Acessibilidade / Reportar erro

U-Pb SHRIMP dating of the Itabaiana Dome: a Mesoarchean basement inlier (2.83 Ga) in the Sergipano Orogenic System, Borborema Province

Abstract

In the southern portion of the Borborema Province, in the Sergipano Orogenic System, three basement inliers have been described: the Domes of Itabaiana and Simão Dias, in Sergipe; and the Girau do Ponciano Dome, in Alagoas. The Itabaiana and Simão Dias Domes occur in the central part of the Vaza Barris Domain, being composed of gneisses and migmatites. The Itabaiana rocks are calc-alkaline with trondhjemitic affinities. The Girau do Ponciano Dome, outcropping in the Macururé Domain, consists mainly of tonalitic, dioritic, monzonitic, granodioritic and high-grade granitic orthogneisses. SHRIMP U-Pb zircon date of a melanosome sample from a trondhjemitic migmatitic gneiss in the central part of Itabaiana Dome provided an age of 2831 ± 6 Ma, indicating that the migmatitic gneisses of this dome are correlated to the Mesoarchean terranes of the São Francisco Craton (Serrinha Block). These rocks represent the oldest geological record in the Sergipe State.

KEYWORDS:
geochronology; trondhjemite; Sergipano Orogenic System basement

Introduction

The structure of orogenic systems involves complex tectonic assembly of different crustal blocks to result in collages of allochthonous terrane separates from the cratons in which they originated (Friend et al. 2008Friend C.R.L., Strachan R.A., Kinny P.D. 2008. U-Pb zircon dating of basement inliers within the Moine Supergroup. Journal of the Geological Society, 165:807-815. https://doi.org/10.1144/0016-76492007-125
https://doi.org/https://doi.org/10.1144/...
). Three structurally distinct terrane are identified in the Sergipe State:

  • São Francisco Craton (SFC);

  • Borborema;

  • Coastal and Continental Margin.

The SFC comprises the Southern and Central area of Sergipe State, being represented by granulites and migmatitic grey gneisses, compositionally ranging from tonalite to granite, that are correlated to the Santa Luz and Rio Real complexes (Teixeira 2014Teixeira L.R. 2014. Mapa Geológico e de Recursos Minerais do Estado de Sergipe. Escala: 1:250.000. Brasil, CPRM.). The granulitic rocks are formed by opdalite and charnockites, formerly grouped in the Atlantic Belt, and currently called Salvador-Esplanada-Boquim Mobile Belt (Oliveira 2014Oliveira E.M. 2014. Petrografia, litogeoquímica e geocronologia das rochas granulíticas da parte norte do Cinturão Salvador-Esplanada-Boquim, Bahia-Sergipe. PhD Thesis, Universidade Federal da Bahia, Salvador, 218 p.) or Salvador-Esplanada Complex (Teixeira 2014Teixeira L.R. 2014. Mapa Geológico e de Recursos Minerais do Estado de Sergipe. Escala: 1:250.000. Brasil, CPRM.).

The Borborema Province in Sergipe is represented by the Sergipano Orogenic System (SOS), which is formed by a set of ESE-WNW trending belts with distinct geological histories, placed between the São Francisco Craton in the South and the Pernambuco-Alagoas Superterrane Northwards (Santos et al. 1998Santos R.A., Matins A.A.M., Neves J.P., Leal R.A. 1998. Geologia e Recursos Minerais do Estado de Sergipe: Texto Explicativo do Mapa Geológico do Estado de Sergipe (Escala 1:250.000). Brasília, CPRM DIEDIG/DEPAT/CODISE, 156 p., Oliveira et al. 2017Oliveira E.P., Windley B.F., McNaughton N.J., Bueno J.F., Nascimento R.S., Carvalho M.J., Araújo M.N.C. 2017. The Sergipano Belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Cham, Springer International Publishing, p. 241-254., Brito Neves and Silva Filho 2019Brito Neves B.B., Silva Filho A.F. 2019. Superterreno Pernambuco-Alagoas na Província Borborema: Ensaio de Regionalização. Revista Geologia USP - Série Científica, 19(2):3-28. https://doi.org/10.11606/issn.2316-9095.v19-148257
https://doi.org/https://doi.org/10.11606...
). The SOS is one of the most important Neoproterozoic orogens of Northeastern Brazil, being interpreted as the result of a collision between the Pernambuco-Alagoas Superterrane and the São Francisco paleoplate during the Brazilian/Pan-African Orogeny (Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, 2017Oliveira E.P., Windley B.F., McNaughton N.J., Bueno J.F., Nascimento R.S., Carvalho M.J., Araújo M.N.C. 2017. The Sergipano Belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Cham, Springer International Publishing, p. 241-254.; Fig. 1). The SOS is essentially composed of Neoproterozoic rocks (D’el-Rey Silva 2005D’el-Rey Silva L.J.H. 2005. New Sm-Nd data of (meta) sediments across the São Francisco Craton - Sergipano Belt boundary and from the Arauá. In: Simpósio Sobre o Cráton do São Francisco, 3., 2005, Salvador. Short Papers…, p. 155-158., Oliveira et al. 2017Oliveira E.P., Windley B.F., McNaughton N.J., Bueno J.F., Nascimento R.S., Carvalho M.J., Araújo M.N.C. 2017. The Sergipano Belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Cham, Springer International Publishing, p. 241-254.), and fragments of the anorogenic Tonian terrains (Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, 2017Oliveira E.P., Windley B.F., McNaughton N.J., Bueno J.F., Nascimento R.S., Carvalho M.J., Araújo M.N.C. 2017. The Sergipano Belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Cham, Springer International Publishing, p. 241-254.). An expressive volume of acidic and subordinate intermediate to basic rocks intruded the metasedimentary rocks (Santos et al. 1998Santos R.A., Matins A.A.M., Neves J.P., Leal R.A. 1998. Geologia e Recursos Minerais do Estado de Sergipe: Texto Explicativo do Mapa Geológico do Estado de Sergipe (Escala 1:250.000). Brasília, CPRM DIEDIG/DEPAT/CODISE, 156 p.). Anchimetamorphic rocks make up the Estância and Vaza-Barris domains outcrops in the Southern area of the SOS, while in the Northern and Central regions at the Macururé, Marancó, Poço Redondo and Canindé domains (Fig. 1) the metamorphism reaches the amphibolite facies.

Figure 1.
(A) Scheme of the Borborema Province, according to Van Schmus et al. (1995Van Schmus W.R., Brito Neves B.B, Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
). (B) Geological scheme of the southern portion of Borborema Province, showing the geological domains of the Sergipano Orogenic System (adapted from Davison and Santos 1989Davison I., Santos R.A. 1989. Tectonic Evolution of the Sergipano Fold Belt, NE Brasil, during Brasiliano Orogeny. Precambrian Research, 45(4):319-342. https://doi.org/10.1016/0301-9268(89)90068-5
https://doi.org/https://doi.org/10.1016/...
). Macururé (MCZ), Belo Monte-Jeremoabo (BMJZC), São Miguel do Aleixo (SMACZ), Itaporanga (ICZ) shear zones, Pernambuco-Alagoas Superterrane (PEAL).

The presence of “structural windows” or “basement inliers” in the SOS was first proposed by Brito Neves et al. (1977Brito Neves B.B., Sial A.N., Albuquerque J.P.T. 1977. Vergência centrífuga residual no Sistema de Dobramentos Sergipano. Revista Brasileira de Geociências, 7(2):102-114.) based on geological petrological arguments, and in the continuity of regional orientations.

In the Sergipe State, the Itabaiana and Simão Dias Domes are basement inliers made up of gneisses and migmatites which occur exposed in the central portion of the Vaza-Barris Domain (Fig. 1). Van Schmus et al. (1995Van Schmus W.R., Brito Neves B.B, Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
) obtained Sm-Nd TDM model ages of 2.75 Ga (Itabaiana Dome) and of 2.99 Ga (Simão Dias Dome). Zircon grains from a migmatite leucosome from the Itabaiana Dome were dated (U-Pb, LA-ICP-MS) at 2729 ± 12 Ma (MSWD = 1.4) by Santiago et al. (2017Santiago R.C.V., Leal A.B.M., Marinho M.M., Argollo R.M., Barbosa J.S.F., Rocha Jr. E.R.V. 2017. Litogeoquímica e geocronologia dos ortognaisses migmatíticos do Domo de Itabaiana, Sergipe: uma suíte do tipo tonalito, trondhjemito e granodiorito? Revista Geologia USP - Série Científica, 17(4):81-98. http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
https://doi.org/http://dx.doi.org/10.116...
).

The Girau do Ponciano Dome, located in the Alagoas State, outcrops in the Northern sector of the Macururé Domain (Fig. 1) and is composed of tonalitic, dioritic, monzonitic, granodioritic and high-grade granitic orthogneisses, presumably of Archean age. Mendes and Brito (2016Mendes V.A., Brito M.F.L. 2016. Programa de Geologia do Brasil-PGB. Geologia e Recursos Minerais da Folha Arapiraca (SC.24-X-D). Escala 1:250.000. Recife, CPRM, 245 p.) obtained a TDM Sm-Nd model age of 2.8 Ga for this dome.

The aim of this paper was to report a new age obtained from recent dating of the Itabaiana Dome basement inlier in the SOS. This age was obtained by using the U-Pb technique in single zircon, using Sensitive High Resolution Ion Microprobe (SHRIMP) in a melanosome sample from a migmatitic gneiss from the central part of the dome.

Itabaiana Dome

The Itabaiana Dome stands out in the flat regional relief, with elevation up to 670 m. It shows a N50º elongated shape (Fig. 2), extending 45 km long by 30 km wide (Humphrey and Allard 1969Humphrey F.L., Allard G.O. 1969. Geologia da área do domo de Itabaiana (Sergipe) e sua relação com a geologia do geossinclinal de Propriá: um elemento tectônico recém-reconhecido no escudo brasileiro. Rio de Janeiro, Petrobras/Cenpes, 160 p.). It is in fault contact with the quartzites of the Miaba Group, Vaza Barris Domain. Banded gneisses constitute the core of the dome, showing local partial melting features that originate migmatites. The gneisses have granodiorite, tonalite and granite compositions, with amphibolite lenses. These rocks are leucocratic to mesocratic, medium-to coarse grain size, granoblastic textures with feldspar phenoclasts/phenoblasts (< 3 cm). Biotite, ilmenite and magnetite are the mafic minerals. Hornblende, andesine and oligoclase are the main constituents of amphibolites that have coarse granulation and lepidoblastic texture.

Figure 2.
Geological map of the Itabaiana Dome region (Teixeira 2014Teixeira L.R. 2014. Mapa Geológico e de Recursos Minerais do Estado de Sergipe. Escala: 1:250.000. Brasil, CPRM.). The yellow star indicates the location of the dated outcrop, sample FDS-395.

Outcrops of the Itabaiana rocks occur in road cut slopes and in the rivers. The best expositions are located in local quarries, especially in the Anhanguera Quarry (Fig. 2).

These rocks have calc-alkaline and trondhjemitic affinities (Santiago et al. 2017Santiago R.C.V., Leal A.B.M., Marinho M.M., Argollo R.M., Barbosa J.S.F., Rocha Jr. E.R.V. 2017. Litogeoquímica e geocronologia dos ortognaisses migmatíticos do Domo de Itabaiana, Sergipe: uma suíte do tipo tonalito, trondhjemito e granodiorito? Revista Geologia USP - Série Científica, 17(4):81-98. http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
https://doi.org/http://dx.doi.org/10.116...
) showing geochemical resemblance to the Paleoproterozoic and Archean Tonalite-trondhjemite-granodiorite rocks (TTGs) of the SFC (e.g., Cruz Filho et al. 2003Cruz Filho B.E., Conceição H., Rios D.C., Rosa M.L.S., Marinho M.M. 2003. Geologia, petrografia e litogeoquímica do Batólito Trondhjemítico Nordestina, Núcleo Serrinha, Nordeste da Bahia. Revista Brasileira de Geociências, 33(2):175-186. https://doi.org/10.25249/0375-7536.2003332177188
https://doi.org/https://doi.org/10.25249...
, Oliveira et al. 2019Oliveira E.P., Talavera C., Windley B.F., Zhao L., Semprich J.J., McNaughton N.J., Amaral W.S., Sombini G., Navarro M., Silva D. 2019. Mesoarchaean (2820 Ma) high-pressure mafic granulite at Uauá, São Francisco Craton, Brazil, and its potential significance for the assembly of Archaean supercratons. Precambrian Research, 331:105366. https://doi.org/10.1016/j.precamres.2019.105366
https://doi.org/https://doi.org/10.1016/...
).

Materials and Methods

A representative sample of the Itabaiana Dome was collected in the Anhanguera Quarry for geochronology purpose (FDS-395; UTM coordinates 671138E/88809332N). It corresponds to the melanosome of a migmatitic gneiss of trondhjemitic composition. The medium-grained grey melanosome is composed of oligoclase (64%), quartz (26%), microcline (3%), biotite (7%) and accessory minerals (zircon, ilmenite, magnetite, apatite). More homogeneous portions in this outcrop have a light grey color, probably reflecting a higher degree of melting.

About 5 kg of melanosome were crushed down to fragments close to 3 cm. The entire sample was ground to 60 mesh using a pan mill. A shaking table was used to concentrate heavy minerals. This concentrate was taken to a Frantz® isodynamic magnetic separator, applying 0.5, 1.0, 1.5 and 2.0 A. The non-magnetic fraction constituents were separated using bromoform (CHBr3; d = 2.89 g/cm3) and diiodomethane (CH2I2; d = 3.32 g/cm3). At the end of the process, the zircon crystals were manually separated under a binocular microscope.

About 70 zircon crystals were selected for the analysis in the Geochronology Research Center, Institute of Geosciences, Universidade de São Paulo. Crystals were assembled in an epoxy resin circular mount, 2.5 cm in diameter. This mount was polished until the zircon grain cores were revealed. It was then coated with gold for scanning electron microscope imaging by the backscattered, secondary and cathodoluminescence electron detectors. The mount was repolished to remove the gold coating, leaving the material ready for U-Pb analysis on zircon crystals, in a SHRIMP IIe® equipment. Analytical procedures, as well as part of the reductions, were performed according to Sato et al. (2014Sato K., Tassinari C.C.G., Basei M.A.S., Siga Júnior O., Onoe A.T., Souza M.D. 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Revista Geologia USP - Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
https://doi.org/https://doi.org/10.5327/...
). Grains of different habits and colors were analysed in a search for zircon different populations in the trondhjemitic melanosome.

Data reduction was performed using the SQUID 1.06 and ISOPLOT4 softwares (Ludwig 2002Ludwig K. 2002. SQUID 1.02: a user’s manual. 2ª ed. Berkeley, Berkeley Geochronology Center, 19 p.). Uranium, lead and thorium concentrations were referenced to the TEMORA 2 standard zircon (Black et al. 2003Black L.P., Kamo S.L., Allen C.M., Alleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. 2003. TEMORA 1: a new zircon standart for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2):155-170. https://doi.org/10.1016/S0009-2541(03)00165-7
https://doi.org/https://doi.org/10.1016/...
) and the equipment spot adjusted to a diameter of 30 µm. To determine the age, it was taken in consideration the low discordance (≤ 5%), common lead content (≤ 1.5%) and not more than 7% individual ratio errors.

Results and Discussion

Twelve brown, prismatic crystals (Fig. 3), ~ 0.3 mm in diameter, were analyzed (Tab. 1). They show oscillatory zoning and are inclusions free. A 2836 ± 15 Ma (MSWD = 2.0; Fig. 4A) discordant age was calculated. Four grains (2.1; 3.1; 6.1; 8.1) are concordant (Fig. 4B), resulting in an age of 2831 ± 6 Ma (MSWD = 0.86). The absolute ages obtained by these two calculations are equal (2.83 Ga), varying only the error intervals.

Figure 3.
Backscattered electron images (BSE) of zircons of sample FDS-395 from Itabaiana Dome. The figure also shows the position of the analyzed spots listed in Table 1.

Figure 4.
Concordia diagrams for the melanosome zircon crystals of migmatitic gneiss of trondhjemitic composition in the Itabaiana Dome. The ages and ellipses of error are presented in 2σ of uncertainty. (A) Discordia age. (B) Concordia Age. The blue ellipse corresponds to the age calculated from the concordant crystals.

Table 1.
Summary of U-Pb Sensitive high-resolution ion microprobe (SHRIMP) data in migmatitic trondhjemitic gneiss zircon crystals of the Itabaiana Dome.

The Th/U ratios of the analyzed crystals range between 0.32 and 0.80. These crystals show textures indicative of magmatic origin (e.g., Corfu et al. 2003Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
https://doi.org/https://doi.org/10.2113/...
). The hypothesis of magmatic crystals is corroborated by Th/U ratios greater than 0.1 like as to those described in the literature (Rubatto 2002Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
https://doi.org/https://doi.org/10.1016/...
).

The Mesoarchean age of Itabaiana Dome obtained in this work is the oldest already obtained for rocks in the Sergipe State. This record is almost 100 Ma older than the previous 2729 Ma age of the leucosome rock from this same dome Santiago et al. (2017Santiago R.C.V., Leal A.B.M., Marinho M.M., Argollo R.M., Barbosa J.S.F., Rocha Jr. E.R.V. 2017. Litogeoquímica e geocronologia dos ortognaisses migmatíticos do Domo de Itabaiana, Sergipe: uma suíte do tipo tonalito, trondhjemito e granodiorito? Revista Geologia USP - Série Científica, 17(4):81-98. http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
https://doi.org/http://dx.doi.org/10.116...
). In this context, the age of 2.7 Ga obtained by these authors probably indicates the migmatization of the rocks, while the 2.83 Ga age obtained in this work represents the crystallization age of the protolith.

According to Mascarenhas (1979Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165.), the Archean to Paleoproterozoic structure of the SFC is marked by Archean nuclei surrounded by granulitic belts. The Archean nuclei, essentially constituted by gneisses and migmatites, are named Serrinha in the East (Mascarenhas 1979Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165., Rios et al. 2009Rios D.C., Davis D.W., Conceição H., Davis W.J., Rosa M.L.S., Dickin A.P. 2009. Geologic evolution of the Serrinha Nucleous granite-greenstone terrane (NE Bahia, Brazil) constrained by U-Pb single zircon geochronology. Precambrian Research, 170(3-4):175-201. https://doi.org/10.1016/j.precamres.2008.10.001
https://doi.org/https://doi.org/10.1016/...
, Barbosa et al. 2012Barbosa J.F.M., Mascarenhas J.F., Gomes J.C.C., Dominguez J.M.L., Souza J.S. 2012. Geologia da Bahia: Pesquisa e Atualização. Salvador, CBPM, 559 p.); Remanso/Lençóis/Gavião in the central portion of the craton (Mascarenhas 1979Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165., Barbosa et al. 2012Barbosa J.F.M., Mascarenhas J.F., Gomes J.C.C., Dominguez J.M.L., Souza J.S. 2012. Geologia da Bahia: Pesquisa e Atualização. Salvador, CBPM, 559 p., Fernandes et al. 2019Fernandes P.C.D., Frantz J.C., Rios D.C.R., Davis D.W., Pocher C.C., Conceição R.V., Coelho R.E. 2019. The Jequié Complex Revisited: a U-Pb geochronological reappraisal of the geology and stratigraphy of the Jequié-Itagi area (Bahia, Brazil). Anuário do Instituto de Geociências - UFRJ, 42(1):166-178.), and Guanambi to the West (Mascarenhas 1979Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165., Rosa et al. 2000Rosa M.L.S., Conceição H., Oberli F., Meier M., Martin H., Macambira M.J.B., Santos E.B., Paim M.M., Leahy G.A.S., Leal L.R. 2000. Geochronology (U-Pb/Pb-Pb) and isotopic signature (Rb-Sr/Sm-Nd) of the paleoproterozoic Guanambi batholith, southwest Bahia state (NE Brasil). Revista Brasileira de Geociências, 30(1):62-65. https://doi.org/10.25249/0375-7536.2000301062065
https://doi.org/https://doi.org/10.25249...
, Barbosa et al. 2012Barbosa J.F.M., Mascarenhas J.F., Gomes J.C.C., Dominguez J.M.L., Souza J.S. 2012. Geologia da Bahia: Pesquisa e Atualização. Salvador, CBPM, 559 p.). Paleoproterozoic orogenic systems surround these Archean nuclei: these are the granulitic belts of Itabuna-Salvador-Curaçá (Mascarenhas 1979Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165., Barbosa et al. 2012Barbosa J.F.M., Mascarenhas J.F., Gomes J.C.C., Dominguez J.M.L., Souza J.S. 2012. Geologia da Bahia: Pesquisa e Atualização. Salvador, CBPM, 559 p.), which separates the Serrinha and Remanso nuclei, and Urandi-Paratinga in the West (Rosa et al. 2000Rosa M.L.S., Conceição H., Oberli F., Meier M., Martin H., Macambira M.J.B., Santos E.B., Paim M.M., Leahy G.A.S., Leal L.R. 2000. Geochronology (U-Pb/Pb-Pb) and isotopic signature (Rb-Sr/Sm-Nd) of the paleoproterozoic Guanambi batholith, southwest Bahia state (NE Brasil). Revista Brasileira de Geociências, 30(1):62-65. https://doi.org/10.25249/0375-7536.2000301062065
https://doi.org/https://doi.org/10.25249...
), which separates the Remanso and Guanambi nuclei.

A summary of the available geochronological data for rocks from the Northeastern sector of the SFC is presented in Table 2. The youngest ages (2.4 to 2.6 Ga), present in the Esplanada-Boquim Granulitic Complex, are similar to those obtained in rocks of the Itabuna-Salvador-Curaçá Orogen. These ages record a granulitic metamorphic episode, described by several authors (Silva et al. 2002Silva L.C., Armstrong R., Delgado I.M., Pimentel M., Arcanjo J.B., Melo R.C., Teixeira L.R., Jost H., Cardoso Filho J.M., Pereira L.H.M. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte I: limite centro-oriental do Cráton do São Francisco na Bahia. Revista Brasileira de Geociências, 32(4):501-512. https://doi.org/10.25249/0375-7536.2002324501512
https://doi.org/https://doi.org/10.25249...
, Santiago et al. 2017Santiago R.C.V., Leal A.B.M., Marinho M.M., Argollo R.M., Barbosa J.S.F., Rocha Jr. E.R.V. 2017. Litogeoquímica e geocronologia dos ortognaisses migmatíticos do Domo de Itabaiana, Sergipe: uma suíte do tipo tonalito, trondhjemito e granodiorito? Revista Geologia USP - Série Científica, 17(4):81-98. http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
https://doi.org/http://dx.doi.org/10.116...
). In the Uauá Complex, Oliveira et al. (2019Oliveira E.P., Talavera C., Windley B.F., Zhao L., Semprich J.J., McNaughton N.J., Amaral W.S., Sombini G., Navarro M., Silva D. 2019. Mesoarchaean (2820 Ma) high-pressure mafic granulite at Uauá, São Francisco Craton, Brazil, and its potential significance for the assembly of Archaean supercratons. Precambrian Research, 331:105366. https://doi.org/10.1016/j.precamres.2019.105366
https://doi.org/https://doi.org/10.1016/...
) report an age of 3120 Ma from an igneous protoliths of the mafic granulite that reached the metamorphic equilibrium about 2820 Ma ago. The available ages for the rock units of the Northern part of the SFC, Uauá and Santa Luz Complexes (Serrinha Block) are Mesoarchean (Tab. 2) and therefore comparable to those obtained for the Itabaiana Dome.

Table 2.
Compilation of geochronological data from Archean rocks of the northeastern part of the São Francisco Craton in the states of Sergipe and Bahia.

Conclusion

The U-Pb SHRIMP age of de 2831 ± 6 Ma obtained from melanosome zircon grains of a trondhjemitic migmatitic gneiss of the Itabaiana Dome represents the oldest geological record in the Sergipe State. This age and the presence of a tonalitic-trondhjemitic-granitic magmatism make it possible to correlate this structural window with the Archean Serrinha Block in the SFC.

Acknowledgments

To the Serviço Geológico do Brasil (CPRM-SUREG/BA), for the use of labs during the preparation of the sample for the geochronological analysis. Msc. Gisele Tavares Marques, researcher of the Microanalysis Laboratory of the Geosciences Institute, Universidade do Pará, for the BSE images obtained in EPMA, for concordant zircon crystals. The development of this research was suported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe (PRONEX/FAPITEC/CNPq: 019.203.02538/2009-7), 311008/2017-8 (CNPq-PQ), 310391/2017-2 (CNPq-PQ) and 311008/2017-8 (CNPq-Universal 2016).

REFERENCES

  • Barbosa J.F.M., Mascarenhas J.F., Gomes J.C.C., Dominguez J.M.L., Souza J.S. 2012. Geologia da Bahia: Pesquisa e Atualização. Salvador, CBPM, 559 p.
  • Black L.P., Kamo S.L., Allen C.M., Alleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. 2003. TEMORA 1: a new zircon standart for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2):155-170. https://doi.org/10.1016/S0009-2541(03)00165-7
    » https://doi.org/https://doi.org/10.1016/S0009-2541(03)00165-7
  • Brito Neves B.B., Sial A.N., Albuquerque J.P.T. 1977. Vergência centrífuga residual no Sistema de Dobramentos Sergipano. Revista Brasileira de Geociências, 7(2):102-114.
  • Brito Neves B.B., Silva Filho A.F. 2019. Superterreno Pernambuco-Alagoas na Província Borborema: Ensaio de Regionalização. Revista Geologia USP - Série Científica, 19(2):3-28. https://doi.org/10.11606/issn.2316-9095.v19-148257
    » https://doi.org/https://doi.org/10.11606/issn.2316-9095.v19-148257
  • Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
    » https://doi.org/https://doi.org/10.2113/0530469
  • Cruz Filho B.E., Conceição H., Rios D.C., Rosa M.L.S., Marinho M.M. 2003. Geologia, petrografia e litogeoquímica do Batólito Trondhjemítico Nordestina, Núcleo Serrinha, Nordeste da Bahia. Revista Brasileira de Geociências, 33(2):175-186. https://doi.org/10.25249/0375-7536.2003332177188
    » https://doi.org/https://doi.org/10.25249/0375-7536.2003332177188
  • Davison I., Santos R.A. 1989. Tectonic Evolution of the Sergipano Fold Belt, NE Brasil, during Brasiliano Orogeny. Precambrian Research, 45(4):319-342. https://doi.org/10.1016/0301-9268(89)90068-5
    » https://doi.org/https://doi.org/10.1016/0301-9268(89)90068-5
  • D’el-Rey Silva L.J.H. 2005. New Sm-Nd data of (meta) sediments across the São Francisco Craton - Sergipano Belt boundary and from the Arauá. In: Simpósio Sobre o Cráton do São Francisco, 3., 2005, Salvador. Short Papers…, p. 155-158.
  • Fernandes P.C.D., Frantz J.C., Rios D.C.R., Davis D.W., Pocher C.C., Conceição R.V., Coelho R.E. 2019. The Jequié Complex Revisited: a U-Pb geochronological reappraisal of the geology and stratigraphy of the Jequié-Itagi area (Bahia, Brazil). Anuário do Instituto de Geociências - UFRJ, 42(1):166-178.
  • Friend C.R.L., Strachan R.A., Kinny P.D. 2008. U-Pb zircon dating of basement inliers within the Moine Supergroup. Journal of the Geological Society, 165:807-815. https://doi.org/10.1144/0016-76492007-125
    » https://doi.org/https://doi.org/10.1144/0016-76492007-125
  • Humphrey F.L., Allard G.O. 1969. Geologia da área do domo de Itabaiana (Sergipe) e sua relação com a geologia do geossinclinal de Propriá: um elemento tectônico recém-reconhecido no escudo brasileiro. Rio de Janeiro, Petrobras/Cenpes, 160 p.
  • Ludwig K. 2002. SQUID 1.02: a user’s manual. 2ª ed. Berkeley, Berkeley Geochronology Center, 19 p.
  • Mascarenhas J.F. 1979. Evolução geotectônica do precambriano do Estado da Bahia. In: Inda H.V. Geologia e recursos minerais do Estado da Bahia: textos básicos. Salvador, CPRM, p. 57-165.
  • Melo R.C., Loureiro H.S.C., Pereira L.H.M. 1995. Programa Levantamentos Geológicos Básicos do Brasil: Folha Serrinha (SC.24-Y-D). Estado da Bahia. Escala 1:250.000. Brasília, CPRM, 86 p.
  • Mendes V.A., Brito M.F.L. 2016. Programa de Geologia do Brasil-PGB. Geologia e Recursos Minerais da Folha Arapiraca (SC.24-X-D). Escala 1:250.000. Recife, CPRM, 245 p.
  • Oliveira E.M. 2014. Petrografia, litogeoquímica e geocronologia das rochas granulíticas da parte norte do Cinturão Salvador-Esplanada-Boquim, Bahia-Sergipe PhD Thesis, Universidade Federal da Bahia, Salvador, 218 p.
  • Oliveira E.P., Talavera C., Windley B.F., Zhao L., Semprich J.J., McNaughton N.J., Amaral W.S., Sombini G., Navarro M., Silva D. 2019. Mesoarchaean (2820 Ma) high-pressure mafic granulite at Uauá, São Francisco Craton, Brazil, and its potential significance for the assembly of Archaean supercratons. Precambrian Research, 331:105366. https://doi.org/10.1016/j.precamres.2019.105366
    » https://doi.org/https://doi.org/10.1016/j.precamres.2019.105366
  • Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
    » https://doi.org/https://doi.org/10.1016/j.precamres.2010.05.014
  • Oliveira E.P., Windley B.F., McNaughton N.J., Bueno J.F., Nascimento R.S., Carvalho M.J., Araújo M.N.C. 2017. The Sergipano Belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Cham, Springer International Publishing, p. 241-254.
  • Rios D.C., Davis D.W., Conceição H., Davis W.J., Rosa M.L.S., Dickin A.P. 2009. Geologic evolution of the Serrinha Nucleous granite-greenstone terrane (NE Bahia, Brazil) constrained by U-Pb single zircon geochronology. Precambrian Research, 170(3-4):175-201. https://doi.org/10.1016/j.precamres.2008.10.001
    » https://doi.org/https://doi.org/10.1016/j.precamres.2008.10.001
  • Rosa M.L.S., Conceição H., Oberli F., Meier M., Martin H., Macambira M.J.B., Santos E.B., Paim M.M., Leahy G.A.S., Leal L.R. 2000. Geochronology (U-Pb/Pb-Pb) and isotopic signature (Rb-Sr/Sm-Nd) of the paleoproterozoic Guanambi batholith, southwest Bahia state (NE Brasil). Revista Brasileira de Geociências, 30(1):62-65. https://doi.org/10.25249/0375-7536.2000301062065
    » https://doi.org/https://doi.org/10.25249/0375-7536.2000301062065
  • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
    » https://doi.org/https://doi.org/10.1016/S0009-2541(01)00355-2
  • Santiago R.C.V., Leal A.B.M., Marinho M.M., Argollo R.M., Barbosa J.S.F., Rocha Jr. E.R.V. 2017. Litogeoquímica e geocronologia dos ortognaisses migmatíticos do Domo de Itabaiana, Sergipe: uma suíte do tipo tonalito, trondhjemito e granodiorito? Revista Geologia USP - Série Científica, 17(4):81-98. http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
    » https://doi.org/http://dx.doi.org/10.11606/issn.2316-9095.v17-121838
  • Santos R.A., Matins A.A.M., Neves J.P., Leal R.A. 1998. Geologia e Recursos Minerais do Estado de Sergipe: Texto Explicativo do Mapa Geológico do Estado de Sergipe (Escala 1:250.000). Brasília, CPRM DIEDIG/DEPAT/CODISE, 156 p.
  • Sato K., Tassinari C.C.G., Basei M.A.S., Siga Júnior O., Onoe A.T., Souza M.D. 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: analytical method and first results. Revista Geologia USP - Série Científica, 14(3):3-18. https://doi.org/10.5327/Z1519-874X201400030001
    » https://doi.org/https://doi.org/10.5327/Z1519-874X201400030001
  • Silva L.C., Armstrong R., Delgado I.M., Pimentel M., Arcanjo J.B., Melo R.C., Teixeira L.R., Jost H., Cardoso Filho J.M., Pereira L.H.M. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte I: limite centro-oriental do Cráton do São Francisco na Bahia. Revista Brasileira de Geociências, 32(4):501-512. https://doi.org/10.25249/0375-7536.2002324501512
    » https://doi.org/https://doi.org/10.25249/0375-7536.2002324501512
  • Stacey J.S., Kramers J.C. 1975. Approximation of terrestrial lead isotope evolution by a two-stagemodel. Earth and Planetary Science Letters 26(2):207-221. https://doi.org/10.1016/0012-821X(75)90088-6
    » https://doi.org/https://doi.org/10.1016/0012-821X(75)90088-6
  • Teixeira L.R. 2014. Mapa Geológico e de Recursos Minerais do Estado de Sergipe Escala: 1:250.000. Brasil, CPRM.
  • Van Schmus W.R., Brito Neves B.B, Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00013-6

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20190106.

Publication Dates

  • Publication in this collection
    06 July 2020
  • Date of issue
    2020

History

  • Received
    11 Oct 2019
  • Accepted
    10 Apr 2020
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br