Acessibilidade / Reportar erro

Impact of dolomite rock waste on soil acidity and absorption of Ca and Mg by barley and wheat

Impacto dos resíduos de rocha dolomítica na acidez do solo e absorção de Ca e Mg por cevada e trigo

ABSTRACT

The dumps of dolomite dropouts from road construction occupy huge arable areas in north-western Russia. Although coarse dolomite particles neglected as a liming material due to its slow solubility, we hypothesise that they can serve as a cheap and long-lasting liming material. The weight loss of dolomite particles of various sizes from the dump applied to Albic Retisol and its effect on assimilation of Ca and Mg by barley and wheat were studied. The pot experiment with 300 g soil was conducted for 30 days in a laboratory phytotron. Results showed that coarse particles of dolomite waste had a positive effect on soil acidity already at the initial phases of the experiment. In the process of dissolution of dolomite, all forms of soil acidity decreased. The cultivation of barley had a stronger effect on the dissolution of dolomite particles than the cultivation of wheat. Barley plants accumulated Ca by 1.1-1.4 times higher than wheat, other factors being identical. The relationship between the yield of green biomass and the accumulation of calcium and magnesium in the plants were empirically described using regression analysis. Results of this preliminary study showed that the by-products from dolomite stone processing can be effectively used for reclamation of strongly acidic soil in north-western Russia. This has the dual benefit of reducing the burden on the environment and reclaiming acidic soils. Further studies should include soil microbiological and biological parameters to trace the effect of root activities and dolomite dissolution rate on a field scale.

Index terms:
Dolomite; dissolution; calcium.

Editora da Universidade Federal de Lavras Editora da UFLA, Caixa Postal 3037 - 37200-900 - Lavras - MG - Brasil, Telefone: 35 3829-1115 - Lavras - MG - Brazil
E-mail: revista.ca.editora@ufla.br