Acessibilidade / Reportar erro

A new proposal for evaluating of the solubility of bioceramic materials in dentin tubes after immersion in PBS: a laboratory investigation

Nova proposta para avaliação da solubilidade de materiais biocerâmicos em tubos de dentina após imersão em PBS: um estudo laboratorial

Abstract

Introduction

Repair materials must have low solubility. Phosphate buffered saline (PBS) allows simulating clinical condition and interaction with dentin may be important for the correct evaluate of mass loss of bioceramic cements.

Objective

To evaluate the effect of distilled water (DW), or PBS immersion on the solubility of Bio-C Repair (BCR, Angelus) or MTA Repair HP (MTAHP, Angelus) using a dentin tube model.

Material and method

Bovine dentin tubes with a length of 4 mm, an internal diameter of 1.5 mm and walls thickness of approximately 1 mm were made. The specimens were immersed in DW for 24h, then filled with BCR or MTAHP (n = 14) and stored in an oven at 37°C and 95% humidity for 24h. After being weighed on a precision balance to determine the initial mass, the specimens were immersed in DW (pH 6.5) or PBS (pH 7.0) (n = 7) for 28 days. Empty tubes also were used for calculating the mass loss of the dentin (n=4). After this period, the specimens were weighed until stabilization of the final mass occurred (0.001g). The solubility of each material was evaluated. ANOVA and Tukey statistical tests were performed (α=0.05).

Result

BCR and MTAHP showing gain of mass in DW and mass loss in PBS (p<0.05).

Conclusion

The immersion solution influenced the solubility of BCR and MTAHP using dentin tube model. The new methodological proposal could be an alternative to ISO standards for testing the solubility of bioceramic cements.

Descriptors:
Calcarea silicata; endodontics; dental materials; physical properties

Resumo

Introdução

Materiais reparadores devem apresentar baixa solubilidade. Solução salina tamponada com fosfato (PBS) permite simular condição clínica e interação com dentina pode ser importante para correta avaliação da perda de massa de cimentos biocerâmicos.

Objetivo

Avaliou o efeito da imersão em água destilada (AD) ou PBS na solubilidade de Bio-C Repair (BCR, Angelus) ou MTA Repair HP (MTAHP, Angelus) usando modelo de tubo de dentina.

Material e método

Tubos de dentina bovina foram confeccionados com 4 mm de comprimento, 1,5 mm de diâmetro interno e 1 mm aproximadamente de espessura de parede. Os espécimes foram imersos em AD por 24h, posteriormente preenchidos com BCR ou MTAHP (n = 14) e armazenados em estufa a 37°C e umidade 95% por 24h. Após serem pesados em balança de precisão para determinação da massa inicial, os corpos de prova foram imersos em AD (pH 6,5) ou PBS (pH 7,0) (n = 7) por 28 dias. Tubos vazios também foram utilizados para o cálculo de perda de massa da dentina (n=4). Após esse período, os espécimes foram pesados até a estabilização da massa final (0,001g). A solubilidade de cada material foi avaliada. Testes estatísticos ANOVA e Tukey foram realizados (α=0,05).

Resultado

BCR e MTAHP apresentaram ganho de massa em AD e perda de massa em PBS (p<0,05).

Conclusão

A solução de imersão influencia a solubilidade de BCR e MTAHP usando modelo de tubo de dentina. Nova proposta metodológica poderá ser uma alternativa às normas ISO para testar a solubilidade de cimentos biocerâmicos.

Descritores:
Calcarea silicata; endodontia; materiais dentários; propriedades físicas

INTRODUCTION

Repair materials are indicated for retrofilling, pulp capping and root perforation sealing11 Toubes KS, Tonelli SQ, Girelli CFM, Azevedo CGS, Thompson ACT, Nunes E, et al. Bio-C repair - a new bioceramic material for root perforation management: two case reports. Braz Dent J. 2021;32(1):104-10. http://dx.doi.org/10.1590/0103-6440202103568. PMid:33913996.
http://dx.doi.org/10.1590/0103-644020210...
. Low solubility and dimensional stability are important properties, since dissolution or contraction favor infiltration/leakage, thereby compromising successful treatment22 Cavenago BC, Pereira TC, Duarte MAH, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47(2):120-6. http://dx.doi.org/10.1111/iej.12120. PMid:23647286.
http://dx.doi.org/10.1111/iej.12120...
. Although bioceramic materials have adequate biological, physicochemical, and antibacterial properties33 Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, et al. Cytocompatibility and bioactive properties of hydraulic calcium silicate-based cements (HCSCs) on stem cells from human exfoliated deciduous teeth (SHEDs): a systematic review of in vitro studies. J Clin Med. 2020;9(12):3872. http://dx.doi.org/10.3390/jcm9123872. PMid:33260782.
http://dx.doi.org/10.3390/jcm9123872...
,44 Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New bioactive calcium silicate cement mineral trioxide aggregate repair high plasticity (MTA HP)-a systematic review. Materials (Basel). 2021;14(16):4573. http://dx.doi.org/10.3390/ma14164573. PMid:34443098.
http://dx.doi.org/10.3390/ma14164573...
, solubility above values recommended by the International Organization for Standardization - ISO 6876:2012 standards have been reported55 Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA Vitalcem. J Appl Oral Sci. 2018;26(0):e2017115. http://dx.doi.org/10.1590/1678-7757-2017-0115. PMid:29641748.
http://dx.doi.org/10.1590/1678-7757-2017...
,66 Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359-66. http://dx.doi.org/10.1007/s00784-018-2564-1. PMid:30022271.
http://dx.doi.org/10.1007/s00784-018-256...
.

Solubility is determined by the percentage of mass loss after immersion in distilled water, with values lower than 3.0% recommended according to ISO 6876 and American National Standards Institute e American Dental Association (ANSI-ADA) standards77 International Organization for Standardization. ISO 6876: dental root canal sealing materials. Geneva: International Organization for Standardization; 2012.,88 American National Standards Institute – ANSI; American Dental Association – ADA. Specification no. 57 ADA. Laboratory testing methods: endodontic filling and sealing materials: Endodontic Sealing Materials. Chicago, USA: ANSI, ADA; 2000. . However, some factors may influence the analysis of bioceramic material solubility99 Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60. http://dx.doi.org/10.5301/jabfm.5000201. PMid:25199071.
http://dx.doi.org/10.5301/jabfm.5000201...
. Loss of mass after immersion in distilled water may occur due to dehydration during the drying process1010 Elyassi Y, Moinzadeh AT, Kleverlaan CJ. Characterization of leachates from 6 root canal sealers. J Endod. 2019;45(5):623-7. http://dx.doi.org/10.1016/j.joen.2019.01.011. PMid:30905572.
http://dx.doi.org/10.1016/j.joen.2019.01...
. Furthermore, bioceramic materials capture fluids from the environment, and absorb water during the setting process99 Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60. http://dx.doi.org/10.5301/jabfm.5000201. PMid:25199071.
http://dx.doi.org/10.5301/jabfm.5000201...
, which can influence the results. Immersion of bioceramics in simulated body fluids, such as phosphate-buffered saline solution (PBS) makes it possible to obtain lower solubility1111 Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod. 2018;44(11):1736-40. http://dx.doi.org/10.1016/j.joen.2018.07.026. PMid:30243663.
http://dx.doi.org/10.1016/j.joen.2018.07...
. The lower mass loss may be related to mineral deposition on the surface of these materials when immersed in PBS, leading to the formation of a superficial layer of hydroxyapatite1111 Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod. 2018;44(11):1736-40. http://dx.doi.org/10.1016/j.joen.2018.07.026. PMid:30243663.
http://dx.doi.org/10.1016/j.joen.2018.07...
. Moreover, interaction of the material with PBS in the presence of dentin makes it possible for the biomineralization process to occur, thereby increasing the sealing and bond strength of the material1212 Reyes-Carmona JF, Felippe MS, Felippe WT. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs. J Endod. 2010;36(10):1648-52. http://dx.doi.org/10.1016/j.joen.2010.06.014. PMid:20850670.
http://dx.doi.org/10.1016/j.joen.2010.06...
. However, there are still no studies using dentin tubes model to assess the solubility of bioceramic repair materials after immersion in distilled water or PBS.

Bio-C Repair (BCR; Angelus, PR, Brazil) is a ready-to-use bioceramic repair cement. This cement induces biomineralization1313 Benetti F, Queiroz IOA, Cosme-Silva L, Conti LC, Oliveira SHP, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30(4):325-32. http://dx.doi.org/10.1590/0103-6440201902457. PMid:31340221.
http://dx.doi.org/10.1590/0103-644020190...
and shows cytocompatibility1313 Benetti F, Queiroz IOA, Cosme-Silva L, Conti LC, Oliveira SHP, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30(4):325-32. http://dx.doi.org/10.1590/0103-6440201902457. PMid:31340221.
http://dx.doi.org/10.1590/0103-644020190...
,1414 Oliveira LV, Souza GL, Silva GR, Magalhães TEA, Freitas GAN, Turrioni AP, et al. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J. 2021;54(11):2133-44. http://dx.doi.org/10.1111/iej.13616. PMid:34418112.
http://dx.doi.org/10.1111/iej.13616...
. BCR has greater filling capacity and less volumetric change than MTA Repair HP1515 Torres FF, Pinto JC, Figueira GO, Guerreiro-Tanomaru JM, Tanomaru-Filho M. A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials. Restor Dent Endod. 2020;46(1):e2. http://dx.doi.org/10.5395/rde.2021.46.e2. PMid:33680891.
http://dx.doi.org/10.5395/rde.2021.46.e2...
, in addition it has adequate radiopacity1414 Oliveira LV, Souza GL, Silva GR, Magalhães TEA, Freitas GAN, Turrioni AP, et al. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J. 2021;54(11):2133-44. http://dx.doi.org/10.1111/iej.13616. PMid:34418112.
http://dx.doi.org/10.1111/iej.13616...
, less porosity and gaps in the material/dentin interface1616 Inada RNH, Queiroz MB, Lopes CS, Silva ECA, Torres FFE, Silva GF, et al. Biocompatibility, bioactive potential, porosity, and interface analysis calcium silicate repair cements in a dentin tube model. Clin Oral Investig. 2023;27(7):3839-53. http://dx.doi.org/10.1007/s00784-023-05002-5. PMid:37014506.
http://dx.doi.org/10.1007/s00784-023-050...
. However, BCR has shown a higher percentage of voids when compared with White MTA (Angelus, PR, Brazil)1717 Vergaças JHN, de Lima CO, Barbosa AFA, Vieira VTL, Santos Antunes H, Silva EJNL. Marginal gaps and voids of three root-end filling materials: a microcomputed tomographic study. Microsc Res Tech. 2022;85(2):617-22. http://dx.doi.org/10.1002/jemt.23935. PMid:34516035.
http://dx.doi.org/10.1002/jemt.23935...
. However, there are no reports in the literature regarding the interaction of this material with dentin after immersion in different solutions.

MTA Repair HP (MTAHP; Angelus, PR, Brazil) is a cement based on calcium silicate with presentation powder/liquid form. The plasticizer associated to water improved the material consistency1818 Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4. PMid:30850648.
http://dx.doi.org/10.1038/s41598-019-403...
and diminished the setting time1919 Acris De Carvalho FM, Silva-Sousa YTC, Saraiva Miranda CE, Miller Calderon PH, Barbosa AFS, Domingues De Macedo LM, et al. Influence of ultrasonic activation on the physicochemical properties of calcium silicate-based cements. Int J Dent. 2021;2021:6697988. http://dx.doi.org/10.1155/2021/6697988. PMid:33574844.
http://dx.doi.org/10.1155/2021/6697988...
. MTAHP has biocompatibility and ability to induce biomineralization1818 Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4. PMid:30850648.
http://dx.doi.org/10.1038/s41598-019-403...
,2020 Delfino MM, Abreu Jampani JL, Lopes CS, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Sasso-Cerri E, et al. Comparison of Bio-C Pulpo and MTA Repair HP with White MTA: effect on liver parameters and evaluation of biocompatibility and bioactivity in rats. Int Endod J. 2021;54(9):1597-613. http://dx.doi.org/10.1111/iej.13567. PMid:33999424.
http://dx.doi.org/10.1111/iej.13567...
, in addition the resistance to compression2121 Galarça AD, Rosa WLO, Silva TM, Silveira Lima G, Carreño NLV, Pereira TM, et al. Physical and biological properties of a high-plasticity tricalcium silicate cement. BioMed Res Int. 2018;2018:8063262. http://dx.doi.org/10.1155/2018/8063262. PMid:30622963.
http://dx.doi.org/10.1155/2018/8063262...
, adequate flow1818 Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4. PMid:30850648.
http://dx.doi.org/10.1038/s41598-019-403...
,2222 Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, et al. Investigation of a modified hydraulic calcium silicate-based material - Bio-C Pulpo. Braz Oral Res. 2021;35:e077. http://dx.doi.org/10.1590/1807-3107bor-2021.vol35.0077. PMid:34161414.
http://dx.doi.org/10.1590/1807-3107bor-2...
, antimicrobial activity2323 ElReash AA, Hamama H, Eldars W, Lingwei G, Zaen El-Din AM, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019;19(1):235. http://dx.doi.org/10.1186/s12903-019-0933-z. PMid:31684929.
http://dx.doi.org/10.1186/s12903-019-093...
,2424 Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, et al. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater. 2021;37(2):311-20. http://dx.doi.org/10.1016/j.dental.2020.11.014. PMid:33323301.
http://dx.doi.org/10.1016/j.dental.2020....
, and radiopacity55 Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA Vitalcem. J Appl Oral Sci. 2018;26(0):e2017115. http://dx.doi.org/10.1590/1678-7757-2017-0115. PMid:29641748.
http://dx.doi.org/10.1590/1678-7757-2017...
,1818 Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4. PMid:30850648.
http://dx.doi.org/10.1038/s41598-019-403...
,2424 Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, et al. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater. 2021;37(2):311-20. http://dx.doi.org/10.1016/j.dental.2020.11.014. PMid:33323301.
http://dx.doi.org/10.1016/j.dental.2020....
, without promoting tooth discoloration2323 ElReash AA, Hamama H, Eldars W, Lingwei G, Zaen El-Din AM, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019;19(1):235. http://dx.doi.org/10.1186/s12903-019-0933-z. PMid:31684929.
http://dx.doi.org/10.1186/s12903-019-093...
. Its solubility has been described as being low1818 Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4. PMid:30850648.
http://dx.doi.org/10.1038/s41598-019-403...
,2424 Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, et al. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater. 2021;37(2):311-20. http://dx.doi.org/10.1016/j.dental.2020.11.014. PMid:33323301.
http://dx.doi.org/10.1016/j.dental.2020....
, however, values above those recommended by ISO have been reported55 Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA Vitalcem. J Appl Oral Sci. 2018;26(0):e2017115. http://dx.doi.org/10.1590/1678-7757-2017-0115. PMid:29641748.
http://dx.doi.org/10.1590/1678-7757-2017...
. Nevertheless, the assessment of MTAHP solubility using dentin models in different immersion solution is still unknown in the literature.

Assessment of the solubility of bioceramic cements using dentin tube models can provide approaching values to the clinical scenario. Therefore, the aim of this study was to analyze the effect of distilled water or PBS immersion on the solubility of BCR or MTAHP by using a dentin tube model. The null hypothesis tested was that the different immersion solutions, would not interference the solubility of the materials evaluated.

MATERIAL AND METHOD

The repair cements used in the present study and subdivision of the Experimental Groups are described in Table 1.

Table 1
Experimental groups, materials, their manufacturers, composition, proportions, and immersion solutions used

Sample Calculation

The G* Power 3.1.7 program for Windows (Heinrich-Heine-Universitat Dusseldorf, Dusseldorf, Germany) was used for sample calculation. The ANOVA test was used with an Alpha error of 0.05 and a Beta power of 0.95 for all the variables. A previous study2525 Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019;27:e20180429. http://dx.doi.org/10.1590/1678-7757-2018-0429. PMid:30970115.
http://dx.doi.org/10.1590/1678-7757-2018...
was used to determine the specific effect size for solubility, 1.68. A total of 6 specimens per group was indicated as being the ideal size necessary. An n = 7 was used.

Specimen Preparation and Filling

Extracted bovine incisors were used in the study. Radiographic examinations were performed to confirm the absence of anomalies. The roots were cross sectioned in the middle third using carborundum disks (Dentorium, New York, United States), to obtain specimens with a length of 4 mm. Subsequently, each specimen was fixed in the delineator device (Bio-Art, São Carlos, São Paulo, Brazil) and prepared the root canals using Gates-Glidden drills number 6 (Dentsply Maillefer, Ballaigues, Switzerland) coupled to a low-speed motor (Micromotor N270 and Counter-angle; Dabi-Atlante, Ribeirão Preto, São Paulo, Brazil), obtaining a cylindrical tube with an internal diameter of 1.5 mm. The wall thickness of approximately 1.0 mm was made using a cylindrical drill (Maxicut 1503; American Burrs, Palhoça, Santa Catarina, Brazil) being confirmed by digital caliper (Mitutoyo Corporation; São Paulo, SP, Brazil). The manufacturing parameters of the dentin tubes are represented in Figure 1. Throughout the entire preparation procedure root canals were irrigated with 5 mL of distilled water. Final irrigation was performed with 5 mL of 2.5% sodium hypochlorite (Ciclo Farma, Serrana, São Paulo, Brazil) and 5 mL of 17% EDTA (Biodinâmica, Ibiporã, Paraná, Brazil), for 3 minutes, followed by irrigation with 5 mL distilled water.

Figure 1
Parameters for fabrication of dentin tubes models. (A) Specimens with a length of 4 mm; (B) Internal diameter of 1.5 mm and wall thickness of approximately 1.0 mm; (C) Digital radiographic images of the dentin tube to confirm the parameters.

After preparation, the specimens were immersed in 1,5 mL of distilled water and stored in an oven at 37 °C and 95% humidity for 24 hours. After 24 hours, the cavities were filled with BCR or MTAHP (n = 14), using a condenser kit (Ref.: 324501, nºs 2, 3 and 4; Golgran; São Caetano do Sul, SP, Brazil). The samples were kept in an oven at 37 °C and 95% humidity for 24 hours.

Initial Mass Analysis and Immersion of Specimens

After 24 hours, the specimens were weighed on an HM-200 precision balance (A&D Engineering, Inc., Bradford, MA, USA) to determine the initial mass. After this, the specimens were immersed in 7.5 mL distilled water or PBS (n = 7) and kept in an oven at 37°C and 95% humidity for 28 days. Empty dentin tubes (n = 4) were used to calculate the dentin mass loss.

Final Mass Analysis of Specimens

After 28 days of immersion, the samples were weighed again on a precision balance every 24 hour, until the final mass stabilized (0.001g).

The percentage of total mass loss (dentin tube + material) was determined by the difference between the initial and final mass of the samples. Subsequently, the percentage of mass loss of the material was defined by subtracting the percentage of mass loss of empty tubes and the percentage of total mass loss. The methodology used in the present study is represented in Figure 2.

Figure 2
Schematic figure representing the methodology. (A) Bovine dentin tube; (B) Filling the dentin tubes with Bio-C Repair or MTA Repair HP (n=14) and kept in an oven at 37°C and 95% humidity for 24h; (C) Determination of the initial mass of the specimens on a precision balance and immersion in distilled water (DW) or PBS (n=7) for 28 days; (D) Storing of the samples in an oven at 37°C; (E) Determination of the final mass of the specimens on a precision balance after 28 days.

Statistical Analysis

All data were submitted to the Shapiro-Wilk test and were shown to be normally distributed. ANOVA and Tukey tests were used. The level of significance was 5% for all analyses.

RESULT

Bio-C Repair and MTA Repair HP showed gain mass in distilled water and mass loss in PBS (p< 0.05) (Table 2).

Table 2
Means and ±standard deviation of solubility (%) of the Bio-C Repair or MTA Repair HP after immersion in distilled water or phosphate-buffered saline (PBS) for 28 days

DISCUSSION

A dentin tube model and the use of the solution PBS were proposed in the present study, as bioceramic cements in PBS solution provide deposition of calcium phosphate at the dentin/material interface due to the bioactivity of calcium silicate-based cements1313 Benetti F, Queiroz IOA, Cosme-Silva L, Conti LC, Oliveira SHP, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30(4):325-32. http://dx.doi.org/10.1590/0103-6440201902457. PMid:31340221.
http://dx.doi.org/10.1590/0103-644020190...
,2626 Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(S2 Suppl 2):e120-36. http://dx.doi.org/10.1111/iej.12856. PMid:28881478.
http://dx.doi.org/10.1111/iej.12856...
. Furthermore, the interaction with dentin and material may have taken to results closer to clinical reality, observing in this study a gain mass in distilled water and mass loss in PBS. Thus, the null hypothesis was rejected since the solubility of the materials showed differences when evaluated in different immersion environments.

According to ISO 6876 standards, solubility is evaluated in cement specimens after immersion in distilled water for 24 hours. However, high solubility has been reported for bioceramic materials when the conventional test was used55 Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA Vitalcem. J Appl Oral Sci. 2018;26(0):e2017115. http://dx.doi.org/10.1590/1678-7757-2017-0115. PMid:29641748.
http://dx.doi.org/10.1590/1678-7757-2017...
,66 Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359-66. http://dx.doi.org/10.1007/s00784-018-2564-1. PMid:30022271.
http://dx.doi.org/10.1007/s00784-018-256...
,2727 Zordan-Bronzel CL, Tanomaru-Filho M, Chávez-Andrade GM, Torres FFE, Abi-Rached GPC, Guerreiro-Tanomaru JM. Calcium silicate-based experimental sealers: physicochemical properties evaluation. Mater Res. 2021;24(1):e20200243. http://dx.doi.org/10.1590/1980-5373-mr-2020-0243.
http://dx.doi.org/10.1590/1980-5373-mr-2...
. The present study showed an increase in mass for BCR and MTAHP when immersed in distilled water. This result could be related to the hydrophilic nature of bioceramic cements, capturing water from the environment even after their setting time2828 Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru Filho M. Methods using micro-CT for evaluating physicochemical properties and volumetric changes in root-end filling materials. J Appl Oral Sci. 2017;25(4):374-80. http://dx.doi.org/10.1590/1678-7757-2016-0454. PMid:28877275.
http://dx.doi.org/10.1590/1678-7757-2016...
. Furthermore, during the hydration reaction, mass may increase due to the incorporation of water from the environment1919 Acris De Carvalho FM, Silva-Sousa YTC, Saraiva Miranda CE, Miller Calderon PH, Barbosa AFS, Domingues De Macedo LM, et al. Influence of ultrasonic activation on the physicochemical properties of calcium silicate-based cements. Int J Dent. 2021;2021:6697988. http://dx.doi.org/10.1155/2021/6697988. PMid:33574844.
http://dx.doi.org/10.1155/2021/6697988...
,2929 Bodanezi A, Carvalho N, Silva D, Bernardineli N, Bramante CM, Garcia RB, et al. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J Appl Oral Sci. 2008;16(2):127-31. http://dx.doi.org/10.1590/S1678-77572008000200009. PMid:19089204.
http://dx.doi.org/10.1590/S1678-77572008...
. The increase in mass of MTAHP has been reported after immersion in distilled water44 Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New bioactive calcium silicate cement mineral trioxide aggregate repair high plasticity (MTA HP)-a systematic review. Materials (Basel). 2021;14(16):4573. http://dx.doi.org/10.3390/ma14164573. PMid:34443098.
http://dx.doi.org/10.3390/ma14164573...
. In contrast, our results showed mass loss for BCR and MTAHP after immersion in PBS, with values lower than 3%. The use of PBS reduced the solubility of calcium silicate-based materials1111 Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod. 2018;44(11):1736-40. http://dx.doi.org/10.1016/j.joen.2018.07.026. PMid:30243663.
http://dx.doi.org/10.1016/j.joen.2018.07...
,2626 Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(S2 Suppl 2):e120-36. http://dx.doi.org/10.1111/iej.12856. PMid:28881478.
http://dx.doi.org/10.1111/iej.12856...
,3030 Torres FFE, Guerreiro-Tanomaru JM, Bosso-Martelo R, Chavez-Andrade GM, Tanomaru-Filho M. Solubility, porosity and fluid uptake of calcium silicate-based cements. J Appl Oral Sci. 2018;26(0):e20170465. http://dx.doi.org/10.1590/1678-7757-2017-0465. PMid:29791569.
http://dx.doi.org/10.1590/1678-7757-2017...
. However, this is the first study that has evaluated the solubility of bioceramic repair materials by using dentin tubes model after immersion in distilled water or PBS for a period of 28 days.

Although the conventional solubility test is used to assess changes in mass after 24 hours of immersion in distilled water, longer periods of analysis have been used for the purpose of observing the longitudinal behavior of the materials2727 Zordan-Bronzel CL, Tanomaru-Filho M, Chávez-Andrade GM, Torres FFE, Abi-Rached GPC, Guerreiro-Tanomaru JM. Calcium silicate-based experimental sealers: physicochemical properties evaluation. Mater Res. 2021;24(1):e20200243. http://dx.doi.org/10.1590/1980-5373-mr-2020-0243.
http://dx.doi.org/10.1590/1980-5373-mr-2...
,2828 Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru Filho M. Methods using micro-CT for evaluating physicochemical properties and volumetric changes in root-end filling materials. J Appl Oral Sci. 2017;25(4):374-80. http://dx.doi.org/10.1590/1678-7757-2016-0454. PMid:28877275.
http://dx.doi.org/10.1590/1678-7757-2016...
,3030 Torres FFE, Guerreiro-Tanomaru JM, Bosso-Martelo R, Chavez-Andrade GM, Tanomaru-Filho M. Solubility, porosity and fluid uptake of calcium silicate-based cements. J Appl Oral Sci. 2018;26(0):e20170465. http://dx.doi.org/10.1590/1678-7757-2017-0465. PMid:29791569.
http://dx.doi.org/10.1590/1678-7757-2017...
. Furthermore, the hydration process of calcium silicate cements remains even after final setting2626 Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(S2 Suppl 2):e120-36. http://dx.doi.org/10.1111/iej.12856. PMid:28881478.
http://dx.doi.org/10.1111/iej.12856...
. Therefore, in the present study, the solubility of the materials was evaluated after 28 days of immersion in PSB or distilled water. Moreover, in the conventional ISO 6876 solubility test, the specimens come into greater contact with the immersion solution1010 Elyassi Y, Moinzadeh AT, Kleverlaan CJ. Characterization of leachates from 6 root canal sealers. J Endod. 2019;45(5):623-7. http://dx.doi.org/10.1016/j.joen.2019.01.011. PMid:30905572.
http://dx.doi.org/10.1016/j.joen.2019.01...
. In the present study, the material came into contact with the immersion solution and interacted with the bioceramic/dentin at the extremities of the dentin tubes, providing a condition closer to that which occurs in the clinical situation.

The development of methodologies alternative to ISO standards allows a better understanding of the behavior of bioceramic materials, considering new solutions, interaction with dentin and longer periods. Therefore, the use of PBS in a dentin tube model could be an alternative to ISO standards for testing the solubility of bioceramic cements.

CONCLUSION

It was concluded that the immersion solutions influenced the solubility of BCR and MTAHP after 28 days using a dentin tube model. The use of PBS as an immersion solution and dentin as a filling model may represent important methodological alternatives for the correct assessment of the solubility of bioceramic repair cements.

  • How to cite: Mendonça GC, Tavares KIMC, Santos-Junior AO, Pinto JC, Guerreiro-Tanomaru JM, Tanomaru-Filho M. A new proposal for evaluating of the solubility of bioceramic materials in dentin tubes after immersion in PBS: a laboratory investigation. Rev Odontol UNESP. 2023;52:e20230034. https://doi.org/10.1590/1807-2577.03423
  • FUNDING

    This study was supported by Programa Institucional de Bolsas de Iniciação Científica/Conselho Nacional de Desenvolvimento Científico e Tecnológico - PIBIC /CNPq (154856/2021-5) and Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2020/11011-7, 2020/11012-3 and 2021/11496-3).

REFERENCES

  • 1
    Toubes KS, Tonelli SQ, Girelli CFM, Azevedo CGS, Thompson ACT, Nunes E, et al. Bio-C repair - a new bioceramic material for root perforation management: two case reports. Braz Dent J. 2021;32(1):104-10. http://dx.doi.org/10.1590/0103-6440202103568 PMid:33913996.
    » http://dx.doi.org/10.1590/0103-6440202103568
  • 2
    Cavenago BC, Pereira TC, Duarte MAH, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47(2):120-6. http://dx.doi.org/10.1111/iej.12120 PMid:23647286.
    » http://dx.doi.org/10.1111/iej.12120
  • 3
    Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, et al. Cytocompatibility and bioactive properties of hydraulic calcium silicate-based cements (HCSCs) on stem cells from human exfoliated deciduous teeth (SHEDs): a systematic review of in vitro studies. J Clin Med. 2020;9(12):3872. http://dx.doi.org/10.3390/jcm9123872 PMid:33260782.
    » http://dx.doi.org/10.3390/jcm9123872
  • 4
    Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New bioactive calcium silicate cement mineral trioxide aggregate repair high plasticity (MTA HP)-a systematic review. Materials (Basel). 2021;14(16):4573. http://dx.doi.org/10.3390/ma14164573 PMid:34443098.
    » http://dx.doi.org/10.3390/ma14164573
  • 5
    Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA repair HP and MTA Vitalcem. J Appl Oral Sci. 2018;26(0):e2017115. http://dx.doi.org/10.1590/1678-7757-2017-0115 PMid:29641748.
    » http://dx.doi.org/10.1590/1678-7757-2017-0115
  • 6
    Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359-66. http://dx.doi.org/10.1007/s00784-018-2564-1 PMid:30022271.
    » http://dx.doi.org/10.1007/s00784-018-2564-1
  • 7
    International Organization for Standardization. ISO 6876: dental root canal sealing materials. Geneva: International Organization for Standardization; 2012.
  • 8
    American National Standards Institute – ANSI; American Dental Association – ADA. Specification no. 57 ADA. Laboratory testing methods: endodontic filling and sealing materials: Endodontic Sealing Materials. Chicago, USA: ANSI, ADA; 2000.
  • 9
    Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60. http://dx.doi.org/10.5301/jabfm.5000201 PMid:25199071.
    » http://dx.doi.org/10.5301/jabfm.5000201
  • 10
    Elyassi Y, Moinzadeh AT, Kleverlaan CJ. Characterization of leachates from 6 root canal sealers. J Endod. 2019;45(5):623-7. http://dx.doi.org/10.1016/j.joen.2019.01.011 PMid:30905572.
    » http://dx.doi.org/10.1016/j.joen.2019.01.011
  • 11
    Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod. 2018;44(11):1736-40. http://dx.doi.org/10.1016/j.joen.2018.07.026 PMid:30243663.
    » http://dx.doi.org/10.1016/j.joen.2018.07.026
  • 12
    Reyes-Carmona JF, Felippe MS, Felippe WT. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs. J Endod. 2010;36(10):1648-52. http://dx.doi.org/10.1016/j.joen.2010.06.014 PMid:20850670.
    » http://dx.doi.org/10.1016/j.joen.2010.06.014
  • 13
    Benetti F, Queiroz IOA, Cosme-Silva L, Conti LC, Oliveira SHP, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz Dent J. 2019;30(4):325-32. http://dx.doi.org/10.1590/0103-6440201902457 PMid:31340221.
    » http://dx.doi.org/10.1590/0103-6440201902457
  • 14
    Oliveira LV, Souza GL, Silva GR, Magalhães TEA, Freitas GAN, Turrioni AP, et al. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J. 2021;54(11):2133-44. http://dx.doi.org/10.1111/iej.13616 PMid:34418112.
    » http://dx.doi.org/10.1111/iej.13616
  • 15
    Torres FF, Pinto JC, Figueira GO, Guerreiro-Tanomaru JM, Tanomaru-Filho M. A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials. Restor Dent Endod. 2020;46(1):e2. http://dx.doi.org/10.5395/rde.2021.46.e2 PMid:33680891.
    » http://dx.doi.org/10.5395/rde.2021.46.e2
  • 16
    Inada RNH, Queiroz MB, Lopes CS, Silva ECA, Torres FFE, Silva GF, et al. Biocompatibility, bioactive potential, porosity, and interface analysis calcium silicate repair cements in a dentin tube model. Clin Oral Investig. 2023;27(7):3839-53. http://dx.doi.org/10.1007/s00784-023-05002-5 PMid:37014506.
    » http://dx.doi.org/10.1007/s00784-023-05002-5
  • 17
    Vergaças JHN, de Lima CO, Barbosa AFA, Vieira VTL, Santos Antunes H, Silva EJNL. Marginal gaps and voids of three root-end filling materials: a microcomputed tomographic study. Microsc Res Tech. 2022;85(2):617-22. http://dx.doi.org/10.1002/jemt.23935 PMid:34516035.
    » http://dx.doi.org/10.1002/jemt.23935
  • 18
    Ferreira CMA, Sassone LM, Gonçalves AS, de Carvalho JJ, Tomás-Catalá CJ, García-Bernal D, et al. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep. 2019;9(1):3933. http://dx.doi.org/10.1038/s41598-019-40365-4 PMid:30850648.
    » http://dx.doi.org/10.1038/s41598-019-40365-4
  • 19
    Acris De Carvalho FM, Silva-Sousa YTC, Saraiva Miranda CE, Miller Calderon PH, Barbosa AFS, Domingues De Macedo LM, et al. Influence of ultrasonic activation on the physicochemical properties of calcium silicate-based cements. Int J Dent. 2021;2021:6697988. http://dx.doi.org/10.1155/2021/6697988 PMid:33574844.
    » http://dx.doi.org/10.1155/2021/6697988
  • 20
    Delfino MM, Abreu Jampani JL, Lopes CS, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Sasso-Cerri E, et al. Comparison of Bio-C Pulpo and MTA Repair HP with White MTA: effect on liver parameters and evaluation of biocompatibility and bioactivity in rats. Int Endod J. 2021;54(9):1597-613. http://dx.doi.org/10.1111/iej.13567 PMid:33999424.
    » http://dx.doi.org/10.1111/iej.13567
  • 21
    Galarça AD, Rosa WLO, Silva TM, Silveira Lima G, Carreño NLV, Pereira TM, et al. Physical and biological properties of a high-plasticity tricalcium silicate cement. BioMed Res Int. 2018;2018:8063262. http://dx.doi.org/10.1155/2018/8063262 PMid:30622963.
    » http://dx.doi.org/10.1155/2018/8063262
  • 22
    Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, et al. Investigation of a modified hydraulic calcium silicate-based material - Bio-C Pulpo. Braz Oral Res. 2021;35:e077. http://dx.doi.org/10.1590/1807-3107bor-2021.vol35.0077 PMid:34161414.
    » http://dx.doi.org/10.1590/1807-3107bor-2021.vol35.0077
  • 23
    ElReash AA, Hamama H, Eldars W, Lingwei G, Zaen El-Din AM, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019;19(1):235. http://dx.doi.org/10.1186/s12903-019-0933-z PMid:31684929.
    » http://dx.doi.org/10.1186/s12903-019-0933-z
  • 24
    Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, et al. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater. 2021;37(2):311-20. http://dx.doi.org/10.1016/j.dental.2020.11.014 PMid:33323301.
    » http://dx.doi.org/10.1016/j.dental.2020.11.014
  • 25
    Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019;27:e20180429. http://dx.doi.org/10.1590/1678-7757-2018-0429 PMid:30970115.
    » http://dx.doi.org/10.1590/1678-7757-2018-0429
  • 26
    Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(S2 Suppl 2):e120-36. http://dx.doi.org/10.1111/iej.12856 PMid:28881478.
    » http://dx.doi.org/10.1111/iej.12856
  • 27
    Zordan-Bronzel CL, Tanomaru-Filho M, Chávez-Andrade GM, Torres FFE, Abi-Rached GPC, Guerreiro-Tanomaru JM. Calcium silicate-based experimental sealers: physicochemical properties evaluation. Mater Res. 2021;24(1):e20200243. http://dx.doi.org/10.1590/1980-5373-mr-2020-0243
    » http://dx.doi.org/10.1590/1980-5373-mr-2020-0243
  • 28
    Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru Filho M. Methods using micro-CT for evaluating physicochemical properties and volumetric changes in root-end filling materials. J Appl Oral Sci. 2017;25(4):374-80. http://dx.doi.org/10.1590/1678-7757-2016-0454 PMid:28877275.
    » http://dx.doi.org/10.1590/1678-7757-2016-0454
  • 29
    Bodanezi A, Carvalho N, Silva D, Bernardineli N, Bramante CM, Garcia RB, et al. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J Appl Oral Sci. 2008;16(2):127-31. http://dx.doi.org/10.1590/S1678-77572008000200009 PMid:19089204.
    » http://dx.doi.org/10.1590/S1678-77572008000200009
  • 30
    Torres FFE, Guerreiro-Tanomaru JM, Bosso-Martelo R, Chavez-Andrade GM, Tanomaru-Filho M. Solubility, porosity and fluid uptake of calcium silicate-based cements. J Appl Oral Sci. 2018;26(0):e20170465. http://dx.doi.org/10.1590/1678-7757-2017-0465 PMid:29791569.
    » http://dx.doi.org/10.1590/1678-7757-2017-0465

Publication Dates

  • Publication in this collection
    04 Dec 2023
  • Date of issue
    2023

History

  • Received
    04 Nov 2023
  • Accepted
    05 Nov 2023
Universidade Estadual Paulista Júlio de Mesquita Filho Rua Humaitá, 1680 - Caixa Postal 331, 14801-903 Araraquara,São Paulo,SP, Tel.: (55 16) 3301-6376, Fax: (55 16) 3301-6433 - Araraquara - SP - Brazil
E-mail: adriana@foar.unesp.br