Acessibilidade / Reportar erro

A REVIEW ON SISAL FIBER REINFORCED POLYMER COMPOSITES

COMPÓSITOS POLIMÉRICOS REFORÇADOS COM FIBRAS DE SISAL

ABSTRACT

The global demand for wood as a building material is steadily growing, while the availability of this natural resource is diminishing. This situation has led to the development of alternative materials. Of the various synthetic materials that have been explored and advocated, polymer composites claim a major participation as building materials. There has been a growing interest in utilizing natural fibres as reinforcement in polymer composite for making low cost construction materials in recent years. Natural fibres are prospective reinforcing materials and their use until now has been more traditional than technical. They have long served many useful purposes but the application of the material technology for the utilization of natural fibres as reinforcement in polymer matrix took place in comparatively recent years. Economic and other related factors in many developing countries where natural fibres are abundant, demand that scientists and engineers apply appropriate technology to utilize these natural fibres as effectively and economically as possible to produce good quality fibre reinforced polymer composites for housing and other needs. Among the various natural fibres, sisal is of particular interest in that its composites have high impact strength besides having moderate tensile and flexural properties compared to other lignocellulosic fibres. The present paper surveys the research work published in the field of sisal fibre reinforced polymer composites with special reference to the structure and properties of sisal fibre, processing techniques, and the physical and mechanical properties of the composites.

Key words:
sisal fibre; polymer; composites; structure; properties

RESUMO

O uso da madeira como material de construção continua crescendo mundialmente enquanto a disponibilidade deste recurso natural está diminuindo. Esta situação tem conduzido ao desenvolvimento de materiais alternativos. Dentre os vários materiais sintéticos que têm sido explorados, os compósitos poliméricos reivindicam e buscam uma maior participação como material de construção. Nos últimos anos tem se observado um crescente interesse na utilização de fibras naturais como reforço de matrizes poliméricas para a produção de materiais de baixo custo. As fibras naturais são reforços com grande potencialidade e seu uso tem se dado de forma mais tradicional do que científica. Elas têm se prestado a inúmeras aplicações ao longo do tempo, mas a aplicação da tecnologia dos materiais visando a sua utilização como reforço de matrizes poliméricas é relativamente recente. As dificuldades econômicos e sociais observadas em muitos dos países em desenvolvimento, onde as fibras naturais são abundantes, requerem que cientistas e engenheiros apliquem tecnologias apropriadas para utilizar estas fibras da forma mais eficiente possível, de tal maneira que se possa produzir materiais compósitos poliméricos de boa qualidade visando a atender a demanda da população por habitações e componentes habitacionais. Dentre as várias fibras naturais, a fibra de sisal é de particular interesse uma vez que os compósitos que a utilizam como reforço apresentam alta resistência ao impacto além de possuírem moderada resistência à tração e à flexão. O presente artigo apresenta uma revisão dos trabalhos de pesquisa publicados no campo dos compósitos poliméricos ecológicos, especialmente no que se refere aos compósitos reforçados com fibras de sisal, visando seu uso como material de construção. Ênfase especial é dada à micro-estrutura e propriedades da fibra de sisal, às técnicas de processamento e às propriedades físicas e mecânicas dos compósitos poliméricos reforçados com fibras de sisal.

Palavras-chave:
sisal; polímero; compósitos; estrutura; propriedades

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

REFERENCES

  • BAI, S.L.; WU, C.M.L.; MAI, Y.W.; ZENG, H.M.; LI, R.K.Y. Failure mechanisms of sisal fibres in composites. Advanced Composites Letters, Letchworth, v.8, n. 1, p.13-17, 1999.
  • BARKAKATY, B.C. Some structural aspects of sisal fibres. Journal of Applied Polymer Science New York, v. 20, p. 2921-2940, 1976.
  • BHAGAVAN, S.S.; TRIPATHY, D.K.; DE, S. K. Stress relaxation in short jute fibre-reinforced nitrile rubber composites. Journal of Applied Polymer Science, New York, v.33, p.1623-1634, 1987.
  • BISANDA, E.T.N.; ANSELL, M. P. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Composites Science and Technology, Oxford, v.41, p.165-178, 1991.
  • BLEDZKI, A.K.; REIHMANE, S.; GASSAN, J. Properties and modification methods for vegetable fibres for natural fibre composites. Journal of Applied Polymer Science, New York, v.29, p.1329-1336, 1996.
  • CARVALHO, L. H. Chemical modification of fibers for plastics reinforcement in composites. In: LEÂO, A. L., CARVALHO, F. X.; FROLLINI, E. Lignocellulosic-plastics composites, São Paulo: USP and UNESP, p.197-222, 1997.
  • CHAND, N.; JOSHI, S.K. Effect of gamma-irradiation on dc conductivity of sisal fibres. Research and Industry, New Delhi, v.40, n.2, p.121-123, Jun, 1995.
  • CORAN, A.Y.; BOUSTANY, K.; HAMED, P. Rubber Chemistry and Technology, Akron, v.47, p.396, 1974.
  • DAHLKE, B.; LARBIG, H.; SCHERZER, H.D.; POLTROCK, R. Natural fibre reinforced foams based on renewable resources for automotive interior applications. Journal of Cellular Plastics, Lancaster, v.34, n.4, p.361, 1998.
  • DINWOODIE, J.M. Timber - its nature and behaviour New York: van Nostrand Reinhold. Company, 1981.
  • EDWARDS, H.G.M.; FARWELL, D.W.; WEBSTER, D. FT Raman microscopy of untreated natural plant fibres. Spectrochemica Acta Part A-Molecular and Biomolecular Spectroscopy, Oxford, v.53, n.13, p.2383-2392, 1997.
  • ERICH, F.; ANTONIOS, G.; MICHEL, H. Carbon fibres and their composites. High Temperatures and High Pressures, London,, v.16, p.363-392, 1984.
  • GEETHAMMA, V.G.; REETHAMMA, J.; THOMAS, S. Short coir fibre reinforced natural rubber composites: Effect of fibre length, orientation and alkali treatment. Journal of Applied Polymer Science, New York, v.55, p.583-594, 1995.
  • GRAM, H.E. Durability of Natural Fibres in Concrete, Swedish Cement and Concrete Research Institute, v.1, n.83, p.225, 1983.
  • GUPTA, M.; VERMA, A.; SINGH, B. A note on the investigation of fibre-matrix adhesion in sisal fibre-polyester composites. Current Science, Bangalore, v.74, n.6, p.526-529, 1998.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Viscoelastic properties of short sisal fibre filled low density polyethylene composites: Effect of fibre length and orientation. Material Letters, North-Holland, v.15, p.224, 1992.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Tensile properties of short sisal fibre reinforced polyethylene composites. Journal of Applied Polymer Science, New York, v.47, p.1731, 1993a.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Dynamic mechanical properties of short sisal fibre reinforced low-density polyethylene composites. Journal of Reinforced Plastics and Composites, Lancaster, v.12, p.139, 1993b.
  • JOSEPH, K.; PAVITHRAN, C.; THOMAS, S.; BABY, K.; PREMALATHA, C. K. Melt rheological behaviour of short sisal fibre reinforced polyethylene composites. Plastics, Rubber and Composites Processing and Applications, Oxford, v.21, p.237, 1994.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Sisal fibre reinforced polyethylene composites: Effect of isocyanate treatment. SB Academic Review, Changanacherry, v.6, p.85, 1995a.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Effect of ageing on the physical and mechanical properties of short sisal fibre reinforced polyethylene composites. Composites Science and Technology, Oxford, v.53, p.99, 1995b.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Influence of Interfacial addition on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. European Polymer Journal, Oxford, v.32, p.10, 1996a.
  • JOSEPH, K.; THOMAS, S.; PAVITHRAN, C. Effect of surface treatments on the tensile properties of short sisal fibre -LDPE composites, Polymer, Oxford, v.37, p.23, 1996b.
  • JOSEPH, P.V.; JOSEPH, K.; THOMAS, S. The effect of processing variables on the physical and mechanical properties of short sisal fibre reinforced polypropylene composites. Composites Science and Technology, Oxford (1999, in press).
  • KALAPRASAD, G.; JOSEPH, K.; THOMAS, S. Theoretical modelling of tensile properties of short sisal fibre reinforced low - density polyethylene composites. Journal of Materials Science, London, v.32, p.4261, 1997a.
  • KALAPRASAD, G.; JOSEPH, K.; THOMAS, S. Influence of short glass fibre addition on the mechanical properties of sisal reinforced low density polyethylene composites. Journal of Composite Materials, Lancaster, v.31, p.5, 1997b.
  • KALLAPUR, S. K. Fiber reinforced natural rubber composites - physical and mechanical properties. In: Bark and leaf fibres of India Bombay: KVIC, 1962.
  • KOKTA, B. V. Use of wood fibres in thermoplastic composites. Polymer News, Oxford, v.13, p.331-339, 1988,
  • KULKARINI, A.G.; SATYANARAYANA, K.; SUKUMARAN, K.; ROHATGI, P.K. Mechanical behaviour of coir fibres under tensile load. Journal of Materials Science, London, v.16, p.905-914, 1981.
  • KVIC. All India seminar on fibre industry Trivandrum, India: KVIC, 1980.
  • LAWRENCE, C. B.; RUSSEL, G. T.; ANRON, B. Accelerated test methods to determine the long term behaviour of FRP composite structures: Environmental effect. Journal of Reinforced Plastics and Composites, Lancaster, v.14, p.559-587, June, 1995.
  • LeTHI, T.T.; GAUTHIER, H.; GAUTHIER, R.; CHABERT, B.; GUILLET, J.; LOUONG, B.V.; NGUYEN, V.T. Realisation of polypropylene/ sisal fibre composites by reactive extrusion. Journal of Materials Science - Pure and Applied Chemistry, London, v. A 33(12), p.1997-2004, 1996.
  • LIGHTSEY, G. R. Polymer applications of renewable resource materials. In: CARRAHEN JR., C. E.; SPERLING, L. H. Characteristic of sisal fiber New York: Plenum Press, p.193, 1983.
  • LOCK, G.W. Sisal Tangangika sisal growers Association, London: Longmans, 1962.
  • LUBIN, G. (Ed.) Hand book of composites New York: van Nostrand Reinhold, 1982.
  • MALDAS, D.; KOKTA, B. V. Performance of treated hybrid fibre - reinforced thermoplastic composites under extreme conditions. Polymer Degradation and Stability, Oxford, v.31, p.9-21, 1991,
  • MANIKANDAN NAIR, K.C.; DIWAN, S. M.; THOMAS, S. Tensile properties of short sisal fibre reinforced polystyrene composites. Journal of Applied Polymer Science, New York, v.60, p.1483-1497, 1996.
  • MARCOVICH, N.; REBOREDO, M.M.; ARANGUREN, M.I. Chemical modification of Lignocellulosic materials: The utilization of natural fibers as polymer reinforcement. In: LEÂO, A. L. ; CARVALHO, F. X. ; FROLLINI, E., Lignocellulosic-plastics composites, São Paulo: USP /UNESP, p. 223-240, 1997.
  • MATTOSO, L. H. C.; FERREIRA, F. C.; CURVELO, A. A.S. Sisal fiber: Morphology and applications in polymer composites. In: LEÂO, A. L. ; CARVALHO, F. X. ; FROLLINI, E. Lignocellulosic-plastics composites, São Paulo: USP /UNESP, p.21-51, 1997.
  • McLAUGHLIN, E. C. The strength of bagasse fibre reinforced composites. Journal of Material Science, London, v.15, p.886-90, 1980.
  • MUKHERJEE, K.G.; SATYANARAYANA, K.G. Structure and properties of some vegetable fibres. Part 1: Sisal fibre. Journal of Materials Science, London, v.19, p.3925-3934, 1984.
  • MUKHERJEE, K.G.; SATYANARAYANA, K.G. An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. Journal of Materials Science, London, v.21, p.4162-4168, 1986.
  • NILSSON, L. Reinforcement of concrete with sisal and other vegetable fibres Stockholm: Swedish Building Research Summaries. D-14:1975, p. 68.
  • O'CONNER, J.K. Fiber reinforced natural rubber composites: physical and mechanical properties. Rubber Chemistry and Technology, Akron, v.50, p.945, 1977.
  • PADMAVATHI, T.; NAIDU, S.V. Chemical resistance and tensile properties of sisal fibres. Indian Journal of Fibre and Textile Research, New Delhi., v.23, n.2, p.128-129, 1998.
  • PARAMASIVAM, T.; ABDULKALAM, A. P. J. On the study of natural fibre composites. Fibre Science and Technology, New Delhi, v.1, p.85-98, 1974.
  • PAUL, A.; JOSEPH, K.; THOMAS, S. Effect of surface treatments on the electrical properties of low density polyethylene composites reinforced with short sisal fibres. Composites Science and Technology, Oxford, v.57, p.67, 1997.
  • PAUL, A.; THOMAS, S. Electrical properties of natural fibre reinforced low density polyethylene composites: A comparison with carbon black and glass fibre filled low density polyethylene composites. Journal of Applied Polymer Science, New York, v.63, p.247-266, 1997 .
  • PAVITHRAN, C.; MUKHERJEE, P. S.; BRAHMAKUMAR, M.; DAMODARAN, A. D. Impact properties of natural fibre composites. Journal of Materials Science Letters, London, v.6, p.882-884, 1987.
  • PAVITHRAN, C.; MUKHERJEE, P. S.; BRAHMAKUMAR, M.; DAMODARAN, A. D. Impact performance of sisal - polyester composites. Journal of Materials Science Letters, London, v.7, p.825-826, 1988.
  • PIGGOT, M. R. Load bearing fibre composites Oxford: Pergamon Press, 1980.
  • PRASAD, S. V.; PAVITHRAN, C.; ROHATGI, P. K. Alkali treatment of coir fibre - polyester composites. Journal of Applied Polymer Science, New York, v.18, p.1443-1454, 1983.
  • PRASANT, K. R.; THOMAS, S. Short fibre elastomer composites: Effect of fibre length, orientation, loading and bonding agent. Bulletin of Materials Science, Bangalore, v.18, p.1021-1029, 1995a.
  • PRASANT, K. R.; THOMAS, S. Tear and processing behaviour of short sisal fibre reinforced styrene butadiene rubber composites. Polymer International, W.Sussex, v.38, p.173-187, 1995b.
  • RAI, M.; JAISINGH, M. P. Advances in building and construction materials Roorkee: Central Building Research Institute, 1986.
  • RAJ, R. G.; KOKTA, B. V. Compounding of cellulosic fibres with polypropylene: Effect of fibre treatment on dispersion in the polymer matrix. Journal of Applied Polymer Science, New York, v.38, p.1987-1996, 1989.
  • RAJ, R. G.; KOKTA, B. V.; GROLEAU, G.; DANEAULT, G. Use of wood fibres as a filler in polyethylene: Studies on mechanical properties. Plastics and Rubber Processing and Applications, Oxford, v.11, p.205-221, 1989.
  • ROWELL, R. M.; SANADI, A. R.; CAULFIELD, D. F.; JACOBSON, R. E. Utilization of natural fibers in plastic composites: Problems and oppurtunities. In: LEÂO, A . L.; CARVALHO, F. X. ; FROLLINI, E. Lignocellulosic-Plastics Composites, São Paulo: USP /UNESP, p.21-51, 1997.
  • SABAA, M. W.; MIKHAEL, M. G.; ELKHOLY, S. S.; ELSABEE, M. Z. Chemically induced graft copolymerization of methyl methacrylate onto sisal fibres. Cellulose Chemistry and Technology, Bucharest, v.29, n.6, p.671-682, 1995.
  • SATYANARAYANA, K. G.; SUKUMARAN, K.; MUKHERJEE, P. S.; PAVITHRAN, C.; PILLAI, S. G. K. Possibility of using natural fibre composites as building materials. In: INTERNATIONAL CONFERENCE ON LOW COST HOUSING FOR DEVELOPING COUNTRIES, Roorkee. Proceedings.. . p.177-181, 1984.
  • SATYANARAYANA, K. G.; PAI, B. C.; SUKUMARAN, K.; PILLAI, S. G. K. Hand Book of Ceramics and Composites. In: CHERIMISINOFF, N. P. (Ed.), Lignocellulosic fiber reinforced polymer composited New York: Marcel Decker, v.1, p.339, 1990a.
  • SATYANARAYANA, K. G.; SUKUMARAN, K.; MUKHERJEE, P. S.; PAVITHRAN, C.; PILLAI, S. G. K. Natural fibre - polymer composites. Cement and Concrete Composites, England, v.12, p.117-136, 1990b.
  • SELZER, R. Environmental-influences on the bending properties of sisal fibre-reinforced Polymer composites. Advanced Composites Letters, Letchworth, v.4, n. 3, p.87-90, 1995.
  • SINGH, S. P. Agro-industrial wastes and their utilization. PROCEEDINGS NATIONAL SEMINAR ON BUILDING MATERIALS AND THEIR SCIENCE AND TECHNOLOGY, Roorkee, v.15, p.111, 1982.
  • SINGH, B.; GUPTA, M.; VERMA, A. Influence of fibre surface treatment on the properties of sisal-polyester composites. Polymer Composites, Brookfield, v.17, n.6, p.910-918, 1996.
  • SINGH, B.; VERMA, A.; GUPTA, M. Studies on adsorptive interaction between natural fibre and coupling agents. Journal of Applied Polymer Science, New York, v.70, n.9, p.1847-1858, 1998.
  • THOMAS, S.; UDO, G. Automotive applications of natural fiber composites. In: LEÂO, A. L. ; CARVALHO, F. X. ; FROLLINI, E., Lignocellulosic-plastics composites, São Paulo: USP/UNESP, p.181-195, 1997.
  • TOLÊDO FILHO, R. D. Natural fibre reinforced mortar composites: Experimental characterisation Rio de Janeiro: DEC-PUC/Imperial College, London: DEC, 1997. Ph.D. Thesis
  • VALADEZ-GONZALEZ, A.; CERVANTES-UC, J. M.; OLAYO, R.; HERRERA-FRANCO, P. J. Effect of fibre surface treatment on the fibre-matrix bond strength of natural fibre reinforced composites. Part b-Egineering, Oxford, v.30, n.3, p.309-320, 1999.
  • VARGHESE, S.; KURIAKOSE, B.; THOMAS, S. Mechanical properties of short sisal fibre reinforced natural rubber composites. Journal of Natural Rubber Research, Kottayam, v.5, p.55, 1992.
  • VARGHESE, S.; KURIAKOSE, B.; THOMAS, S. Stress relaxation in short sisal fibre reinforced natural rubber composites. Journal of Applied Polymer Science, New York, v.53, p.1051-1060, 1994.
  • VARGHESE, S.; KURIAKOSE, B.; THOMAS, S.; JOSEPH, K. Effect of addition on the equilibrium swelling of short sisal fibre natural rubber composites. Rubber Chemistry and Technology, Akron, v.68, n.1, 1995.
  • VELURAJA, K.; AYYALNARAYANASUBBU, R. S.; PAUL, R. A. J. Preparation of gum from tamarind seed - and its application in the preparation of composite material with sisal fibre. Carbohydrate Polymers, Oxford, v.34, n.4, p.377-379, 1997.
  • WEINDLING, L. Long vegetable fibres New York: Columbia University Press, 1947.
  • WILSON, P. I. Sisal Vol. II, Rome: FAO/United Nations Organization, Hard Fibres Research Series, No. 8, 1971.

Publication Dates

  • Publication in this collection
    Sep-Dec 1999
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com