Acessibilidade / Reportar erro

Synthesis of a Series of 4H-Pyran Derivatives with Multicomponent Reaction in DBSA/H2O Microemulsion System

Abstract

A series of 4H-pyran derivatives were synthesized through a three-component condensation reaction in a pot using aromatic aldehyde, cyclohexanedione, and malononitrile in the dodecyl benzenesulfonic acid/H2O microemulsion system. This protocol is attractive because dodecyl benzenesulfonic acid microemulsion is superior for organic reaction due to its dual catalysis. On the one hand, dodecyl benzenesulfonic acid acts as a Brønsted acid to catalyze the reaction; on the other hand, it can form a microemulsion as surfactant to enlarge the boundary area and entrap water produced during esterification reaction. In addition, the reaction process is simple, with high liaison formation effciency, good yields, and environmentally harmless reaction conditions. The dodecyl benzenesulfonic acid/H2O microemulsion system was equally effective when used in consecutive reactions.

Keywords:
4H-pyran; dodecyl benzenesulfonic acid; green chemistry


Introduction

4H-Pyran, a heterocyclic system consisting of a fusion of a benzene ring and a pyran ring, is an essential structural component of natural compounds.11 Niknam, K.; Khataminejad, M.; Zeyaei, F.; Tetrahedron Lett. 2016, 57, 361. [Crossref]
Crossref...
22 Ramesh, R.; Jayamathi, J.; Karthika, C.; Malecki, J. G.; Lalitha, A.; Polycyclic Aromat. Compd. 2018, 502. [Crossref]
Crossref...
33 Zang, J. L.; Bu, M.; Yang, J. F.; Han, L.; Lv, Z.; J. Braz. Chem. Soc. 2021, 32, 1780. [Crossref]
Crossref...
Various natural and synthetic derivatives of 4H-pyran possess critical biological and pharmacological applications, such as anti-inflammatory, anti-tumor, anti-oxidant, antimicrobial, cytotoxic, anti-HIV, anti-proliferative, and are used in the treatment of allergic bronchitis, anti-dysplasia and diabetes mellitus.44 Amr, A. E.; Abdulla, M. M.; Arch. Pharm. Chem. 2006, 339, 88. [Crossref]
Crossref...
55 Amr, A. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A.; Hammam, A. E. G.; Bioorg. Med. Chem. 2006, 14, 5481. [Crossref]
Crossref...
66 Azzam, R. A.; Mohare, R. M.; Chem. Pharm. Bull. 2015, 63, 1055. [Crossref]
Crossref...
77 El-Sayed, N. N. E.; Zaki, M. E. A.; Al-Hussain, S. A.; Bacha, A. B.; Berredjem, M.; Masand, V. H.; Almarhoon, Z. M.; Omar, H. S.; Pharmaceuticals 2022, 15, 891. [Crossref]
Crossref...
88 Shafaei, F.; Najar, A. H.; Comb. Chem. High Throughput Screening 2020, 23, 446. [Crossref]
Crossref...
99 Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D.; Bioorg. Med. Chem. Lett. 2007, 17, 6459. [Crossref]
Crossref...
1010 Kidwai, M.; Poddar, R.; Bhardwaj, S.; Singh, S.; Luthra, P. M.; Eur. J. Med. Chem. 2010, 45, 5031. [Crossref]
Crossref...
4H-Pyran derivatives are potential calcium channel antagonists as well.1111 Melliou, E.; Magiatis, P.; Mitaku, S.; Skaltsounis, A.; Pierre, A.; Atassi, G.; Renard, P.; Bioorg. Med. Chem. 2001, 9, 607. [Crossref]
Crossref...
1212 El-Bana, G. G.; Salem, M. A.; Helal, M. H.; Alharbi, O.; Gouda, M. A.; Mini-Rev. Org. Chem. 2024, 21, 73. [Crossref]
Crossref...
1313 El-Sayed, N. N. E.; Zaki, M. E. A.; Al-Hussain, S. A.; Bacha, A. B.; Berredjem, M.; Masand, V. H.; Almarhoon, Z. M.; Omar, H. S.; Pharmaceuticals 2022, 15, 891. [Crossref]
Crossref...
The synthesis of different 4H-pyran derivatives has become a popular area of research in organic synthesis. The reaction reagent was changed from organic solvent to water, and the synthesis method became effective and straightforward.1414 Maleki, B.; Baghayeri, M.; Abadi, S. A. J.; Tayebeea, R.; Khojastehnezhad, A.; RSC. Adv. 2016, 6, 96644. [Crossref]
Crossref...
1515 Tabrizian, E.; Amoozadeh, A.; Catal. Sci. Technol. 2016, 6, 6267. [Crossref]
Crossref...
1616 Khan, M. M.; Shareef, S.; Saigal; Sahoo, S. C.; RSC. Adv. 2019, 9, 26393. [Crossref]
Crossref...
1717 Mukherjee, P.; Das, A. R.; J. Org. Chem. 2016, 81, 5513. [Crossref]
Crossref...

As people pay more attention to the human living environment, more researchers are focusing on the research of organic synthesis that is not polluting to the environment (green synthesis). Green synthesis requires the use of non-toxic reagents, solvents, and catalysts in the synthesis process, of which water is considered to be the most ideal solvent in this regard.1818 Sahoo, T.; Panda, J.; Sahu, J.; Sarangi, D.; Sahoo, S. K.; Nanda, B. B.; Sahu, R.; Curr. Org. Synth. 2022, 17, 426. [Crossref]
Crossref...
1919 Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J.; Chem. Rev. 2022, 122, 3637. [Crossref]
Crossref...
2020 Vadgama, R. N.; Khatkhatay, A. B.; Odaneth, A. A.; Lali, A. M.; Sustainable Chem. Pharm. 2020, 15, 100203. [Crossref]
Crossref...
It has the benefits of being inexpensive and easy to get, non-polluting and with little product loss.2121 Trombino, S.; Sole, R.; Di Gioia, M. L.; Procopio, D.; Curcio, F.; Cassano, R.; Molecules 2023, 28, 2107. [Crossref]
Crossref...

Recently, the application of dodecyl benzenesulfonic acid (DBSA) as a catalyst in organic synthesis reactions has received considerable attention and has been widely applied in the creation of natural compounds. The results showed that aldehydes and ketones are susceptible to condensation reactions in DBSA/H2O microemulsion system. DBSA is a Brønsted acid, which has a strong solubilizing effect in addition to its excellent catalytic effect compared with other surfactants.2222 An, D.; Miao, X. Z.; Ling, X. X.; Chen, X. X.; Rao, W. D.; Adv. Synth. Catal. 2020, 362, 1514. [Crossref]
Crossref...
2323 Jing, L.; Li, X. J.; Han, Y. C.; Chu, Y.; Colloids Surf., A 2008, 326, 37. [Crossref]
Crossref...
2424 Choi, J. W.; Han, M. G.; Kim, S. Y. ; Oh, S. G.; Im, S. S.; Synth. Met. 2004, 141, 293. [Crossref]
Crossref...
2525 Kumar, V.; Khandare, D. G.; Chatterjee, A.; Banerjee, M.; Tetrahedron. Lett. 2013, 54, 5505. [Crossref]
Crossref...
In addition, its acidity can accelerate the catalytic cyclization process, thus shortening the reaction time. These great properties are unmatched by other surfactants.

In this research, we found that 4H-pyran derivatives could be prepared in the DBSA/H2O microemulsion system. The condensation reaction was carried out in water in the presence of DBSA, which acted both as a surfactant and as a catalyst for the formation of 4H-pyran derivatives. A series of 4H-pyran derivatives were synthesized with the green reaction system (Scheme 1).

Scheme 1
Synthesis of a series of 4H-pyran derivatives in DBSA/H2O microemulsion system.

Experimental

All reagents and solvents were purchased from commercial sources (Energy, Shanghai, China) and used without further purification. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE NEO 600 spectrometer (Berlin, Germany). Highresolution mass spectrometry (HRMS) was recorded on waters UPLC G2-XS Qtof spectrometer (San Francisco, USA).

Chemistry

2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (2a-2r)

A mixture of (1.2 mmol) aldehyde (1a-1r), (1.0 mmol) malononitrile and (1.2 mmol) cyclohexane-1,3-dione were stirred with DBSA (0.2 mmol) in water at 105 °C and refluxed for 75-150 min. After complete consumption of the starting materials, the reaction was cooled to room temperature. The solvent was removed and purified by recrystallization from ethanol to achieve the pure product.

Spectral data of the products

2-Amino-4-(3,4-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2a)

White solid; yield: 90.4%; 1H NMR (600 MHz, DMSO-d6) d 7.55 (d, J 8.3 Hz, 1H), 7.40 (dd, J 12.8, 2.1 Hz, 1H), 7.20-7.11 (m, 3H), 4.25 (s, 1H), 2.65-2.51 (m, 2H), 2.42-2.24 (m, 2H), 2.12 (dddd, J 34.6, 19.1, 14.2, 9.4 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) d 196.3, 165.0, 159.0, 146.3, 131.3, 131,0, 129.7, 129.6, 128.1, 119.9, 112.8, 57.5, 35.3, 34.7, 27.7, 20.7; HRMS (EI) m/z, calcd. for [C16H12Cl2N2O2 + H]+: 335.0276, found: 335.0356.

2-Amino-5-oxo-4-(p-tolyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2b)

White solid; yield: 91.2%; 1H NMR (600 MHz, DMSO-d6) d 7.07 (d, J 7.9 Hz, 2H), 7.03 (d, J 8.1 Hz, 2H), 6.96 (s, 2H), 4.14 (s, 1H), 2.65-2.55 (m, 2H), 2.33-2.18 (m, 5H), 1.99-1.81 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.2, 164.7, 158.9, 142.3, 136.0, 129.3, 129.3, 127.5, 127.5, 120.2, 116.8, 114.4, 58.7, 36.8, 26.9, 21.0, 20.2; HRMS (EI) m/z, calcd. for [C17H16N2O2 + H]+: 281.1212, found: 281.1289.

2-Amino-4-(4-isopropylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2c)

Brown solid; yield: 86.3%; 1H NMR (600 MHz, DMSO-d6) δ 7.15 (d, J 8.0 Hz, 2H), 7.07-7.04 (m, 2H),

6.97 (s, 2H), 4.15 (s, 1H), 2.83 (p, J 6.9 Hz, 1H), 2.66-2.56 (m, 2H), 2.34-2.22 (m, 2H), 2.00-1.83 (m, 2H), 1.17 (d, J 7.0 Hz, 6H); 13C NMR (151 MHz, DMSO-d6) δ 196.4, 164.9, 158.9, 146.9, 142.6, 127.4, 127.4, 126.7, 126.7, 120.3, 114.3, 58.8, 36.8, 35.4, 33.5, 26.9, 24.3, 24.3, 20.2; HRMS (EI) m/z, calcd. for [C19H20N2O2 + H]+: 309.1525, found: 309.1429.

2-Amino-4-(4-(tert-butyl)phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2d)

White solid; yield: 88.6%; 1H NMR (600 MHz, DMSO-d6) δ 7.32-7.27 (m, 2H), 7.08-7.02 (m, 2H), 6.97 (d, J 9.4 Hz, 2H), 4.16-4.10 (m, 1H), 3.34 (s, 2H), 2.52-2.46 (m, 1H), 1.25 (s, 9H), 1.01 (dd, J 7.9, 6.3 Hz, 3H); 13C NMR (151 MHz, DMSO-d6) d 196.3, 164.5, 159.0, 149.2, 142.2, 127.1, 127.1, 125.6, 125.5, 120.3, 114.0, 58.8, 35.5, 35.2, 34.7, 34.5, 34.3, 31.6, 27.8, 20.7; HRMS (EI) m/z, calcd. for [C20H22N2O2 + H]+: 323.1681, found: 323.1753.

2-Amino-4-(4-(dimethylamino)phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2e)

Yellow solid; yield: 93.7%; 1H NMR (600 MHz, DMSO-d6) δ 6.97-6.80 (m, 4H), 6.65-6.55 (m, 2H), 4.13-3.93 (m, 1H), 3.33 (s, 2H), 2.84 (s, 6H), 2.50 (p, J 1.9 Hz, 2H), 2.38-2.21 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.2, 162.9, 158.8, 149.6, 133.1, 128.1, 128.1, 120.4, 114.5, 112.8, 112.8, 59.2, 44.9, 40.7, 35.0, 34.3, 28.0, 20.6; HRMS (EI) m/z, calcd. for [C18H19N3O2 + H]+: 310.1477, found: 310.1531.

2-Amino-4-(2-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2f)

White solid; yield: 92.9%; 1H NMR (600 MHz, DMSO-d6) δ 7.35 (dt, J 8.0, 1.6 Hz, 1H), 7.25 (td, J 7.5, 1.3 Hz, 1H), 7.22-7.14 (m, 2H), 7.02 (s, 2H), 4.70 (d, J 1.8 Hz, 1H), 2.64-2.56 (m, 1H), 2.46-2.32 (m, 1H), 2.27-2.17 (m, 1H), 2.13-1.99 (m, 1H), 1.03-1.01 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.0, 165.1, 159.0, 142.1, 132.5, 130.3, 129.8, 128.6, 127.9, 119.7, 113.0, 57.3, 40.1, 34.7, 27.9, 20.7; HRMS (EI) m/z, calcd. for [C16H13ClN2O2 + H]+: 301.0666, found: 301.0750.

2-Amino-4-(5-methylthiophen-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2g)

Yellow solid; yield: 95.7%; 1H NMR (600 MHz, DMSO-d6) δ 7.09 (d, J 9.9 Hz, 2H), 6.61 (t, J 3.1 Hz, 1H), 6.56 (t, J 2.2 Hz, 1H), 4.42 (s, 1H), 3.34 (s, 1H), 2.36-2.30 (m, 4H), 2.12 (d, J 10.0 Hz, 1H), 1.01 (t, J 6.4 Hz, 3H); 13C NMR (151 MHz, DMSO-d6) δ 196.0, 159.4, 159.3, 138.1, 138.0, 125.3, 124.1, 120.1, 114.2, 58.3, 34.6, 34.2, 27.8, 20.7, 15.4; HRMS (EI) m/z, calcd. for [C15H14N2O2S + H]+: 287.0776, found: 287.0639.

2-Amino-4-(1H-indol-5-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2h)

Yellow solid; yield: 93.8%; 1H NMR (600 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.29 (s, 3H), 6.90 (s, 3H), 6.37 (s, 1H), 4.24 (s, 1H), 2.61 (s, 2H), 2.36-2.16 (m, 2H), 1.90 (d, J 57.7 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.3, 164.1, 158.7, 135.8, 135.3, 127.9, 126.0, 121.1, 120.5, 118.8, 115.2, 111.6, 101.4, 59.7, 36.9, 35.9, 26.9, 20.3; HRMS (EI) m/z, calcd. for [C18H15N3O2 + H]+: 306.1164, found: 306.1234.

2-Amino-5-oxo-4-(o-tolyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2i)

White solid; yield: 90.5%; 1H NMR (600 MHz, DMSO-d6) δ 7.13-7.07 (m, 2H), 7.04 (tt, J 7.4, 2.0 Hz, 1H), 6.97-6.92 (m, 3H), 4.46 (d, J 1.6 Hz, 1H), 2.65-2.57 (m, 1H), 2.45 (d, J 4.1 Hz, 3H), 2.42-2.32 (m, 1H), 2.31-2.20 (m, 1H), 2.13-2.01 (m, 1H), 1.01 (d, J 6.1 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.3, 164.4, 158.7,

144.1, 135.2, 130.3, 127.8, 126.9, 126.6, 120.2, 114.7, 58.6, 44.7, 34.6, 27.9, 20.7, 19.5; HRMS (EI) m/z, calcd. for [C17H16N2O2 + H]+: 281.1212, found: 281.1255.

2-Amino-4-(2,5-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2j)

White solid; yield: 91.0%; 1H NMR (600 MHz, DMSO-d6) δ 7.41 (d, J 8.5 Hz, 1H), 7.28 (dd, J 8.5, 2.6 Hz, 1H), 7.25 (d, J 2.6 Hz, 1H), 7.12 (s, 2H), 4.69 (d, J 1.4 Hz, 1H), 2.70-2.55 (m, 2H), 2.33-2.20 (m, 2H), 2.01-1.87 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.2, 166.0, 159.0,

144.2, 132.4, 131.5, 131.4, 129.9, 128.6, 119.5, 112.5, 56.5, 36.7, 33.6, 26.9, 20.2; HRMS (EI) m/z, calcd. for [C16H12Cl2N2O2 + H]+: 335.0276, found: 335.0364.

2-Amino-4-(4-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2k)

White solid; yield: 87.3%; 1H NMR (600 MHz, DMSO-d6) δ 7.08-7.05 (m, 2H), 6.95 (s, 2H), 6.85-6.81 (m, 2H), 4.14 (s, 1H), 3.71 (s, 3H), 2.63-2.56 (m, 2H), 2.34-2.18 (m, 2H), 2.00-1.79 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.3, 164.5, 158.8, 158.3, 137.3, 128.6, 128.6, 120.3, 114.5, 114.1, 114.1, 58.9, 55.4, 36.8, 35.0, 26.9, 20.2; HRMS (EI) m/z, calcd. for [C17H16N2O3 + H]+: 297.1161, found: 297.1233.

2-Amino-4-(furan-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2l)

Brown solid; yield: 92.9%; 1H NMR (600 MHz, DMSO-d6) δ 7.49 (d, J 1.6 Hz, 1H), 7.09 (s, 2H), 6.32 (dd, J 3.2, 1.8 Hz, 1H), 6.06 (d, J 3.2 Hz, 1H), 4.33 (s, 1H), 2.63-2.56 (m, 2H), 2.33 (dd, J 8.0, 5.5 Hz, 2H), 2.01-1.85 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.0, 165.6, 159.7,

156.2, 142.2, 120.0, 111.9, 110.8, 105.6, 55.7, 36.6, 29.4, 26.9, 20.2; HRMS (EI) m/z, calcd. for [C14H12N2O3 + H]+: 257.0848, found: 257.0927.

2-Amino-4-(3-chlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2m)

White solid; yield: 89.9%; 1H NMR (600 MHz, DMSO-d6) δ 7.37-7.34 (m, 1H), 7.26 (td, J 7.5, 1.3 Hz, 1H), 7.19 (q, J 1.8 Hz, 1H), 7.02 (s, 2H), 4.71 (s, 1H), 4.36 (t, J 5.1 Hz, 1H), 2.68-2.55 (m, 2H), 2.34-2.17 (m, 2H), 2.01-1.85 (m, 2H); 13C NMR (151 MHz, DMSO-d6) d 196.1, 165.5, 159.0, 142.2, 132.5, 130.2, 129.8, 128.5, 128.0, 119.7, 113.3, 56.5, 36.7, 33.1, 26.9, 19.0; HRMS (EI) m/z, calcd. for [C16H13ClN2O2 + H] +: 301.0666, found: 301.0738.

2-Amino-4-(2,3-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2n)

White solid; yield: 93.1%; 1H NMR (600 MHz, DMSO-d6) δ 7.55 (d, J 8.2 Hz, 1H), 7.41 (d, J 2.2 Hz, 1H), 7.20-7.12 (m, 3H), 4.26 (d, J 1.3 Hz, 1H), 2.69-2.55 (m, 2H), 2.35-2.22 (m, 2H), 1.99-1.86 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.4, 165.4, 158.9,

146.3, 131.2, 131.0, 129.7, 129.6, 128.1, 119.9, 113.2, 57.5, 36.7, 35.3, 26.9, 20.1; HRMS (EI) m/z, calcd. for [C16H12Cl2N2O2 + H]+: 335.0276, found: 335.0353.

2-Amino-5-oxo-4-(quinolin-4-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2o)

White solid; yield: 94.7%; 1H NMR (600 MHz, DMSO-d6) δ 8.81 (d, J 4.6 Hz, 1H), 8.46 (d, J 8.6 Hz, 1H), 8.04 (d, J 8.4 Hz, 1H), 7.77 (t, J 7.6 Hz, 1H), 7.66 (t, J 7.7 Hz, 1H), 7.26 (d, J 4.5 Hz, 1H), 7.12 (s, 2H), 5.20 (s, 1H), 2.76-2.63 (m, 2H), 2.34-2.19 (m, 2H), 2.02-1.92 (m, J 5.9, 5.1 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.3, 165.9, 159.0, 151.7, 150.9, 148.3, 113.7, 57.8, 37.1, 36.3, 27.0, 20.3; HRMS (EI) m/z, calcd. for [C19H15N3O2 + H]+: 318.1164, found: 318.1249.

2-Amino-4-(4-fluorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2p)

White solid; yield: 89.6%; 1H NMR (600 MHz, DMSO-d6) δ 7.55 (d, J 8.2 Hz, 1H), 7.41 (d, J 2.1 Hz, 1H), 7.24-7.05 (m, 3H), 4.26 (d, J 1.2 Hz, 1H), 2.70-2.46 (m, 3H), 2.37-2.19 (m, 2H), 2.00-1.81 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.4, 165.4, 158.9, 146.3, 131.2, 131.0, 129.7, 129.6, 128.1, 119.9, 113.2, 57.5, 36.7, 35.3, 26.9, 20.1; HRMS (EI) m/z, calcd. for [C16H13FN2O2 + H ] +: 285.0961, found: 285.1093.

2-Amino-4-(2,4-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2q)

White solid; yield: 92.2%; 1H NMR (600 MHz, DMSO-d6) δ 7.52 (d, J 2.2 Hz, 1H), 7.34 (dd, J 8.4, 2.2 Hz, 1H), 7.24 (d, J 8.4 Hz, 1H), 7.09 (s, 2H), 4.69 (s, 1H), 2.69-2.55 (m, 2H), 2.33-2.17 (m, 2H), 2.01-1.85 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.2, 165.7, 159.0, 141.4, 133.5, 132.1, 131.7, 129.0, 128.1, 119.6, 112.9, 56.8, 36.7, 32.9, 26.9, 20.2; HRMS (EI) m/z, calcd. for [C16H12Cl2N2O2 + H]+: 335.0276, found: 335.0355.

2-Amino-5-oxo-4-(m-tolyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (2r)

White solid; yield: 89.3%; 1H NMR (600 MHz, DMSO-d6) δ 7.16 (t, J 7.5 Hz, 2H), 7.09 (t, J 7.6 Hz, 1H), 7.00 (d, J 1.7 Hz, 2H), 6.93 (t, J 1.3 Hz, 1H), 4.55 (s, 1H), 2.70-2.65 (m, 2H), 2.33-2.27 (m, 5H), 1.96-1.94 (m, 2H); 13C NMR (151 MHz, DMSO-d6) δ 196.7, 165.2, 158.9, 145.2, 137.7, 128.7, 128.1, 127.7, 124.7, 120.2, 116.0, 58.7, 36.8, 35.8, 26.9, 21.5, 20.3; HRMS (EI) m/z, calcd. for [C17H16N2O2 + H]+: 281.1212, found: 281.1251.

Results and Discussion

Conventional synthesis methods use a large number of organic reagents, which is a serious contradiction to the concept of green chemistry. Developing a green and efficient strategy to construct them was very meaningful. The pilot reaction involved the use of 4-fluorobenzaldehyde, malononitrile, and acetylacetone to synthesize 4H-pyran. The effects of the organic phase and DBSA on the reaction process as well as the product yields were investigated separately. We were surprised that the reaction of the substrate in the DBSA/H2O microemulsion system was much more successful because of the other group (Table 1). The reaction process and product yield are greatly enhanced, and we are more confident in our ability to develop a green and efficient strategy to construct them.

Table 1
Comparison of reaction systems for the synthesis of 4H-pyran derivativesa

In view of the fact that the DBSA-catalyzed synthesis of 4H-pyran works under very mild reaction conditions, we decided to complete a detailed study of the catalyst dosage. We then experimentally discovered that 0.2 mmol of DBSA catalyzed the reaction to proceed with the optimal yield of the resulting product (Table 2).

Table 2
Effect of catalyst dosage on target product yield for the synthesis of 4H-pyran derivativesa

With the above reaction conditions in hand, the generality of reagents ratio for the synthesis of 4H-pyran derivatives was investigated (Table 3). From now on, the results indicate that the maximum product yield is at a catalyst ratio of 1.2:1.0:1.2.

Table 3
Effect of raw material ratios on target product yields for the synthesis of 4H-pyran derivatives'

Under optimized reaction conditions, the 4-fluorobenzaldehyde reacted with malononitrile and cyclohexanedione by a one-pot method to obtain the corresponding (S)-2-amino-4-(4-fluorophenyl)-5-oxo-5,6,7,8-tetrahydro-4//-chromene-3-carbonitrile in excellent yields. Recycling experiments were performed using the DBSA catalyst for the synthesis of (.S)-2-amino-4-(4-fluorophenyi)-5-oxo-5,6,7,8-tetrahydro-4//-chromene-3-carbonitrile (Table 4). After completion of the reaction, the crude product was filtered and the filtrate was recycled to repeat the experiment. The results demonstrated that the catalyst's catalytic activity was stable and can be recycled.

Table 4
Reusability of cata lysts for the synthesis of 4//-pyran derivatives'

Taking into account the optimum reaction conditions, the generality of benzaldehydes in the synthesis of 4//-pyran derivatives was investigated (Table 5). Notably, a variety of benzaldehydes with diverse substituents at each position of the phenyl ring were suitable for the transformation, resulting in good yields of 4//-pyran derivatives (2a-2r). In order to show the diversity and inclusiveness of the reactions above, we attempted to introduce heterocyclic groups like thiophene, furan, indole, and quinoline into the 4//-pyran structure. Happily, compounds 2g, 2h, 21 and 2o exhibited higher product yields, as well as better reaction times than the substituted benzaldehydes, which is inextricably linked to the presence of the heteroatoms. All crude products were purified through ethanol recrystallization and confirmed by 'H NMR, 13C NMR, and HRMS.

Table 5
Synthesis of polyfunctionalized 4//-pyran derivativesa

Conclusions

In conclusion, a novel and efficient synthesis of 4//-pyran derivatives by DBS A catalyzed multicomponent reaction of aldehyde, malononitrile, and acetylacetone was developed in a microemulsion system. (5)-2-Amino-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4//-chromene-3-carbonitriles (2a-2r) were synthesized and their structures were elucidated from 'H NMR, 13C NMR and HRMS data. Excellent yields, efficient response, use of DBS A as catalyst and construction of the DBSA/H2O microemulsion system, and no column chromatography involving environmentally incompatible organic solvents are some of the highlights of our synthesis method. Furthermore, compounds with electron-withdrawing groups had better reaction efficiency such as compounds 2g, 2h, 2l and 2o.

Supplementary Information

Supplementary data (NMR and HRMS) are available free of charge at http://jbcs.sbq.org.br as a PDF file..

Acknowledgments

We gratefully acknowledge the financial support by Qiqihar Science and Technology Program Joint Guidance Project (LSFGG-2022038), Fundamental Scientific Research Business Expenses of Colleges and Universities in Heilongjiang Province (2020-KYYWF-0023) and Qiqihar Institute of Medical Sciences Project (QMSI2020M-09).

References

  • 1
    Niknam, K.; Khataminejad, M.; Zeyaei, F.; Tetrahedron Lett 2016, 57, 361. [Crossref]
    » Crossref
  • 2
    Ramesh, R.; Jayamathi, J.; Karthika, C.; Malecki, J. G.; Lalitha, A.; Polycyclic Aromat. Compd 2018, 502. [Crossref]
    » Crossref
  • 3
    Zang, J. L.; Bu, M.; Yang, J. F.; Han, L.; Lv, Z.; J. Braz. Chem. Soc 2021, 32, 1780. [Crossref]
    » Crossref
  • 4
    Amr, A. E.; Abdulla, M. M.; Arch. Pharm. Chem 2006, 339, 88. [Crossref]
    » Crossref
  • 5
    Amr, A. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A.; Hammam, A. E. G.; Bioorg. Med. Chem 2006, 14, 5481. [Crossref]
    » Crossref
  • 6
    Azzam, R. A.; Mohare, R. M.; Chem. Pharm. Bull 2015, 63, 1055. [Crossref]
    » Crossref
  • 7
    El-Sayed, N. N. E.; Zaki, M. E. A.; Al-Hussain, S. A.; Bacha, A. B.; Berredjem, M.; Masand, V. H.; Almarhoon, Z. M.; Omar, H. S.; Pharmaceuticals 2022, 15, 891. [Crossref]
    » Crossref
  • 8
    Shafaei, F.; Najar, A. H.; Comb. Chem. High Throughput Screening 2020, 23, 446. [Crossref]
    » Crossref
  • 9
    Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D.; Bioorg. Med. Chem. Lett 2007, 17, 6459. [Crossref]
    » Crossref
  • 10
    Kidwai, M.; Poddar, R.; Bhardwaj, S.; Singh, S.; Luthra, P. M.; Eur. J. Med. Chem 2010, 45, 5031. [Crossref]
    » Crossref
  • 11
    Melliou, E.; Magiatis, P.; Mitaku, S.; Skaltsounis, A.; Pierre, A.; Atassi, G.; Renard, P.; Bioorg. Med. Chem 2001, 9, 607. [Crossref]
    » Crossref
  • 12
    El-Bana, G. G.; Salem, M. A.; Helal, M. H.; Alharbi, O.; Gouda, M. A.; Mini-Rev. Org. Chem 2024, 21, 73. [Crossref]
    » Crossref
  • 13
    El-Sayed, N. N. E.; Zaki, M. E. A.; Al-Hussain, S. A.; Bacha, A. B.; Berredjem, M.; Masand, V. H.; Almarhoon, Z. M.; Omar, H. S.; Pharmaceuticals 2022, 15, 891. [Crossref]
    » Crossref
  • 14
    Maleki, B.; Baghayeri, M.; Abadi, S. A. J.; Tayebeea, R.; Khojastehnezhad, A.; RSC. Adv 2016, 6, 96644. [Crossref]
    » Crossref
  • 15
    Tabrizian, E.; Amoozadeh, A.; Catal. Sci. Technol 2016, 6, 6267. [Crossref]
    » Crossref
  • 16
    Khan, M. M.; Shareef, S.; Saigal; Sahoo, S. C.; RSC. Adv 2019, 9, 26393. [Crossref]
    » Crossref
  • 17
    Mukherjee, P.; Das, A. R.; J. Org. Chem 2016, 81, 5513. [Crossref]
    » Crossref
  • 18
    Sahoo, T.; Panda, J.; Sahu, J.; Sarangi, D.; Sahoo, S. K.; Nanda, B. B.; Sahu, R.; Curr. Org. Synth 2022, 17, 426. [Crossref]
    » Crossref
  • 19
    Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J.; Chem. Rev 2022, 122, 3637. [Crossref]
    » Crossref
  • 20
    Vadgama, R. N.; Khatkhatay, A. B.; Odaneth, A. A.; Lali, A. M.; Sustainable Chem. Pharm 2020, 15, 100203. [Crossref]
    » Crossref
  • 21
    Trombino, S.; Sole, R.; Di Gioia, M. L.; Procopio, D.; Curcio, F.; Cassano, R.; Molecules 2023, 28, 2107. [Crossref]
    » Crossref
  • 22
    An, D.; Miao, X. Z.; Ling, X. X.; Chen, X. X.; Rao, W. D.; Adv. Synth. Catal 2020, 362, 1514. [Crossref]
    » Crossref
  • 23
    Jing, L.; Li, X. J.; Han, Y. C.; Chu, Y.; Colloids Surf., A 2008, 326, 37. [Crossref]
    » Crossref
  • 24
    Choi, J. W.; Han, M. G.; Kim, S. Y. ; Oh, S. G.; Im, S. S.; Synth. Met 2004, 141, 293. [Crossref]
    » Crossref
  • 25
    Kumar, V.; Khandare, D. G.; Chatterjee, A.; Banerjee, M.; Tetrahedron. Lett 2013, 54, 5505. [Crossref]
    » Crossref

Edited by

Editor handled this article: Brenno A. D. Neto

Publication Dates

  • Publication in this collection
    01 Mar 2024
  • Date of issue
    2024

History

  • Received
    30 July 2023
  • Accepted
    18 Oct 2023
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br