are not formulated

> xj <DR

JEQk

into the master. For example:

Although the company prefers its own salaried drivers over the contracted drivers due to the
lowered operating cost. DR is the total number of both. When the total number of routes being
selected exceeds limit DR, it is intuitive to sort the route costs in an ascending order to pick
the first DR. The uncovered loads can be either rejected or outsourced. This is to facilitate the
construction of the subproblem, where all the dual values associated with Eq. (2) are utilized to
reflect what master problem desires.

5 CONSTRAINED SHORTEST PATH SUBPROBLEM

Our subproblem tries to find an optimal path go through network G that does not consume more
than limited resources, such as time window, duration of path, distance, etc. Because of the
additional constraints applied to the path, the subproblem is therefore a Constrained Shortest
Path Problem (CSPP). A path here represents a truck route in reality.

5.1 Subproblem Formulation

Minimize Z (cij — T;j)Xij
(i.j)eA
where
x;j  are the decision variables, 1 if node i is followed by node j, 0 otherwise
¢ij  the cost to proceed from node i to node j
A the set of eligible connections, link (i, j) € A
mj  dual associated j-th constraint (for load j)

The construction of the subproblem is essential to the usefulness of the generated routes and
the overall solution time. A route is a collection of links that are connected by nodes, it is also
referred as a path through network. Since it has a single objective function to generate the most
profitable route, different cost elements need to be normalized within the network. For example,
the overall cost on link i to j is based on the load/empty factor, distance (i, j), the revenue
of moving load j, and dual 7; for load j. Given the same distance, an empty-truck move has
a baseline cost and zero revenue. A loaded-truck move may double the baseline cost but gain
revenue. The changing value of 77; is passed from master problem to adapt to the current need.

Each route begins from the source S and ends at sink 7. In most cases, the source and sink
are the same physical location but have different time windows. This is due to the business rule
that the driver has to return to home terminal when the route is completed. Starting from source
S, each route has to connect to an artificial node where a driver is “picked up”. Assigning a
reasonable setup cost for such a node would encourage the model to minimize the total number
of routes/drivers used.
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Other resource constraints include (1) the maximum duration of each route, which is limited to
14 days; (2) the maximum combined travel distance for each route; (3) the time window for
the load, which represents the earliest and latest time to pick up or deliver. In order to solve
this multiple resource constrained shortest path problem with time windows, a specialized Label
Setting Algorithm is applied.

5.2 The Algorithm for Shortest Path with Resource Constraints

Let (D}, Cix) and (D;.‘k, Cji) be the labels representing two different paths to node k. Then the
first label dominates the latter, if and only if (D}, Cix) — (D%, Cjx) = (0, 0). The first label is

Jjk>
smaller than the latter, i.e., (D}, Cik)é(D;.‘k, Cjk), if and only if (D}, Cix) # (D;.‘k, Cjk), and
the first non-null element of ((D};, Cix) — (D;-‘k, Cjx))is positive. A label (D}, Cy) is efficient

if none of the labels at node k can dominate it. The path corresponding to an efficient label is
defined as an efficient path. Only efficient labels and paths are kept.

Let Qy be the set of labels associated with the cost lower bound of path ending at node k € V,
and Py be the set of labels associated with feasible paths. The Py defines the primal function.
The primal function provides an upper bound on the cost of efficient solutions at node k. When
primal and dual functions have same value for a given stage, the labels in P and Q are associated
to an efficient path for the current stage.

Then the algorithm used to solve the subproblem is presented as follows:
Step 1. (Initialization).

Ps = (0,0,...,0), 05 = (0,0,...,0), , = @ (empty), Qi = (a},a?,...,ak, —0c0),
ieV-S

Find (d¥, c;) = minlex {(di’"j, cij)}, foreachnode j e V—S. 0= |J (Q)).
(i,j)€A jev—s

Step 2. (Calculation of the lexicographically smallest label in O).

If O = @, stop; [The current label(s) at the sink node T is (are) the shortest path(s)]. Otherwise,

find the lexicographically smallest label F(0) = minlex {(D*, C;)} = (DY, C)).
(D5,cppeo /

Step 3. (Look for a label (D*/, Cr) € B(O) to be treated).

B(O) = (Dk, Ck) € O|F(O)Z(Dk, Ck)ZF(O) + (dk, Ck).
Step 4. (Uncertainty zone).
Define the uncertainty zone for node k:

L .
TRy = minlex by, D{|(D{, Cx) € P and Dy Dy
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Step 5. (Replacement of the label (D;‘/, Cj).
(A) Calculation of the efficient labels defining the dual function:

(Dj, C) = [(max(ay, D} +djy). 1 =1,2,..., L), Ci + Ci]
Ry = EFF
IV(i, k) € A, (D}, C;) € Q;, and Dj belonging to uncertainty zone

(B) Calculation of the feasible paths defining the primal function:

(Dj, Ci) = [(max(ay, D} +djy), 1 =1,2,..., L), C; + Ci]
RP, = EFF
IV(i, k) € A, (D}, C;) € P;, and D} belonging to uncertainty zone

(C) Update sets: Pk, Qx : Pk < Pc U(Rk NRP), Ok < Qx — (DY, C) U Ry.
(D) 0 < 0 — (DY, C}) U[Ry — (Re N RP)].

(E) B(O) < B(0) — (D;‘/, C}). If B(O) = @, return to Step 2; otherwise return to Step 3.

A simple graph with two resource constraints (time, distance) and cost is presented in Figure 2
and Table 1, followed by an example to show how the algorithm works. Figure 2 shows the node
and link connections in the network. Table 1(a) shows the drivers’ profile. Table 1(b) shows loads’
profile. Table 1(c) shows the constraint for the drivers and loads. In this example, the constraints
are time window and mileage. Table 1(d) shows the resources being consumed on each link, as
well as the cost on each link. Note that the actual route, which has multiple links, can be 14-days
long and undertake more than just two or three loads.

L3: Boston >NewVYork
@ D1: Boston [2 100, -110]

99
1, 10, 50]
2, 0, 50] 4, 200 100] 2, 1oo -110] L
L2: Philadelphia -> Bomaoston > Philadelphia
smk
Source [4, 200, -110] RSl 120]l
(1,0, 50] T [1, 10, 50]

LO : Philadelphia -> NewYorl
DO: Philadelphia

(&1 [3,150, -120]

Figure 2 — Subproblem Network.

Where ag and bg are the beginning and ending pick-up times, and a; and b; are the minimum
and maximum working miles, respectively.
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Tables 1a-1d — Sample Database Tables.

(a) (b)
Driver Information Load Information

1D Loc Avail Home 1D Pkup Due Dest
DO Phila 07:00 NewYork LO Phila 1800 NewYork

D1 Boston 07:00 NewYork L1 Boston 1200 Phila
st. work hours <= 10, miles <= 500 L2 Phila 1200 Houston
Ending at home L3 Boston 1800 NewYork

st. Delivery time <= Due
(c) (d)
Resource Constraints Resource Consumption
a0 b0 al bl Link hours miles Cost-Rev

S 0 0 0 0 (S, DO) 2 0 50
DO 7 8 0 500 (S, D1) 1 0 50
D1 7 8 0 500 (DO, LO) 2 100 -110
LO 8 18 0 500 (DO, L2) 4 200 -100
L1 7 12 0 500 (D1, L1) 4 200 -110
L2 7 12 0 500 (D1, L3) 3 150 -120
L3 8 18 0 500 (L1, LO) 2 100 -110
T 12 19 0 500 (L2, L3) 3 150 -120
time window min and max miles (LO, T) 1 10 50
(L3, T) 1 10 50

Deadhead is typically discouraged because moving an empty truck comes with a cost but there
is no (direct) gain in revenue. Simply speaking, driver Dy is originally located at Philadelphia
and is eligible for Load Lo and L, at the beginning. Once the load is delivered, the driver may
become available again at the load destination (New York or Boston, depending on the load).
Preprocessor skips the ineligible connections and adds eligible connections in term of links to
the network. This preprocessing is a necessary step to reduce the problem size of the subproblem.

Step 1. Initialization.
Ps=Q05=1(0,0,0), Ppo = Pp1 = PLo= Pp1 = P2 = PL3 = Pr =3,

QDO = (79 09 —OO), QD] = (79 09 _00)7 QLO = (89 09 —OO), QL] = (79 09 —OO),
Qr2 = (7,0, —00), Q13 = (8,0, —00), O = (12, 0, —00),
drr = (4,200, —100),dr3 = (3, 150, —120), dr = (1, 10, 50), and

O = {(79 09 _OO)D09 (79 09 _OO)D]9 (79 09 _OO)L19 (79 09 _OO)L29 (89 09 _OO)L09 (89 09 _OO)L37
(129 09 _OO)T}'

Step 2. F(O) = (7,0, —00) po.

Step 3. B(O) = {(D*, C) € 01(7,0, —00) £ (DF, € 29,0, —oo)}. We treat label (7,0 —
Q).

Step 4. Uncertainty zone 7' Rpo = (8, 500).
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Step 5. Replacement of (7,0, —o00). (A) Rpp = RPpo = (7,0,50); (C) Ppo = Qpo =
(79 ()9 50)' 0 = {(79 ()9 _OO)DI ) (79 ()9 _OO)LI ) (89 ()9 _OO)L29 (89 ()9 _OO)L09 (89 ()9 _OO)L39
(12,0, —o0)7}. We treat label (7, 0 — 00).

Step 4. Uncertainty zone T Rp; = (8, 500).

Step 5. Replacement of (7,0, —o00). (A) Rp1 = RPp; = (7,0,50); (C) Pp1 = QOp1 =
(79 ()9 50)' 0 = {(79 ()9 _OO)LI ) (79 ()9 _OO)L29 (89 ()9 _OO)L09 (89 ()9 _OO)L39 (129 ()9 _OO)T}’
We treat label (7, 0 — 00).

Step 4. Uncertainty zone T Ry ; = (12, 500).

Step 5. Replacement of (7,0, —00). (A) Rp1 = RPr1 = (11,200, —60); (C) PL1 = Qr1 =
(119 2009 _60)' 0 = {(79 ()9 _OO)L29 (89 ()9 _OO)L09 (89 ()9 _OO)L39 (129 ()9 _OO)T}’ We treat
label (7, 0 — 00).

Step 4. Uncertainty zone T Ry> = (12, 500).

Step 5. Replacement of (7,0, —00). (A) Rr2 = RPry = (11,200, —=50); (C) Pro = Q12 =
(11,200, —=50). O = {(8,0, —o0) 0, (8,0, —00) 3, (12,0, —o0) 7}, We treat label (8, 0 — 00).

Step 4. Uncertainty zone T Ry = (18, 500).

Step 5. Replacement of (8, 0, —00). (A) Rro = RPro = {(9, 100, —60), (13, 300, —170)}; (C)
PLO = QLO = {(99 1009 _60)9 (139 3009 _170)}' 0 = {(89 ()9 _OO)L39 (129 ()9 _OO)T}’ We treat
label (8, 0 — 00).

Step 4. Uncertainty zone T Ry 3 = (18, 500).

Step 5. Replacement of (8,0, —00). (A) Rr3 = RPr3 = {(10, 150, —70), (14, 350, —170)};
(C) Pr3 = Qr3 = {(10, 150, —70), (14, 350, —170)}. O = {(12,0, —o0)7}, We treat label
(12,0 — 00).

Step 4. Uncertainty zone 7 R = (18, 500).

Step 5. Replacement of (12,0, —oc0). (A) Rt = RPr = {(10, 110, —10), (11, 160, —20),
(14,310, —120), (15,360, —120); (C) Pr = Qr = {(10,110,—-10), (11,160, —20),
(14,310, —120), (15, 360, —120).

Step 2. O = @. Stop. Current solution {(10, 110, —10), (11, 160, —20), (14, 310, —120),
(15, 360, —120)}. There are four shortest paths from the source node S to the sink node T re-
specting the resource constraints: (1) Path: S — D0 — L0 — T with cost —10; (2) Path:
S — D1 — L3 — T with cost —20; (3) Path: S — D1 — L1 — LO — T with cost —120;
(4) Path: S — DO — L2 — L3 — T with cost —120. Further examination would suggest that
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Path 4 is dominated by Path 3. As a result, Paths 1, 2 and 3 are non-dominated optimal and are
eligible to be added into the path/route pools in the master problem.

Note that in this example, labels in P and Q are always having the same sets of labels and
paths because the resource constraints never get violated. In the case where certain paths exceed
the resource limit, those parts are deemed as infeasible and therefore excluded at the current
stage. The lower bound Q, however, would keep this infeasible label for future treatments. This
technique is extremely useful when the resource on a directed link is negative. In other words,
the previously infeasible path may become feasible again by adding consecutive links to it. This
means that before all the paths are examined, one simply cannot determine the best or even most
feasible paths.

6 THE SCHEME OF BRANCH AND BOUND (B&B)

Commercial software CPLEX is used to solve the master problem (linear programming relax-
ation). The optimal solution is generally non-integer (fractional). The B&B scheme is thus in-
voked and embedded into the column generation process to obtain an integer solution. The fol-
lowing are the details for the implementation (refer to the flow chart). If there is any existing
feasible solution can be extracted from the current truck operating plan, then it should be utilized
as the initial solution to speed up the search process.

6.1 The Branching Strategy
It is easy to observe that if the solution is non-integer, there must exist at least a pair of consecu-

0< ij <1,

JETR(11,12)
where T R(t1, t2) is the set of routes in which 7, is executed immediately after #;. Based on the

tive load nodes ¢1, t» such that

set TR(t1, t2), the original problem is partitioned (branched) into two subproblems:

0-branch, ij =0, 1-branch, ij =1.
JETR(t1,12) JETR(11,12)
The testing shows that this strategy gives a more balanced search tree than default variable
branching and generally finds an acceptable integer solution more quickly. Conceivably, this
method is to branch on the relationship between two consecutive loads. It forces the link to be
selected or to be eliminated in the subproblem.

6.2 How B&B Scheme is Embedded into the Column Generation Process?

When the B&B scheme is embedded into column generation process, a search tree is created.
The nodes in the search tree (stored in a sorted queue) are treated one by one. If the queue is
empty, the algorithm is terminated, and the optimal integer solution obtained so far is the solution
we are seeking. By treating a node we mean that two branched nodes will be created from this
node:

Pesquisa Operacional, Vol. 38(2), 2018



1 84 A GENERALIZED DECOMPOSITION ALGORITHM FOR REAL-TIME TRUCK ROUTING PROBLEMS

— one with Zx ;= 0 (left node),
JETR(11,12)

— and the other with Zx ;= 1 (right node).
JETR(11,12)

By creating a node we mean that the objective value and the solution at the node are found.
Only the node corresponding to fractional solution with objective value smaller than that of
the current optimal integer solution is inserted into the queue. Once a node corresponding to
an integer solution is created and its objective value is smaller than that of the current optimal
integer solution, then all untreated nodes in the queue with objective value not smaller than that
of the created node will be pruned off. Whenever a node a created, a set of columns (for solving
the master problem) and a network (for solving the subproblem) should be updated accordingly.

6.3 Information Storage and Retrieval

For solving the master problem and the subproblem at different nodes of the search tree, the
information on columns and network must conform to the node to be created. There are two
ways to get the information: one is from the root node; the other is from the node to be treated
(parent node). With the first one, much more memory can be saved, but more computing time is
needed (repeated computing), while with the second, the situationis reversed. There is a trade-off
between the memory and the computing time. In the first case, we only need to store the original
network and the columns generated at root node. The search tree is a binary tree and the root
node is at 0 level. We use a label consisting of (j + 1) identifiers to represent the location of a
node at j-thlevel: (j, j1, j2. ..., jj), where the first one j is a digit (or digits) which represents
the level number of the node location; the second one j; represents the location (left or right)
of its ancestor at the first level; the third one j, represents the location of its ancestor at second
level,..., and j; represents its location at j-th level. ji, j2,...,j; = L or R, L stands for
left branch (0-branch); R stands for right branch (1-branch). For example, a node with label
(3, R, R, L) means that the node is at the third level of the search tree, and its ancestors are at the
first and second levels on the right location. The third-level node is at left location. In the second
case, we only need to indicate where the treated node is located and then modify the columns
and network of its parent node respectively to process.

6.4 The Modification of the Columns for the Master Problem

In the 0-branch, we delete all columns i for which a;,; = 1 and a;,; = 1. In the 1-branch, we
delete all columns i for which a;,; = 1 and as,; = 0, or a;,; = 0 and a;,,; = 1, and the row
corresponding to constraint for node #» due to the redundancy. Figure 3 illustrates this process.
The underlying assumption is that each load can be covered only once at most. The 2nd coverage
for the same load will not bring additional revenue.

In 1-branch, the dimension of the basis matrix is thus reduced by one. The modification of the
columns depends on the location of the created node in the search tree and also depends on from
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Figure 3 — Sample Branching.

where the information is obtained. For example, if we use the information on columns at root
node and the created nodes are (3, R, R, L), then all columns at root node having a;,; = 1 and
agi = (), ag i = 0 and agi = 1, gy = 1 and agyi = (), gy = 0 and agyi = 1, Ais,i = 1
and a;,; = 1 are deleted. The row corresponding to constraint for node #¢ is also deleted due
to the redundancy. We assume that the branching at first, second, and third level is based on
TR(t1, 1), T R(t3, t1), T R(t5, ts) respectively.

6.5 Modification of the Network for the Subproblem

We must restrict the columns to be generated by the subproblem to those that are compatible
with the current created node in the search tree. The structure of the network used to generate the
feasible columns should be modified accordingly. In the O-branch, the columns covering consec-
utively nodes #; and t, are forbidden. As a reminder, there are the columns having #, executed
immediately after #1. In the network we split the middle node M, where the link corresponding
to #1 terminates and the link corresponding to #, starts, into two nodes M1 and M5; all links orig-
inally terminated at M are now moved to M1, and all links originally started from M are moved
to M». The resource constraints on M| and M, remain the same as M. In the 1-branch, we force
any route covering # to also cover t, immediately. In the network, the two links corresponding
to t1 and t, are condensed into one link, and all the links originally terminated at the middle node
of the previous two links are deleted. Figure 4 shows this modification. The cost and resource
consumption for the condensed link are: (a) the cost of the newly created link equals to cost(z1)
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+ cost(tp), where cost(#1) and cost(z) are the cost of #1 and 1, respectively; (b) the number of
pieces of work still equals zero ; (c) the spread equals t; + f2; (d) the work time equals #] + #;.

Original
tl t2
@ O O
M
0 Branch 1 Branch
O t1 t2

t1 / M1 t2 O o O

Figure 4 — Sample Network Modification.

With the same example, for the created node (3, R, R, L) the modified network at this node is
obtained from the original network. After splitting the two nodes (one between the links corre-
sponding to 71 and 72, and the other between #3 and #4) into four nodes, and condensing two links
corresponding to s and ¢ into one, all the links originally terminated at the middle node of the
links corresponding to #5 and #¢ are deleted.

In the iteration process, a set of the dual values are passed from master problem. The cost (#;) of
the link i corresponding to load node ¢#; (i-th constraint) is subtracted by dual value & before the
subproblem algorithm is executed. Once the desirable columns are generated, the cost of each
link i is set to cost (¢;) (the original cost).

6.6 The Order of Choosing the Next Node and the Queue

The sum of fractional variables for a specified set T R(¢1, t2) and the objective values at each
node should determine the next node to branch on. The node with smallest sum of fractions
is chosen as a priority. If there is a tie, the one with the smaller objective value is chosen.
If there is still a tie, then choose any arbitrary one. One should always keep a sorting queue
(non-decreasing sequence of the sum of fractional variables) for the nodes to be treated and take
the first one from the queue. When a fractional solution occurs, and its objective value is smaller
than that of current optimal integer solution value, then the node corresponding to this frac-
tional solution is inserted into the queue. Before inserting, we need to know the sum of fractions.
From the fractional solution, one must find the first column x; < 1 and a set T R(¢1, t2) consisting
of two consecutive nodes ¢; and #, in column x; such that

0< Zx ;o<1

JETR(t1,12)

otherwise, the process is repeated until such set is found.
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7 TESTING RESULTS AND REMARKS

To prove the capability of the prototyped routing optimizer, we select top 10 US cities with the
largest populations and set Dallas as home based depot (as shown in Table 2 and Figure 5).

Table 2 — Top 10 US Cities with the Largest Populations.

cityID City Population | Latitude | Longitude
1 New York 8,405,837 41 -74
2 Los Angeles 3,884,307 34 -118
3 Chicago 2,718,782 42 -88
4 Houston 2,195,914 30 -95
5 Philadelphia 1,553,165 40 -75
6 Phoenix 1,513,367 33 -112
7 San Antonio 1,409,019 29 -98
8 San Diego 1,355,896 33 -117
9 Dallas (depot) | 1,257,676 33 -97
10 San Jose 998,537 37 -122
\
Ch. NewYork
icago 5
G ]
Philadelphia
(]
SanJose
LosAngeles
)
e e
@ouston

[ J
SanAntonio

Figure 5 — Top 10 US Cities with the Largest Populations.

From these 10 cities we can have 45 non-directional city pairs sorted in an alphabet order on the
origin city and destination city (as shown in Table 3).

For each pair, we call a random number between 0 and 1, if this number is less than 0.5, set
a direction from origin to destination (ex. Houston to San Diego); otherwise set an opposite
direction from destination to origin (ex. San Diego to Houston), where Dallas is a home base
depot that every driver must return back to Dallas within 7000 miles (approximately equivalent
to 2 weeks).

Pesquisa Operacional, Vol. 38(2), 2018



1 88 A GENERALIZED DECOMPOSITION ALGORITHM FOR REAL-TIME TRUCK ROUTING PROBLEMS

Table 3 — Forty-Five Non-directional City-Pairs.

odID Orig Dest Miles | odID Orig Dest Miles
1 Chicago Dallas 967 24 Houston San Jose 1885
2 Chicago Houston 1083 25 Los Angeles New York 2778
3 Chicago | Los Angeles | 2016 26 Los Angeles | Philadelphia | 2710
4 Chicago New York 791 27 Los Angeles Phoenix 373
5 Chicago | Philadelphia | 758 28 Los Angeles | San Antonio | 1353
6 Chicago Phoenix 1735 29 Los Angeles | San Diego 120
7 Chicago | San Antonio | 1242 30 Los Angeles San Jose 341
8 Chicago | San Diego 2139 31 New York Philadelphia 97
9 Chicago San Jose 2163 32 New York Phoenix 2409
10 Dallas Houston 967 33 New York San Antonio | 1821
11 Dallas | Los Angeles | 1436 34 New York San Diego 2799
12 Dallas New York 1547 35 New York San Jose 2944
13 Dallas Philadelphia | 1467 36 Philadelphia Phoenix 2344
14 Dallas Phoenix 1065 37 Philadelphia | San Antonio | 1742
15 Dallas San Antonio 274 38 Philadelphia San Diego 2735
16 Dallas San Diego 1358 39 Philadelphia San Jose 2911
17 Dallas San Jose 1687 40 Phoenix San Antonio | 981
18 Houston | Los Angeles | 1548 41 Phoenix San Diego 355
19 Houston New York 1627 42 Phoenix San Jose 711
20 Houston | Philadelphia | 1548 43 San Antonio | San Diego 1276
21 Houston Phoenix 1174 44 San Antonio San Jose 1692
22 Houston | San Antonio 197 45 San Diego San Jose 460
23 Houston San Diego 1468

One of the performance measurements is Load Factor (LF). For each truck driver route, LF is the
total loaded miles divide by total miles (loaded miles + empty miles) traveled starting from and
returning to the depot: Dallas.

100 random generated data sets have been tested between current existing algorithm and our new
column-generation based algorithm to compare both number of drivers used and Load Factor
(LF) to complete each set of 45 loads crossing those 10 cities. Table 4 gives the details on each
test case. The average run time is very stable and is within a few minutes for the tested problem
size. Table 5 shows the overall performance.

Our sample testing indicates that our new column-generation based solution method will reduce
about 16% of drivers and improve the Load Factor (LF) by about 9%.

The company also conducted an on-site experiment with real production data. About 3,500 ex-
ternally contracted drivers, who were mainly independent business operators, and 1,500 corpo-
rate salaried drivers were considered in the problem for dispatching. Again, corporate drivers
normally cost less than external contracts. About 15,000 loads are required to be covered. The
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Table 4 — Computational Results of 100 Tests.

testID Existing Method New Method Driver LF
num.drivers | LF | num.drivers | LF | Reduced (%) | Improved (%)
1 18 63 15 70 20 11.1
2 16 69 14 73 14.3 5.8
3 15 70 14 73 7.1 4.3
4 17 66 15 71 13.3 7.6
5 17 68 14 74 214 8.8
6 19 62 16 66 18.8 6.5
7 18 63 16 68 12.5 7.9
8 18 62 15 69 20 113
9 16 69 14 75 14.3 8.7
10 18 62 16 68 12.5 9.7
11 19 58 17 66 11.8 13.8
12 17 68 14 76 214 11.8
13 17 65 15 72 13.3 10.8
14 17 65 16 67 6.3 3.1
15 17 67 15 72 13.3 7.5
16 16 69 13 79 23.1 14.5
17 18 61 14 73 28.6 19.7
18 17 66 15 71 13.3 7.6
19 18 62 16 65 12.5 4.8
20 19 59 17 63 11.8 6.8
21 17 67 15 69 13.3 3
22 17 66 15 72 13.3 9.1
23 17 65 14 75 214 15.4
24 17 65 15 69 13.3 6.2
25 16 71 14 74 14.3 42
26 19 58 16 66 18.8 13.8
27 17 69 14 77 214 11.6
28 17 66 15 74 133 12.1
29 17 65 15 73 13.3 12.3
30 16 69 15 71 6.7 2.9
31 18 63 14 75 28.6 19
32 17 65 14 74 214 13.8
33 18 61 15 68 20 11.5
34 18 61 15 69 20 13.1
35 16 72 14 73 14.3 1.4
36 18 64 16 68 12.5 6.3
37 18 61 16 66 12.5 8.2
38 18 64 16 67 12.5 4.7
39 17 65 15 71 13.3 9.2
40 17 63 16 67 6.3 6.3
41 16 68 14 76 143 11.8
42 17 66 15 69 13.3 4.5
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Table 4 (continuation).

testD Existing Method New Method Driver LF
num.drivers | LF | num.drivers | LF | Reduced (%) | Improved (%)

43 17 68 14 77 214 13.2
44 17 68 14 72 214 59
45 16 69 13 76 23.1 10.1
46 16 71 14 74 14.3 42
47 18 62 15 71 20 14.5
48 16 69 15 69 6.7 0
49 17 65 13 77 30.8 18.5
50 17 66 14 72 214 9.1
51 18 64 16 68 12.5 6.3
52 17 68 14 73 214 7.4
53 18 59 17 62 59 5.1
54 17 63 16 64 6.3 1.6
55 19 60 17 63 11.8 5
56 17 65 14 72 214 10.8
57 17 67 14 74 214 10.4
58 19 62 16 66 18.8 6.5
59 18 64 16 67 12.5 4.7
60 18 63 15 68 20 7.9
61 17 64 15 70 133 9.4
62 18 62 15 69 20 113
63 17 65 15 70 133 7.7
64 18 61 14 73 28.6 19.7
65 17 64 15 71 133 10.9
66 19 58 18 59 5.6 1.7
67 17 68 14 76 214 11.8
68 18 64 14 73 28.6 14.1
69 16 71 13 78 23.1 9.9
70 17 64 13 79 30.8 234
71 19 61 17 64 11.8 49
72 17 68 14 75 214 10.3
73 18 63 15 70 20 11.1
74 18 60 18 60 0 0
75 17 65 14 74 214 13.8
76 17 68 15 72 133 59
77 17 63 16 65 6.3 32
78 18 65 15 71 20 9.2
79 17 69 13 80 30.8 15.9
80 17 66 13 77 30.8 16.7
81 16 70 15 71 6.7 1.4
82 18 66 15 71 20 7.6
83 18 62 14 72 28.6 16.1
84 17 66 16 68 6.3 3

Pesquisa Operacional, Vol. 38(2), 2018



YIHUA LI, QING MIAO and XIUBIN BRUCE wanGg 191

Table 4 (continuation).

testD Existing Method New Method Driver LF
num.drivers | LF | num.drivers | LF | Reduced (%) | Improved (%)
85 18 64 15 71 20 10.9
86 17 65 15 71 13.3 9.2
87 16 67 15 73 6.7 9
88 16 71 14 73 14.3 2.8
89 18 65 13 78 385 20
90 16 70 16 67 0 -4.3
91 17 63 14 74 21.4 17.5
92 17 68 15 70 13.3 2.9
93 17 64 15 71 13.3 10.9
94 17 66 14 76 21.4 15.2
95 17 65 14 73 21.4 12.3
96 19 60 17 64 11.8 6.7
97 17 66 14 72 21.4 9.1
98 19 60 17 64 11.8 6.7
99 18 62 15 70 20 12.9
100 17 67 14 73 21.4 9
Table 5 — Comparison Between Existing And New Methods.
Existing Method New Method Driver LF

avg.drivers | avg_LF | avg_drivers | avg_LF | Reduced (%) | Improved (%)
17.3 65 14.9 70.9 16.3 9.1

decision variable is defined as a route, which is the combination of drivers, the loads and se-
quence of covering the loads. Without any of the preprocessing to eliminate routes, the number

0%0 if the maximum of four loads are allowed in a single route.
024

of decision variables is 2.5 x 1
This number increases to 3.8 x 10" if five loads are allowed in a single route. The prototype
successfully considered all the major business criteria and constraints to have problem solved
within 20 minutes on the company’s mainframe machine. After comparing with the company’s
then-current operating plan, over 10% cost saving was achieved, which amounted to millions of

dollars annually.

The proposed decomposition algorithm can be easily generalized to many other industries that
share similar characteristics. For example, railway, airlines and pipeline share the similar network
characteristics. Resource constraints can be modeled in terms of time, materials, vehicle or line
capacity, distances, volumes or even headcount. Sometimes it is difficult to consider certain
requirements such as recurring maintenance constraints and sophisticated union rules, solving
the problem without these rules as in the case of this study at least can serve as a benchmark for
the real problem. We leave as a future potential research effort to incorporate those additional
constraints into routes developed.
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