Este trabalho objetivou avaliar diferentes estruturas da matriz de variâncias e covariâncias residual (Σ), quanto ao ajustamento de dados longitudinais via modelos mistos, em experimentos varietais de cana-de-açúcar. A seleção adequada desta matriz garante a escolha de um modelo mais representativo dos dados. Em cada modelagem, variou-se ainda a suposição associada aos efeitos de tratamentos (variedades), como fixos e aleatórios. Quatro ensaios varietais, conduzidos entre 2005 e 2009, em três localidades do Estado de Goiás, foram considerados. Cada experimento foi delineado em blocos casualizados com três ou quatro repetições. A variável resposta analisada foi toneladas de colmos por hectare (TCH). Para avaliar a qualidade de ajustamento dos modelos, foram utilizados o critério de informação de Akaike (AIC) e o teste da razão de verossimilhanças. Este último foi utilizado apenas para comparar modelos hierárquicos, tomados dois a dois. Constatou-se que as análises pelo modelo univariado clássico de parcelas subdivididas oscilaram entre as piores ou entre aquelas de ajustes apenas medianos. As estruturas da matriz Σ com os melhores ajustamentos variaram entre os ensaios, com destaque para a matriz não-estruturada. Tais resultados revelam que a estrutura de erros independentes, em geral, não se mostra adequada para esse tipo de análise e, também, que não é seguro definir previamente uma estrutura específica de Σ para tais ensaios. Pequenas alterações foram observadas na classificação das estruturas ao se assumirem os efeitos de tratamentos como fixos ou aleatórios; porém, sem efeito importante na classificação das melhores estruturas em cada ensaio.
Saccharum spp.; dados longitudinais; estruturas de covariância; modelos mistos; genótipos aleatórios.