Acessibilidade / Reportar erro

Fossil fishes and anurans from the Miocene of Rio Chico and Cerro Zeballos, Chubut Province, Argentina

Abstract

The fossil record of freshwater fishes and anurans from the Miocene in Patagonia is relatively patchy, a large number of specimens remaining undescribed. The aim of the present contribution is to describe a fossil association of percomorphacean fishes and calyptocephalellid anurans from the early to late Miocene Collón Curá Formation, at Chubut province, Patagonia, Argentina. In spite of being represented by several specimens, both anurans and fishes show a very low taxonomic diversity. This pattern matches with other fossil sites from the Cenozoic of Patagonia, as well as with the extant Patagonian batrachofaunas and ichthyofaunas. The fossil record of frogs and fishes in Patagonia is represented by few lineages that have a large evolutionary history in the area, and occasionally can be traced up to the Late Mesozoic.

Key words
Percichthyidae; Calyptocephalellidae; Miocene; Collón Curá Formation; Patagonia; Argentina

INTRODUCTION

Fishes and anurans are intimately related with the evolution of freshwater bodies. As a result, there is often a close match between the evolutionary history of river basins and the fish lineages that inhabit them. Thus, the change of freshwater drainage and basins has a key importance for understanding the distribution and biogeography of both vertebrate groups (Reis et al. 2016REIS RE, ALBERT JS, DI DARIO F, MINCARONE MM, PETRY P & ROCHA LA. 2016. Fish biodiversity and conservation in South America. J Fish Biol: doi 10.1111/jfb.13016.). In this sense the fossil record of fishes and anurans has the potential importance to understand the reconstruction of freshwater basins in the past.

Regrettably, in contrast with the fossil record of mammals, the reports of Miocene fishes and anurans from Patagonia are scarce (Arratia & Cione 1996ARRATIA G & CIONE A. 1996. The Record of Fossil Fishes of Southern South America. Münch Geowiss Abhand Geol und Paläont 30: 9-72., Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401., Cione & Baez 2007CIONE AL & BAEZ AM. 2007. Peces continentales y anfibios cenozoicos de Argentina: los últimos cincuenta años. Ameghiniana, Esp Publ 11: 195-220.).

From the Ñirihuau Formation (early Miocene) at Río Negro and Chubut provinces indeterminate teleosts, percichthyids and atherinopsids were reported (Feruglio 1949FERUGLIO E. 1949. Descripción Geológica de La Patagonia. Buenos Aires, Ministerio de Industria y comercio de La Nación. Dirección general de Yacimientos Petrolíferos Fiscales., Dessanti 1972DESSANTI RN. 1972. Andes Patagónicos Septentrionales. In: Leanza AF (Ed), Geología Regional Argentina, p. 655-687., Bocchino 1964BOCCHINO A. 1964. Sobre un Pygidiidae (Pisces, Siluriformes) del Eoceno de Río Negro. Ameghiniana 7(3): 185-189., 1971BOCCHINO A. 1971. Algunos peces fósiles del denominado Patagoniano del oeste de Chubut, Argentina. Ameghiniana 8(1): 52-64., Pascual et al. 1984PASCUAL R, BONDESIO P, VUCETICH MG, SCILLATO-YANÉ GJ, BOND M & TONNI EP. 1984. Vertebrados Fósiles Cenozoicos. In: Ramos V (Ed), IX Congreso Geológico Argentino (S. C. de Bariloche), Relatorio II(9), 439-461. Asociación Geológica Argentina, Buenos Aires.), whereas percichthyids were recorded from Collón Curá Formation (middle Miocene) at Río Negro province (Casamiquela 1963CASAMIQUELA RM. 1963. Sobre un par de anuros del Mioceno de Rio Negro (Patagonia) Wawelia gerholdi n. gen. et sp. (Ceratophrydidae) y Gigantobatrachus parodi (Leptodactylidae). Ameghiniana 3: 141-157.). From Puerto Madryn Formation (late Miocene) at Chubut province, diverse materials of siluriforms including loricariids, and percomorphaceans were described (Cione et al. 2005CIONE AL, AZPELICUETA MM, CASCIOTTA JR & DOZO MT. 2005. Tropical freshwater teleosts from Miocene beds of eastern Patagonia, southern Argentina. Geobios 38: 29-42.).

As in the case of fishes, the record of Miocene anurans in Patagonia is saltuary. From the early Miocene, there are records of “Leptodactylidae” and specimens of the genus Calyptocephalella from Sarmiento, Pinturas and Santa Cruz formations at Santa Cruz and Chubut provinces (Ameghino 1901AMEGHINO F. 1901. L’âge des formations sèdimentaires de Patagonie. An Soc Cien Arg 51: 20-39, 65-91., Schaeffer 1949SCHAEFFER B. 1949. Anurans from the Early Tertiary of Patagonia. Bull Am Mus Nat Hist 93: 41-68., Bown & Larriestra 1990BOWN TM & LARRIESTRA CN. 1990. Sedimentary paleoenvironments of fossil platyrrhine localities, Miocene Pinturas Formation, Santa Cruz Province, Argentina. J Human Evol 19: 87-119., Tauber 1999TAUBER AA. 1999. Los Vertebrados de la Formación Santa Cruz (Mioceno Inferior) en el extreme sureste de la Patagonia y su significado paleoecológicos. Rev Española Paleont 14: 173-182., Fernicola & Vizcaíno 2006FERNICOLA JC & VIZCAÍNO SF. 2006. Sobre la posible presencia de Ceratophrys (Anura: Ceratophryinae) en la Formación Santa Cruz. Ameghiniana, 43: 38R., Fernicola & Albino 2012FERNICOLA JC & ALBINO AM. 2012. Amphibians and squamate reptiles from the Santa Cruz Formation (late early Miocene), Santa Cruz Province, Argentina: paleoenvironmental and paleobiological considerations. In: Vizcaíno SF, Kay RF & Bargo MS (Eds), Early Miocene Paleobiology in Patagonia. Cambridge, p. 129-137.). The genus Calyptocephalella is also recorded from Collón Curá Formation (middle Miocene) at Río Negro province, and from Río Mayo Formation (late middle Miocene) at Chubut province (Casamiquela 1958CASAMIQUELA RM. 1958. Un anuro gigante del Mioceno de Patagonia. Rev Asoc Geol Arg 13: 171-183., 1963, Nicoli et al. 2016NICOLI L, MUZZOPAPPA P & FAIVOVICH J. 2016. The taxonomic placement of the Miocene Patagonian frog Wawelia gerholdi (Amphibia: Anura). Alcheringa 40(2): 153-160.). Finally, calyptocephalellids of the genera Gigantobatrachus and Calyptocephalella are recorded at Los Loros Formation (late Middle? Miocene), Río Negro Province (Casamiquela 1963CASAMIQUELA RM. 1963. Sobre un par de anuros del Mioceno de Rio Negro (Patagonia) Wawelia gerholdi n. gen. et sp. (Ceratophrydidae) y Gigantobatrachus parodi (Leptodactylidae). Ameghiniana 3: 141-157., Pascual et al. 1984PASCUAL R, BONDESIO P, VUCETICH MG, SCILLATO-YANÉ GJ, BOND M & TONNI EP. 1984. Vertebrados Fósiles Cenozoicos. In: Ramos V (Ed), IX Congreso Geológico Argentino (S. C. de Bariloche), Relatorio II(9), 439-461. Asociación Geológica Argentina, Buenos Aires.).

Up to the date, previous fish reports from the Collón Curá Formation are limited just to the mention of perchs, but these remain undescribed. Anurans from the same geological unit are represented only by the type specimen of Wawelia gerholdi that is now referred to Calyptocephalella (Nicoli et al., 2016). The aim of the present contribution is to describe isolated materials of fossil frogs and fishes from Collón Curá Formation (Burdigalian-Tortonian, Miocene) collected at Río Chico and Cerro Zeballos fossiliferous sites (Martin & Tejedor 2007MARTIN GM & TEJEDOR MF. 2007. Nueva especie de Pseudonotictis Ameghino (Metatheria, Sparassodonta, Hathliacynidae) del Mioceno Medio de Chubut noroccidental, Argentina. Ameghinana 44 (4): 747-750., González Ruiz et al. 2012GONZÁLEZ RUIZ LR, NOVO N, MARTÍNEZ O, TEJEDOR MF, DOZO MT, PÉREZ ME, STERLI J & BOGAN S. 2012. Nuevas localidades de vertebrados fósiles del Mioceno medio del noroeste del Chubut, Argentina. Ameghiniana 49(4): R29.), near Cushamen and Gualjaina respectively, northwestern Chubut province, Patagonia, Argentina. This is one of the few assemblages described from the Miocene in Patagonia, South America.

STRATIGRAPHIC AND GEOGRAPHIC CONTEXT

Río Chico locality

On both sides of the Chico River (Río Negro and Chubut Provinces) there are extensive Collón Curá Formation outcrops (Ravazzoli & Sesana 1977RAVAZZOLI IA & SESANA FL. 1977. Descripción geológica de la hoja 41c, Río Chico, Provincia de Río Negro. Serv Geol Nac Bol 148: 1-77., Volkheimer & Lage 1981VOLKHEIMER W & LAGE J. 1981. Descripción geológica de la hoja 42c, Cerro Mirador, Provincia del Chubut. Serv Geol Nac Bol 181: 1-71.). Specifically, in the Calera Esparza depression (Figure 1), the sediments are extensive and subhorizontally exposed. In this area two sections of the Collón Curá Formation were described (Volkheimer & Lage 1981VOLKHEIMER W & LAGE J. 1981. Descripción geológica de la hoja 42c, Cerro Mirador, Provincia del Chubut. Serv Geol Nac Bol 181: 1-71.). The upper one of 130 m of thickness is represented by an alternation of light grey and yellowish sandstones of different granulometry. The basal 10 m of the upper section are mainly composed by silty sandsontes of fine graine and greenish in colour, indicating a transition to the lower section. The latter is composed by silty sandstones and silty limestones, representing a lacustrine facies. The specimens were collected in the localities of Río Chico 2 (42° 5’ 5.47” S, 70°29’13.7 O) and Río Chico 5 (42° 7’1.38” S, 70°28’41.64” O) (Figure 1). Although there are no absolute ages for these localities, 15 km north on the Chico River, Bilmes et al. (2013BILMES A, D’ELIA L, FRANZESE JR, VEIGA GD & HERNÁNDEZ M. 2013. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics 601: 98-111., 2014BILMES A, D’ELIA L, VEIGA GD, & FRANZESE JR. 2014. Relleno intermontano en el antepaís fragmentado patagónico: evolución neógena de la cuenca de gastre. Rev Asoc Geol Arg 71: 311-330.) obtained an age 40Ar/39Ar of 14.86±0.13 Ma (Langhian Age, Miocene) for the base of the middle section of Collón Curá Formation. The Collón Curá Formation spans from ca. 16 Ma to ca. 11 Ma (Burdigalian Age-Tortonian Age) (Brandoni et al. 2019BRANDONI D, GONZÁLEZ RUIZ L, REATO A, & MARTIN G. 2019. Chronological implications of the nothrotheriid ‘Xyophorus’ (Mammalia, Xenarthra) from the Collón Curá Formation (Miocene of Patagonia, Argentina). Hist Biol 31 (7): 879-887. and references therein).

Figure 1
Map showing fossiliferous localities of Río Chico and Cerro Zeballos.

Cerro Zeballos locality

At the North of Chubut River, in front of the confluence with Gualjaina River (Chubut Province), there are extensive outcrops of the Collón Curá Formation (Lage 1982LAGE J. 1982. Descripción geológica de la hoja 43c, Gualjaina, Provincia del Chubut. Serv Geol Nac Bol 189: 1-72.). In this area the sediments were preliminary described by Lage (1982)LAGE J. 1982. Descripción geológica de la hoja 43c, Gualjaina, Provincia del Chubut. Serv Geol Nac Bol 189: 1-72. and Brandoni et al. (2019)BRANDONI D, GONZÁLEZ RUIZ L, REATO A, & MARTIN G. 2019. Chronological implications of the nothrotheriid ‘Xyophorus’ (Mammalia, Xenarthra) from the Collón Curá Formation (Miocene of Patagonia, Argentina). Hist Biol 31 (7): 879-887.. In this locality, known as Cerro Zeballos (42º 34’ 46.5’’S, 70º 19’ 55’’W) (Figure 1), the sequence is homoclinal with subhorizontally disposed strata, and corresponds to volcanoclastic sediments with predominance of tuffs, chonites, and subordinate epiclastic sediments. Brandoni et al. (2019)BRANDONI D, GONZÁLEZ RUIZ L, REATO A, & MARTIN G. 2019. Chronological implications of the nothrotheriid ‘Xyophorus’ (Mammalia, Xenarthra) from the Collón Curá Formation (Miocene of Patagonia, Argentina). Hist Biol 31 (7): 879-887. described the section were the vertebrates were found, as a sequence of 15 m of massive tufaceous sandstone that are ocher or yellowish in colour. These are overlaid by ca. 3 m of greenish tufaceous mudstone, and finally epiclastic deposits of claystone, mudstone, and grainstones, with intercalated pyroclastic levels. The tuffaceous material and the presence of rizolithes suggests a shallow and low energy system of lagoons or lakes, and a floodplain with shallow and low energy fluvial courses, probably with periods of aerial exposure. Although, there are no absolute ages for Cerro Zeballos, Brandoni et al. (2019)BRANDONI D, GONZÁLEZ RUIZ L, REATO A, & MARTIN G. 2019. Chronological implications of the nothrotheriid ‘Xyophorus’ (Mammalia, Xenarthra) from the Collón Curá Formation (Miocene of Patagonia, Argentina). Hist Biol 31 (7): 879-887. proposed a Tortonian Age (Miocene) for this fossiliferous association based on mammal content.

Abbreviations

LIEB-PV, Laboratorio de Investigaciones en Evolución y Biodiversidad, Paleovertebrados, Universidad de la Patagonia “San Juan Bosco” sede Esquel, Chubut, Argentina.

SYSTEMATIC PALEONTOLOGY

Acanthomorpha Rosen, 1973ROSEN DE. 1973 Interrelationships of higher teleostean fishes Pp. 397–513 In: Greenwood PH, Miles RS & Patterson C (Eds), Interrelationships of fishes. Academic Press, London.

Percomorphacea Wiley & Johnson, 2010WILEY EO & JOHNSON GD. 2010. A teleost classification based on monophyletic groups. In: Nelson JS, Schultze H-P, Wilson MVH (Eds), Origin and Phylogenetic Interrelationships of Teleosts. München: Verlag Dr. Friedrich Pfeil, p. 123-182.

Centrarchiformes Bleeker, 1859BLEEKER P. 1859. Enumeratio specierum piscium hucusque in Archipelago Indico. Bataviae typis Lagii et Soc. Collected Fish Papers of Pieter Bleeker, Vol. IX, Paper 10. Reprinted in 1975, Dr. W. Junk B. V. Publishers, The Hague, The Netherlands. pp. 1–276.

Percichthyidae Jordan & Eigenmann, 1890JORDAN D & EIGENMANN C. 1890. A review of the genera and species of Serranidae found in the waters of America and Europe. Bull US Fish Comm 8: 329-441.

Genus and species indeterminate

Figures 2-6

Referred material

LIEB-PV 8000, first precaudal vertebra, 3 precaudal vertebrae, 2 caudal vertebrae, 3 articulated caudal vertebrae; LIEB-PV 8001, 9 first precaudal vertebrae, 43 precaudal vertebrae; 20 caudal vertebrae; LIEB-PV 8002, first anal pterygiophore, an incomplete ceratohyal, fragmentary left preopercular bone, incomplete left maxilla, incomplete left premaxilla, incomplete mandibular glenoid, incomplete parasphenoid, two left dentaries; LIEB-PV 8003, two left and one right dentary bones, and one right premaxilla; LIEB-PV 8004, first anal pterygiophore, 28 spines of impair fins, and 1 spine of pelvic fin; LIEB-PV 8005, first dorsal pterygiophore, two fragmentary ceratohyal, parasphenoid; LIEB-PV 8009, basioccipital; LIEB PV 8010, 3 precaudal vertebrae, 2 caudal vertebrae (Figure 2).

Figure 2
Sketch drawing of the skeleton of the common perch (Perca fluviatilis) representing a generalized percomorphacean. Shaded in red the elements here reported. Modified from Goodrich (1859)GOODRICH SG. 1859. Animal Kingdom Illustrated Vol 2, New York, p. 576..

Locality

Río Chico 5: LIEB-PV 8000; Río Chico 2: LIEB-PV 8001, LIEB-PV 8002, LIEB-PV 8003, LIEB-PV 8004, LIEB-PV 8005; Cerro Zeballos: LIEB-PV 8009, LIEB-PV 8010.

Description

Dentary

None of the dentaries is completely preserved, and preserved remains are restricted to the anterior third of the bone (Figure 3a-e). The preserved portion indicates that it was a subtriangular-shaped bone when viewed from the side, being slightly medially curved when viewed dorsally.

Figure 3
Percichthyidae genus and species indeterminate. Selected cranial bones. a-c, right dentary (LIEB-PV 8003) in a, lateral; b, medial; and c, occlusal views. d-e, left dentary (LIEB-PV 8002) in d, medial, and e, lateral views. f-g, right premaxilla in f, lateral, and g, occlusal views. h-i, left maxilla (LIEB-PV 8002) in h, lateral; and g, medial views. References: ap, ascending process; arp, articular process; fo, medial foramen; lg, longitudinal groove; mf, mentonian flange; mp, mentonian process; mr, maxillary ramus; pe, posterior expansion; pr, premaxillary ramus; sy, dentary symphysis; tp, tooth patch; 1p, first pit for the mandibular sensitive canal; 2p, second pit for the mandibular sensitive canal. Scale bar: 1 cm.

The mentonian process is prominent and robust, conforming an anteroposteriorly extended flange. Its ventral margin is ornamented by folds. A narrow longitudinal grove delimitates the dorsal edge of the mentionian process from the tooth patch. This groove posteriorly ends at the VII nerve foramen, far from the anterior margin of the dentary. The symphyseal surface is represented by two well-defined bumps that are separated from the above-mentioned longitudinal groove.

The first pit for the mandibular sensitive canal is anteroposteriorly elongate and of mid-size, being suboval in contour. There is a very small pit anterior to the second pit for the mandibular sensitive canal. The second pit is relatively large, but the incomplete nature of the specimens do not allow to recognize its precise contour. The upper foramen is small and is ogival in shape, being located within an anteroposteriorly long concavity.

In occlusal view a wide tooth patch is observed. It shows a large number of subcircular and small bases for the implantation of small villiform teeth. The tooth bases are subequal in size along all the dentary. The occlusal surface of the dentary is markedly concave, and is laterally projected, especially on its anterior end.

Premaxilla

This bone is represented by its anterior portion (Figure 3f-g). Its shape is typical to that of the Percomorphacea clade. The ascending process is very low, relatively thick and shows an anteroposteriorly wide base. The articular process is relatively thick and rounded in contour. It is separated from the ascending process by a wide and concave surface. In medial view it is ventrally delimited by a longitudinal groove.

The premaxillary ramus is tranversely thick and is clearly separated from the tooth patch. In occlusal view a wide tooth patch is observed. It shows a large number of subcircular and small bases for the implantation of small villiform teeth. The tooth bases are subequal in size along all the premaxilla.

Maxilla

The maxilla is represented by a fragment of maxillary ramus of the left side (Figure 3h-i). In spite of being poorly preserved, the fragment indicates that the bone expands gradually posteriorly. The lateral surface is gently convex. In medial view it shows a deep canal that is subtriangular in contour and ends in an ogival-shaped foramen.

Preopercular

This element is represented by a fragment of the vertical limb (Figure 4d). It is laminar in cross-section and shows a dentate posterior margin.

Figure 4
Percichthyidae genus and species indeterminate. a-c, parasphenoid (LIEB-PV 8002) in a, ventral; b, left lateral; and c, dorsal views. d, left preopercular (LIEB-PV 8002) in lateral view. e, ceratohyal (LIEB-PV 8002) in lateral view. f-g, incomplete ceratohyal (LIEB-PV 8005) in e, lateral; and f, medial views. References: cf, ceratohyal foramen; dp, dentate posterior margin; fb, flange of bone; ne, parasphenoid neck; vp, ventral process; vs, ventral surface. Scale bar: a-c, e, 1 cm; d, h-k, 0.5 cm.

Parasphenoid

It is an elongate bone (Figure 4a-c). The ventral surface is notably flat and straight, with sharply demarcated lateral margins. It shows a slight constriction near the posterior third of the bone. Dorsally it shows a well-developed longitudinal median crest.

Ceratohyal

It is an elongate element with a well-defined neck (Figure 4e-g). As occurs in Percichthys and Macquaria (MacDonald 1978MACDONALD CM. 1978. Morphological and biochemical systematics of Australian freshwater and estuarine Percichthyid fishes. Marine and Freshwater Res 29(5): 667-698.) the ceratohyal foramen is represented by a shallow concavity, and is not dorsally closed by an osseous process, contrasting with Percilia and some other basal Percomorphaceae (Arratia 1982ARRATIA G. 1982. A review of freshwater percoids from South America. Abh Senckenb Naturforsch Ges 540: 1-52, Otero 2004OTERO O. 2004. Anatomy, systematics and phylogeny of both recent and fossil latid fishes (Teleostei, Perciformes, Latidae). Zool J Linnean Soc 141(1): 81-133.). The ventral process for articulation with the hypohyal is well-developed and rod-like, subcircular in cross-section. In medial view, the ventral process is dorsally excavated and this concavity is laterally delimited by a thin flange of bone.

Basioccipital

The basioccipital bears ventrally oriented surfaces for Baudelot’s ligament (Figure 4h-k). In ventral view there is a very large concavity. The articular facet of the basioccipital for the first vertebra has an overall rounded shape with a small thickening on its dorsal part.

First precaudal vertebra

As occurs in all known percomorphaceans the first precaudal vertebra shows an autogenous neural arch, being not fused to the vertebral centrum (Gayet 1987GAYET M. 1987. Lower vertebrates from the early middle Eocene Kuldana Formation of Kohat (Pakistan): Holostei and Teleostei. Contrib Mus Paleont Univ Mich 27: 151-168.)(Figure 5a-c). The centrum shows at its anterodorsal surface two large articular surfaces for the exoccipital bone, and are separated from each other by a small subtriangular-shaped process.

Figure 5
Percichthyidae genus and species indeterminate. Vertebrae. a-c, first precaudal vertebral centrum (LIEB-PV 8000) in a, ventral; b, dorsal; c, anterior; d, large-sized precaudal vertebral centrum (LIEB-PV 8001) in anterior view; e-f, precaudal vertebral centrum (LIEB-PV 8001) in e, ventral, and f, right lateral views. g-h, caudal vertebra (LIEB-PV 8001) in g, anterior; h, right lateral views. i, three articulated caudal vertebrae (LIEB-PV 8000) in lateral view. h-k, basioccipital (LIEB-PV 8009) in h, ventral; i, dorsal; j, left lateral; and k, posterior views. References: ae, articular surface for the exoccipital; an, articular surface for the neural arch; as, anterior articular surface; ha, haemal arch; na, neural arch; pp, posterior porcess; ps, posterior articular surface; tr, trabecular bone; vc, ventral concavity. Scale bar: 1 cm.

The vertebral centrum is strongly anteroposteriorly compressed at its base, a condition shared with Plesiopercichthys and differing from living percichthyids (Agnolín et al. 2014AGNOLÍN FL, BOGAN S, TOMASSINI RL & MANERA T. 2014. Nuevo Percichthyidae (Teleostei, Percoidei) del Plioceno temprano de la provincia de Buenos Aires (Argentina) y sus implicancias biogeográficas. Rev Mus Arg Cienc Nat 16(1): 19-31.). The lateral surface of the centrum is straight and obliquely oriented, resulting in a transversely narrow base. The ventral surface is relatively flat, differenting from the rounded condition shown by Percichthys.

In lateral view there are a large number of irregular concavities separated by osseous trabeculae, that are mostly located near the dorsal half of the centrum. Remaining surface of the centrum is ornamented by longitudinal striations and grooves. The postzygapophyses are well-separated from each other, are relatively small and ellipsoidal in contour, whereas in Plesiopercicthys and Percichthys are subcircular in shape.

Precaudal vertebrae

The largest elements have a transverse width of 24 mm. (Figure 5d). In lateral view exhibit a striated bone texture, with some cases of a trabecular bone formed by wide pits and strong bone laminae. Anterior precaudal centra are strongly anteroposteriorly compressed and the lateral surface is not deeply trabeculate. In ventral view, they show a wide and deep concavity that is subrectangular in contour.

Caudal vertebrae

Caudal vertebrae show an elongate centrum (Figure 5g-i). The lateral, ventral and dorsal surfaces exhibit a prominent trabeculate bone texture. In lateral view the surface shows a longitudinal thick ridge at mid-height of the centrum. Ventral and dorsal concavities are deep and wide.

Pterygiophore

First large anal pterigiophore is represented by the fusion of two consecutive elements, that constitutes the contact with the first and second spines (Figure 6a-c). It is an elongate element with a blade-like proximal end.

Figure 6
Percichthyidae genus and species indeterminate. Spines and pterygiophores. a-c, first anal pterygiophore (LIEB-PV 8004) in a, distal; b, right lateral; c, posterior views. d-f, first dorsal hyperostosed pterygiophore (LIEB-PV 8005) in d, proximal; e, posterior; and f, lateral views. g-h, fin spine (LIEB-PV 8004) in g, lateral; and h, posterior views. i, articular end of fin spine (LIEB-PV 8004) in posterior view. j-k, articular end of fin spine (LIEB-PV 8004) in j, posterior, and k, anterior views. l-m, articular end of fin spine (LIEB-PV 8004) in l, posterior; m, lateral; and n, anterior views. References: as, articular surface; cap, cup-shaped articular surface for spine; cf, central foramen; cs, concavity for preceeding spine; ck, central keel; ke, longitudinal keel; lg, longitudinal groove; lr, lateral ridge; op, osseous platform; pr, proximal radial; ri, ridge; rp, rounded process. Scale bar: a-c, g-n, 0.5 cm; d-f, 1 cm.

Distally it shows two pairs of articular surfaces for the articulation with the first two spines of the anal fin. In posterior view, this compound bone shows a short central keel that extends at the basal quarter of the element. This keel proximally ends in a small flange of bone that shows a gently convex anterior surface that continues with the central keel. The central keel is surrounded by a pair of small longitudinal ridges that converge towars its base with the central keel. Laterally the pterygiophore shows two large laminae that extend toward the base of the bone. At the anterior surface, the base of the pterygiophore shows a small and complex articular surface that is gently concave and articulates with the distal radial element.

A single first pterygiophore from the dorsal fin was recovered (Figure 6d-f). It is identified as the first element because at the anterior surface lacks articulation surface for other pterygiophore, and because it shows an osseous platform, with a mosty flattened anterior surface that presents a single longitudinal midline groove.

The pterygiophore is hyperostosed and thickened. Its surface is decorated by a rugose texture. At its proximal end it shows two cup-shaped surfaces for the articulation of the first dorsal spine. Posteriorly, the proximal radial is posterodorsally oriented and is tube-like.

Spines

The fin spines have a rounded, lobed base (Figure 6g-k). In anterior view these elements have a rounded ridge positioned at one side at the base and twists to a central position higher on the blade. This ridge is proximally delimited at the basal quarter of the spine by a well-defined groove that represents the contact with the preceding spine. In anterior view it shows two articular surfaces of subcircular contour that are located lateral to the central foramen. At the posterior surface there are two low and rounded projections (the locking processes of Gayet 1987GAYET M. 1987. Lower vertebrates from the early middle Eocene Kuldana Formation of Kohat (Pakistan): Holostei and Teleostei. Contrib Mus Paleont Univ Mich 27: 151-168.) near the base of the element. Presence of combined spine rays, having a rounded anterior ridge, two articular surfaces anteriorly and two posterior projections posteriorly indicate that the spines belong to the percomorphacean clade (Murray & Thewissen 2008MURRAY AM & THEWISSEN JGM. 2008. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). J Vert Paleont 28(1):41-52.).

The pelvic fin spine is represented by a single proximal end. It shows a roughly subtriangular contour in cross-section. It is strongly asymmetrical, it exhibits a complex proximal articular surface as is typical of percomorphaceans (Otero 2004OTERO O. 2004. Anatomy, systematics and phylogeny of both recent and fossil latid fishes (Teleostei, Perciformes, Latidae). Zool J Linnean Soc 141(1): 81-133.). The proximal heel is saddle-shaped and shows two articular facets that are separated by a notch. In anterior view there is a well-developed and rounded stop. In posterior view the proximal end shows a narrow rod-like posteroventral process. It exhibits a longitudinal groove that runs along the spine blade.

Comments

In spite of being represented mostly by a large number of isolated and fragmentary material we infer that the different specimens may belong to a single fish species. At first sight, the elements are concordant in main anatomical characters, being reminiscent to percichthyids. Further, the overlapping material is congruent with the presence of a single species, or closely related species, at least.

The specimens here described share a combination of characters that are typical of the Percomorphacea clade, including presence of spinose rays in dorsal and anal fins, first precaudal vertebra with two articular surfaces indicating an autogenous neural arch, presence of wide trabeculae on lateral surface of vertebral centra, morphology of the ascending process of premaxilla, edentulous maxilla, and serrated posterior margin of the preopercle (see Johnson 1993JOHNSON GD. 1993. Percomorph Phylogeny: progress and problems. Bull Mar Sci 52(1): 3-28., Gayet & Meunier 1998GAYET M & MEUNIER FJ. 1998. Maastrichtian to early late Paleocene freshwater Osteichthyes of Bolivia: additions and comments. Phylogeny and classification of Neotropical fishes, p. 85-110., Agnolín 2012AGNOLÍN FL. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud Geol Salmanticensia 48(2): 129-178.). Percomorphaceans are a very diverse group that include a large number of “perch-like” fishes exhibiting a conservative osteology. Some features of the material here described may indicate that specimens may be related to the Percichthyidae. The presence of enlarged pits of the sensitive canal on the dentary, premaxilla and dentary with very small and conical teeth and ceratohyal with concave dorsal margin showing an opened ceratohyal foramen, is a combination of traits that is concordant with such proposal (Arratia 1982ARRATIA G. 1982. A review of freshwater percoids from South America. Abh Senckenb Naturforsch Ges 540: 1-52, MacDonald 1978MACDONALD CM. 1978. Morphological and biochemical systematics of Australian freshwater and estuarine Percichthyid fishes. Marine and Freshwater Res 29(5): 667-698., Johnson 1993JOHNSON GD. 1993. Percomorph Phylogeny: progress and problems. Bull Mar Sci 52(1): 3-28.).

When compared with South American percichthyids of the genera Percichthys, Santosius and Plesiopercichthys (see Arratia & Quezada-Romegialli 2019ARRATIA G & QUEZADA-ROMEGIALLI C. 2019. The South American and Australian percichthyids and perciliids. What is new about them? Neotr Ichthyol 17: e180102.), the specimens here reported show some differences, including symphyseal region of the dentary composed by two bumps separated by a longitudinal groove, premaxilla with a wide and thickened ascending process, and hyperostosic and enlarged first pterygiophore of the dorsal fin. Such features are unknown in any known extinct or extant percichthyid, precluding an accurate taxonomical referral of present material.

Anura Fischer, 1813

Neobatrachia Reig, 1958

Calyptocephalellidae (Reig, 1960)

Genus and species indeterminate

Referred material

LIEB-PV 8006, incomplete right maxilla; LIEB-PV 8007, incomplete right maxilla; LIEB-PV 8008, proximal end of urostyle.

Locality. Río Chico 2.

Description

The preserved maxillae are poorly preserved and show incomplete anterior and posterior ends, as well as the ascending ramus (Figure 7).

Figure 7
Indeterminate Calyptocephalellidae. a-d, LIEB-PV 8006-8007, right maxillae in a,c, lateral; b,d, medial views. References: am, alveolar margin; ap, asceding ramus; pp, pterygoid process; ps, palatine shelf. Sclae bar: 1 cm.

Most of the external surface of the bones is ornamented by pits and ridges, with the exception of the nearly smooth alveolar margin. The preserved base of the ascending ramus suggests that it was relatively tall and subvertically oriented.

The lateral surface of the bone is strongly convex and laterally prominent when compared with the alveolar margin, which is separated by a longitudinal step. The smooth alveolar margin is anteriorly tall and becomes lower towards the posterior end of the bone.

Medially, the ascending ramus is separated from the pterygoid process by a deep longitudinal groove. The preserved base of the pterygoid process indicates that it was medially oriented and was dorsolaterally curved. The palatine shelf is step-like, robust and prominent, well separated from the maxillary body.

The pars dentalis shows the preserved base of the teeth, which are subvertically oriented and subparallel to each other. The bases indicate that each tooth root was ankylosed to the maxilla, conforming typically pedicelate dentition, as diagnostic of Neobatrachia (Reig 1958REIG OA. 1958. Notas para una actualización del conocimiento de la fauna de la Formación Chapadmalal. Acta Geol Lilloana 2: 255-283.).

The preserved part of urostyle indicates a notably robust element (maximum transverse width 22.26 mm) that was relatively short, judging by the abrupt convergence of the margins of the bone (Figure 8). As in other neobatrachians the urostyle lacks transverse processes and a bicondylar proximal articulation (Gómez et al. 2011GÓMEZ RO, BAEZ AM & MUZZOPAPPA P. 2011. A new helmeted frog (Anura: Calyptocephalellidae) from an Eocene subtropical lake in northwestern Patagonia, Argentina. J Vert Paleont 31(1): 50-59.). The proximal articular surfaces are dorsoventrally tall and suboval in contour. The right proximal articular surface is notably larger than the left one. The dorsal longitudinal crest of the urostyle is represented by a transversely thickened base. Ventrally, the urostyle shows a poorly defined longitudinal crest. Based on comparisons with the living species Calyptocephalella gayi (see Otero et al. 2014OTERO RA, JIMENEZ-HUIDOBRO P, SOTO-ACUNA S & YURY-YÁNEZ RE. 2014. Evidence of a giant helmeted frog (Australobatrachia, Calyptocephalellidae) from Eocene levels of the Magallanes Basin, southernmost Chile. J South Am Earth Sci 55: 133-140.), the specimen here described may have reached a total body length of about 70 cm, being one of the largest known neobatrachians.

Figure 8
Indeterminate Calyptocephalellidae. a-d, LIEB-PV 8008, incomplete urostyle in a, anterior; b, dorsal; c, ventral; and d. right lateral views. References: dr, dorsal ridge; pas, proximal articuar surface. Scale bar: 1 cm.

Comments

The maxillae LIEB-PV 8006 and LIEB-PV 8007 are referred to Calyptocephalellidae by having an external ornamentation composed by pits and ridges, dorsoventrally tall pars dentalis, well developed and laminar pterygoid process, alveolar margin and palatine shelf step-like, and ascending process subvertically oriented and laminar in cross-section (Casamiquela 1958CASAMIQUELA RM. 1958. Un anuro gigante del Mioceno de Patagonia. Rev Asoc Geol Arg 13: 171-183., Baez 1977BAEZ AM. 1977. Sobre Teracophrys (Anura, Leptodactylidae) nomina nuda de la Formación Colhué Huapi (Oligoceno Superior), provincia del Chubut, República Argentina. Rev Asoc Geol Arg 22: 145-151., Gómez et al. 2011GÓMEZ RO, BAEZ AM & MUZZOPAPPA P. 2011. A new helmeted frog (Anura: Calyptocephalellidae) from an Eocene subtropical lake in northwestern Patagonia, Argentina. J Vert Paleont 31(1): 50-59., Agnolín 2012AGNOLÍN FL. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud Geol Salmanticensia 48(2): 129-178.). Because of the incomplete nature of specimens here described we refer the material as Calyptocephalellidae indet.

The fragmentary and isolated nature of LIEB-PV 8005, precludes a clear taxonomical referral. The robustness and the anteroposterior shortening of the specimen are features typical of Calyptocephalellidae (Reig 1960REIG OA. 1960. Las relaciones genericas del anuro chileno Calyptocephalella gayi (Dum. & Bibr.). Actas y Trabajos del Primer Congreso Sudamericano de Zoologıa 4: 113-131., Agnolín 2012AGNOLÍN FL. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud Geol Salmanticensia 48(2): 129-178.). The large size of the specimen as well as the asymmetrical proximal articular surfaces, are typical of the genus Gigantobatrachus (Casamiquela 1963CASAMIQUELA RM. 1963. Sobre un par de anuros del Mioceno de Rio Negro (Patagonia) Wawelia gerholdi n. gen. et sp. (Ceratophrydidae) y Gigantobatrachus parodi (Leptodactylidae). Ameghiniana 3: 141-157.). Because of its fragmentary nature, the specimen is here considered as an indeterminate calyptocephalellid.

DISCUSSION

Sedimentological research in the fossil sites indicates the presence of low energy fluvial deposits and lagoons (González Ruiz et al. 2012GONZÁLEZ RUIZ LR, NOVO N, MARTÍNEZ O, TEJEDOR MF, DOZO MT, PÉREZ ME, STERLI J & BOGAN S. 2012. Nuevas localidades de vertebrados fósiles del Mioceno medio del noroeste del Chubut, Argentina. Ameghiniana 49(4): R29.). If we assume that fossil fishes described above are percichthyids, their presence, together with that of strictly freshwater calyptocephallelid frogs (Veloso et al. 2008VELOSO A, FORMAS R & GERSON H. 2008. Calyptocephalella gayi. IUCN Red List of Threatened Species, Version 2019.4., Stuart et al. 2008STUART S, HOFFMANN M, CHANSON J, COX N, BERRIDGE R, RAMANI P & YOUNG B. 2008. Threatened Amphibians of the World. Lynx Edicions, with IUCN-The World Conservation Union, Conservation International and NatureServe, Barcelona, 776 p.), are indicative of a permanent and important freshwater environment, in agreement with geological data.

In spite of being represented by a large number of bones, all remains of fishes and frogs here reported may be comfortably referred to a few taxa. This pattern is also observed in most fossiliferous sites of Paleogene and early Neogene (until middle Miocene times) in Patagonia, which show a very low diversity of fishes and frogs (see Arratia & Cione 1996ARRATIA G & CIONE A. 1996. The Record of Fossil Fishes of Southern South America. Münch Geowiss Abhand Geol und Paläont 30: 9-72., Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401., Cione & Baez 2007CIONE AL & BAEZ AM. 2007. Peces continentales y anfibios cenozoicos de Argentina: los últimos cincuenta años. Ameghiniana, Esp Publ 11: 195-220.). Percichthyid-like percomorphaceans and calyptocephalellids have a long history in freshwater basins in southern South America. Both were reported since late Cretaceous times (Cione 1987CIONE AL. 1987. The late Cretaceous fauna of los Alamitos, Patagonia, Argentina. II: The fishes. Rev Mus Arg Cienc Nat 3(3): 111-120., Baez 1987BAEZ AM. 1987. The late Creataceous fauna of Los Alamitos, Patagonia, Argentina. III: Anurans. Rev Mus Arg Cienc Nat 3(3): 121-130., Gayet 1991GAYET M. 1991. “Holostean” and teleostean fishes of Bolivia. Revista Técnica YPFB 12(3-4): 453-494., Gayet & Meunier 1998GAYET M & MEUNIER FJ. 1998. Maastrichtian to early late Paleocene freshwater Osteichthyes of Bolivia: additions and comments. Phylogeny and classification of Neotropical fishes, p. 85-110., Martinelli & Forasiepi 2004MARTINELLI A & FORASIEPI A. 2004. Late Cretaceous vertebrates from Bajo de Santa Rosa (Allen Formation), Río Negro province, Argentina, with the description of a new sauropod dinosaur (Titanosauridae). Rev Mus Arg Cienc Nat 6(2): 257-305., Agnolín 2012AGNOLÍN FL. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud Geol Salmanticensia 48(2): 129-178.) and today, both are still present in Patagonia (Cione 1986CIONE AL. 1986. Los peces continentales del Cenozoico de Argentina. Su significación paleoambiental y paleobiogeográfica. Congreso Argentino de Paleontología y Bioestratigrafia 4: 101-106., Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401.).

Further, during the Tertiary, percichthyid-like taxa are the most abundant fishes recovered in Patagonian fossil sites (e.g., Cañadón Hondo, Puesto Galván, Cerro David), whereas other taxa as atheriniforms, siluriforms and osteoglossiforms are known from few fossiliferous sites (Bogan et al. 2010BOGAN S, TAVERNE L & AGNOLÍN FL. 2010. First fossil record of an amiid fish (Halecomorphi, Amiidae) from the Latest Cretaceous of Patagonia, Argentina, and comments on the status of Pappichthys patagonica Ameghino, 1906 (Teleostei, Osteoglossidae). Bull Inst Royal Sci Nat Belgique, Sci Terre 80: 163-170., Azpelicueta & Cione 2011AZPELICUETA MM & CIONE AL. 2011. Redescription of the Eocene catfish Bachmannia chubutensis (Teleostei: Bachmanniidae) of southern South America. J Vert Paleont 31(2): 258-269.). To this meagre diversification, by the late Miocene in northern Patagonia, Cione et al. (2005)CIONE AL, AZPELICUETA MM, CASCIOTTA JR & DOZO MT. 2005. Tropical freshwater teleosts from Miocene beds of eastern Patagonia, southern Argentina. Geobios 38: 29-42. added the occurrence of several Brazilian fish lineages that reached southern Pampas and northern Patagonia during the Miocene (Bogan & Agnolín 2019BOGAN S & AGNOLÍN FL. 2019. Armored catfish (Siluriformes: Loricariidae) from the Miocene of southern Pampas and its palaeobiogeographical implications. Swiss J Paleont, https://doi.org/10.1007/s13358-019-00196-2.). This constitutes the only important change recovered in the fossil record on the fish assemblages at northern Patagonia during most of the Tertiary. In the same sense, calyptocephalellids and pipoids, are known from a large number of sites since the earliest Tertiary up to the Miocene, whereas other anurans are restricted to a few isolated findings (see Cione & Baez 2007CIONE AL & BAEZ AM. 2007. Peces continentales y anfibios cenozoicos de Argentina: los últimos cincuenta años. Ameghiniana, Esp Publ 11: 195-220., Nicoli 2017NICOLI L. 2017. New Clues on Anuran Evolution: The Oldest Record of an Extant Hyloid Clade in the Oligocene of Patagonia. Hist Biol 29: 1-14., Aranciaga Rolando et al. 2019ARANCIAGA ROLANDO MA, AGNOLÍN FL & CORSOLINI J. 2019. A new pipoid frog (Anura, Pipimorpha) from the Paleogene of Patagonia. Paleobiogeographical implications. Comp R Palevol 10.1016/j.crpv.2019.04.003).

In sum, in spite of the several climatic sways that occurred along the Tertiary, in Patagonia fossils fishes and frogs are represented by a few and widespread lineages with ancient roots in the continent (Cione 1978CIONE AL. 1978. Aportes paleoictiológicos al conocimiento de la evolución de las paleotemperaturas en el área austral de América del Sur durante el Cenozoico. Aspectos zoogeográficos y ecológicos conexos. Ameghiniana 15(1-2): 183-208., see Ortiz-Jaureguizar & Cladera 2006ORTIZ-JAUREGUIZAR E & CLADERA GA. 2006. Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environments 66(3): 498-532.). We are not certain if this low diversity reflects the the relative isolation of Patagonian freshwater basins with respect to the rest of the continent along the Cenozoic, and/or a bias in the fossil record. One of the possible bias is the still incomplete knowledge of lower vertebrate faunas from the Tertiary of Patagonia. This is evidenced by the fact that several fish taxa are known from single sites. The other bias, could be related to the possibility that only a few, specific depositional environments are represented in the geology of the sampled fossiliferous localities, and that the environments where other taxa lived are not preserved in the geological record.

CONCLUSIONS

Cenozoic freshwater fishes from Patagonia include abundant percichthyid-like taxa and scarce atheriniforms, siluriforms and osteoglossiforms (Bogan et al. 2010BOGAN S, TAVERNE L & AGNOLÍN FL. 2010. First fossil record of an amiid fish (Halecomorphi, Amiidae) from the Latest Cretaceous of Patagonia, Argentina, and comments on the status of Pappichthys patagonica Ameghino, 1906 (Teleostei, Osteoglossidae). Bull Inst Royal Sci Nat Belgique, Sci Terre 80: 163-170., Azpelicueta & Cione 2011AZPELICUETA MM & CIONE AL. 2011. Redescription of the Eocene catfish Bachmannia chubutensis (Teleostei: Bachmanniidae) of southern South America. J Vert Paleont 31(2): 258-269.), whereas anurans are mostly represented by calyptocephalellids and pipoids (Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401.). The fossil record of frogs and fishes in Patagonia reflects a poor diversity of few lineages that have a large evolutionary history that in some cases can be traced to the late Mesozoic.

As indicated above, a large number of fossil freshwater fishes and anurans remain undescribed, and were only briefly mentioned (e.g., Feruglio 1949FERUGLIO E. 1949. Descripción Geológica de La Patagonia. Buenos Aires, Ministerio de Industria y comercio de La Nación. Dirección general de Yacimientos Petrolíferos Fiscales., Casamiquela 1963CASAMIQUELA RM. 1963. Sobre un par de anuros del Mioceno de Rio Negro (Patagonia) Wawelia gerholdi n. gen. et sp. (Ceratophrydidae) y Gigantobatrachus parodi (Leptodactylidae). Ameghiniana 3: 141-157., Dessanti 1972DESSANTI RN. 1972. Andes Patagónicos Septentrionales. In: Leanza AF (Ed), Geología Regional Argentina, p. 655-687., Pascual et al. 1984PASCUAL R, BONDESIO P, VUCETICH MG, SCILLATO-YANÉ GJ, BOND M & TONNI EP. 1984. Vertebrados Fósiles Cenozoicos. In: Ramos V (Ed), IX Congreso Geológico Argentino (S. C. de Bariloche), Relatorio II(9), 439-461. Asociación Geológica Argentina, Buenos Aires., Bown & Larriestra 1990BOWN TM & LARRIESTRA CN. 1990. Sedimentary paleoenvironments of fossil platyrrhine localities, Miocene Pinturas Formation, Santa Cruz Province, Argentina. J Human Evol 19: 87-119., Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401.). According to that, and considering that the fossil record of freshwater fishes and frogs in the Miocene of Patagonia is patchy and biased, and rests on few remains coming from isolated localities (Arratia & Cione 1996ARRATIA G & CIONE A. 1996. The Record of Fossil Fishes of Southern South America. Münch Geowiss Abhand Geol und Paläont 30: 9-72., Baez 2000BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401., Cione & Baez 2007CIONE AL & BAEZ AM. 2007. Peces continentales y anfibios cenozoicos de Argentina: los últimos cincuenta años. Ameghiniana, Esp Publ 11: 195-220.), our present report constitutes an important addition to the poor knowledge of these faunas in Patagonia.

ACKNOWLEDGMENTS

Special thanks to A. Giacchino (Fundación Félix de Azara) for his help and constant support during the confection of present MS. Thanks to N. Novo, G. Martin, O. Martinez, A. Reato, and M. Tejedor for assistance during the field works.

REFERENCES

  • AGNOLÍN FL. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud Geol Salmanticensia 48(2): 129-178.
  • AGNOLÍN FL, BOGAN S, TOMASSINI RL & MANERA T. 2014. Nuevo Percichthyidae (Teleostei, Percoidei) del Plioceno temprano de la provincia de Buenos Aires (Argentina) y sus implicancias biogeográficas. Rev Mus Arg Cienc Nat 16(1): 19-31.
  • AMEGHINO F. 1901. L’âge des formations sèdimentaires de Patagonie. An Soc Cien Arg 51: 20-39, 65-91.
  • ARANCIAGA ROLANDO MA, AGNOLÍN FL & CORSOLINI J. 2019. A new pipoid frog (Anura, Pipimorpha) from the Paleogene of Patagonia. Paleobiogeographical implications. Comp R Palevol 10.1016/j.crpv.2019.04.003
  • ARRATIA G. 1982. A review of freshwater percoids from South America. Abh Senckenb Naturforsch Ges 540: 1-52
  • ARRATIA G & CIONE A. 1996. The Record of Fossil Fishes of Southern South America. Münch Geowiss Abhand Geol und Paläont 30: 9-72.
  • ARRATIA G & QUEZADA-ROMEGIALLI C. 2019. The South American and Australian percichthyids and perciliids. What is new about them? Neotr Ichthyol 17: e180102.
  • AZPELICUETA MM & CIONE AL. 2011. Redescription of the Eocene catfish Bachmannia chubutensis (Teleostei: Bachmanniidae) of southern South America. J Vert Paleont 31(2): 258-269.
  • BAEZ AM. 1977. Sobre Teracophrys (Anura, Leptodactylidae) nomina nuda de la Formación Colhué Huapi (Oligoceno Superior), provincia del Chubut, República Argentina. Rev Asoc Geol Arg 22: 145-151.
  • BAEZ AM. 1987. The late Creataceous fauna of Los Alamitos, Patagonia, Argentina. III: Anurans. Rev Mus Arg Cienc Nat 3(3): 121-130.
  • BAEZ AM. 2000. Tertiary frogs from South America. In: Heatwole H & Carroll RL (Eds), Amphibian biology 4, Surrey Beatty & Sons, New South Wales, p. 1388-1401.
  • BILMES A, D’ELIA L, FRANZESE JR, VEIGA GD & HERNÁNDEZ M. 2013. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics 601: 98-111.
  • BILMES A, D’ELIA L, VEIGA GD, & FRANZESE JR. 2014. Relleno intermontano en el antepaís fragmentado patagónico: evolución neógena de la cuenca de gastre. Rev Asoc Geol Arg 71: 311-330.
  • BLEEKER P. 1859. Enumeratio specierum piscium hucusque in Archipelago Indico. Bataviae typis Lagii et Soc. Collected Fish Papers of Pieter Bleeker, Vol. IX, Paper 10. Reprinted in 1975, Dr. W. Junk B. V. Publishers, The Hague, The Netherlands. pp. 1–276.
  • BOCCHINO A. 1964. Sobre un Pygidiidae (Pisces, Siluriformes) del Eoceno de Río Negro. Ameghiniana 7(3): 185-189.
  • BOCCHINO A. 1971. Algunos peces fósiles del denominado Patagoniano del oeste de Chubut, Argentina. Ameghiniana 8(1): 52-64.
  • BOGAN S & AGNOLÍN FL. 2019. Armored catfish (Siluriformes: Loricariidae) from the Miocene of southern Pampas and its palaeobiogeographical implications. Swiss J Paleont, https://doi.org/10.1007/s13358-019-00196-2.
  • BOGAN S, TAVERNE L & AGNOLÍN FL. 2010. First fossil record of an amiid fish (Halecomorphi, Amiidae) from the Latest Cretaceous of Patagonia, Argentina, and comments on the status of Pappichthys patagonica Ameghino, 1906 (Teleostei, Osteoglossidae). Bull Inst Royal Sci Nat Belgique, Sci Terre 80: 163-170.
  • BOWN TM & LARRIESTRA CN. 1990. Sedimentary paleoenvironments of fossil platyrrhine localities, Miocene Pinturas Formation, Santa Cruz Province, Argentina. J Human Evol 19: 87-119.
  • BRANDONI D, GONZÁLEZ RUIZ L, REATO A, & MARTIN G. 2019. Chronological implications of the nothrotheriid ‘Xyophorus’ (Mammalia, Xenarthra) from the Collón Curá Formation (Miocene of Patagonia, Argentina). Hist Biol 31 (7): 879-887.
  • CASAMIQUELA RM. 1958. Un anuro gigante del Mioceno de Patagonia. Rev Asoc Geol Arg 13: 171-183.
  • CASAMIQUELA RM. 1963. Sobre un par de anuros del Mioceno de Rio Negro (Patagonia) Wawelia gerholdi n. gen. et sp. (Ceratophrydidae) y Gigantobatrachus parodi (Leptodactylidae). Ameghiniana 3: 141-157.
  • CIONE AL. 1978. Aportes paleoictiológicos al conocimiento de la evolución de las paleotemperaturas en el área austral de América del Sur durante el Cenozoico. Aspectos zoogeográficos y ecológicos conexos. Ameghiniana 15(1-2): 183-208.
  • CIONE AL. 1986. Los peces continentales del Cenozoico de Argentina. Su significación paleoambiental y paleobiogeográfica. Congreso Argentino de Paleontología y Bioestratigrafia 4: 101-106.
  • CIONE AL. 1987. The late Cretaceous fauna of los Alamitos, Patagonia, Argentina. II: The fishes. Rev Mus Arg Cienc Nat 3(3): 111-120.
  • CIONE AL, AZPELICUETA MM, CASCIOTTA JR & DOZO MT. 2005. Tropical freshwater teleosts from Miocene beds of eastern Patagonia, southern Argentina. Geobios 38: 29-42.
  • CIONE AL & BAEZ AM. 2007. Peces continentales y anfibios cenozoicos de Argentina: los últimos cincuenta años. Ameghiniana, Esp Publ 11: 195-220.
  • DESSANTI RN. 1972. Andes Patagónicos Septentrionales. In: Leanza AF (Ed), Geología Regional Argentina, p. 655-687.
  • FERNICOLA JC & ALBINO AM. 2012. Amphibians and squamate reptiles from the Santa Cruz Formation (late early Miocene), Santa Cruz Province, Argentina: paleoenvironmental and paleobiological considerations. In: Vizcaíno SF, Kay RF & Bargo MS (Eds), Early Miocene Paleobiology in Patagonia. Cambridge, p. 129-137.
  • FERNICOLA JC & VIZCAÍNO SF. 2006. Sobre la posible presencia de Ceratophrys (Anura: Ceratophryinae) en la Formación Santa Cruz. Ameghiniana, 43: 38R.
  • FERUGLIO E. 1949. Descripción Geológica de La Patagonia. Buenos Aires, Ministerio de Industria y comercio de La Nación. Dirección general de Yacimientos Petrolíferos Fiscales.
  • GAYET M. 1987. Lower vertebrates from the early middle Eocene Kuldana Formation of Kohat (Pakistan): Holostei and Teleostei. Contrib Mus Paleont Univ Mich 27: 151-168.
  • GAYET M. 1991. “Holostean” and teleostean fishes of Bolivia. Revista Técnica YPFB 12(3-4): 453-494.
  • GAYET M & MEUNIER FJ. 1998. Maastrichtian to early late Paleocene freshwater Osteichthyes of Bolivia: additions and comments. Phylogeny and classification of Neotropical fishes, p. 85-110.
  • GÓMEZ RO, BAEZ AM & MUZZOPAPPA P. 2011. A new helmeted frog (Anura: Calyptocephalellidae) from an Eocene subtropical lake in northwestern Patagonia, Argentina. J Vert Paleont 31(1): 50-59.
  • GONZÁLEZ RUIZ LR, NOVO N, MARTÍNEZ O, TEJEDOR MF, DOZO MT, PÉREZ ME, STERLI J & BOGAN S. 2012. Nuevas localidades de vertebrados fósiles del Mioceno medio del noroeste del Chubut, Argentina. Ameghiniana 49(4): R29.
  • GOODRICH SG. 1859. Animal Kingdom Illustrated Vol 2, New York, p. 576.
  • JOHNSON GD. 1993. Percomorph Phylogeny: progress and problems. Bull Mar Sci 52(1): 3-28.
  • JORDAN D & EIGENMANN C. 1890. A review of the genera and species of Serranidae found in the waters of America and Europe. Bull US Fish Comm 8: 329-441.
  • LAGE J. 1982. Descripción geológica de la hoja 43c, Gualjaina, Provincia del Chubut. Serv Geol Nac Bol 189: 1-72.
  • MACDONALD CM. 1978. Morphological and biochemical systematics of Australian freshwater and estuarine Percichthyid fishes. Marine and Freshwater Res 29(5): 667-698.
  • MARTIN GM & TEJEDOR MF. 2007. Nueva especie de Pseudonotictis Ameghino (Metatheria, Sparassodonta, Hathliacynidae) del Mioceno Medio de Chubut noroccidental, Argentina. Ameghinana 44 (4): 747-750.
  • MARTINELLI A & FORASIEPI A. 2004. Late Cretaceous vertebrates from Bajo de Santa Rosa (Allen Formation), Río Negro province, Argentina, with the description of a new sauropod dinosaur (Titanosauridae). Rev Mus Arg Cienc Nat 6(2): 257-305.
  • MURRAY AM & THEWISSEN JGM. 2008. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). J Vert Paleont 28(1):41-52.
  • NICOLI L. 2017. New Clues on Anuran Evolution: The Oldest Record of an Extant Hyloid Clade in the Oligocene of Patagonia. Hist Biol 29: 1-14.
  • NICOLI L, MUZZOPAPPA P & FAIVOVICH J. 2016. The taxonomic placement of the Miocene Patagonian frog Wawelia gerholdi (Amphibia: Anura). Alcheringa 40(2): 153-160.
  • ORTIZ-JAUREGUIZAR E & CLADERA GA. 2006. Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environments 66(3): 498-532.
  • OTERO O. 2004. Anatomy, systematics and phylogeny of both recent and fossil latid fishes (Teleostei, Perciformes, Latidae). Zool J Linnean Soc 141(1): 81-133.
  • OTERO RA, JIMENEZ-HUIDOBRO P, SOTO-ACUNA S & YURY-YÁNEZ RE. 2014. Evidence of a giant helmeted frog (Australobatrachia, Calyptocephalellidae) from Eocene levels of the Magallanes Basin, southernmost Chile. J South Am Earth Sci 55: 133-140.
  • PASCUAL R, BONDESIO P, VUCETICH MG, SCILLATO-YANÉ GJ, BOND M & TONNI EP. 1984. Vertebrados Fósiles Cenozoicos. In: Ramos V (Ed), IX Congreso Geológico Argentino (S. C. de Bariloche), Relatorio II(9), 439-461. Asociación Geológica Argentina, Buenos Aires.
  • RAVAZZOLI IA & SESANA FL. 1977. Descripción geológica de la hoja 41c, Río Chico, Provincia de Río Negro. Serv Geol Nac Bol 148: 1-77.
  • REIG OA. 1958. Notas para una actualización del conocimiento de la fauna de la Formación Chapadmalal. Acta Geol Lilloana 2: 255-283.
  • REIG OA. 1960. Las relaciones genericas del anuro chileno Calyptocephalella gayi (Dum. & Bibr.). Actas y Trabajos del Primer Congreso Sudamericano de Zoologıa 4: 113-131.
  • REIS RE, ALBERT JS, DI DARIO F, MINCARONE MM, PETRY P & ROCHA LA. 2016. Fish biodiversity and conservation in South America. J Fish Biol: doi 10.1111/jfb.13016.
  • ROSEN DE. 1973 Interrelationships of higher teleostean fishes Pp. 397–513 In: Greenwood PH, Miles RS & Patterson C (Eds), Interrelationships of fishes. Academic Press, London.
  • SCHAEFFER B. 1949. Anurans from the Early Tertiary of Patagonia. Bull Am Mus Nat Hist 93: 41-68.
  • STUART S, HOFFMANN M, CHANSON J, COX N, BERRIDGE R, RAMANI P & YOUNG B. 2008. Threatened Amphibians of the World. Lynx Edicions, with IUCN-The World Conservation Union, Conservation International and NatureServe, Barcelona, 776 p.
  • TAUBER AA. 1999. Los Vertebrados de la Formación Santa Cruz (Mioceno Inferior) en el extreme sureste de la Patagonia y su significado paleoecológicos. Rev Española Paleont 14: 173-182.
  • VELOSO A, FORMAS R & GERSON H. 2008. Calyptocephalella gayi. IUCN Red List of Threatened Species, Version 2019.4.
  • VOLKHEIMER W & LAGE J. 1981. Descripción geológica de la hoja 42c, Cerro Mirador, Provincia del Chubut. Serv Geol Nac Bol 181: 1-71.
  • WILEY EO & JOHNSON GD. 2010. A teleost classification based on monophyletic groups. In: Nelson JS, Schultze H-P, Wilson MVH (Eds), Origin and Phylogenetic Interrelationships of Teleosts. München: Verlag Dr. Friedrich Pfeil, p. 123-182.

Publication Dates

  • Publication in this collection
    03 Dec 2021
  • Date of issue
    2021

History

  • Received
    21 Nov 2019
  • Accepted
    24 Sept 2021
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br