Acessibilidade / Reportar erro

Soil-vegetation relationship in savanic formations of the Jalapão, Brazil

Abstract

Understanding the influence of fine-scale abiotic filters on plant communities can provide important insights into floristic patterns of the Brazilian Cerrado. We aimed to evaluate the interactions of the soil and the plant community composition with their distribution in different sandy environments of Brazilian Cerrado, the Jalapão region. Eight environments were sampled, each with ten plots of 20 × 50 m. All woody individuals presenting circumference at soil height ≥ 10 cm were sampled. Subplots of 5 × 15 m were demarcated, where woody individuals with a circumference at soil height ≥ 5 and < 10 cm were sampled. Subplots of 2 × 2 m were also demarcated to sample herbaceous individuals. Soil samples varying from 0 to 20 cm of depth were collected for each plot (20 × 50 m). Overall, 20000 individuals that belong to 338 species and 76 families were sampled. The dominant family was Fabaceae. There were significant differences among the environments regarding species richness and soil. The analyzed soils are extremely poor and with a tendency to sandy texture, small chemical and/or physical variations imply differences in the distribution of vegetation. Our study revealed abiotic filters exerted crucial fine-scale effects on plant community in the Jalapão region.

Key words
Cerrado; community composition; sandstone; soil filters

INTRODUCTION

Understanding the influence of the environmental filters on the composition, structure and distribution of plant communities is key to predicting how the dynamics of biodiversity will impact on ecosystem processes (Loreau et al. 2001LOREAU M, NAEEM S, INCHAUSTI P, BENGTSSON J, GRIME JP, HECTOR A, HOOPER DU, HUSTON MA, RAFFAELLI D, SCHMID B, TILMAN D & WARDLE DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804-808., Bello et al. 2013BELLO F, LAVOREL S, LAVERGNE S, ALBERT CH, BOULANGEAT I, MAZEL F & THUILLER W. 2013. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecogeg 36: 393-402.). At a local scale, the soil’s physical-chemical properties are among the main determinants of the spatial structure of tropical plant communities (Keddy 1992KEDDY PA. 1992. Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3: 157-164., Lortie et al. 2004LORTIE CJ, BROOKER RW, CHOLER P, KIKVIDZE Z, MICHALET R, PUGNAIRE FI & CALLAWAY RM. 2004. Rethinking plant community theory. Oikos 107: 433-438., Peña-Claros et al. 2012PEÑA-CLAROS M, POORTER L, ALARCÓN A, BLATE G, CHOQUE U, FREDERICKSEN TS, JUSTINIANO MJ, LEAÑO C, LICONA JC, PARIONA W, PUTZ FE, QUEVEDO L & TOLEDO M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44: 276-283., Rodrigues et al. 2019RODRIGUES PMS, SILVA JO & SCHAEFER CEGR. 2019. Edaphic properties as key drivers for woody species distributions in tropical savanic and forest habitats. Aust J Bot 67: 70-80., Campos et al. 2021CAMPOS PV, SCHAEFER CEGR, SENRA EO, VIANA PL, CANDIDO HG, OLIVEIRA FS, VALE-JÚNIOR JF & VILLA PM. 2021. Disentangling fine-scale effects of soil properties as key driver of plant community diversity on Roraima table mountain, Guayana Highlands. Plant Biosyst 155: 1-12.). Several studies in worldwide savanna point to the soil as a driver of local scale vegetation distribution (Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Lehmann et al. 2014LEHMANN CER, ANDERSON TM, SANKARAN M, HIGGINS SI, ARCHIBALD S, HOFFMANN WA & BOND WJ. 2014. Savanna vegetation-fireclimate relationships differ among continents. Science 343: 548-552., Bueno et al. 2017BUENO ML, PENNINGTON RT, DEXTER KG, KAMINO LHY, PONTARA V, NEVES DM, RATTER JA, OLIVEIRA-FILHO AT. 2017. Effects of quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403-414.), representing one of the main physical components that influences the species diversity (Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Rodrigues et al. 2019RODRIGUES PMS, SILVA JO & SCHAEFER CEGR. 2019. Edaphic properties as key drivers for woody species distributions in tropical savanic and forest habitats. Aust J Bot 67: 70-80.).

The main extent of Neotropical savanna is largely found within Brazil, often termed as Cerrado (Ab’Saber 2003AB’SABER AN. 2003. Os domínios de natureza no Brasil: Potencialidades paisagísticas. São Paulo, Brazil: Ateliê Editorial, 158 p., Ribeiro & Walter 2008RIBEIRO JF & WALTER BMT. 2008. Fitofisionomias do bioma Cerrado. In: SANO SM & ALMEIDA SP (Eds), Cerrado: Ecologia e flora, Planaltina, DF: EMBRAPA CPAC: 151-212.). Originally, it covered about 2 million km2, or 22% of the national territory (Bueno et al. 2013BUENO ML, NEVES DRM, OLIVEIRA-FILHO AT, LEHN CR & RATTER JA. 2013. A study in an area of transition between seasonally dry tropical forest and mesotrophic cerradão. In: Mato Grosso do Sul, southwestern Brazil. Edinb J Bot 70: 469-486.), mainly on the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter (Ratter et al. 1997RATTER JA, RIBEIRO JF & BRIDGEWATER S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80: 223-230.). The Brazilian Cerrado is highly heterogeneous, it includes numerous grassland and savanna formations as well as different types of forest (Eiten 1978EITEN G. 1978. Delimitation of the cerrado concept. Vegetation 36: 169-178., Ab’Saber 2003AB’SABER AN. 2003. Os domínios de natureza no Brasil: Potencialidades paisagísticas. São Paulo, Brazil: Ateliê Editorial, 158 p., Haidar et al. 2013HAIDAR RF, FAGG JMF, PINTO JRR, DIAS RR, DAMASCO G, SILVA LCR & FAGG CW. 2013. Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: Parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação. Acta Amazon 43: 261-290.). Considered the tropical savanna with the world’s greatest species richness (Silva et al. 2006SILVA JF, FARIÑAS MR, FELFILI JM & KLINK CA. 2006. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeog 33(3): 336-354.), the Brazilian Cerrado has more than 11000 known species (Mendonça et al. 2008MENDONÇA RC, FELFI LI JM, WALTER BMT, SILVA JÚNIOR MC, REZENDE AB, FILGUEIRAS TS, NOGUEIRA PE & FAGG CW. 2008. Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In: SANO SM, ALMEIDA SP & RIBEIRO JF (Eds), Cerrado: ecologia e flora. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília 2: 421-1279.), out of which 4400 are endemic (Myers et al. 2000MYERS N, MITTERMEIER RA, MITTERMEIER CG, DA FONSECA GA & KENT J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858.). Past climate changes (Oliveira-Filho & Ratter 2002OLIVEIRA-FILHO AT & RATTER JA. 2002. Vegetation physiognomies and woody flora of the cerrado biome. In: Oliveira PS & Marquis RJ (Eds), The cerrados of Brazil. New York, NY: Columbia University Press, p. 91-120.), variations in soil attributes, geomorphology, topography, fire regime and water availability are associated with a high beta diversity for vegetation (Lehmann et al. 2014LEHMANN CER, ANDERSON TM, SANKARAN M, HIGGINS SI, ARCHIBALD S, HOFFMANN WA & BOND WJ. 2014. Savanna vegetation-fireclimate relationships differ among continents. Science 343: 548-552., Bueno et al. 2017BUENO ML, PENNINGTON RT, DEXTER KG, KAMINO LHY, PONTARA V, NEVES DM, RATTER JA, OLIVEIRA-FILHO AT. 2017. Effects of quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403-414.). Most soils of the Brazilian Cerrado are acidic, well-drained, dystrophic, deep, with low cation exchange capacity, low organic matter content, and high levels of exchangeable aluminium (Furley & Ratter 1988FURLEY PA & RATTER JA. 1988. Soil resources and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15(1): 97-108., Ratter et al. 1997RATTER JA, RIBEIRO JF & BRIDGEWATER S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80: 223-230., Haridasan 2000HARIDASAN M. 2000. Nutrição mineral das plantas nativas do Cerrado. Rev Bras Fisiol Veg 12: 54-64.). According to Gottsberger & Silberbauer-Gottsberger (2006)GOTTSBERGER G & SILBERBAUER-GOTTSBERGER I. 2006. Life in the Cerrado, a South American tropical seasonal ecosystem. In: Origin, structure, dynamics and plant use. Ulm, Germany: Reta Verlag, 280 p. these soil attributes determine the occurrence of the Brazilian Cerrado and its physiognomic variations. This mosaic of different phytophysiognomies may be accompanied by changes in floristic composition and community structure (Haridasan 2000HARIDASAN M. 2000. Nutrição mineral das plantas nativas do Cerrado. Rev Bras Fisiol Veg 12: 54-64., Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378.).

Most of the research in Brazilian Cerrado areas was carried out in Ferrasols (Latossolos), mainly because they comprise the greatest extent (46%), in contrast to the Arenosols (Neossolos Quartzarênicos) with only 15.2% (Goodland 1971GOODLAND R. 1971. Oligotrofismo e Alumínio no Cerrado. In: FERRI MG (Ed), Simpósio sobre o Cerrado, 3. São Paulo: Ed. Edgard Blucher Ltda. Ed. Universidade de São Paulo, p. 44-60., Reatto et al. 1998REATTO A, CORREIA JR & SPERA ST. 1998. Solos do Bioma Cerrado: aspectos pedológicos. In: SANO SM & ALMEIDA SP (Eds), Cerrado: ambiente e flora. Planaltina, Embrapa Cerrados, p. 47-86.). The vegetation of the Brazilian Cerrado shows a close dependency not only to the chemical atributes of the soil, but also to the physical ones (Neri & Camargos 2007). Sandy texture may limit the establishment and development of certain species (Abreu et al. 2012ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272.). For example, many authors recorded lower plant species richness on Arenosols, when compared to Ferrasols (Lindoso et al. 2009LINDOSO GS, FELFILI JM, DA COSTA JM & Castro AAJF. 2009. Diversidade e estrutura do cerrado sensu stricto sobre areia (Neossolo Quartzarênico) na Chapada Grande Meridional, Piauí. Rev Biol Neotrop 6(2): 45-61., Amaral et al. 2022AMARAL AG, BIJOS NR, MOSER P & MUNHOZ CBR. 2022. Spatially structured soil properties and climate explain distribution patterns of herbaceous-shrub species in the Cerrado. Plant Ecol 223(1): 85-97.). In Arenosols, the low amounts of clay and organic matter reduce the capacity for particle aggregation and nutrient adsorption, making the soil very susceptible to erosion and nutrient loss by leaching (Reatto et al. 1998REATTO A, CORREIA JR & SPERA ST. 1998. Solos do Bioma Cerrado: aspectos pedológicos. In: SANO SM & ALMEIDA SP (Eds), Cerrado: ambiente e flora. Planaltina, Embrapa Cerrados, p. 47-86., Spera et al. 1999SPERA ST, REATTO A, MARTINS ES, CORREIA JR & CUNHA TJF. 1999. Solos areno-quartzosos no Cerrado: problemas, características e limitações ao uso. Planaltina: EMBRAPA CPAC, 48 p.). Furthermore, according to Maia et al. (2006)MAIA, SMF, XAVIER FAZ, OLIVEIRA TS, MENDONÇA ES & ARAÚJO FILHO JA. 2006. Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semi-árido cearense. Rev Árvore 30: 837-848., texture effects on plant communities mainly occur through their influence on the soil’s water retention capacity, in which species in habitats with higher sand percentages experience low water availability.

Floristic and phytogeographic studies conducted in Brazilian Cerrado areas on sand soils have focused particularly on States of Piauí (Oliveira 2004OLIVEIRA ME. 2004. Mapeamento, florística e estrutura da transição campo-floresta na vegetação (Cerrado) do Parque Nacional de Sete Cidades, Nordeste do Brasil. Tese (doutorado), 151p. Universidade Estadual de Campinas, Instituto de Biologia, Campinas, SP, 151 p., Lindoso et al. 2011LINDOSO GS, FELFILI JM & SILVA LCRS. 2011. Variações ambientais e relações florísticas no Cerrado sensu stricto sobre areia (Neossolo Quartzarênico) da Chapada Grande Meridional, Piauí. Rev Biol Neotrop 8(2): 1-12.), Maranhão (Medeiros et al. 2008MEDEIROS MB, WALTER BMT & SILVA GP. 2008. Fitossociologia do Cerrado Stricto Sensu no Município de Carolina, MA, Brasil. Cerne 14(4): 285-294.), Bahia, Minas Gerais (Felfili & Silva Júnior 2001FELFILI JM & SILVA JÚNIOR MC. 2001. Biogeografia do bioma Cerrado: estudo fitofisionômico na Chapada do Espigão Mestre do São Francisco. Brasília: Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal. Brasil, 144 p., Rodrigues et al. 2019RODRIGUES PMS, SILVA JO & SCHAEFER CEGR. 2019. Edaphic properties as key drivers for woody species distributions in tropical savanic and forest habitats. Aust J Bot 67: 70-80.), Mato Grosso (Oliveira-Filho et al. 1989OLIVEIRA-FILHO AT, SHEPHERD GJ, MARTINS FR & STUBBLEBINE WH. 1989. Environmental factors affecting physiognomics ande floristic variation in na área of Cerrado in central Brazil. J Trop Ecol 5: 413-431.) and São Paulo (Durigan et al. 2002DURIGAN G, NISHIKAWA DLL, ROCHA E, SILVEIRA ER, PULITANO FM, REGALADO LB, CARVALHAES MA, PARANAGUÁ PA & RANIERI VEL. 2002. Caracterização de dois estratos da vegetação de uma área de Cerrado no município de Brotas, SP, Brasil. Acta Bot Bras 16(3): 252-262., Teixeira et al. 2004TEIXEIRA MIJ, ARAUJO ARB, VALERI SV & RODRIGUES RR. 2004. Florística e fitossociologia de área de cerrado s.s no município de Patrocínio Paulista, nordeste do Estado de São Paulo. Bragantia 63(1): 1-11.). In the State of Tocantins, only one work was carried out in Campo Úmido in the Jalapão (Rezende 2007REZENDE JM. 2007. Florística, Fitossociologia e a influência do Gradiente de umidade do solo em Campos Limpos úmidos no Parque Estadual do Jalapão, Tocantins. Dissertação (mestrado), 74 p. Universidade de Brasília – UnB, Departamento de Engenharia Florestal. (Unpublished).). The lack of knowledge regarding the dynamic between environmental filters and vegetation on sand soils in Brazilian Cerrado areas is remarkable. The Tocantins State is located in the most preserved portion of the Brazilian Cerrado (Sano et al. 2009SANO EE, ROSA R, BRITO JLS, FERREIRA LG & BEZERRA HDS. 2009. Mapeamento da cobertura vegetal natural e antrópica do bioma Cerrado por meio de imagens Landsat ETM+. In: Anais do Simpósio Brasileiro de Sensoriamento Remoto, INPE, Natal: 1199-1206.) and in the zone of contact with three important Brazilian biomes (Cerrado, Caatinga, and Amazon Forest), this area becomes a relevant source of scientific information (IBGE 1992IBGE. 1992. Manual técnico da vegetação brasileira. Séries Manuais Técnicos em Geociências. Fundação Instituto Brasileiro de Geografia e Estatística, 92 p.). However, few studies have been conducted on the relationships between environmental conditions (e.g. soil properties) and plant communities in the region (Lemos et al. 2013LEMOS HL, PINTO JRR, MEWS HA & LENZA E. 2013. Structure and floristic relationships between Cerrado sensu stricto sites on two types of substrate in northern Cerrado, Brazil. Biota Neotrop 13: 121-132.). Most studies have focused on environmental diagnosis (Brito et al. 2002BRITO ER, SILVA E, MARTINS SV & RIBEIRO GA. 2002. Environmental profile of the” fluvial beach enterprise” in the State of Tocantins. Rev Árvore 26: 349-355., Carvalho 2009CARVALHO T. 2009. Síntese de campo do trecho Peixe a Ipueiras, rio Tocantins: uma contribuição à Exploratória Rio Tocantins. Rev Esp Acad 8: 1-6.), floristic composition and vegetation structure (Santos et al. 2006SANTOS ER, LOLIS SF, RODRIGUES LKM & CARVALHO ZC. 2006. A flora do campus de Porto Nacional, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brasil. Rev Ciênc Agroambien 1(1): 61-67., Rezende 2007REZENDE JM. 2007. Florística, Fitossociologia e a influência do Gradiente de umidade do solo em Campos Limpos úmidos no Parque Estadual do Jalapão, Tocantins. Dissertação (mestrado), 74 p. Universidade de Brasília – UnB, Departamento de Engenharia Florestal. (Unpublished)., Martins et al. 2011MARTINS SV, BRITO-IBRAHIM ER, EISENLOHR PV, OLIVEIRA-FILHO AT & SILVA A. 2011. A vegetação de Ipucas no Tocantins: estudo de caso e relações florísticas com remanescentes do Cerrado e da Amazônia. In: FELFILI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA NETO JAA (Eds), Fitossociologia no Brasil: métodos e estudos de caso. Editora UFV, Viçosa: 460-478.). Information about the flora, including species composition and interactions between vegetation and edaphic factors, is scarce in the Jalapão region of Tocantins State. In this context, we aimed to evaluate the soil and the plant community composition and distribution in different sandy environments of Brazilian Cerrado, the Jalapão region.

MATERIALS AND METHODS

Study area

The study was carried out in the northeast portion of the Brazilian Cerrado, Jalapão region, Tocantins State (10°08’ - 10°36’ S and 46°24’ - 46°56’ W; Figure 1). The set of protected areas of the Jalapão is located on the eastern portion of the State of Tocantins. The region is considered the largest continuous expanse of original Brazilian Cerrado and is recognized as a priority area for biodiversity conservation (Cavalcanti & Joly 2002CAVALCANTI R & JOLY C. 2002. The conservation of the Cerrados. In:OLIVIERA PS & MARQUIS RJ (Eds) The Cerrado of Brazil. Ecology and natural history of a notropical savanna. p. 351-367. Columbia Univ. Press: New York.). Most of the vegetation is formed by savanic formations (Cerrado) with patches of veredas (wet areas). It covers three integral protection conservation units: Jalapão State Park, with 154,000 ha; Serra Geral de Tocantins Ecological Station, with 716,306 ha in the state of Tocantins; and the Parnaíba National Park, with 729,813 ha in the states of Tocantins, Piauí, Maranhão and Bahia, with limits close to the Jalapão State Park. According to Köppen’s classification, the climate is Aw - Tropical with wet summer, and presents two seasons: a dry season, from April to September, when it rains less than 10% of the annual total (±1300 mm/year); and a rainy season, from October to March (Consórcio CTE/MRS 2003CONSÓRCIO CTE/MRS. 2003. Plano de manejo do Parque Estadual do Jalapão: Diagnóstico e Planejamento. Palmas, 96 p.).

Figure 1
Study area located in the Savanic Formations of the Jalapão, state of Tocantins, Brazil. CeSS1 = Cerrado sensu stricto; CaSu = Campo Sujo; CaCe = Campo Cerrado; CeRu1 = Cerrado rupestrian fields in slopes; CeSSt1 = Cerrado sensu stricto in top of the tablelands; CeSS2 = Cerrado sensu stricto; CeRu2 = Cerrado rupestrian in slopes; CeSSt2 = Cerrado sensu stricto in top of the tablelands.

The Jalapão region is characterized by the contact between two contrasting relief components: the elevated Serra Geral plateaus (700 - 1,000 m), and depositional plains (300 - 600 m) covered with quartzitic sands, formed by the erosion of the sandstone plateaus (locally called “chapadas” or “morros testemunhos”) (Ribeiro et al. 2009RIBEIRO S, CASTRO-MELLO C & NOGUEIRA C. 2009. New Species of Anops Bell, 1833 (Squamata, Amphisbaenia) from Jalapao Region in the Brazilian Cerrado. J Herpetol 43(1): 21-28.). These two geomorphological units are separated by steep arenitic cliffs. Arenosols, Leptsols and Ferralsols (Tocantins 2003TOCANTINS (Estado). 2003. Instituto Natureza do Tocantins. Plano de manejo do Parque Estadual do Jalapão: diagnóstico e planejamento. Palmas: Naturatins, 131 p.) predominate in the region.

Selection of different environments

We performed landscape stratification on environments from the integrated evaluation of pedological and phytophysiognomy (Profiles Table in MS). Two toposequences distributed in eight environments were chosen from the Jalapão vegetation mosaic in the Brazilian Cerrado areas on the sandstone domains (Urucuia Formation) (Figure 1). The eight environments were selected according to their classification in the World Reference Base for Soil Resources (IUSS Working Group WRB 2015IUSS WORKING GROUP WRB. 2015. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps World Soil Resources Reports, FAO. Rome, n. 106.). Profiles for each environment were collected and described according to Santos et al. (2013)SANTOS HG, JACOMINE PKT, ANJOS LHC, OLIVEIRA VA, LUMBRERAS JF, COELHO MR, ALMEIDA JA, CUNHA TJF & OLIVEIRA JB. 2013. Sistema Brasileiro de Classificação de Solos. 3. ed. rev. e ampl. Embrapa. Brasília, DF, 353 p..

Table I
General description of the environments sampled in the Savanic Formations of the Jalapão, state of Tocantins, Brazil.

The first toposequence is located in Serra do Espírito Santo and is divided into five areas: Cerrado sensu stricto (CeSS1) on the Hyperdystric Protic Arenosols and Campo sujo (grassland with some shrubs) (CaSu) on the Hyperdystric Rhodic Arenosols inserted in the Jalapão Environmental Protection Area; Campo Cerrado (grassland) (CaCe) on the Hyperdystric Rhodic Arenosols, Cerrado rupestrian fields in slopes (CeRu1) on the Hyperdystric Colluvic Akroskeletic Regosols (Arenic, Ochric) and Cerrado sensu stricto on top of the tablelands (CeSSt1) on the Lixic Rhodic Ferritic Ferrasols (Clayic, Hyperdystric, Ferric, Ochric) in the Jalapão State Park. The second toposequence is located in Serra da Sambaíba and it is divided in three areas: Cerrado sensu stricto (CeSS2) on the Hyperdystric Rhodic Arenosols, Cerrado rupestrian in slopes (CeRu2) on the Hyperdystric Leptic Regosols (Arenic, Ochric, Raptic) and Cerrado sensu stricto on top of the tablelands (CeSSt2) on the Rhodic Ferralic Lixisols (Arenic, Ochric, Profondic) inserted in the Serra Geral de Tocantins Ecological Station (Table I).

Vegetation sampling

We allocated ten plots of 20 × 50 m in each of the eight environments mentioned above, at least 50 m apart from each other. In these plots, all woody individuals presenting circumference at soil height (CSH) ≥ 10 cm were sampled (upper stratum) (Moro & Martins 2011MORO MF & MARTINS FR. 2011. Métodos de levantamento do componente arbóreo-arbustivo. In: FELFLI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA-NETO JAA (Eds) Fitossociologia no Brasil: métodos e estudos de casos, vol 1. Editora. UFV, Viçosa, p. 174-212.). Within the larger plot (20 × 50 m), subplots of 5 × 15 m were demarcated, where woody individuals with a circumference at soil height (CSH) ≥ 5 and <10 cm were sampled (medium stratum). Subplots of 2 × 2 m were also demarcated to sample herbaceous individuals (lower stratum). In the latter case, the plant community structure was evaluated using the cover-abundance scale proposed by Braun-Blanquet (1979)BRAUN-BLANQUET J. 1979. Fitosociología, bases para el estudio de las comunidades vegetales. Madrid: H. Blume, 820 p.. The sampling occured in the dry and rainy seasons. In these plots, all individuals from each vascular plant species were counted (i.e. number of individuals and number of focal stoloniferous and rhizomatous clonal plants). The botanical specimen was deposited in the Tocantins Herbarium (HTO) at the Universidade Federal de Tocantins (Tocantins, Brazil). Identifications were made by consulting specialists and the literature. Taxonomic classification followed APG IV (Angiosperm Phylogeny Group 2016APG IV. 2016. An update of Angiosperm Plylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181: 1-20.).

Soil sampling

The soil physical and chemical properties were specified for each plot (20 × 50 m). A composite sample of five surface soil subsamples (0–20 cm depth) was collected. Samples were air-dried and sifted through a 2 mm mesh sieve. Analyses were conducted at the Laboratory of Soil Analysis, Universidade Federal de Viçosa, following international standards (Embrapa 2017EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. 2017. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 3.ed. Brasília. Embrapa Solos, 573 p.). The analyses included granulometry (clay, silt, coarse and fine sand contents); active acidity (pH) in water and KCl; exchangeable potassium (K+), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), aluminium (Al3+); potential acidity (H+Al); available phosphorus (P); remaining phosphorus (P-rem); sum of bases (BS); base saturation (V); aluminium saturation (m); total cation exchange capacity (CEC); effective cation exchange capacity (ECEC); micronutrients (Zn, Fe, Mn and Cu); organic matter content (OM); and Sodium Saturation Index (ISNa).

Data analysis

The importance value (IV) of each species was calculated by the sum of its relative density, relative frequency, and relative dominance (Mueller-Dombois & Ellenberg 1974MUELLER-DOMBOIS D & ELLENBERG H. 1974. Aims and methods of vegetation ecology. New York, J Wiley and Sons, 547 p., Moro & Martins 2011MORO MF & MARTINS FR. 2011. Métodos de levantamento do componente arbóreo-arbustivo. In: FELFLI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA-NETO JAA (Eds) Fitossociologia no Brasil: métodos e estudos de casos, vol 1. Editora. UFV, Viçosa, p. 174-212.). With these results, a diagram was constructed with the species that occurred in at least six environments with their respective importance values. Shannon’s diversity index and Pielou’s evenness were calculated for each environmental (Magurran 2004MAGURRAN AE. 2004. Measuring biological diversity. Oxford: Blackwell Science, 25 p.).

Soil variables were summarized with the use of principal component analysis (PCA) and proceeded (analyzed or processed) via by standardisation by logarithmic transformation, in order to equalise their contributions on the axis (Supplementary Material - Figure S1). Water pH (pH_H2O) values were not transformed because they are already expressed on a logarithmic scale. Spearman’s correlation analysis was used to remove correlated soil variables (Figure S2). The PCA was performed using the “FactoMineR” package (Husson et al. 2017HUSSON F, JOSSE J, LE S & MAZET J. 2017. “FactoMineR” package Multivariate: exploratory Data Analysis and Data Mining online: https://CRAN.R-project.org/package=FactoMineR. Accessed 9 Jan 2020.
https://CRAN.R-project.org/package=Facto...
) in the software R 3.6.2 (R Core Team 2020R CORE TEAM. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. R Foundation for Statistic.).

To investigate possible relationships between soil and vegetation, we used canonical correspondence analysis (CCA; ter Braak 1987TER BRAAK CJF. 1987. The analysis of vegetation environment relationship by canonical correspondence analysis. Plant Ecol 69: 69-77.). A Monte Carlo permutation with 1000 randomisations was used to verify the significance of the generated eigenvalues and species-environment relationships (ter Braak & Prentice 1988TER BRAAK CJF & PRENTICE IC. 1988. A theory of gradient analysis. Adv Ecol Res 34: 235-282.). For this analysis, species with a number of individuals ≥ 20 were selected (Supplementary Material - Table SI). The CCA was performed using PC-ORD version 6.0 (McCune & Mefford 2011MCCUNE B & MEFFORD MJ. 2011. PC-ORD: Multivariate Analysis of Ecological Data. Version 6.0. MjM Solfware Desing, Glaneden Beach, Oregon, 40 p.).

RESULTS

Community diversity and structure pattern

Overall, 20.000 individuals that belong to 338 species and 76 families were sampled across all eight environments in the Brazilian Cerrado of the Jalapão region. Most families occurred with one or two species (58%). The dominant family was Fabaceae (68 species), with 89.47 % of total richness; followed by Poaceae (23), Malpighiaceae (15), Myrtaceae and Euphorbiaceae (14 species each). The two environments of Slope Cerrado Rupestrian (CeRu1 and CeRu2) were those with the highest number of species (153 and 158, respectively). The lowest number of species was found in Campo Sujo (grassland with some shrubs) (CaSu) with 73 (Table II).

Table II
Values related to number of individuals (Abundance), species richness (SR), Shannon diversity index (Diversity H’), Pielou evenness index (J), density (D) and dominance (Do) in the Savanic Formations of the Jalapão, state of Tocantins, Brazil. CeSS1 = Cerrado sensu stricto; CaSu = Campo Sujo; CaCe = Campo Cerrado; CeRu1 = Cerrado rupestrian fields in slopes; CeSSt1 = Cerrado sensu stricto in top of the tablelands; CeSS2 = Cerrado sensu stricto; CeRu2 = Cerrado rupestrian in slopes; CeSSt2 = Cerrado sensu stricto in top of the tablelands. S = Upper Stratum; M = Medium Stratum; IS = Lower stratum in the dry season; IC = Lower stratum in the rainy season. Different letters indicate statistical differences between the dry and rainy seasons (Tukey p > 0.05).

Shannon index (H’) values between eight environments remained between 1.17 and 3.12 to upper stratum; 1.77 and 3.15 to medium stratum; 2.46 and 3.66 to lower stratum in the dry season; and 3.22 and 3.77 to lower stratum in the rainy season (Table II). Pielou evenness (J) values between environments remained between 0.50 and 0.82 to upper stratum; and 0.77 and 0.93 to medium stratum.

From all identified species, 27 species occurred in at least six environments. Six of these species did not occur in the CaSu and four did not occur in the CeSSt1. In the upper stratum, the species that occurred in all environments and with great representativeness were Pouteria ramiflora (Mart.) Radlk. and Hirtella ciliata Mart. & Zucc. The species Connarus suberosus Planch. had greater representativeness in CeSS2, absent in CaSu and scarce in the remaining environments. Vellozia variabilis Mart. ex Schult. f. occured in all areas but stood out in environments CaSu and CeRu1. The lower stratum presents two extremes: Aristida longiseta Steud. was present in all environments with the highest importance value (IV), except for CeSSt2; and Erythroxyllum betulaceum Mart. was present in all areas with low IV (Figure 2).

Figure 2
Values of importance of the species occurring in at least eight areas of the Savanic Formations of the Jalapão, state of Tocantins, Brazil. * = Not occurring in the area; CeSS1 = Cerrado sensu stricto; CaSu = Campo Sujo; CaCe = Campo Cerrado; CeRu1 = Cerrado rupestrian fields in slopes; CeSSt1 = Cerrado sensu stricto in top of the tablelands; CeSS2 = Cerrado sensu stricto; CeRu2 = Cerrado rupestrian in slopes; CeSSt2 = Cerrado sensu stricto in top of the tablelands. See full names of the species in Table SI.

Physical and Chemical Properties of Soil

There were differences in soil variables among environments (Table III; Figure S1). All soils have a sandy to sandy-loam texture (clay percentage of 1-14%) and yellowish color, except for CeSSt1, on the top of the tableland, which has red soil with a clay content well above the others (35- 43%), thus indicating a contribution of a mixture of pellet materials (siltstones), sandstones, and increased weathering. There is a general predominance of fine sand compared to coarse sand in all environments, reflecting the nature of the Urucuia Formation, which is naturally composed of fine-grained sandstone-quartz materials. The silt contents are very low and reflect the absolute lack of primary minerals with chemical reserve, as well as the high degree of weathering of these soils (Table SII).

Table III
Chemical and physical soil surface variables (0-20 cm) in the Savanic Formations of the Jalapão, state of Tocantins, Brazil. CeSS1 = Cerrado sensu stricto; CaSu = Campo Sujo; CaCe = Campo Cerrado; CeRu1 = Cerrado rupestrian fields in slopes; CeSSt1 = Cerrado sensu stricto in top of the tablelands; CeSS2 = Cerrado sensu stricto; CeRu2 = Cerrado rupestrian in slopes; CeSSt2 = Cerrado sensu stricto in top of the tablelands. Data are represented by the Mean, Maximum (max) and Minimum (Min) Value of each area with its respective Standard Deviation.

The predominantly acid character of the Jalapão soils is noteworthy (ranging from 4.5 to 5.6), with all values of aluminum saturation (m%) greater than 88%, except in CeSSt1 and CeSSt2; the degree of weathering is so high that the soil practically lacks a negative charge, and the organic matter is naturally low. In addition to the very acidic pH, the extremely low levels of available phosphorus (< 2.1 mg kg-1 in horizons A; < 0.3 mg kg-1 in B or C) are also noteworthy, they reveal a general phosphorus deficiency and severe nutrient limitation (base saturation less than 50%). On the other hand, due to the sandy nature, the remaining phosphorus values are high, considering that there is little amount of iron and aluminum oxides to promote phosphorus adsorption. The only exception was CeSSt1, which shows the value of remaining phosphorus typical of more oxidic soils, being also the only one with higher percentage of clay.

Vegetation-soil properties relationships

In the upper stratum, 29 species were chosen. The eigenvalue of axis 1 was 0.38 and for axis 2 was 0.32. The two axes explained 17.7% of the variability in the data (Figure 3a). The Monte Carlo test indicated high correlations between the edaphic variables and the species related to the first two axes of CCA (0.82, p < 0.001 for the first axis; and 0.78, p < 0.001 for the second). In the upper stratum, the variable presenting high correlation with the structural parameters in axis 1 was the clay content (0.26), and in axis 2, the content of coarse sand (0.38).

Figure 3
Ordination Diagram of the Upper Stratum (a), Medium Stratum (b), Lower Stratum (c) and all strata together (d) produced by the CCA. CeSS1 = Cerrado sensu stricto; CaSu = Campo Sujo; CaCe = Campo Cerrado; CeRu1 = Cerrado rupestrian fields in slopes; CeSSt1 = Cerrado sensu stricto in top of the tablelands; CeSS2 = Cerrado sensu stricto; CeRu2 = Cerrado rupestrian in slopes; CeSSt2 = Cerrado sensu stricto in top of the tablelands.

For the CCA, 8 species were utilized in the middle stratum (Figure 3b). Axis 1 had an eigenvalue of 0.46, and axis 2 had 0.37. The two axes explained 25.3% of the variability in the data. The Monte Carlo permutation test for the first two axes showed that correlations between species and edaphic variables were significant (Axis 1 = 0.81; Axis 2 = 0.79, p < 0.001). The variable with the highest correlation coefficient for the two axes was the content of Coarse sand with 0.38 for the first axis and 0.26 for the second axis.

For the CCA analysis, 68 species were utilized for the lower stratum (Figure 3c). The eigenvalue of axis 1 was 0.59, and axis 2 was 0.46. The two axes explained 8.7% of the variability in the data. In the Monte Carlo test, it presented a substantial result with 0.02 (p < 0.05). Regarding the species, the correlation with the soil properties was significant for the two axes (p = 0.004). The first axis explained 0.89, and the second one explained 0.84 of the variance. The variables with the highest correlation coefficient were organic matter (0.35) for the first axis, and fine sand (0.35) for the second axis. To conduct the analysis of all strata, 94 species were chosen (Figure 3d). The eigenvalues for the first two axes were 0.50 (axis 1) and 0.36 (axis 2), with the first axis accounting for 5.4% and the second accounting for 3.9% of the data variability. The Monte Carlo test was significant (p = 0.002) for the correlation between soil properties (0.02) and species (0.005). The variables with the highest correlation coefficients for axis 1 were organic matter (0.34) and fine sand (0.29), and for the second axis, pH in water (0.51) and phosphorus (0.43).

DISCUSSION

We described relevant differences on communities composition and structural patterns linked to variation in soil along the environmental gradient in the Brazilian Cerrado of the Jalapão region. In general, soil conditions among the eight plant communities exhibited significant environmental heterogeneity, where the physical and chemical properties of the soil can lead to differences in the composition and structure of the vegetation. Our results reinforce the notion that abiotic filtering operates at a fine-scale as a crucial driver of plant communities in the Brazilian Cerrado. Soil attributes are considered key drivers for plant species distribution and community diversity in the Brazilian Cerrado (e.g., Amorim & Batalha 2007AMORIM PK & BATALHA MA. 2007. Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32(3): 319-327., Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Torres et al. 2017TORRES DM, FONTES MAL & SAMSONAS HDP. 2017. Relações solo-vegetação na estruturação de comunidades de cerrado sensu stricto no sul de Minas Gerais, Brasil. Rodriguésia 68: 115-128., Bueno et al. 2018BUENO ML, DEXTER KG, PENNINGTON RT, PONTARA V, NEVES DM, RATTER JA & DE OLIVEIRA-FILHO AT. 2018. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106(5): 2109-2120., Amaral et al. 2022AMARAL AG, BIJOS NR, MOSER P & MUNHOZ CBR. 2022. Spatially structured soil properties and climate explain distribution patterns of herbaceous-shrub species in the Cerrado. Plant Ecol 223(1): 85-97.).

With regard to the most species-rich families our data are consistent with results of other surveys related to the Brazilian Cerrado (Campos et al. 2006CAMPOS EPD, DUARTE TG, NERI AV, SILVA AFD, MEIRA-NETO JAA & VALENTE GE. 2006. Composição florística de um trecho de cerradão e cerrado sensu stricto e sua relação com o solo na Floresta Nacional (FLONA) de Paraopeba, MG, Brasil. Rev Árvore 30: 471-479., Amorim & Batalha 2007AMORIM PK & BATALHA MA. 2007. Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32(3): 319-327., Silva & Felfili 2012SILVA JS & FELFILI JM. 2012. Floristic composition of a conservation area in the Federal District of Brazil. Rev Bras Bot 35: 385-395., Miguel et al. 2016MIGUEL EP, REZENDE AV, LEAL FA, PEREIRA RS & MELO RRD. 2016. Floristic-structural characterization and successional group of tree species in the Cerrado biome of Tocantins state, Brazil. Rev Caatinga 29: 393-404.). We can highlight Fabaceae as, in a general aspect, the most representative family in floristic inventories of the Domain (Campos et al. 2006CAMPOS EPD, DUARTE TG, NERI AV, SILVA AFD, MEIRA-NETO JAA & VALENTE GE. 2006. Composição florística de um trecho de cerradão e cerrado sensu stricto e sua relação com o solo na Floresta Nacional (FLONA) de Paraopeba, MG, Brasil. Rev Árvore 30: 471-479., Neri & Camargos 2007NERI AV & DE CAMARGOS VL. 2007. Pedological Features and Fire Influence the Brazilian Cerrado. The Americas 2(1): 1-4., Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Miguel et al. 2016MIGUEL EP, REZENDE AV, LEAL FA, PEREIRA RS & MELO RRD. 2016. Floristic-structural characterization and successional group of tree species in the Cerrado biome of Tocantins state, Brazil. Rev Caatinga 29: 393-404., Bueno et al. 2018BUENO ML, DEXTER KG, PENNINGTON RT, PONTARA V, NEVES DM, RATTER JA & DE OLIVEIRA-FILHO AT. 2018. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106(5): 2109-2120., Silva et al. 2019SILVA GE, GUILHERME FAG, CARNEIRO SES, PINHEIRO MHO & FERREIRA WC. 2019. Heterogeneidade ambiental e estrutura da vegetação arbustivo-arbórea em três áreas de Cerrado sentido restrito no sudoeste goiano. Ci Fl 29: 924-940., Filho et al. 2020FILHO JFS, LEMES MS & RAMOS MVV. 2020. Solos, florística e fitossociologia em áreas de reserva sob vegetação de cerrado sentido restrito em propriedades rurais no município de Urutaí, GO. Braz J Dev 6(3): 12506-12517.). The family comprises 24% of the species listed for the vascular flora of the Brazilian Cerrado (Mendonça et al. 2008MENDONÇA RC, FELFI LI JM, WALTER BMT, SILVA JÚNIOR MC, REZENDE AB, FILGUEIRAS TS, NOGUEIRA PE & FAGG CW. 2008. Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In: SANO SM, ALMEIDA SP & RIBEIRO JF (Eds), Cerrado: ecologia e flora. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília 2: 421-1279.). The taxa of the Fabaceae family are important to the dynamics of ecosystems with poor nutrient levels due to their morphological adaptations, such as the presence of nodules in the roots (Oliveira et al. 2012OLIVEIRA ACPD, PENHA ADS, SOUZA RFD & LOIOLA MIB. 2012. Floristic composition of a savanna community. In: Rio Grande do Norte, northeastern Brazil. Acta Bot Bras 26: 559-569.).

Our different environments sampled were floristically diverse. The plant species richness is elevated in comparison to other studies in the Brazilian Cerrado (Teixeira et al. 2004TEIXEIRA MIJ, ARAUJO ARB, VALERI SV & RODRIGUES RR. 2004. Florística e fitossociologia de área de cerrado s.s no município de Patrocínio Paulista, nordeste do Estado de São Paulo. Bragantia 63(1): 1-11., Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Silva & Felfili 2012SILVA JS & FELFILI JM. 2012. Floristic composition of a conservation area in the Federal District of Brazil. Rev Bras Bot 35: 385-395., Rodrigues et al. 2019RODRIGUES PMS, SILVA JO & SCHAEFER CEGR. 2019. Edaphic properties as key drivers for woody species distributions in tropical savanic and forest habitats. Aust J Bot 67: 70-80.). We presumed that these results might be associated with different phytophysiognomies sampled. Furthermore, the substantial number of species suggests a good state of conservation for the assessed environments, as no observed anthropic activities that could negatively impact species richness were noted (e.g., selective cutting of specific species, extractive activities, or grazing). Our findings emphasize the floristic importance of different Brazilian Cerrado phytophysiognomies of the Jalapão region for the conservation of its woody and herbaceous flora.

Compared to other environments, the CeRu1 and CeRu2 showed the greatest richness. Some phytosociological studies have found high richness per area unit in rupestrian ecosystems, due to a complex system of environmental gradients that operate on a small spatial scale (Abreu et al. 2012ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272., Fernandes 2016FERNANDES GW ET AL. 2016. Cerrado to rupestrian grasslands: patterns of species distribution and the forces shaping them along an altitudinal gradient. In: FERNANDES GW (Ed), Ecology and conservation of mountaintop grasslands in Brazil. Heidelberg: Springer International, p. 345-371., Campos et al. 2021CAMPOS PV, SCHAEFER CEGR, SENRA EO, VIANA PL, CANDIDO HG, OLIVEIRA FS, VALE-JÚNIOR JF & VILLA PM. 2021. Disentangling fine-scale effects of soil properties as key driver of plant community diversity on Roraima table mountain, Guayana Highlands. Plant Biosyst 155: 1-12.). The geomorphological heterogeneity of the rock outcrops offers a vast spectrum of microhabitats, such as cracks, fractures, pools, rock fragments and soil islands, all of which create subtle differences in resource availability (Abreu et al. 2012ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272., Carmo et al. 2016CARMO FF, CAMPOS IC & JACOBI CM. 2016. Effects of fine-scale surface heterogeneity on rock outcrop plant community structure. J Veg Sci 27: 50-59.). The environments can vary from total absence of soils with exposure of rocks, where some plants are established, such as Vellozia tubiflora (A. Rich.) Kunth to others that present greater shading and humidity, thus allowing the establishment of Pteridophytes (Adiantum sp.). Likewise, the low floristic similarities between environments sampled may be associated with different conditions of substrate (Abreu et al. 2012ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272., Lemos et al. 2013LEMOS HL, PINTO JRR, MEWS HA & LENZA E. 2013. Structure and floristic relationships between Cerrado sensu stricto sites on two types of substrate in northern Cerrado, Brazil. Biota Neotrop 13: 121-132., Neri et al. 2013NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378., Campos et al. 2021CAMPOS PV, SCHAEFER CEGR, SENRA EO, VIANA PL, CANDIDO HG, OLIVEIRA FS, VALE-JÚNIOR JF & VILLA PM. 2021. Disentangling fine-scale effects of soil properties as key driver of plant community diversity on Roraima table mountain, Guayana Highlands. Plant Biosyst 155: 1-12.). According to Abreu et al. (2012)ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272., at a local scale, physical-chemical Properties of the soil may strongly influence the floristic and structural differentiation between numerous Brazilian Cerrado phytophysiognomies (e.g. Cerrado sensu stricto and rocky outcrop Cerrado).

Edaphic differences among the eight environments underscore the marked environmental heterogeneity in the Jalapão region. Within the Cerrado, soil nutrient availability and texture can account for a significant portion of the variation in species composition and distribution, influencing the various community types (Bueno et al. 2017BUENO ML, PENNINGTON RT, DEXTER KG, KAMINO LHY, PONTARA V, NEVES DM, RATTER JA, OLIVEIRA-FILHO AT. 2017. Effects of quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403-414.). In chemical terms, the natural fertility of the soils is very low compared to other soils under Brazilian Cerrado, as reported in the literature (Ruggiero et al. 2006RUGGIERO PGC, PIVELLO VR, SPAROVEK G, TERAMOTO E & PIRES NETO AG. 2006. Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Bot Bras 20: 383-394., Amorim & Batalha 2007AMORIM PK & BATALHA MA. 2007. Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32(3): 319-327., Silva & Batalha 2008SILVA DM & BATALHA MA. 2008. Soil–vegetation relationships in cerrados under different fire frequencies. Plant and Soil 311(1): 87-96., Abreu et al. 2012ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272., Bueno et al. 2013BUENO ML, NEVES DRM, OLIVEIRA-FILHO AT, LEHN CR & RATTER JA. 2013. A study in an area of transition between seasonally dry tropical forest and mesotrophic cerradão. In: Mato Grosso do Sul, southwestern Brazil. Edinb J Bot 70: 469-486., Torres et al. 2017TORRES DM, FONTES MAL & SAMSONAS HDP. 2017. Relações solo-vegetação na estruturação de comunidades de cerrado sensu stricto no sul de Minas Gerais, Brasil. Rodriguésia 68: 115-128.). Although most of the Brazilian Cerrado is dominated by clayey Latosols (Lopes 1983LOPES AS. 1983. Solos sob “Cerrado”: características, propriedades e manejo. Instituto de Potassa e Fosfato, Instituto de Potassa, Piracicaba, 162 p.), predominantly sandy Cerrado covers about 15% of the biome (Reatto et al. 1998REATTO A, CORREIA JR & SPERA ST. 1998. Solos do Bioma Cerrado: aspectos pedológicos. In: SANO SM & ALMEIDA SP (Eds), Cerrado: ambiente e flora. Planaltina, Embrapa Cerrados, p. 47-86.), with the states of Tocantins and Mato Grosso do Sul having the highest occurrence of “sandy” Cerrados. The values of aluminum saturation are much higher than the average reported for the Brazilian Cerrado by Lopes (1983)LOPES AS. 1983. Solos sob “Cerrado”: características, propriedades e manejo. Instituto de Potassa e Fosfato, Instituto de Potassa, Piracicaba, 162 p. (Campo Cerrado = 58%, Cerrado sensu stricto = 44%), thus representing one of the poorest (dystrophic) sets of soils within the Brazilian Cerrado. The organic matter contents are low, even in the superficial horizons. These results fall within the range found in other studies conducted in Brazilian Cerrado areas (Lopes 1983LOPES AS. 1983. Solos sob “Cerrado”: características, propriedades e manejo. Instituto de Potassa e Fosfato, Instituto de Potassa, Piracicaba, 162 p., Furley & Ratter 1988FURLEY PA & RATTER JA. 1988. Soil resources and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15(1): 97-108., Haridasan 2001HARIDASAN M. 2001. Solos. In: FELFILI JM & SILVA JÚNIOR MC (Eds), Biogeografia do Bioma Cerrado: estudo fitofisionômico na Chapada do Espigão Mestre do São Francisco, UnB/FT/Departamento de Engenharia Florestal, Brasília, p. 12-17., Lindoso et al. 2011LINDOSO GS, FELFILI JM & SILVA LCRS. 2011. Variações ambientais e relações florísticas no Cerrado sensu stricto sobre areia (Neossolo Quartzarênico) da Chapada Grande Meridional, Piauí. Rev Biol Neotrop 8(2): 1-12.).

In Brazilian Cerrado, as the soil clay content decreases, the organic matter content tends to be lower (Tognon et al. 1998TOGNON AA, DEMATTÊ JLI & DEMATTÊ JAM. 1998. Teor e distribuição da matéria orgânica em Latossolos das regiões da floresta amazônica e dos cerrados do Brasil central. Sci Agric 55: 343-354.). These low contents can be explained by the low amount of clay mineral-organic matter associations in soils (Dutartre et al. 1993DUTARTRE P, BARTOLI F, ANDREUX F, PORTAL JM & ANGÉ A. 1993. Influence of content and nature of organic matter on the structure of some sandy soils from West Africa. In: Soil structure/soil biota interrelationships, Elsevier: 459-478.). Sandy horizons create a barrier and affect the interactions with organic matter, impeding the formation of aggregates. (Edwards & Bremer 1967EDWARDS AP & BREMER JM. 1967. Microaggregates in soil. J Soil Sci 18: 64-73.). Sandy soils have lower aggregate stability, as well as a smaller specific surface area and density of charges compared to soils with higher clay content, which diminishes the availability of nutrients intended for plants. Each species has different requirements for its own establishment, those are corroborated by the variations in the results of the CCA related to the analyzed environmental variables. According to Swaine (1996)SWAINE MD. 1996. Rainfall and soil fertility as factors limiting forest species distribution in Ghana. J Ecol 84: 419-428., the plant species require different resources and have diverse tolerances to environmental conditions depending on the stage of the species. In agreement with Carvalho et al. (2009)CARVALHO J, MARQUES MCM, RODERJA CV, BARDDAL M & SOUZA SGA. 2009. Relações entre a distribuição das espécies de diferentes estratos e ascaracterísticas do solo de uma floresta aluvial no Estado do Paraná, Brasil. Acta Bot Bras 23(1): 1-9., the differences in vegetation strata are mainly due to the distinct size of the plants, which causes the form of absorption (water and nutrients), and, consequently, the metabolic requirements to be differentiated.

The areas showed a tendency for separation according to the different soil types: Ferrasols, Lixisols, Regosols and Arenosols, presenting in this last class a proximity and/or an overlap of the three areas (CeSS1, CaSu and CaCe). In general, sandy savanic formations of the Jalapão are influenced primarily by soil texture. In the same soil type with distinct vegetation formations, such as the Arenosols, the amount of clay significantly decreased towards the Campo Cerrado. The texture is the physical property of the soil that least undergoes alteration over time (Gonçalves & Stape 2002GONÇALVES JLM & STAPE JL. 2002. Conservação e cultivo de Solos para Plantações Florestais. Instituto de Pesquisas e Estudos Florestais. Piracicaba, São Paulo, 498 p.), the differences found in the texture characteristics influenced the structure and distribution of the species, increasing substantially the density and dominance. For example, Vellozia variabilis that stood out in environments CaSu and CeRu1, with the highest importance value, due the high relative values of density and dominance. Velloziaceae often occur in sandy and nutrient-poor environments (Conceição & Pirani 2007CONCEIÇÃO AA & PIRANI JR. 2007. Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brasil: espécies distintas, mas riquezas similares. Rodriguésia 58: 193-206.). Some species of the family are characterized by having specific adaptation strategies such as desiccation tolerance, since sandy soils have lower water retention levels (Porembski 2007POREMBSKI S. 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Rev Bras Bot 30: 579-586.).

According to Donovan et al. (2011)DONOVAN LA, MAHERALI H, CARUSO CM, HUBBER H & KROON H. 2011. The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26: 88-95., species in environments with low availability of resources related to the strategy of acquisition and utilization are called conservative, since they are characterized by slow growth, protection of the tissues and storage organ, they have long-life leaves, low concentrations of nutrients and low photosynthetic and respiration rate. These characteristics are more important for plant performance in comparison to those that lead to a high capacity of resource capture (Aerts 1999AERTS R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50: 29-37.). There is a trade-off between plants from nutrient-rich soils, where they have a higher ability to absorb rapidly, and plants from environments with poor soils, which have a greater capacity of nutrient retention (Tessier & Woodruff 2002TESSIER AJ & WOODRUFF P. 2002. Trading off the ability to exploit rich versus poor food quality. Ecol Lett 5: 685-692.). The plant species of the Jalapão establish themselves in a remarkable edaphic climax because the soil presents a severe restriction for their development. Some species have characteristics that allow high abundance in conditions of low availability of resources, in which only a few are able to establish themselves.

CONCLUSION

Our study has revealed differences on species richness, plant communities composition and structural patterns along the environmental gradient in the Brazilian Cerrado of the Jalapão region. The region, considered one of the largest extensions of Cerrado still preserved in the country, has chemically poor, sandy soils with low water availability. The vegetation composition and distribution of species in the Jalapão region was influenced by soils with an emphasis on particle size attributes, especially in the content of coarse sand and fine sand. Moreover, our results demonstrated, for the first time, the fine-scale effects of the physical-chemical aspects of the soil on the plant community in the Brazilian Cerrado of the Jalapão region.

ACKNOWLEDGMENTS

The authors thank the three integral protection conservation units: Jalapão State Park, Serra Geral de Tocantins Ecological Station and Parnaíba National Park; and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for concession the scholarship to the last author.

SUPPLEMENTARY MATERIAL

Figures S1, S2.

Tables SI, SII.

REFERENCES

  • AB’SABER AN. 2003. Os domínios de natureza no Brasil: Potencialidades paisagísticas. São Paulo, Brazil: Ateliê Editorial, 158 p.
  • ABREU MF, PINTO JRR, MARACAHIPES L, GOMES L, OLIVEIRA EAD, MARIMON BS & LENZA E. 2012. Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Rev Bras Bot 35: 259-272.
  • AERTS R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50: 29-37.
  • AMARAL AG, BIJOS NR, MOSER P & MUNHOZ CBR. 2022. Spatially structured soil properties and climate explain distribution patterns of herbaceous-shrub species in the Cerrado. Plant Ecol 223(1): 85-97.
  • AMORIM PK & BATALHA MA. 2007. Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32(3): 319-327.
  • APG IV. 2016. An update of Angiosperm Plylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181: 1-20.
  • BELLO F, LAVOREL S, LAVERGNE S, ALBERT CH, BOULANGEAT I, MAZEL F & THUILLER W. 2013. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecogeg 36: 393-402.
  • BRAUN-BLANQUET J. 1979. Fitosociología, bases para el estudio de las comunidades vegetales. Madrid: H. Blume, 820 p.
  • BRITO ER, SILVA E, MARTINS SV & RIBEIRO GA. 2002. Environmental profile of the” fluvial beach enterprise” in the State of Tocantins. Rev Árvore 26: 349-355.
  • BUENO ML, DEXTER KG, PENNINGTON RT, PONTARA V, NEVES DM, RATTER JA & DE OLIVEIRA-FILHO AT. 2018. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106(5): 2109-2120.
  • BUENO ML, NEVES DRM, OLIVEIRA-FILHO AT, LEHN CR & RATTER JA. 2013. A study in an area of transition between seasonally dry tropical forest and mesotrophic cerradão. In: Mato Grosso do Sul, southwestern Brazil. Edinb J Bot 70: 469-486.
  • BUENO ML, PENNINGTON RT, DEXTER KG, KAMINO LHY, PONTARA V, NEVES DM, RATTER JA, OLIVEIRA-FILHO AT. 2017. Effects of quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403-414.
  • CAMPOS EPD, DUARTE TG, NERI AV, SILVA AFD, MEIRA-NETO JAA & VALENTE GE. 2006. Composição florística de um trecho de cerradão e cerrado sensu stricto e sua relação com o solo na Floresta Nacional (FLONA) de Paraopeba, MG, Brasil. Rev Árvore 30: 471-479.
  • CAMPOS PV, SCHAEFER CEGR, SENRA EO, VIANA PL, CANDIDO HG, OLIVEIRA FS, VALE-JÚNIOR JF & VILLA PM. 2021. Disentangling fine-scale effects of soil properties as key driver of plant community diversity on Roraima table mountain, Guayana Highlands. Plant Biosyst 155: 1-12.
  • CARMO FF, CAMPOS IC & JACOBI CM. 2016. Effects of fine-scale surface heterogeneity on rock outcrop plant community structure. J Veg Sci 27: 50-59.
  • CARVALHO J, MARQUES MCM, RODERJA CV, BARDDAL M & SOUZA SGA. 2009. Relações entre a distribuição das espécies de diferentes estratos e ascaracterísticas do solo de uma floresta aluvial no Estado do Paraná, Brasil. Acta Bot Bras 23(1): 1-9.
  • CARVALHO T. 2009. Síntese de campo do trecho Peixe a Ipueiras, rio Tocantins: uma contribuição à Exploratória Rio Tocantins. Rev Esp Acad 8: 1-6.
  • CAVALCANTI R & JOLY C. 2002. The conservation of the Cerrados. In:OLIVIERA PS & MARQUIS RJ (Eds) The Cerrado of Brazil. Ecology and natural history of a notropical savanna. p. 351-367. Columbia Univ. Press: New York.
  • CONCEIÇÃO AA & PIRANI JR. 2007. Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brasil: espécies distintas, mas riquezas similares. Rodriguésia 58: 193-206.
  • CONSÓRCIO CTE/MRS. 2003. Plano de manejo do Parque Estadual do Jalapão: Diagnóstico e Planejamento. Palmas, 96 p.
  • DONOVAN LA, MAHERALI H, CARUSO CM, HUBBER H & KROON H. 2011. The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26: 88-95.
  • DURIGAN G, NISHIKAWA DLL, ROCHA E, SILVEIRA ER, PULITANO FM, REGALADO LB, CARVALHAES MA, PARANAGUÁ PA & RANIERI VEL. 2002. Caracterização de dois estratos da vegetação de uma área de Cerrado no município de Brotas, SP, Brasil. Acta Bot Bras 16(3): 252-262.
  • DUTARTRE P, BARTOLI F, ANDREUX F, PORTAL JM & ANGÉ A. 1993. Influence of content and nature of organic matter on the structure of some sandy soils from West Africa. In: Soil structure/soil biota interrelationships, Elsevier: 459-478.
  • EDWARDS AP & BREMER JM. 1967. Microaggregates in soil. J Soil Sci 18: 64-73.
  • EITEN G. 1978. Delimitation of the cerrado concept. Vegetation 36: 169-178.
  • EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. 2017. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 3.ed. Brasília. Embrapa Solos, 573 p.
  • FELFILI JM & SILVA JÚNIOR MC. 2001. Biogeografia do bioma Cerrado: estudo fitofisionômico na Chapada do Espigão Mestre do São Francisco. Brasília: Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal. Brasil, 144 p.
  • FERNANDES GW ET AL. 2016. Cerrado to rupestrian grasslands: patterns of species distribution and the forces shaping them along an altitudinal gradient. In: FERNANDES GW (Ed), Ecology and conservation of mountaintop grasslands in Brazil. Heidelberg: Springer International, p. 345-371.
  • FILHO JFS, LEMES MS & RAMOS MVV. 2020. Solos, florística e fitossociologia em áreas de reserva sob vegetação de cerrado sentido restrito em propriedades rurais no município de Urutaí, GO. Braz J Dev 6(3): 12506-12517.
  • FURLEY PA & RATTER JA. 1988. Soil resources and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15(1): 97-108.
  • GONÇALVES JLM & STAPE JL. 2002. Conservação e cultivo de Solos para Plantações Florestais. Instituto de Pesquisas e Estudos Florestais. Piracicaba, São Paulo, 498 p.
  • GOODLAND R. 1971. Oligotrofismo e Alumínio no Cerrado. In: FERRI MG (Ed), Simpósio sobre o Cerrado, 3. São Paulo: Ed. Edgard Blucher Ltda. Ed. Universidade de São Paulo, p. 44-60.
  • GOTTSBERGER G & SILBERBAUER-GOTTSBERGER I. 2006. Life in the Cerrado, a South American tropical seasonal ecosystem. In: Origin, structure, dynamics and plant use. Ulm, Germany: Reta Verlag, 280 p.
  • HAIDAR RF, FAGG JMF, PINTO JRR, DIAS RR, DAMASCO G, SILVA LCR & FAGG CW. 2013. Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: Parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação. Acta Amazon 43: 261-290.
  • HARIDASAN M. 2000. Nutrição mineral das plantas nativas do Cerrado. Rev Bras Fisiol Veg 12: 54-64.
  • HARIDASAN M. 2001. Solos. In: FELFILI JM & SILVA JÚNIOR MC (Eds), Biogeografia do Bioma Cerrado: estudo fitofisionômico na Chapada do Espigão Mestre do São Francisco, UnB/FT/Departamento de Engenharia Florestal, Brasília, p. 12-17.
  • HUSSON F, JOSSE J, LE S & MAZET J. 2017. “FactoMineR” package Multivariate: exploratory Data Analysis and Data Mining online: https://CRAN.R-project.org/package=FactoMineR Accessed 9 Jan 2020.
    » https://CRAN.R-project.org/package=FactoMineR
  • IBGE. 1992. Manual técnico da vegetação brasileira. Séries Manuais Técnicos em Geociências. Fundação Instituto Brasileiro de Geografia e Estatística, 92 p.
  • IUSS WORKING GROUP WRB. 2015. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps World Soil Resources Reports, FAO. Rome, n. 106.
  • KEDDY PA. 1992. Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3: 157-164.
  • LEHMANN CER, ANDERSON TM, SANKARAN M, HIGGINS SI, ARCHIBALD S, HOFFMANN WA & BOND WJ. 2014. Savanna vegetation-fireclimate relationships differ among continents. Science 343: 548-552.
  • LEMOS HL, PINTO JRR, MEWS HA & LENZA E. 2013. Structure and floristic relationships between Cerrado sensu stricto sites on two types of substrate in northern Cerrado, Brazil. Biota Neotrop 13: 121-132.
  • LINDOSO GS, FELFILI JM, DA COSTA JM & Castro AAJF. 2009. Diversidade e estrutura do cerrado sensu stricto sobre areia (Neossolo Quartzarênico) na Chapada Grande Meridional, Piauí. Rev Biol Neotrop 6(2): 45-61.
  • LINDOSO GS, FELFILI JM & SILVA LCRS. 2011. Variações ambientais e relações florísticas no Cerrado sensu stricto sobre areia (Neossolo Quartzarênico) da Chapada Grande Meridional, Piauí. Rev Biol Neotrop 8(2): 1-12.
  • LOPES AS. 1983. Solos sob “Cerrado”: características, propriedades e manejo. Instituto de Potassa e Fosfato, Instituto de Potassa, Piracicaba, 162 p.
  • LOREAU M, NAEEM S, INCHAUSTI P, BENGTSSON J, GRIME JP, HECTOR A, HOOPER DU, HUSTON MA, RAFFAELLI D, SCHMID B, TILMAN D & WARDLE DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804-808.
  • LORTIE CJ, BROOKER RW, CHOLER P, KIKVIDZE Z, MICHALET R, PUGNAIRE FI & CALLAWAY RM. 2004. Rethinking plant community theory. Oikos 107: 433-438.
  • MAGURRAN AE. 2004. Measuring biological diversity. Oxford: Blackwell Science, 25 p.
  • MAIA, SMF, XAVIER FAZ, OLIVEIRA TS, MENDONÇA ES & ARAÚJO FILHO JA. 2006. Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semi-árido cearense. Rev Árvore 30: 837-848.
  • MARTINS SV, BRITO-IBRAHIM ER, EISENLOHR PV, OLIVEIRA-FILHO AT & SILVA A. 2011. A vegetação de Ipucas no Tocantins: estudo de caso e relações florísticas com remanescentes do Cerrado e da Amazônia. In: FELFILI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA NETO JAA (Eds), Fitossociologia no Brasil: métodos e estudos de caso. Editora UFV, Viçosa: 460-478.
  • MCCUNE B & MEFFORD MJ. 2011. PC-ORD: Multivariate Analysis of Ecological Data. Version 6.0. MjM Solfware Desing, Glaneden Beach, Oregon, 40 p.
  • MEDEIROS MB, WALTER BMT & SILVA GP. 2008. Fitossociologia do Cerrado Stricto Sensu no Município de Carolina, MA, Brasil. Cerne 14(4): 285-294.
  • MENDONÇA RC, FELFI LI JM, WALTER BMT, SILVA JÚNIOR MC, REZENDE AB, FILGUEIRAS TS, NOGUEIRA PE & FAGG CW. 2008. Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In: SANO SM, ALMEIDA SP & RIBEIRO JF (Eds), Cerrado: ecologia e flora. Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília 2: 421-1279.
  • MIGUEL EP, REZENDE AV, LEAL FA, PEREIRA RS & MELO RRD. 2016. Floristic-structural characterization and successional group of tree species in the Cerrado biome of Tocantins state, Brazil. Rev Caatinga 29: 393-404.
  • MORO MF & MARTINS FR. 2011. Métodos de levantamento do componente arbóreo-arbustivo. In: FELFLI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA-NETO JAA (Eds) Fitossociologia no Brasil: métodos e estudos de casos, vol 1. Editora. UFV, Viçosa, p. 174-212.
  • MUELLER-DOMBOIS D & ELLENBERG H. 1974. Aims and methods of vegetation ecology. New York, J Wiley and Sons, 547 p.
  • MYERS N, MITTERMEIER RA, MITTERMEIER CG, DA FONSECA GA & KENT J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858.
  • NERI AV & DE CAMARGOS VL. 2007. Pedological Features and Fire Influence the Brazilian Cerrado. The Americas 2(1): 1-4.
  • NERI AV, SCHAEFER CEGR, FERREIRA-JUNIOR WG & MEIRA-NETO JAA. 2013. Pedology and Plant physionomies in the Cerrado, Brasil. An Acad Bras Cienc 83: 363-378.
  • OLIVEIRA ACPD, PENHA ADS, SOUZA RFD & LOIOLA MIB. 2012. Floristic composition of a savanna community. In: Rio Grande do Norte, northeastern Brazil. Acta Bot Bras 26: 559-569.
  • OLIVEIRA ME. 2004. Mapeamento, florística e estrutura da transição campo-floresta na vegetação (Cerrado) do Parque Nacional de Sete Cidades, Nordeste do Brasil. Tese (doutorado), 151p. Universidade Estadual de Campinas, Instituto de Biologia, Campinas, SP, 151 p.
  • OLIVEIRA-FILHO AT & RATTER JA. 2002. Vegetation physiognomies and woody flora of the cerrado biome. In: Oliveira PS & Marquis RJ (Eds), The cerrados of Brazil. New York, NY: Columbia University Press, p. 91-120.
  • OLIVEIRA-FILHO AT, SHEPHERD GJ, MARTINS FR & STUBBLEBINE WH. 1989. Environmental factors affecting physiognomics ande floristic variation in na área of Cerrado in central Brazil. J Trop Ecol 5: 413-431.
  • PEÑA-CLAROS M, POORTER L, ALARCÓN A, BLATE G, CHOQUE U, FREDERICKSEN TS, JUSTINIANO MJ, LEAÑO C, LICONA JC, PARIONA W, PUTZ FE, QUEVEDO L & TOLEDO M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44: 276-283.
  • POREMBSKI S. 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Rev Bras Bot 30: 579-586.
  • R CORE TEAM. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. R Foundation for Statistic.
  • RATTER JA, RIBEIRO JF & BRIDGEWATER S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80: 223-230.
  • REATTO A, CORREIA JR & SPERA ST. 1998. Solos do Bioma Cerrado: aspectos pedológicos. In: SANO SM & ALMEIDA SP (Eds), Cerrado: ambiente e flora. Planaltina, Embrapa Cerrados, p. 47-86.
  • REZENDE JM. 2007. Florística, Fitossociologia e a influência do Gradiente de umidade do solo em Campos Limpos úmidos no Parque Estadual do Jalapão, Tocantins. Dissertação (mestrado), 74 p. Universidade de Brasília – UnB, Departamento de Engenharia Florestal. (Unpublished).
  • RIBEIRO JF & WALTER BMT. 2008. Fitofisionomias do bioma Cerrado. In: SANO SM & ALMEIDA SP (Eds), Cerrado: Ecologia e flora, Planaltina, DF: EMBRAPA CPAC: 151-212.
  • RIBEIRO S, CASTRO-MELLO C & NOGUEIRA C. 2009. New Species of Anops Bell, 1833 (Squamata, Amphisbaenia) from Jalapao Region in the Brazilian Cerrado. J Herpetol 43(1): 21-28.
  • RODRIGUES PMS, SILVA JO & SCHAEFER CEGR. 2019. Edaphic properties as key drivers for woody species distributions in tropical savanic and forest habitats. Aust J Bot 67: 70-80.
  • RUGGIERO PGC, PIVELLO VR, SPAROVEK G, TERAMOTO E & PIRES NETO AG. 2006. Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Bot Bras 20: 383-394.
  • SANO EE, ROSA R, BRITO JLS, FERREIRA LG & BEZERRA HDS. 2009. Mapeamento da cobertura vegetal natural e antrópica do bioma Cerrado por meio de imagens Landsat ETM+. In: Anais do Simpósio Brasileiro de Sensoriamento Remoto, INPE, Natal: 1199-1206.
  • SANTOS ER, LOLIS SF, RODRIGUES LKM & CARVALHO ZC. 2006. A flora do campus de Porto Nacional, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brasil. Rev Ciênc Agroambien 1(1): 61-67.
  • SANTOS HG, JACOMINE PKT, ANJOS LHC, OLIVEIRA VA, LUMBRERAS JF, COELHO MR, ALMEIDA JA, CUNHA TJF & OLIVEIRA JB. 2013. Sistema Brasileiro de Classificação de Solos. 3. ed. rev. e ampl. Embrapa. Brasília, DF, 353 p.
  • SILVA DM & BATALHA MA. 2008. Soil–vegetation relationships in cerrados under different fire frequencies. Plant and Soil 311(1): 87-96.
  • SILVA GE, GUILHERME FAG, CARNEIRO SES, PINHEIRO MHO & FERREIRA WC. 2019. Heterogeneidade ambiental e estrutura da vegetação arbustivo-arbórea em três áreas de Cerrado sentido restrito no sudoeste goiano. Ci Fl 29: 924-940.
  • SILVA JF, FARIÑAS MR, FELFILI JM & KLINK CA. 2006. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeog 33(3): 336-354.
  • SILVA JS & FELFILI JM. 2012. Floristic composition of a conservation area in the Federal District of Brazil. Rev Bras Bot 35: 385-395.
  • SPERA ST, REATTO A, MARTINS ES, CORREIA JR & CUNHA TJF. 1999. Solos areno-quartzosos no Cerrado: problemas, características e limitações ao uso. Planaltina: EMBRAPA CPAC, 48 p.
  • SWAINE MD. 1996. Rainfall and soil fertility as factors limiting forest species distribution in Ghana. J Ecol 84: 419-428.
  • TEIXEIRA MIJ, ARAUJO ARB, VALERI SV & RODRIGUES RR. 2004. Florística e fitossociologia de área de cerrado s.s no município de Patrocínio Paulista, nordeste do Estado de São Paulo. Bragantia 63(1): 1-11.
  • TER BRAAK CJF. 1987. The analysis of vegetation environment relationship by canonical correspondence analysis. Plant Ecol 69: 69-77.
  • TER BRAAK CJF & PRENTICE IC. 1988. A theory of gradient analysis. Adv Ecol Res 34: 235-282.
  • TESSIER AJ & WOODRUFF P. 2002. Trading off the ability to exploit rich versus poor food quality. Ecol Lett 5: 685-692.
  • TOCANTINS (Estado). 2003. Instituto Natureza do Tocantins. Plano de manejo do Parque Estadual do Jalapão: diagnóstico e planejamento. Palmas: Naturatins, 131 p.
  • TOGNON AA, DEMATTÊ JLI & DEMATTÊ JAM. 1998. Teor e distribuição da matéria orgânica em Latossolos das regiões da floresta amazônica e dos cerrados do Brasil central. Sci Agric 55: 343-354.
  • TORRES DM, FONTES MAL & SAMSONAS HDP. 2017. Relações solo-vegetação na estruturação de comunidades de cerrado sensu stricto no sul de Minas Gerais, Brasil. Rodriguésia 68: 115-128.

Publication Dates

  • Publication in this collection
    13 Oct 2023
  • Date of issue
    2023

History

  • Received
    17 Feb 2022
  • Accepted
    27 Jan 2023
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br