Acessibilidade / Reportar erro

First report of plastic biomedia contamination in Brazilian beaches - evidence from the Paraná coast

ABSTRACT

We present the first report of plastic biomedia contamination on Brazilian beaches based on evidence collected from 14 beaches of the Paraná state coastline (southern Brazil). Plastic biomedia, also called biocarriers, are small, perforated plastic pieces used worldwide in wastewater treatment plants (WWTP) that apply the Moving Bed Biofilm Reactor (MBBR) process. Accidental release of these particles into the environment adds to Ocean’s long-term plastic pollution problem. A high amount of plastic biomedia presence in the coastal areas of Paraná was first noticed by a community member, who found 411 plastic particles on a beach located in Pontal do Paraná, bringing this issue to our attention. In this study, plastic biomedia was retrieved from drift line alongshore transects (0.3 to 1 km long) and cross-shore transects (5 m wide) from the water line to the backshore zone. A total of 749 items were collected from 11 of the 14 sampled beaches, including the Mel and Superagui Islands nature reserves. The decreasing trend in plastic biomedia abundance with the increase in distance of the PEC southern outlet suggests that these particles probably originate from a WWTP in the Paranaguá Estuarine Complex (PEC). Once in the water, these floating plastic particles that followed the suspended sediment transport pattern were exported to coastal waters and were transported by longshore currents. Highlighting the potential role of the PEC as a substantial vector for marine debris to the Paraná coastline. The most likely source of this novel plastic contaminant to the Brazilian coastline are WWTP with MBBR systems. Therefore, stakeholders need to discuss and establish a reporting system so that plastic biomedia spillovers or losses are reported, and its dispersal in the environment is reduced.

Keywords:
Novel contaminant; Plastic debris; Beach; Wastewater treatment plants; South Brazil

Plastic biomedia, also known as filter media, are small, perforated plastic pieces (polyethylene [PE] or high-density polyethylene [HDPE]) used as bacterial biofilm carriers to improve the wastewater treatment process, invented in Norway in the 1980s (Ødegarrd et al., 1994Ødegarrd, H., Rusten, B. & Westrum, T. 1994. A new moving bed biofilm reactor - applications and results. Water Science & Technology, 29(10-11), 157-165. DOI: https://doi.org/10.2166/wst.1994.0757
https://doi.org/10.2166/wst.1994.0757...
; Ballerini et al., 2022Ballerini, T., Chaudon, N., Fournier, M., Coulomb, J.-P., Dumontet, B., Matuszak, E. & Poncet, J. 2022. Plastic pollution on Durance riverbank: First quantification and possible environmental measures to reduce it. Frontiers in Sustainability, 3. DOI: https://doi.org/10.3389/frsus.2022.866982
https://doi.org/10.3389/frsus.2022.86698...
). These plastic particles, also called biocarriers, are applied in the Moving Bed Biofilm Reactor (MBBR) technology, the most used technique in wastewater treatment plants (WWTP) worldwide (Madan et al., 2022Madan, S., Madan, R. & Hussain, A. 2022. Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): a review. Applied Water Science, 12(6), 141. DOI: https://doi.org/10.1007/s13201-022-01662-y
https://doi.org/10.1007/s13201-022-01662...
). This includes but is not limited to urban, industrial, and aquaculture wastewater treatment (Maurya et al., 2023Maurya, A., Kumar, R. & Raj, A. 2023. Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World Journal of Microbiology and Biotechnology, 39(5), 112. DOI: https://doi.org/10.1007/s11274-023-03567-7
https://doi.org/10.1007/s11274-023-03567...
). Although recognized by their improvement in wastewater treatment efficiency, plastic biomedia from WWTP MBBR systems can be accidentally released into the environment (e.g., in WWTP basin to overflows due to heavy rain episodes), and between a few thousand up to several million pieces can be introduced into the environment (Bencivengo et al., 2018Bencivengo, P., Barreau, C., Bailly, C. & Verdet, F. 2018. Sewage Filter Media and Pollution of the Aquatic Environment, Surfrider Foundation Europe Report, Water Quality and Marine Litter programme. Biarritz, Surfrider. Available from Available from https://www.surfrider.eu/wp-content/uploads/2018/08/biomedia-pollution-report.zip Access date: 20 Aug 2023.
https://www.surfrider.eu/wp-content/uplo...
). Therefore, plastic biomedia may also represent a potential threat to marine ecosystems, adding to the long-term plastic pollution problem in the Ocean.

Plastic pollution is a global issue. Every year, more than 460 million tons of plastic are produced globally (OECD, 2022OECD (Organisation for Economic Co-Operation and Development). 2022. Global Plastics Outlook: Policy Scenarios to 2060. Paris, Organisation for Economic Co-operation and Development. Available from: Available from: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en Access date: 17 Aug 2023.
https://www.oecd-ilibrary.org/environmen...
), and several plastic items, on the order of 0.13-3.8 million metric tons, are estimated to enter the ocean every year (Zhang et al., 2023Zhang, Y., Wu, P., Xu, R., Wang, Xuantong, Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, Xinle, Mai, L., Wang, R., Liu, H., Wang, Xiaotong, Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. 2023. Plastic waste discharge to the global ocean constrained by seawater observations. Nature Communications, 14(1), 1372. DOI: https://doi.org/10.1038/s41467-023-37108-5
https://doi.org/10.1038/s41467-023-37108...
). Once in the marine environment, plastic debris tend to rapidly concentrate on coastal areas (Lavers and Bond, 2017Lavers, J. L. & Bond, A. L. 2017. Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences, 114(23), 6052-6055. DOI: https://doi.org/10.1073/pnas.1619818114
https://doi.org/10.1073/pnas.1619818114...
). Due to their increased dispersion potential and persistence, plastics in the marine environment threaten marine wildlife and, potentially, humans (Gall and Thompson, 2015Gall, S. C. & Thompson, R. C. 2015. The impact of debris on marine life. Marine Pollution Bulletin , 92(1), 170-179. DOI: https://doi.org/10.1016/j.marpolbul.2014.12.041
https://doi.org/10.1016/j.marpolbul.2014...
). However, to address marine plastic pollution, its sources, sinks, and spatial and temporal distribution trends must be understood, which require long-term datasets with broad spatial coverage. Therefore, the magnitude and sources of plastic entering the ocean remain poorly known (Solutions…, 2023). Recently, citizen science has been applied as a good tool for achieving this, as it involves members of the public and provides information for developing evidence-based policies toward reducing marine plastic pollution (Nelms et al., 2022Nelms, S. E., Easman, E., Anderson, N., Berg, M., Coates, S., Crosby, A., Eisfeld-Pierantonio, S., Eyles, L., Flux, T., Gilford, E., Giner, C., Hamlet, J., Hembrow, N., Hickie, J., Hopkinson, P., Jarvis, D., Kearsley, J., Millard, J., Nunn, F., Pollitt, E., Sainsbury, A., Sayer, S., Sinclair, R., Slack, A., Smith, P., Thomas, R., Tyler, J., Walker, R., Wallerstein, C., Ward, M. & Godley, B. J. 2022. The role of citizen science in addressing plastic pollution: Challenges and opportunities. Environmental Science & Policy, 128, 14-23. DOI: https://doi.org/10.1016/j.envsci.2021.11.002
https://doi.org/10.1016/j.envsci.2021.11...
). The first observation of plastic biomedia on the European coastline was made by a Surfrider Foundation Europe volunteer, which led to the establishment of the citizen science-based European plastic biomedia observation network (Bencivengo et al., 2018Bencivengo, P., Barreau, C., Bailly, C. & Verdet, F. 2018. Sewage Filter Media and Pollution of the Aquatic Environment, Surfrider Foundation Europe Report, Water Quality and Marine Litter programme. Biarritz, Surfrider. Available from Available from https://www.surfrider.eu/wp-content/uploads/2018/08/biomedia-pollution-report.zip Access date: 20 Aug 2023.
https://www.surfrider.eu/wp-content/uplo...
).

In Brazil, the implementation of WWTP systems that use MBBR is growing, and the last Brazilian National Water and Sanitation Agency report shows that, in 2017, 19 WWTPs applied this technology (ANA, 2020ANA (Agência Nacional de Águas). 2020. Atlas esgotos: atualização da base de dados de estações de tratamento de esgotos no Brasil. Brasília, DF: ANA. Accessed: Accessed: https://biblioteca.ana.gov.br/sophia_web/Busca/Download?codigoArquivo=143591 Access date: 17 Aug 2023.
https://biblioteca.ana.gov.br/sophia_web...
). So far, to our knowledge, there are no records of accidental environmental inputs nor of the presence of these plastic particles in Brazilian coastal environments. Therefore, this study is the first report of plastic biomedia occurrence on Brazilian sandy beaches (Figure S1, Supplementary Material), where these particles were found in 11 beaches from the coastal areas of the Paraná state (south Brazil) (Figure 1). As the first European plastic biomedia observation, a Pontal do Paraná community member brought this issue to our attention during a university outreach activity on June 26, 2023. This community member observed the presence of small, rounded plastic circles (16 mm in diameter) (Figure 2A) during a leisure walk at the beach, close to the DNOS channel (~1.2 km), and collected them using other plastic debris (i.e., plastic bottles) available at the beach. At the lab, we identified the material as plastic biomedia and counted 411 items. It is worth noting that, despite different marine debris studies being conducted in this area (Krelling et al., 2017Krelling, A. P., Souza, M. M., Williams, A. T. & Turra, A. 2017. Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin , 119(1), 48-63. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.034
https://doi.org/10.1016/j.marpolbul.2017...
, 2023Krelling, A. P., Antunes, C. V. & Broadhurst, M. K. 2023. Investigating variability among fisheries litter accumulation on beaches in Paraná, Brazil. Marine Pollution Bulletin , 187, 114607. DOI: https://doi.org/10.1016/j.marpolbul.2023.114607
https://doi.org/10.1016/j.marpolbul.2023...
; Bettim et al., 2021Bettim, M., Krelling, A. P., Di Domenico, M., Cornwell, T. O. & Turra, A. 2021. Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil. Marine Pollution Bulletin , 172, 112859. DOI: https://doi.org/10.1016/j.marpolbul.2021.112859
https://doi.org/10.1016/j.marpolbul.2021...
; Nunes et al., 2021Nunes, T. Y., Broadhurst, M. K. & Domit, C. 2021. Selectivity of marine-debris ingestion by juvenile green turtles (Chelonia mydas) at a South American World Heritage Listed area. Marine Pollution Bulletin , 169, 112574. DOI: https://doi.org/10.1016/j.marpolbul.2021.112574
https://doi.org/10.1016/j.marpolbul.2021...
; Mesquita, 2022Mesquita, Y. W. 2022. Microplásticos em praias arenosas da América Latina e do Caribe : onde, como e fatores de controle de sua distribuição [Dissertação de Mestrado]. Universidade Federal do Paraná, Curitiba. Available from: Available from: https://acervodigital.ufpr.br/handle/1884/81554 Access date: 20 Aug 2023.
https://acervodigital.ufpr.br/handle/188...
), the presence of plastic biomedia, classified as mesoplastic (plastic items in the 5 - 25 mm size fraction), was not reported before. Therefore, we decided to investigate this issue further to elucidate the possible sources of these particles on the Paraná coastline.

Figure 1
Map of the Paraná’s coastline where plastic biomedia was found in July/August of 2023, in Pontal do Paraná and Mel Island (a), and Superagui Island (b). The number of plastic biomedia per linear 100 m (items 100 m−1) obtained in the alongshore transects (colored lines), and average abundance (items) in the cross-shore transects plastic (colored circles). The bottom left panel shows the location and extent of Paraná’s coastline nature reserves (hashed green areas) and urban areas (gray areas), the location of WTTPs (purple circle) and ports (anchor symbol), and the direction of the longshore currents (based on Noernberg et al. (2006Noernberg, M. A., Lautert, L. F. C., Araújo, A. D., Marone, E., Angelotti, R., Netto, J. P. B. & Krug, L. A. 2006. Remote Sensing and GIS Integration for Modelling the Paranaguá Estuarine Complex -Brazil. Journal of Coastal Research, 1627-1631.) - arrows).

Figure 2
Plastic biomedia found in Paraná’s coastline (a, b), and the diverse set of environments where these particles were observed: on sandy beaches, drift line together with marine debris (c), by itself on top of the sand (d), with typical mangrove propagule debris (e), interaction with a propagule of Avicennia schauerianna (f), on top of a riprap structure (g), and at a Ponta do Poço mangrove forest (h).

The Paraná coastline (25.70° S, 48.47° W), southern Brazil, lies between two estuarine outlets of the Paranaguá Estuarine Complex (PEC) and Guaratuba Bay, being the second smallest oceanic coast (~90 km) in the country (Figure 1). The ocean-facing beaches are mainly composed of fine, well-sorted sands, classified as wave-dominated, with a significant tidal influence inside and at the estuary outlets, where large ebb-tidal-deltas influence beach sand transport and sedimentary budget (Angulo et al., 2016Angulo, R. J., Borzone, C. A., Noernberg, M. A., Quadros, C. J. L., Souza, M. C. & Rosa, L. C. 2016. The State of Paraná beaches. In: Short, A. D. & Klein, A. H. F. (Ed.). Brazilian Beach Systems (pp. 419-464). Dordrecht: Springer. DOI: https://doi.org/10.1007/978-3-3319-30394-9_16.
https://doi.org/10.1007/978-3-3319-30394...
, 2020Angulo, R. J., Souza, M. C. D. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of State of Paraná, in Southern Brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5-25. DOI: https://doi.org/10.5894/rgci-n197
https://doi.org/10.5894/rgci-n197...
). The mean significant wave height in the 18 m isobath is 1.6 m, with a maximum of 4.5 m (Angulo et al., 2016Angulo, R. J., Borzone, C. A., Noernberg, M. A., Quadros, C. J. L., Souza, M. C. & Rosa, L. C. 2016. The State of Paraná beaches. In: Short, A. D. & Klein, A. H. F. (Ed.). Brazilian Beach Systems (pp. 419-464). Dordrecht: Springer. DOI: https://doi.org/10.1007/978-3-3319-30394-9_16.
https://doi.org/10.1007/978-3-3319-30394...
) and a predominant SSE-S wave direction (Nemes and Marone, 2013Nemes, D. D. & Marone, E. 2013. Caracterização das ondas de superfície na plataforma interna do estado Do Paraná, Brasil. Boletim Paranaense de Geociências, 68-69:12-25. ). At the PEC southern outlet, ebb currents are stronger than flood currents at both the surface and the bottom, with a seaward balance of the sediment transport (Noernberg et al., 2007Noernberg, M. A., Marone, E. & Angulo, R. J. 2007. Correntes costeiras e transporte de sedimentos nos canais de navegação do estuário da Baía De Paranaguá. Boletim Paranaense de Geociências , 60. DOI: https://doi.org/10.5380/geo.v60i0.9616
https://doi.org/10.5380/geo.v60i0.9616...
; Mayerle et al., 2015Mayerle, R., Narayanan, R., Etri, T. & Abd Wahab, A. K. 2015. A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Engineering, 106, 161-174. DOI: https://doi.org/10.1016/j.oceaneng.2015.06.025
https://doi.org/10.1016/j.oceaneng.2015....
). At the coastline, sediment transport is controlled by longshore currents that flow to the north (Figure 1) (Noernberg et al., 2007Noernberg, M. A., Marone, E. & Angulo, R. J. 2007. Correntes costeiras e transporte de sedimentos nos canais de navegação do estuário da Baía De Paranaguá. Boletim Paranaense de Geociências , 60. DOI: https://doi.org/10.5380/geo.v60i0.9616
https://doi.org/10.5380/geo.v60i0.9616...
).

The state of Paraná has several Nature Reserves, including the Guaraqueçaba Environmental Protection Area (APA de Guaraqueçaba), which includes the Superagui National Park (PARNA do Superagui) and the Mel Island State Park and Ecological Station (PE/ESEC Mel Island) (Grise et al., 2009Grise, M. M., Biondi, D., Lingnau, C. & Araki, H. 2009. A estrutura da paisagem do mosaico formado pelas unidades de conservação presentes no litoral norte do Paraná. Floresta, 39(4), 723-742.). At the Paraná coastline, coastal anthropization has been happening since the 1950s, with the increase of the coastline urban development and recreational beach use during the summer (Angulo et al., 2020Angulo, R. J., Souza, M. C. D. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of State of Paraná, in Southern Brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5-25. DOI: https://doi.org/10.5894/rgci-n197
https://doi.org/10.5894/rgci-n197...
). Nowadays, the region houses 301,000 people (IBGE, 2023IBGE (Instituto Brasileiro de Geografia e Estatística). 2023. Censo Demográfico 2022 : população e domicílios : primeiros resultados. Rio de Janeiro, IBGE. Available from: Available from: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2102011 . Access date: 28 Aug 2023.
https://biblioteca.ibge.gov.br/index.php...
), developing activities that include fishing, farming, power generation, harbor, tourism, and recreation (Angulo et al., 2020Angulo, R. J., Souza, M. C. D. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of State of Paraná, in Southern Brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5-25. DOI: https://doi.org/10.5894/rgci-n197
https://doi.org/10.5894/rgci-n197...
). The region holds two port terminals in Antonina and Paranaguá; the latter is Brazil’s second-largest public port (Figure 1). There are 11 WWTPs in the vicinity of the PEC (Figure 1), six of them in Paranaguá, and the other five distributed in each coastal municipality (ANA, 2020ANA (Agência Nacional de Águas). 2020. Atlas esgotos: atualização da base de dados de estações de tratamento de esgotos no Brasil. Brasília, DF: ANA. Accessed: Accessed: https://biblioteca.ana.gov.br/sophia_web/Busca/Download?codigoArquivo=143591 Access date: 17 Aug 2023.
https://biblioteca.ana.gov.br/sophia_web...
; Prefeitura de Antonina, 2020Prefeitura de Antonina. 2020. Plano municipal de saneamento básico relatório 2: diagnóstico dos sistemas de saneamento. Antonina, Ampla. Available from Available from http://antonina.pr.gov.br/uploads/pagina/arquivos/Relatorio2.pdf Access date: 28 Aug 2023.
http://antonina.pr.gov.br/uploads/pagina...
; Prefeitura de Paranaguá, 2021Prefeitura de Paranaguá. 2021. Plano Municipal de Saneamento Básico. Produto C - Relatório do Diagnóstico Técnico-Participativo. Paranaguá, CBL. Available from: Available from: https://www.paranagua.pr.gov.br/imgbank2/file/meio_ambiente/PMSB_Paranagua_Produto_C_Rev_Final_2021_03_04.pdf Access date: 28 Aug 2023.
https://www.paranagua.pr.gov.br/imgbank2...
).

Plastic biomedia sampling took place on 14 beaches in the municipalities of Pontal do Paraná, Paranaguá (Mel Island), and Guaraqueçaba (Superagui Island), and sampling campaigns occurred in July and August 2023 (Table 1, Figure 1). Sampling locations were selected considering their distance to the PEC outlet, which is a potential source of marine litter (Possatto et al., 2015Possatto, F. E., Spach, H. L., Cattani, A. P., Lamour, M. R., Santos, L. O., Cordeiro, N. M. A. & Broadhurst, M. K. 2015. Marine debris in a World Heritage Listed Brazilian estuary. Marine Pollution Bulletin , 91(2), 548-553. DOI: https://doi.org/10.1016/j.marpolbul.2014.09.032
https://doi.org/10.1016/j.marpolbul.2014...
; Krelling et al., 2017Krelling, A. P., Souza, M. M., Williams, A. T. & Turra, A. 2017. Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin , 119(1), 48-63. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.034
https://doi.org/10.1016/j.marpolbul.2017...
; Krelling and Turra, 2019Krelling, A. P. & Turra, A. 2019. Influence of oceanographic and meteorological events on the quantity and quality of marine debris along an estuarine gradient. Marine Pollution Bulletin , 139, 282-298. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.049
https://doi.org/10.1016/j.marpolbul.2018...
; Bettim et al., 2021Bettim, M., Krelling, A. P., Di Domenico, M., Cornwell, T. O. & Turra, A. 2021. Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil. Marine Pollution Bulletin , 172, 112859. DOI: https://doi.org/10.1016/j.marpolbul.2021.112859
https://doi.org/10.1016/j.marpolbul.2021...
). We applied two distinct approaches to retrieve plastic biomedia in the sampled beaches: (i) at least two 5-m wide cross-shore (perpendicular to the water line) transects located between the backshore zone (approximately 1 m seaward of the vegetation line) and the water line and with a minimum distance of 0.5 km apart from each other per beach (N=41) and (ii) 0.3 to 1 km alongshore (parallel to the water line) transects located at the drift line (N=12). These were thoroughly searched and plastic biomedia items were collected (Table 1). The cross-shore transect approach is a commonly applied sampling design in macro debris investigations (e.g., Shoreline Survey Guide of NOAAs Marine Debris Monitoring and Assessment Project) (Burgess et al., 2021Burgess, H. K., Herring, C. E., Lippiatt, S., Lowe, S. & Uhrin, A. V. 2021. NOAA Marine Debris Monitoring and Assessment Project Shoreline Survey Guide. NOAA Technical Memorandum NOS OR&R., 56, 20 pp. DOI: DOI: https://doi.org/DOI10.25923/g720-2n18 . Access date: 28 Aug 2023.
https://doi.org/DOI10.25923/g720-2n18...
), which may be a better approach to understanding the spatial distribution of plastic biomedia, as sampling is less time-consuming, enabling investigating teams to cover large areas. At the same time, we chose to sample the alongshore transects to mimic Ocean Clean Up efforts, which should be more effective for quantifying the total abundance of plastic biomedia and providing an idea of the size of spillover events. Sampling was conducted by at least two scientists who thoroughly examined all stranded debris on the cross-shore transects to ensure the retrieval of any entangled, concealed, or trapped biomedia, and visually inspected the drift line debris, retrieving plastic biomedia on the alongshore transects. All collected biomedia were taken to the lab and quantified. Data for each location is reported as plastic biomedia abundance (items) in the cross-shore transects and the alongshore transects abundance (items) and concentration of biomedia, defined as the number of particles per linear 100 m (items 100 m−1).

Table 1
Plastic biomedia collected from Paraná’s beaches. Data on alongshore transects abundance (items), length of the transect (m), and concentration (items 100 m-¹); and cross-shore transects: number of transects (N), and abundance (items).

Table 1 provides plastic biomedia data, which are represented in Figure 1. These particles were present in 11 of the 14 sampled beaches, totaling 749 items (159 in the cross-shore transects and 590 in the alongshore transects). The cross-shore transects data show that no plastic biomedia were found at the three Pontal do Paraná beaches (Praia de Leste, Santa Terezinha, and Ipanema) and at the two estuarine-facing Mel Island beaches (Brasília and Encantadas). Plastic biomedia were also not observed in the alongshore transects at the same Pontal do Paraná beaches but were present at Pontal do Sul (54.1 items 100 m-1), Shangri-lá (13.7 items 100 m-1), Ponta do Poço (6.2 items 100 m-1), and Pontal Dois (N = 6.0 items 100 m-1) beaches. These particles were also present on the ocean-facing Mel Island beaches, Farol (8.1 items 100 m-1), and Mar de Fora (N = 6.6 items 100 m-1). Although not quantified in this work, during the sampling campaigns, plastic biomedia were observed in different coastal environments from the Paraná coastline (Figure 2), such as riprap structures (2g), mangroves (2h), restinga vegetation, coastal dunes, and adrift in the seawater.

The fact that plastic biomedia had not been reported in our study area before June 2023, despite previous (Moreira et al., 2016Moreira, F. T., Prantoni, A. L., Martini, B., De Abreu, M. A., Stoiev, S. B. & Turra, A. 2016. Small-scale temporal and spatial variability in the abundance of plastic pellets on sandy beaches: Methodological considerations for estimating the input of microplastics. Marine Pollution Bulletin , 102(1), 114-121. DOI: https://doi.org/10.1016/j.marpolbul.2015.11.051
https://doi.org/10.1016/j.marpolbul.2015...
; Bettim et al., 2021Bettim, M., Krelling, A. P., Di Domenico, M., Cornwell, T. O. & Turra, A. 2021. Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil. Marine Pollution Bulletin , 172, 112859. DOI: https://doi.org/10.1016/j.marpolbul.2021.112859
https://doi.org/10.1016/j.marpolbul.2021...
; Mesquita, 2022Mesquita, Y. W. 2022. Microplásticos em praias arenosas da América Latina e do Caribe : onde, como e fatores de controle de sua distribuição [Dissertação de Mestrado]. Universidade Federal do Paraná, Curitiba. Available from: Available from: https://acervodigital.ufpr.br/handle/1884/81554 Access date: 20 Aug 2023.
https://acervodigital.ufpr.br/handle/188...
; Krelling et al., 2023Krelling, A. P., Antunes, C. V. & Broadhurst, M. K. 2023. Investigating variability among fisheries litter accumulation on beaches in Paraná, Brazil. Marine Pollution Bulletin , 187, 114607. DOI: https://doi.org/10.1016/j.marpolbul.2023.114607
https://doi.org/10.1016/j.marpolbul.2023...
; Figure S1) and ongoing marine debris investigations, suggests that its presence in the Paraná coastline and, consequently, environmental input is most likely recent. Our research group performed a marine debris investigation field campaign that sampled Praia de Leste, Shangri-lá, and Pontal do Sul beaches in mid-May 2023, and these particles were not observed on that occasion. Therefore, it is likely that the plastic biomedia input reported in this study is related to a punctual event or a chronic input that started between mid-May (the last field campaign) and mid-June of 2023 (the first observation from the community member). However, additional sampling campaigns are necessary to determine if the plastic biomedia input comes from a single event or is chronic.

These particles’ general spatial distribution pattern highlights higher plastic biomedia mean cross-shore transects abundance between the oceanic beaches closer to the PEC southern outlet (Pontal do Sul, Atami, and Shangri-lá) than the other sampled beaches (t-test < 0.000005). Previous investigations suggest that the PEC is a substantial vector for macro marine debris (domestic, sewage, and fisheries-related) to the Pontal do Paraná beaches, especially to the region adjacent to the estuarine southern outlet (Krelling et al., 2017Krelling, A. P., Souza, M. M., Williams, A. T. & Turra, A. 2017. Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin , 119(1), 48-63. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.034
https://doi.org/10.1016/j.marpolbul.2017...
; Krelling and Turra, 2019Krelling, A. P. & Turra, A. 2019. Influence of oceanographic and meteorological events on the quantity and quality of marine debris along an estuarine gradient. Marine Pollution Bulletin , 139, 282-298. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.049
https://doi.org/10.1016/j.marpolbul.2018...
), and particularly during high precipitation events (>20 mm) (Bettim et al., 2021Bettim, M., Krelling, A. P., Di Domenico, M., Cornwell, T. O. & Turra, A. 2021. Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil. Marine Pollution Bulletin , 172, 112859. DOI: https://doi.org/10.1016/j.marpolbul.2021.112859
https://doi.org/10.1016/j.marpolbul.2021...
). Our results now showcase that this is also the case for the plastic biomedia (mesoplastic). Moreover, within the PEC urban, industrial, and/or aquaculture WWTP could represent potential sources for the plastic biomedia. However, it is worth mentioning that the recent (April/May 2023) implementation of the MBBR technology at an urban WWTP located within the PEC and high precipitation events on May 30-31, 2023 (16.3 and 17.0 mm, respectively) and June 13-14, 2023 (35.2 and 20.4 mm, respectively) (Instituto das Águas do Paraná, 2023Instituto das Águas do Paraná. 2023. Relatório de Alturas Diárias de Precipitação. Curitiba: Aguasparaná. Available from: Available from: http://www.sih-web.aguasparana.pr.gov.br/sih-web/gerarRelatorioAlturasDiariasPrecipitacao.do?action=carregarInterfaceInicial . Access date: 17 Aug 2023.
http://www.sih-web.aguasparana.pr.gov.br...
) favor the hypothesis of a punctual input event derived from a source within the PEC. Also, during sampling campaigns, we observed that these particles were mainly found beached together with typical mangrove forest vegetation debris (Figure 2g), with registers of interaction between plastic biomedia and Avicennia schaueriana propagules (Figure 2h). As mangrove forests are mainly located inside the PEC (Noernberg et al., 2006Noernberg, M. A., Lautert, L. F. C., Araújo, A. D., Marone, E., Angelotti, R., Netto, J. P. B. & Krug, L. A. 2006. Remote Sensing and GIS Integration for Modelling the Paranaguá Estuarine Complex -Brazil. Journal of Coastal Research, 1627-1631.), this reinforces the hypothesis that the plastic biomedia found at the Paraná coastline are derived from a PEC facility, possibly an urban WWTP.

Once in the water, these floating plastic particles would follow the suspended sediment transport pattern, primarily exported from the PEC via its southern outlet and into coastal waters (Mayerle et al., 2015Mayerle, R., Narayanan, R., Etri, T. & Abd Wahab, A. K. 2015. A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Engineering, 106, 161-174. DOI: https://doi.org/10.1016/j.oceaneng.2015.06.025
https://doi.org/10.1016/j.oceaneng.2015....
). Our data also show that the last occurrence of these particles occurs at the Shangri-lá beach, which has been pointed out as the southern limit of the PEC influence on large marine debris abundance on the Paraná coastline by a floating debris mathematical model (Krelling et al., 2017Krelling, A. P., Souza, M. M., Williams, A. T. & Turra, A. 2017. Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin , 119(1), 48-63. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.034
https://doi.org/10.1016/j.marpolbul.2017...
). Nevertheless, once plastic biomedia (or any floating debris) reaches coastal waters outside the PEC outlet and tidal range influence, these particles should follow the longshore currents’ sediment transport patterns. In the Paraná coastline, wave-driven longshore currents and sediment transport show a predominantly northward direction (Noernberg et al., 2007Noernberg, M. A., Marone, E. & Angulo, R. J. 2007. Correntes costeiras e transporte de sedimentos nos canais de navegação do estuário da Baía De Paranaguá. Boletim Paranaense de Geociências , 60. DOI: https://doi.org/10.5380/geo.v60i0.9616
https://doi.org/10.5380/geo.v60i0.9616...
; Angulo et al., 2020Angulo, R. J., Souza, M. C. D. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of State of Paraná, in Southern Brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5-25. DOI: https://doi.org/10.5894/rgci-n197
https://doi.org/10.5894/rgci-n197...
), which explains the fact that plastic biomedia were also present at the oceanic-facing Mel Island (Mar de Fora and Farol) and Superagui (Deserta) beach (Figure 1b). This emphasizes the potential role of the PEC as a marine debris vector, not only for the Pontal do Paraná beaches but also for the northern portion of the Paraná coastline, where important nature reserves are located, such as Mel Island State Park and Ecologic Station and Superagui National Park.

Recent studies have shown that plastic debris densities, particularly macro- and microplastic, in remote beaches (Barnes et al., 2018Barnes, D. K. A., Morley, S. A., Bell, J., Brewin, P., Brigden, K., Collins, M., Glass, T., Goodall-Copestake, W. P., Henry, L., Laptikhovsky, V., Piechaud, N., Richardson, A., Rose, P., Sands, C. J., Schofield, A., Shreeve, R., Small, A., Stamford, T. & Taylor, B. 2018. Marine plastics threaten giant Atlantic Marine Protected Areas. Current Biology, 28(19), R1137-R1138. DOI: https://doi.org/10.1016/j.cub.2018.08.064
https://doi.org/10.1016/j.cub.2018.08.06...
), including those within marine-protected areas (Nunes et al., 2023aNunes, B. Z., Huang, Y., Ribeiro, V. V., Wu, S., Holbech, H., Moreira, L. B., Xu, E. G. & Castro, I. B. 2023a. Microplastic contamination in seawater across global marine protected areas boundaries. Environmental Pollution, 316, 120692. DOI: https://doi.org/10.1016/j.envpol.2022.120692
https://doi.org/10.1016/j.envpol.2022.12...
, 2023bNunes, B. Z., Moreira, L. B., Xu, E. G. & Castro, Í. B. 2023b. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Science of The Total Environment, 865, 161293. DOI: https://doi.org/10.1016/j.scitotenv.2022.161293
https://doi.org/10.1016/j.scitotenv.2022...
) or protected by treaties or agreements, are at alarming levels. As artificial borders are unable to inhibit plastics from entering these areas (Bonanno, 2022Bonanno, G. 2022. Marine-protected areas and plastic pollution. In: Bonanno, G. & Orlando-Bonaca, M. (Ed.). Plastic Pollution and Marine Conservation (pp. 249-273). Cambridge: Academic Press. Available from: https://doi.org/10.1016/B978-0-12-822471-7.00010-9
https://doi.org/10.1016/B978-0-12-822471...
) hindering their critical role in conserving marine and coastal biodiversity, landscapes, and resources, knowledge about plastic debris presence, abundance, and distribution is essential (Nunes et al., 2023aNunes, B. Z., Huang, Y., Ribeiro, V. V., Wu, S., Holbech, H., Moreira, L. B., Xu, E. G. & Castro, I. B. 2023a. Microplastic contamination in seawater across global marine protected areas boundaries. Environmental Pollution, 316, 120692. DOI: https://doi.org/10.1016/j.envpol.2022.120692
https://doi.org/10.1016/j.envpol.2022.12...
). Once in the environment, plastic biomedia may be accidentally ingested by marine species, such as sea turtles, that inhabit these protected areas (Bencivengo et al., 2023Bencivengo, P., Verdet, F. & Barreau, C. 2023. Recommendations for the use of biocarriers. Copenhagen, Nordic Council of Ministers. Available from: Available from: https://pub.norden.org/temanord2023-523/2-preamble.html Access date: 20 Aug 2023.
https://pub.norden.org/temanord2023-523/...
), thus contributing to the degradation of ecosystems. However, most studies about plastic pollution in coastal and marine systems focus on macro- and/or microplastics, ignoring the mesoplastic size fraction, resulting in a lack of standardized protocols, knowledge gaps, and policy needs associated with plastic debris size fraction (Shi et al., 2023Shi, H., Frias, J., El-Din H. Sayed, A., De-La-Torre, G. E., Jong, M.-C., Uddin, S. A., Rajaram, R., Chavanich, S., Najii, A., Fernández-Severini, M. D., Ibrahim, Y. S. & Su, L. 2023. Small plastic fragments: A bridge between large plastic debris and micro- & nano-plastics. TrAC Trends in Analytical Chemistry, 168, 117308. DOI: https://doi.org/10.1016/j.trac.2023.117308
https://doi.org/10.1016/j.trac.2023.1173...
). Mesoplastic baseline studies are frequently conducted together with microplastic surveys, which involve sampling a small beach area (e.g. Ambrose and Walker, 2023Ambrose, K. K. & Walker, T. R. 2023. Identifying opportunities for harmonized microplastics and mesoplastics monitoring for Caribbean Small Island Developing States using a spatiotemporal assessment of beaches in South Eleuthera, The Bahamas. Marine Pollution Bulletin, 193, 115140. DOI: https://doi.org/10.1016/j.marpolbul.2023.115140
https://doi.org/10.1016/j.marpolbul.2023...
). However, our data shows that, regarding accidental plastic biomedia inputs, this specific type of mesoplastic debris may spread across extensive beach stretches. Thus, the combination of commonly applied macroplastic beach survey sampling strategies, encompassing larger beach areas, provides robust data regarding plastic biomedia abundance and distribution. We propose adopting this approach if similar accidental plastic biomedia inputs occur in other beaches.

In conclusion, this is the first report of plastic biomedia in the Brazilian coastline. Our results suggest that a PEC WWTP is the source of these plastic particles, highlighting the PEC’s detrimental role as a marine debris vector to the Paraná coastline. Therefore, it supports the idea that marine debris management requires efforts from local stakeholders across coastal Paraná municipalities (Krelling and Turra, 2019Krelling, A. P. & Turra, A. 2019. Influence of oceanographic and meteorological events on the quantity and quality of marine debris along an estuarine gradient. Marine Pollution Bulletin , 139, 282-298. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.049
https://doi.org/10.1016/j.marpolbul.2018...
). Given the fact that this novel contaminant is applied to WWTP MBBR systems and its growing trend of implementation, stakeholders, including public and private wastewater treatment users, and environment protection agencies, need to discuss and establish a reporting system in which WWTP users can report any plastic biomedia spillovers or losses into the environment, aiming to reduce dispersal. Additionally, WWTP managing companies should have protocols for identifying and preventing plastic biomedia from entering the environment, as this is widely considered the best solution for the marine plastic pollution problems (Solutions for plastic pollution, 2023Solutions for plastic pollution. 2023. Nature Geoscience, 16(8), 655-655. DOI: https://doi.org/10.1038/s41561-023-01255-7
https://doi.org/10.1038/s41561-023-01255...
, Bencivengo et al., 2023Bencivengo, P., Verdet, F. & Barreau, C. 2023. Recommendations for the use of biocarriers. Copenhagen, Nordic Council of Ministers. Available from: Available from: https://pub.norden.org/temanord2023-523/2-preamble.html Access date: 20 Aug 2023.
https://pub.norden.org/temanord2023-523/...
). For the Paraná state, this is of particular importance since its coastline harbors important ecosystems protected by state and federal law, and MBBR technology is planned to be implemented at WWTPs on Pontal do Paraná (SANEPAR, 2023SANEPAR. 2023. PBHI - Projeto Básico Hidráulico e Anteprojetos Complementares: Unidade 01: Matinhos / Melhoria e Ampliação da Estação de Tratamento de Esgotos - ETE Solimar e Unidade 02: Pontal do Paraná / Melhoria e Ampliação da Estação de Tratamento de Esgotos - ETE Ipanema. Curitiba, Sanepar. Available from: Available from: https://licitacoes.sanepar.com.br/SLI2A100.aspx?wcodigo=14323 Access date: 28 Aug 2023.
https://licitacoes.sanepar.com.br/SLI2A1...
) and Mel Island (Prefeitura de Paranaguá, 2021Prefeitura de Paranaguá. 2021. Plano Municipal de Saneamento Básico. Produto C - Relatório do Diagnóstico Técnico-Participativo. Paranaguá, CBL. Available from: Available from: https://www.paranagua.pr.gov.br/imgbank2/file/meio_ambiente/PMSB_Paranagua_Produto_C_Rev_Final_2021_03_04.pdf Access date: 28 Aug 2023.
https://www.paranagua.pr.gov.br/imgbank2...
). The adoption of alternative MBBR biomedia composed of materials other than plastic (Mnyoro et al., 2022Mnyoro, M. S., Munubi, R. N., Pedersen, L.-F. & Chenyambuga, S. W. 2022. Evaluation of biofilter performance with alternative local biomedia in pilot scale recirculating aquaculture systems. Journal of Cleaner Production, 366, 132929. DOI: https://doi.org/10.1016/j.jclepro.2022.132929
https://doi.org/10.1016/j.jclepro.2022.1...
) should also be considered by all involved stakeholders. Moreover, although we did not apply citizen science in this study, it highlights the importance of connecting local community members and academia, as citizens are central stakeholders in the development of the United Nations treaty on plastic pollution (Nelms et al., 2022Nelms, S. E., Easman, E., Anderson, N., Berg, M., Coates, S., Crosby, A., Eisfeld-Pierantonio, S., Eyles, L., Flux, T., Gilford, E., Giner, C., Hamlet, J., Hembrow, N., Hickie, J., Hopkinson, P., Jarvis, D., Kearsley, J., Millard, J., Nunn, F., Pollitt, E., Sainsbury, A., Sayer, S., Sinclair, R., Slack, A., Smith, P., Thomas, R., Tyler, J., Walker, R., Wallerstein, C., Ward, M. & Godley, B. J. 2022. The role of citizen science in addressing plastic pollution: Challenges and opportunities. Environmental Science & Policy, 128, 14-23. DOI: https://doi.org/10.1016/j.envsci.2021.11.002
https://doi.org/10.1016/j.envsci.2021.11...
; Oturai et al., 2023Oturai, N. G., Syberg, K., Fraisl, D., Hooge, A., Ramos, T. M., Schade, S. & Hansen, S. F. 2023. UN plastic treaty must mind the people: Citizen science can assist citizen involvement in plastic policymaking. One Earth, 6(6), 715-724. DOI: https://doi.org/10.1016/j.oneear.2023.05.017
https://doi.org/10.1016/j.oneear.2023.05...
).

ACKNOWLEDGMENTS

The authors would like to dedicate this study to the memory of Dr. Paulo da Cunha Lana, who had such an enormous positive influence on all of us. Throughout the development of this study, we many times recalled how he encouraged us to observe the environment, ask questions, and apply the scientific method to address them. We’ll always carry his teachings with us, and we won’t go gentle. The authors are in debt with the Pontal do Paraná community member and Dra. Luciene Correa Lima for bringing the presence of plastic biomedia on the Paraná coastline to our attention. We would also like to acknowledge both reviewers for their comments. R.H.N. acknowledges the Brazilian National Council of Scientific and Technological Development (CNPq) for the Research Grant n° 307106/2022-5. A.B.T.N., C.C.V.N.M., A.A., and Y.W.M. would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 for partially financing this study via scholarship grants.

REFERENCES

  • Instituto das Águas do Paraná. 2023. Relatório de Alturas Diárias de Precipitação. Curitiba: Aguasparaná. Available from: Available from: http://www.sih-web.aguasparana.pr.gov.br/sih-web/gerarRelatorioAlturasDiariasPrecipitacao.do?action=carregarInterfaceInicial Access date: 17 Aug 2023.
    » http://www.sih-web.aguasparana.pr.gov.br/sih-web/gerarRelatorioAlturasDiariasPrecipitacao.do?action=carregarInterfaceInicial
  • Ambrose, K. K. & Walker, T. R. 2023. Identifying opportunities for harmonized microplastics and mesoplastics monitoring for Caribbean Small Island Developing States using a spatiotemporal assessment of beaches in South Eleuthera, The Bahamas. Marine Pollution Bulletin, 193, 115140. DOI: https://doi.org/10.1016/j.marpolbul.2023.115140
    » https://doi.org/10.1016/j.marpolbul.2023.115140
  • ANA (Agência Nacional de Águas). 2020. Atlas esgotos: atualização da base de dados de estações de tratamento de esgotos no Brasil. Brasília, DF: ANA. Accessed: Accessed: https://biblioteca.ana.gov.br/sophia_web/Busca/Download?codigoArquivo=143591 Access date: 17 Aug 2023.
    » https://biblioteca.ana.gov.br/sophia_web/Busca/Download?codigoArquivo=143591
  • Angulo, R. J., Borzone, C. A., Noernberg, M. A., Quadros, C. J. L., Souza, M. C. & Rosa, L. C. 2016. The State of Paraná beaches. In: Short, A. D. & Klein, A. H. F. (Ed.). Brazilian Beach Systems (pp. 419-464). Dordrecht: Springer. DOI: https://doi.org/10.1007/978-3-3319-30394-9_16
    » https://doi.org/10.1007/978-3-3319-30394-9_16
  • Angulo, R. J., Souza, M. C. D. & Noernberg, M. A. 2020. Anthropic impacts on the morphological and sedimentary processes in the coast of State of Paraná, in Southern Brazil: past and future perspectives. Revista de Gestão Costeira Integrada, 20(1), 5-25. DOI: https://doi.org/10.5894/rgci-n197
    » https://doi.org/10.5894/rgci-n197
  • Ballerini, T., Chaudon, N., Fournier, M., Coulomb, J.-P., Dumontet, B., Matuszak, E. & Poncet, J. 2022. Plastic pollution on Durance riverbank: First quantification and possible environmental measures to reduce it. Frontiers in Sustainability, 3. DOI: https://doi.org/10.3389/frsus.2022.866982
    » https://doi.org/10.3389/frsus.2022.866982
  • Barnes, D. K. A., Morley, S. A., Bell, J., Brewin, P., Brigden, K., Collins, M., Glass, T., Goodall-Copestake, W. P., Henry, L., Laptikhovsky, V., Piechaud, N., Richardson, A., Rose, P., Sands, C. J., Schofield, A., Shreeve, R., Small, A., Stamford, T. & Taylor, B. 2018. Marine plastics threaten giant Atlantic Marine Protected Areas. Current Biology, 28(19), R1137-R1138. DOI: https://doi.org/10.1016/j.cub.2018.08.064
    » https://doi.org/10.1016/j.cub.2018.08.064
  • Bencivengo, P., Barreau, C., Bailly, C. & Verdet, F. 2018. Sewage Filter Media and Pollution of the Aquatic Environment, Surfrider Foundation Europe Report, Water Quality and Marine Litter programme. Biarritz, Surfrider. Available from Available from https://www.surfrider.eu/wp-content/uploads/2018/08/biomedia-pollution-report.zip Access date: 20 Aug 2023.
    » https://www.surfrider.eu/wp-content/uploads/2018/08/biomedia-pollution-report.zip
  • Bencivengo, P., Verdet, F. & Barreau, C. 2023. Recommendations for the use of biocarriers. Copenhagen, Nordic Council of Ministers. Available from: Available from: https://pub.norden.org/temanord2023-523/2-preamble.html Access date: 20 Aug 2023.
    » https://pub.norden.org/temanord2023-523/2-preamble.html
  • Burgess, H. K., Herring, C. E., Lippiatt, S., Lowe, S. & Uhrin, A. V. 2021. NOAA Marine Debris Monitoring and Assessment Project Shoreline Survey Guide. NOAA Technical Memorandum NOS OR&R., 56, 20 pp. DOI: DOI: https://doi.org/DOI10.25923/g720-2n18 Access date: 28 Aug 2023.
    » https://doi.org/DOI10.25923/g720-2n18
  • Bettim, M., Krelling, A. P., Di Domenico, M., Cornwell, T. O. & Turra, A. 2021. Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil. Marine Pollution Bulletin , 172, 112859. DOI: https://doi.org/10.1016/j.marpolbul.2021.112859
    » https://doi.org/10.1016/j.marpolbul.2021.112859
  • Bonanno, G. 2022. Marine-protected areas and plastic pollution. In: Bonanno, G. & Orlando-Bonaca, M. (Ed.). Plastic Pollution and Marine Conservation (pp. 249-273). Cambridge: Academic Press. Available from: https://doi.org/10.1016/B978-0-12-822471-7.00010-9
    » https://doi.org/10.1016/B978-0-12-822471-7.00010-9
  • Gall, S. C. & Thompson, R. C. 2015. The impact of debris on marine life. Marine Pollution Bulletin , 92(1), 170-179. DOI: https://doi.org/10.1016/j.marpolbul.2014.12.041
    » https://doi.org/10.1016/j.marpolbul.2014.12.041
  • Grise, M. M., Biondi, D., Lingnau, C. & Araki, H. 2009. A estrutura da paisagem do mosaico formado pelas unidades de conservação presentes no litoral norte do Paraná. Floresta, 39(4), 723-742.
  • IBGE (Instituto Brasileiro de Geografia e Estatística). 2023. Censo Demográfico 2022 : população e domicílios : primeiros resultados. Rio de Janeiro, IBGE. Available from: Available from: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2102011 Access date: 28 Aug 2023.
    » https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2102011
  • Krelling, A. P., Antunes, C. V. & Broadhurst, M. K. 2023. Investigating variability among fisheries litter accumulation on beaches in Paraná, Brazil. Marine Pollution Bulletin , 187, 114607. DOI: https://doi.org/10.1016/j.marpolbul.2023.114607
    » https://doi.org/10.1016/j.marpolbul.2023.114607
  • Krelling, A. P., Souza, M. M., Williams, A. T. & Turra, A. 2017. Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin , 119(1), 48-63. DOI: https://doi.org/10.1016/j.marpolbul.2017.03.034
    » https://doi.org/10.1016/j.marpolbul.2017.03.034
  • Krelling, A. P. & Turra, A. 2019. Influence of oceanographic and meteorological events on the quantity and quality of marine debris along an estuarine gradient. Marine Pollution Bulletin , 139, 282-298. DOI: https://doi.org/10.1016/j.marpolbul.2018.12.049
    » https://doi.org/10.1016/j.marpolbul.2018.12.049
  • Lavers, J. L. & Bond, A. L. 2017. Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences, 114(23), 6052-6055. DOI: https://doi.org/10.1073/pnas.1619818114
    » https://doi.org/10.1073/pnas.1619818114
  • Madan, S., Madan, R. & Hussain, A. 2022. Advancement in biological wastewater treatment using hybrid moving bed biofilm reactor (MBBR): a review. Applied Water Science, 12(6), 141. DOI: https://doi.org/10.1007/s13201-022-01662-y
    » https://doi.org/10.1007/s13201-022-01662-y
  • Maurya, A., Kumar, R. & Raj, A. 2023. Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World Journal of Microbiology and Biotechnology, 39(5), 112. DOI: https://doi.org/10.1007/s11274-023-03567-7
    » https://doi.org/10.1007/s11274-023-03567-7
  • Mayerle, R., Narayanan, R., Etri, T. & Abd Wahab, A. K. 2015. A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Engineering, 106, 161-174. DOI: https://doi.org/10.1016/j.oceaneng.2015.06.025
    » https://doi.org/10.1016/j.oceaneng.2015.06.025
  • Mesquita, Y. W. 2022. Microplásticos em praias arenosas da América Latina e do Caribe : onde, como e fatores de controle de sua distribuição [Dissertação de Mestrado]. Universidade Federal do Paraná, Curitiba. Available from: Available from: https://acervodigital.ufpr.br/handle/1884/81554 Access date: 20 Aug 2023.
    » https://acervodigital.ufpr.br/handle/1884/81554
  • Mnyoro, M. S., Munubi, R. N., Pedersen, L.-F. & Chenyambuga, S. W. 2022. Evaluation of biofilter performance with alternative local biomedia in pilot scale recirculating aquaculture systems. Journal of Cleaner Production, 366, 132929. DOI: https://doi.org/10.1016/j.jclepro.2022.132929
    » https://doi.org/10.1016/j.jclepro.2022.132929
  • Moreira, F. T., Prantoni, A. L., Martini, B., De Abreu, M. A., Stoiev, S. B. & Turra, A. 2016. Small-scale temporal and spatial variability in the abundance of plastic pellets on sandy beaches: Methodological considerations for estimating the input of microplastics. Marine Pollution Bulletin , 102(1), 114-121. DOI: https://doi.org/10.1016/j.marpolbul.2015.11.051
    » https://doi.org/10.1016/j.marpolbul.2015.11.051
  • Nelms, S. E., Easman, E., Anderson, N., Berg, M., Coates, S., Crosby, A., Eisfeld-Pierantonio, S., Eyles, L., Flux, T., Gilford, E., Giner, C., Hamlet, J., Hembrow, N., Hickie, J., Hopkinson, P., Jarvis, D., Kearsley, J., Millard, J., Nunn, F., Pollitt, E., Sainsbury, A., Sayer, S., Sinclair, R., Slack, A., Smith, P., Thomas, R., Tyler, J., Walker, R., Wallerstein, C., Ward, M. & Godley, B. J. 2022. The role of citizen science in addressing plastic pollution: Challenges and opportunities. Environmental Science & Policy, 128, 14-23. DOI: https://doi.org/10.1016/j.envsci.2021.11.002
    » https://doi.org/10.1016/j.envsci.2021.11.002
  • Nemes, D. D. & Marone, E. 2013. Caracterização das ondas de superfície na plataforma interna do estado Do Paraná, Brasil. Boletim Paranaense de Geociências, 68-69:12-25.
  • Noernberg, M. A., Lautert, L. F. C., Araújo, A. D., Marone, E., Angelotti, R., Netto, J. P. B. & Krug, L. A. 2006. Remote Sensing and GIS Integration for Modelling the Paranaguá Estuarine Complex -Brazil. Journal of Coastal Research, 1627-1631.
  • Noernberg, M. A., Marone, E. & Angulo, R. J. 2007. Correntes costeiras e transporte de sedimentos nos canais de navegação do estuário da Baía De Paranaguá. Boletim Paranaense de Geociências , 60. DOI: https://doi.org/10.5380/geo.v60i0.9616
    » https://doi.org/10.5380/geo.v60i0.9616
  • Nunes, T. Y., Broadhurst, M. K. & Domit, C. 2021. Selectivity of marine-debris ingestion by juvenile green turtles (Chelonia mydas) at a South American World Heritage Listed area. Marine Pollution Bulletin , 169, 112574. DOI: https://doi.org/10.1016/j.marpolbul.2021.112574
    » https://doi.org/10.1016/j.marpolbul.2021.112574
  • Nunes, B. Z., Huang, Y., Ribeiro, V. V., Wu, S., Holbech, H., Moreira, L. B., Xu, E. G. & Castro, I. B. 2023a. Microplastic contamination in seawater across global marine protected areas boundaries. Environmental Pollution, 316, 120692. DOI: https://doi.org/10.1016/j.envpol.2022.120692
    » https://doi.org/10.1016/j.envpol.2022.120692
  • Nunes, B. Z., Moreira, L. B., Xu, E. G. & Castro, Í. B. 2023b. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Science of The Total Environment, 865, 161293. DOI: https://doi.org/10.1016/j.scitotenv.2022.161293
    » https://doi.org/10.1016/j.scitotenv.2022.161293
  • Ødegarrd, H., Rusten, B. & Westrum, T. 1994. A new moving bed biofilm reactor - applications and results. Water Science & Technology, 29(10-11), 157-165. DOI: https://doi.org/10.2166/wst.1994.0757
    » https://doi.org/10.2166/wst.1994.0757
  • OECD (Organisation for Economic Co-Operation and Development). 2022. Global Plastics Outlook: Policy Scenarios to 2060. Paris, Organisation for Economic Co-operation and Development. Available from: Available from: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en Access date: 17 Aug 2023.
    » https://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en
  • Oturai, N. G., Syberg, K., Fraisl, D., Hooge, A., Ramos, T. M., Schade, S. & Hansen, S. F. 2023. UN plastic treaty must mind the people: Citizen science can assist citizen involvement in plastic policymaking. One Earth, 6(6), 715-724. DOI: https://doi.org/10.1016/j.oneear.2023.05.017
    » https://doi.org/10.1016/j.oneear.2023.05.017
  • Possatto, F. E., Spach, H. L., Cattani, A. P., Lamour, M. R., Santos, L. O., Cordeiro, N. M. A. & Broadhurst, M. K. 2015. Marine debris in a World Heritage Listed Brazilian estuary. Marine Pollution Bulletin , 91(2), 548-553. DOI: https://doi.org/10.1016/j.marpolbul.2014.09.032
    » https://doi.org/10.1016/j.marpolbul.2014.09.032
  • Prefeitura de Antonina. 2020. Plano municipal de saneamento básico relatório 2: diagnóstico dos sistemas de saneamento. Antonina, Ampla. Available from Available from http://antonina.pr.gov.br/uploads/pagina/arquivos/Relatorio2.pdf Access date: 28 Aug 2023.
    » http://antonina.pr.gov.br/uploads/pagina/arquivos/Relatorio2.pdf
  • Prefeitura de Paranaguá. 2021. Plano Municipal de Saneamento Básico. Produto C - Relatório do Diagnóstico Técnico-Participativo. Paranaguá, CBL. Available from: Available from: https://www.paranagua.pr.gov.br/imgbank2/file/meio_ambiente/PMSB_Paranagua_Produto_C_Rev_Final_2021_03_04.pdf Access date: 28 Aug 2023.
    » https://www.paranagua.pr.gov.br/imgbank2/file/meio_ambiente/PMSB_Paranagua_Produto_C_Rev_Final_2021_03_04.pdf
  • SANEPAR. 2023. PBHI - Projeto Básico Hidráulico e Anteprojetos Complementares: Unidade 01: Matinhos / Melhoria e Ampliação da Estação de Tratamento de Esgotos - ETE Solimar e Unidade 02: Pontal do Paraná / Melhoria e Ampliação da Estação de Tratamento de Esgotos - ETE Ipanema. Curitiba, Sanepar. Available from: Available from: https://licitacoes.sanepar.com.br/SLI2A100.aspx?wcodigo=14323 Access date: 28 Aug 2023.
    » https://licitacoes.sanepar.com.br/SLI2A100.aspx?wcodigo=14323
  • Shi, H., Frias, J., El-Din H. Sayed, A., De-La-Torre, G. E., Jong, M.-C., Uddin, S. A., Rajaram, R., Chavanich, S., Najii, A., Fernández-Severini, M. D., Ibrahim, Y. S. & Su, L. 2023. Small plastic fragments: A bridge between large plastic debris and micro- & nano-plastics. TrAC Trends in Analytical Chemistry, 168, 117308. DOI: https://doi.org/10.1016/j.trac.2023.117308
    » https://doi.org/10.1016/j.trac.2023.117308
  • Solutions for plastic pollution. 2023. Nature Geoscience, 16(8), 655-655. DOI: https://doi.org/10.1038/s41561-023-01255-7
    » https://doi.org/10.1038/s41561-023-01255-7
  • Turner, A., Wallerstein, C. & Arnold, R. 2019. Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe. Science of The Total Environment , 664, 938-947. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.281
    » https://doi.org/10.1016/j.scitotenv.2019.01.281
  • Zhang, Y., Wu, P., Xu, R., Wang, Xuantong, Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, Xinle, Mai, L., Wang, R., Liu, H., Wang, Xiaotong, Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S. & Zeng, E. Y. 2023. Plastic waste discharge to the global ocean constrained by seawater observations. Nature Communications, 14(1), 1372. DOI: https://doi.org/10.1038/s41467-023-37108-5
    » https://doi.org/10.1038/s41467-023-37108-5

Edited by

Editor: Rubens Lopes

Publication Dates

  • Publication in this collection
    15 Apr 2024
  • Date of issue
    2024

History

  • Received
    29 Aug 2023
  • Accepted
    23 Dec 2023
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico 191, CEP: 05508-120, São Paulo, SP - Brasil, Tel.: (11) 3091-6501 - São Paulo - SP - Brazil
E-mail: diretoria.io@usp.br