Acessibilidade / Reportar erro

Brazilian Guideline for Exercise Testing in Children and Adolescents – 2024

Abstracts

Classes of Recommendation

  • Class I: Conditions for which there is conclusive evidence and, failing that, general agreement that a given procedure is safe and useful/effective.

  • Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the safety and usefulness/efficacy of a procedure.

  • Class IIa: Weight or evidence/opinion in favor of the procedure. Most approve.

  • Class IIb: Safety and usefulness/efficacy less well established, with divergence of opinions.

  • Class III: Conditions for which there is evidence and/or general agreement that a procedure is not useful/effective and, in some cases, may be harmful.

Levels of Evidence

  • Level A: Data derived from multiple large, concordant randomized trials and/or robust meta-analyses of randomized trials.

  • Level B: Data derived from less robust meta-analyses, from a single randomized trial and/or from observational studies.

  • Level C: Data derived from consensus opinion of experts.


Brazilian Guideline for Exercise Testing in Children and Adolescents – 2024 The report below lists declarations of interest as reported to the SBC by the experts during the period of the development of these statement, 2023-2024 Expert Type of relationship with industry Andréa Maria Gomes Marinho Falcão Nothing to be declared Antonio Carlos Avanza Júnior Nothing to be declared Carlos Alberto Cordeiro Hossri Nothing to be declared Carlos Alberto Cyrillo Sellera Nothing to be declared José Luiz Barros Pena Nothing to be declared Luiz Eduardo Fonteles Ritt Financial declarationA - Economically relevant payments of any kind made to (i) you, (ii) your spouse/partner or any other person living with you, (iii) any legal person in which any of these is either a direct or indirect controlling owner, business partner, shareholder or participant; any payments received for lectures, lessons, training instruction, compensation, fees paid for participation in advisory boards, investigative boards or other committees, etc. From the Brazilian or international pharmaceutical, orthosis, prosthesis, equipment and implants industry:- Boehringer Lilly: Jardiance; Novonordis: researcher in studies; AstraZeneca; Novartis; Bayer; Bristol; Pfizer.B - Research funding under your direct/personal responsibility (directed to the department or institution) from the Brazilian or international pharmaceutical, orthosis, prosthesis, equipment and implants industry:- MDI Medical. Other relationships Funding of continuing medical education activities, including travel, accommodation and registration in conferences and courses, from the Brazilian or international pharmaceutical, orthosis, prosthesis, equipment and implants industry:- Novo Nordisk: Ozempic. Maria Eulália Thebit Pfeiffer Nothing to be declared Mauricio Milani Nothing to be declared Odilon Gariglio Alvarenga de Freitas Nothing to be declared Odwaldo Barbosa e Silva Nothing to be declared Ricardo Vivacqua Cardoso Costa Nothing to be declared Rodrigo Imada Nothing to be declared Susimeire Buglia Nothing to be declared Tales de Carvalho Nothing to be declared William Azem Chalela Nothing to be declared

Part 1 - Indications, Legal Aspects, and Training in Exercise Testing

1. Introduction

Exercise testing (ET) is a diagnostic modality in which a person is subjected to a planned, individualized degree of physical effort with the purpose of evaluating their clinical, hemodynamic, autonomic, electrocardiographic, indirect metabolic and, occasionally, enzymatic responses to physical exertion. When ET also includes the assessment of ventilatory parameters and analysis of exhaled gases, it is called cardiopulmonary exercise testing (CPET or CPX). The term cardiac stress test encompasses both ET and CPET.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

In children and adolescents, ET and CPET are useful for diagnostic and prognostic evaluation as well as for assessment of cardiorespiratory performance in a wide range of clinical scenarios. These procedures are considered safe and have proven cost-effective in the pediatric population.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

In Brazil, congenital disorders and cardiovascular diseases (CVD) are, respectively, the second and ninth leading causes of death in children. In adolescents, CVD are the third leading cause of death, and congenital disorders, the eighth leading cause. These data highlight the importance of cardiovascular (CV) health care for the pediatric population.22 Brasil. Ministério da Saúde. Diretrizes nacionais para a atenção integral à saúde de adolescentes e jovens na promoção, proteção e recuperação da saúde. Brasília (DF): Ministério da Saúde; 2010. ISBN: 978-85-334-1680-2.

The Brazilian Ministry of Health follows the definition of adolescence proposed by the World Health Organization (WHO), which characterizes it as the period of the life cycle between the ages of 10 and 19 years. However, Brazilian legislation considers all persons from the ages of 12 to 18 to be adolescents. The scientific literature also adopts other age ranges for children (1-13 years) and adolescents (13-18 years).33 Brasil. Lei no 8.069, de 13 de julho de 1990. Dispõe sobre o Estatuto da Criança e do Adolescente e dá outras providências. Diário Oficial da União; Brasília (DF), 16 jul 1990.55 Macêdo VC. Atenção integral à saúde da criança: políticas e indicadores de saúde. Recife: Ed. Universitária da UFPE; 2016. ISBN: 978-85-415-0853-7.

This Guideline seeks to consolidate the most recent information from the scientific literature on ET/CPET in children and adolescents, covering indications, contraindications, risks, methodology, hemodynamic and electrocardiographic responses, diagnostic criteria, as well as particular aspects in specific diseases which afflict the pediatric population. Ventilatory and metabolic variables derived from exhaled breath analysis in CPET and ET/CPET combined with imaging methods are also addressed.

Throughout the document, we highlight the particularities of exams depending on the patient's age range, sex, body composition, physical fitness level, and baseline cardiovascular and pulmonary health status.66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1212 Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
https://doi.org/10.1016/j.recesp.2024.02...

This Guideline should become a relevant work of reference for the general cardiologist and, we hope, encourage widespread uptake of pediatric ET/CPET with a view to improving the CV health of children and adolescents.

2. Indications and Contraindications for ET and CPET in Children and Adolescents

2.1. General Indications for ET

In the pediatric population, ET is a tool that contributes to the diagnosis and assessment of the impact of CVD (congenital/genetic and acquired), risk stratification, prognostication, optimization of therapy, and medical clearance for physical activity/exercise prescription, including cardiovascular rehabilitation (CVR).

The general indications and purposes of ET in the pediatric population are:66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1212 Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
https://doi.org/10.1016/j.recesp.2024.02...

  1. Assessment of exercise-induced symptoms.

  2. Assessment of hemodynamic parameters (blood pressure, heart rate, double product, peripheral arterial resistance, etc.).

  3. Detection of abnormal responses to exertion in children and adolescents with congenital and acquired cardiovascular diseases (valvular heart disease, cardiomyopathies, etc.), lung disease, or diseases of other organ systems.

  4. Detection of myocardial ischemia resulting from congenital anomalies of the coronary arteries, atheromatosis (very rare), or in the context of Kawasaki disease.

  5. Recognition of cardiac arrhythmias and elucidation of their type, density, and complexity.

  6. Assessment the behavior of pre-excitation and channelopathies during exercise.

  7. Establishment of prognosis for certain CVD, including through serial ET/CPET.

  8. Indication and optimization of therapy.

  9. Assessment of aerobic fitness, exercise tolerance, and physical conditioning.

  10. To inform medical clearance for physical activity/exercise prescription, including CVR and participation in sports.

2.2. Specific Clinical Indications for ET

The following section describes specific clinical settings in which ET has its effectiveness studied, tested, and proven, allowing us to determine the class of recommendation and level of evidence established in the literature.

2.2.1. Suspected Myocardial Ischemia and Coronary Artery Disease

In children and adolescents, myocardial ischemia and coronary artery disease (CAD) have different etiologies than in adults. In this setting, ET has recognized utility to support the initial diagnostic workup, follow-up, therapeutic decision-making, and risk stratification (Table 1).66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
,1313 Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of Pediatric Chest Pain using a Standardized Assessment and Management Plan. Pediatrics. 2011;128(2):239-45. doi: 10.1542/peds.2011-0141.
https://doi.org/10.1542/peds.2011-0141...
,1414 Borns J, Gräni C, Kadner A, Gloeckler M, Pfammatter JP. Symptomatic Coronary Anomalies and Ischemia in Teenagers - Rare but Real. Front Cardiovasc Med. 2020;7:559794. doi: 10.3389/fcvm.2020.559794.
https://doi.org/10.3389/fcvm.2020.559794...

Table 1
Indications for ET in suspected myocardial ischemia and coronary artery disease in children and adolescents

2.2.2. Indications for ET in Hypertension

ET allows assessment of the blood-pressure (BP) response to exercise and diagnosis of hypertension (HTN) in pediatric patients with and without CHD. BP behavior during ET has additional predictive power over office measurements (Table 2).3838 Hacke C, Weisser B. Reference Values for Exercise Systolic Blood Pressure in 12- to 17-Year-Old Adolescents. Am J Hypertens. 2016;29(6):747-53. doi: 10.1093/ajh/hpv178.
https://doi.org/10.1093/ajh/hpv178...

Table 2
Indications for ET in children and adolescents with hypertension

Pediatric hypertension is associated with increased risk of CVD, atherosclerosis, left ventricular hypertrophy (LVH), and renal failure in adulthood.3939 Pool LR, Aguayo L, Brzezinski M, Perak AM, Davis MM, Greenland P, et al. Childhood Risk Factors and Adulthood Cardiovascular Disease: A Systematic Review. J Pediatr. 2021;232:118-26.e23. doi: 10.1016/j.jpeds.2021.01.053.
https://doi.org/10.1016/j.jpeds.2021.01....
,4040 Celermajer DS, Ayer JG. Childhood Risk Factors for Adult Cardiovascular Disease and Primary Prevention in Childhood. Heart. 2006;92(11):1701-6. doi: 10.1136/hrt.2005.081760.
https://doi.org/10.1136/hrt.2005.081760...

2.2.3. Indications for ET in Asymptomatic Patients

Studies carried out in recent years have elucidated the role of ET in the assessment of asymptomatic pediatric patients, specifically its utility for risk stratification and prognostication (Table 3).

Table 3
Indications for ET in asymptomatic children and adolescents

2.2.4. Indications for ET in Athletes

In child and adolescent athletes, ET allows assessment of cardiorespiratory fitness (CRF) and the hemodynamic response to exercise, as well as diagnosis of CVD and their potential implications (Table 4).88 Connuck DM. The Role of Exercise Stress Testing in Pediatric Patients with Heart Disease. Prog Pediatr Cardiol. 2005;20(1):45-52. doi: 10.1016/j.ppedcard.2004.12.004.
https://doi.org/10.1016/j.ppedcard.2004....
,6363 Ghorayeb N, Stein R, Daher DJ, Silveira ADD, Ritt LEF, Santos DFPD, et al. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019. Arq Bras Cardiol. 2019;112(3):326-68. doi: 10.5935/abc.20190048.
https://doi.org/10.5935/abc.20190048...
,6464 Corrado D, Pelliccia A, Bjørnstad HH, Vanhees L, Biffi A, Borjesson M, et al. Cardiovascular Pre-Participation Screening of Young Competitive Athletes for Prevention of Sudden Death: Proposal for a Common European Protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(5):516-24. doi: 10.1093/eurheartj/ehi108.
https://doi.org/10.1093/eurheartj/ehi108...

Table 4
Indications for ET in child and adolescent athletes

2.2.5. Indications for ET in Congenital Heart Disease

The worldwide prevalence of congenital heart disease (CHD) ranges from 2.4 to 13.7 per 1,000 live births, with the majority of patients (85%) reaching adulthood.7575 Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation. 2021;143(8):e254-743. doi: 10.1161/CIR.0000000000000950.
https://doi.org/10.1161/CIR.000000000000...
,7676 Liu Y, Chen S, Zühlke L, Black GC, Choy MK, Li N, et al. Global Birth Prevalence of Congenital Heart Defects 1970-2017: Updated Systematic Review and Meta-Analysis of 260 Studies. Int J Epidemiol. 2019;48(2):455-63. doi: 10.1093/ije/dyz009.
https://doi.org/10.1093/ije/dyz009...
Usually, children with CHD – even after repair – are less physically active, including due to family overprotection.7777 Zaqout M, Vandekerckhove K, De Wolf D, Panzer J, Bové T, François K, et al. Determinants of Physical Fitness in Children with Repaired Congenital Heart Disease. Pediatr Cardiol. 2021;42(4):857-65. doi: 10.1007/s00246-021-02551-y.
https://doi.org/10.1007/s00246-021-02551...
,7878 Chlif M, Ammar MM, Said NB, Sergey L, Ahmaidi S, Alassery F, et al. Mechanism of Dyspnea during Exercise in Children with Corrected Congenital Heart Disease. Int J Environ Res Public Health. 2021;19(1):99. doi: 10.3390/ijerph19010099.
https://doi.org/10.3390/ijerph19010099...
Up to 15-20% of patients with CHD have some valve involvement, with the most common (when occurring in isolation) being aortic (bicuspid, stenotic) and pulmonary.7979 Abassi H, Gavotto A, Picot MC, Bertet H, Matecki S, Guillaumont S, et al. Impaired Pulmonary Function and its Association with Clinical Outcomes, Exercise Capacity and Quality of Life in Children with Congenital Heart Disease. Int J Cardiol. 2019;285:86-92. doi: 10.1016/j.ijcard.2019.02.069.
https://doi.org/10.1016/j.ijcard.2019.02...
8181 Baumgartner H, Bonhoeffer P, De Groot NM, Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the Management of Grown-Up Congenital Heart Disease (New Version 2010). Eur Heart J. 2010;31(23):2915-57. doi: 10.1093/eurheartj/ehq249.
https://doi.org/10.1093/eurheartj/ehq249...

ET is recommended for clinical assessment, determination of cardiorespiratory fitness, treatment decision-making, follow-up, risk stratification/prognosis and medical clearance/prescription of exercise programs, including CVR (Table 5).77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,99 ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
https://doi.org/10.1155/2010/791980...
,8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
https://doi.org/10.5935/abc.20160103...
8585 Holst KA, Said SM, Nelson TJ, Cannon BC, Dearani JA. Current Interventional and Surgical Management of Congenital Heart Disease: Specific Focus on Valvular Disease and Cardiac Arrhythmias. Circ Res. 2017;120(6):1027-44. doi: 10.1161/CIRCRESAHA.117.309186.
https://doi.org/10.1161/CIRCRESAHA.117.3...

Table 5
Indications for ET in children and adolescents with congenital heart disease

2.2.6. Indications for ET in Arrhythmias and Conduction Disorders

In the setting of arrhythmias and conduction disorders in children and adolescents, ET is indicated for evaluation of symptoms, diagnosis of arrhythmias, definition of management approaches, risk stratification, and prescription of physical exercise (Table 6).99 ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
https://doi.org/10.1155/2010/791980...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...
109109 Takahashi K, Nabeshima T, Nakayashiro M, Ganaha H. QT Dynamics During Exercise in Asymptomatic Children with Long QT Syndrome Type 3. Pediatr Cardiol. 2016;37(5):860-7. doi: 10.1007/s00246-016-1360-4.
https://doi.org/10.1007/s00246-016-1360-...

Table 6
Indications for ET in the context of arrhythmias and conduction disorders in children and adolescents

2.2.7. Indications for ET in Children and Adolescents with Valvular Heart Disease

Valvular heart disease accounts for a significant percentage of heart diseases in the pediatric population, whether congenital or acquired. Rheumatic heart disease (RHD) with subsequent valvular involvement is one of the leading causes of cardiac morbidity and mortality among children in underdeveloped and developing countries. In 2019, approximately 40 million cases of RHD are known worldwide, with 2,789,443 new cases and 305,651 deaths reported annually.130130 Craik N, Hla T, Cannon J, Moore H, Carapetis JR, Sanyahumbi A. Global Disease Burden of Streptococcus pyogenes. 2022 Aug 21 [updated 2022 Oct 4]. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. 2nd ed. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2022 Oct 8. Chapter 21. PMID: 36479763.,131131 Nascimento BR, Beaton AZ, Nunes MC, Diamantino AC, Carmo GA, Oliveira KK, et al. Echocardiographic Prevalence of Rheumatic Heart Disease in Brazilian Schoolchildren: Data from the PROVAR Study. Int J Cardiol. 2016;219:439-45. doi: 10.1016/j.ijcard.2016.06.088.
https://doi.org/10.1016/j.ijcard.2016.06...

Valvular heart disease can cause hemodynamic disorders, depending on the severity of valvular and myocardial involvement. Stenotic lesions generally result in pressure overload of the affected chamber, while regurgitant lesions cause volume overload. Many lesions, however, are mixed, resulting in both pressure and volume overload, with the potential for development of heart failure (HF). Valvular heart disease secondary to acquired cardiomyopathies, myocarditis, and HF is also common. Over time, increased stress on the ventricular wall causes myocardial stretching and fibrosis, resulting in formation of scar tissue with arrhythmogenic potential. Arrhythmias can complicate the clinical picture of valvular heart disease and increase morbidity and mortality in affected children and adolescents.132132 Iddawela S, Joseph PJS, Ganeshan R, Shah HI, Olatigbe TAT, Anyu AT, et al. Paediatric Mitral Valve Disease - From Presentation to Management. Eur J Pediatr. 2022;181(1):35-44. doi: 10.1007/s00431-021-04208-7.
https://doi.org/10.1007/s00431-021-04208...
134134 Santana S, Gidding SS, Xie S, Jiang T, Kharouf R, Robinson BW. Correlation of Echocardiogram and Exercise Test Data in Children with Aortic Stenosis. Pediatr Cardiol. 2019;40(7):1516-22. doi: 10.1007/s00246-019-02177-1.
https://doi.org/10.1007/s00246-019-02177...

Table 7 lists the indications for ET in children and adolescents with specific forms of valvular heart disease and their respective classes of recommendation.

Table 7
Indications for ET in children and adolescents with valvular heart disease

2.2.8. Indications for ET in Children and Adolescents with Acquired Heart Diseases and Cardiomyopathies

Cardiomyopathies in children include a wide range of conditions that may be primary or secondary to systemic diseases (i.e. neuromuscular disorders, AIDS, COVID-19).142142 Kantor PF, Kleinman JA, Ryan TD, Wilmot I, Zuckerman WA, Addonizio LJ, et al. Preventing Pediatric Cardiomyopathy: A 2015 Outlook. Expert Rev Cardiovasc Ther. 2016;14(3):321-39. doi: 10.1586/14779072.2016.1129899.
https://doi.org/10.1586/14779072.2016.11...
144144 Choudhry S, Puri K, Denfield SW. An Update on Pediatric Cardiomyopathy. Curr Treat Options Cardiovasc Med. 2019;21(8):36. doi: 10.1007/s11936-019-0739-y.
https://doi.org/10.1007/s11936-019-0739-...

The estimated annual incidence of cardiomyopathy is 1.1 to 1.5 cases per 100,000 persons aged 0-18 years.145145 Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, et al. Pediatric Cardiomyopathies. Circ Res. 2017;121(7):855-73. doi: 10.1161/CIRCRESAHA.116.309386.
https://doi.org/10.1161/CIRCRESAHA.116.3...
These patients may present with progressive systolic and/or diastolic HF. HF affects 0.87 to 7.4 per 100,000 children, and has a 5-year mortality rate of 40%.146146 Watanabe K, Shih R. Update of Pediatric Heart Failure. Pediatr Clin North Am. 2020;67(5):889-901. doi: 10.1016/j.pcl.2020.06.004.
https://doi.org/10.1016/j.pcl.2020.06.00...
In these patients (and in those recovering from myocarditis), ET is indicated for clinical monitoring, therapeutic decision-making, and prescription or adaptation of an exercise program (Table 8).66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
,143143 Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, et al. Cardiomyopathies in Children and Systemic Disorders when is it Useful to Look beyond the Heart? J Cardiovasc Dev Dis. 2022;9(2):47. doi: 10.3390/jcdd9020047.
https://doi.org/10.3390/jcdd9020047...
,147147 Putschoegl A, Auerbach S. Diagnosis, Evaluation, and Treatment of Myocarditis in Children. Pediatr Clin North Am. 2020;67(5):855-874. doi: 10.1016/j.pcl.2020.06.013.
https://doi.org/10.1016/j.pcl.2020.06.01...
,148148 Ditaranto R, Caponetti AG, Ferrara V, Parisi V, Minnucci M, Chiti C, et al. Pediatric Restrictive Cardiomyopathies. Front Pediatr. 2022;9:745365. doi: 10.3389/fped.2021.745365.
https://doi.org/10.3389/fped.2021.745365...

Table 8
Indications for ET in children and adolescent with acquired heart disease and cardiomyopathies

2.2.9. Indications for ET in Other Clinical Scenarios

ET is indicated to assist in diagnosis, assess cardiorespiratory fitness and hemodynamic status, inform therapeutic decision-making, and stratify risk in several other specific diseases and conditions (Table 9).

Table 9
Other indications for ET in children and adolescents

2.3. Indications for CPET in Children and Adolescents

In addition to the information provided by conventional ET, CPET allows evaluation of lung volumes (ergospirometry) and analysis of gases in exhaled air, including direct measurement of oxygen consumption (VO2) and carbon dioxide production (VCO2).100100 Dallaire F, Wald RM, Marelli A. The Role of Cardiopulmonary Exercise Testing for Decision Making in Patients with Repaired Tetralogy of Fallot. Pediatr Cardiol. 2017;38(6):1097-105. doi: 10.1007/s00246-017-1656-z.
https://doi.org/10.1007/s00246-017-1656-...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487. Thus, CPET can help elucidate the pathophysiology of unexplained dyspnea, identify specific pathophysiological features of certain diseases, and provide relevant information to inform therapeutic decision-making.1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,178178 Goddard T, Sonnappa S. The Role of Cardiopulmonary Exercise Testing in Evaluating Children with Exercise Induced Dyspnoea. Paediatr Respir Rev. 2021;38:24-32. doi: 10.1016/j.prrv.2020.08.002.
https://doi.org/10.1016/j.prrv.2020.08.0...

The general indications for CPET in children and adolescents are:100100 Dallaire F, Wald RM, Marelli A. The Role of Cardiopulmonary Exercise Testing for Decision Making in Patients with Repaired Tetralogy of Fallot. Pediatr Cardiol. 2017;38(6):1097-105. doi: 10.1007/s00246-017-1656-z.
https://doi.org/10.1007/s00246-017-1656-...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
178178 Goddard T, Sonnappa S. The Role of Cardiopulmonary Exercise Testing in Evaluating Children with Exercise Induced Dyspnoea. Paediatr Respir Rev. 2021;38:24-32. doi: 10.1016/j.prrv.2020.08.002.
https://doi.org/10.1016/j.prrv.2020.08.0...

  1. All indications for ET described elsewhere in this Guideline, when additional direct quantification of ventilatory and metabolic variables is necessary.

  2. Improved assessment of exercise-induced cardiorespiratory signs and/or symptoms (dyspnea, laryngeal stridor, wheezing, etc.).

  3. Improved assessment of heart diseases (CHD, valvular heart disease, HF, cardiomyopathies, arrhythmias), lung diseases, and diseases affecting other organ systems (sickle cell anemia, renal failure, neurodegenerative diseases, etc.).

  4. Contribution in the indication and follow-up of specific surgical procedures.

  5. Assessment of treatment efficacy and optimization of therapy.

  6. Assessment of cardiorespiratory fitness when selecting candidates for heart transplantation.

  7. Preparticipation physical assessment and follow-up of patients seeking to engage in competitive sports.

  8. Prognostic assessment in cardiovascular, pulmonary, and other diseases.

  9. Preparticipation physical assessment and follow-up of patients undergoing cardiovascular rehabilitation.

Specific indications for CPET and their respective classes of recommendation and levels of evidence are given in Table 10.

Table 10
Key specific indications for CPET in children and adolescents

2.4. Indications for Cardiac Stress Imaging

2.4.1. Myocardial Perfusion Imaging

Myocardial perfusion scintigraphy in the pediatric population has an established role in the assessment of myocardial perfusion/viability and ventricular function. It can be useful in identifying residual or inducible ischemia and ventricular wall motion abnormalities, as well as in risk stratification (Table 11).

Table 11
Indications for myocardial perfusion imaging in children and adolescents

2.4.2. Indications for Stress Echocardiography

In the pediatric population, stress echocardiography is most commonly used to detect ischemia in patients with CAD, Kawasaki disease, or anomalous origin of coronary arteries. Other pediatric indications include: status post heart transplantation; congenital heart diseases (to evaluate hemodynamic and myocardial response); early detection of myocardial dysfunction in specific populations (i.e. patients receiving anthracyclines); and evaluation of the functional response of the right ventricle and pulmonary artery pressure (Table 12).229229 Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
https://doi.org/10.1093/ehjci/jev159...
233233 Li VW, So EK, Wong WH, Cheung YF. Myocardial Deformation Imaging by Speckle-Tracking Echocardiography for Assessment of Cardiotoxicity in Children During and after Chemotherapy: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2022;35(6):629-56. doi: 10.1016/j.echo.2022.01.017.
https://doi.org/10.1016/j.echo.2022.01.0...

Table 12
Indications for stress echocardiography in children and adolescents with CVD or symptoms thereof234234 Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
https://doi.org/10.1016/j.echo.2019.07.0...
,235235 Morhy SS, Barberato SH, Lianza AC, Soares AM, Leal GN, Rivera IR, et al. Position Statement on Indications for Echocardiography in Fetal and Pediatric Cardiology and Congenital Heart Disease of the Adult - 2020. Arq Bras Cardiol. 2020;115(5):987-1005. doi: 10.36660/abc.20201122.
https://doi.org/10.36660/abc.20201122...

2.5. Relative and Absolute Contraindications for ET and CPET in Children and Adolescents

ET/CPET in the pediatric population is not risk-free; there is potential for complications or adverse events. In some clinical settings, the risk is such that it outweighs the benefit of any information that would be obtained, thus contraindicating ET/CPET. ET in the pediatric population has low morbidity and mortality; the overall incidence of complications ranges from 0.5 to 1.79%.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,254254 Alpert BS, Verrill DE, Flood NL, Boineau JP, Strong WB. Complications of Ergometer Exercise in Children. Pediatr Cardiol. 1983;4(2):91-6. doi: 10.1007/BF02076332.
https://doi.org/10.1007/BF02076332...
,255255 Bricker JT, Traweek MS, Smith RT, Moak JP, Vargo TA, Garson A Jr. Exercise-Related Ventricular Tachycardia in Children. Am Heart J. 1986;112(1):186-8. doi: 10.1016/0002-8703(86)90704-0.
https://doi.org/10.1016/0002-8703(86)907...
The most common are chest pain (0.69%), dizziness or syncope (0.29%), hypotension (0.35%), and serious arrhythmias (0.46%).254254 Alpert BS, Verrill DE, Flood NL, Boineau JP, Strong WB. Complications of Ergometer Exercise in Children. Pediatr Cardiol. 1983;4(2):91-6. doi: 10.1007/BF02076332.
https://doi.org/10.1007/BF02076332...
In children and adolescents with CHD, the incidence of ventricular tachycardia (VT) has ranged from 1.9 to 7.3%.256256 Nagashima M, Baba R, Goto M, Nishabata K, Nagano Y. Exercise-Induced Ventricular Tachycardia without Demonstrable Heart Disease in Childhood. Acta Paediatr Jpn. 1996;38(5):495-9. doi: 10.1111/j.1442-200x.1996.tb03533.x.
https://doi.org/10.1111/j.1442-200x.1996...
,257257 Garson A Jr, Gillette PC, Gutgesell HP, McNamara DG. Stress-Induced Ventricular Arrhythmia after Repair of Tetralogy of Fallot. Am J Cardiol. 1980;46(6):1006-12. doi: 10.1016/0002-9149(80)90359-8.
https://doi.org/10.1016/0002-9149(80)903...

2.5.1. Relative Contraindications for ET and CPET in Children and Adolescents

These are high-risk clinical situations (Chart 1) in which ET/CPET must only be carried out in a hospital setting, with a specialist pediatric emergency physician on standby and additional special precautions. These precautions include: use of modified protocols and target loads; continuous monitoring of oxygen saturation; having personnel and equipment available if urgent pacemaker or implantable cardioverter-defibrillator (ICD) reprogramming is required, etc.66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...

Chart 1
Relative contraindications and special precautions for ET and CPET in children and adolescents66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...

2.5.2. Absolute Contraindications for ET and CPET in Children and Adolescents

Clinical situations presented in Chart 2 are considered absolute contraindications, and ET/CPET should never be performed in children and adolescents.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,99 ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
https://doi.org/10.1155/2010/791980...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...
,181181 Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich HH, Longmuir PE, et al. Recommendations for Physical Activity, Recreation Sport, and Exercise Training in Paediatric Patients with Congenital Heart Disease: A Report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034-65. doi: 10.1177/1741826711420000.
https://doi.org/10.1177/1741826711420000...
,188188 Takken T, Ulu HS, Hulzebos EHJ. Clinical Recommendations for Cardiopulmonary Exercise Testing in Children with Respiratory Diseases. Expert Rev Respir Med. 2020;14(7):691-701. doi: 10.1080/17476348.2020.1752195.
https://doi.org/10.1080/17476348.2020.17...
,260260 Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases. Eur Respir Rev. 2019;28(154):180101. doi: 10.1183/16000617.0101-2018.
https://doi.org/10.1183/16000617.0101-20...

Chart 2
Absolute contraindications for ET and CPET in children and adolescents77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,99 ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
https://doi.org/10.1155/2010/791980...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...
,181181 Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich HH, Longmuir PE, et al. Recommendations for Physical Activity, Recreation Sport, and Exercise Training in Paediatric Patients with Congenital Heart Disease: A Report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034-65. doi: 10.1177/1741826711420000.
https://doi.org/10.1177/1741826711420000...
,188188 Takken T, Ulu HS, Hulzebos EHJ. Clinical Recommendations for Cardiopulmonary Exercise Testing in Children with Respiratory Diseases. Expert Rev Respir Med. 2020;14(7):691-701. doi: 10.1080/17476348.2020.1752195.
https://doi.org/10.1080/17476348.2020.17...
,260260 Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases. Eur Respir Rev. 2019;28(154):180101. doi: 10.1183/16000617.0101-2018.
https://doi.org/10.1183/16000617.0101-20...

3. Legal Aspects Involved in the Practice of ET and CPET in Children and Adolescents

In addition to the legal and ethical aspects of ET and CPET already presented in the Brazilian Guideline for Exercise Test in the Adult Population, aspects specific to the pediatric population (described below) must also be considered.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

3.1. Legal Aspects Involved in the Practice of ET and CPET

ET and CPET are widely accessible, reproducible, noninvasive methods with a low risk of complications in unselected populations. As their performance in Brazil is strictly limited to physicians, they are governed by the Code of Medical Ethics and, therefore, the physician must be aware of their possible ethical and legal implications, duly addressed in the Code of Medical Ethics of the Federal Medical Council (CFM; from portuguese: Conselho Federal de Medicina), Brazilian Civil Code, Consumer Protection Code, and other applicable laws (Appendix 1 Appendix 1 Core legal and regulatory framework applicable to ET and CPET in children and adolescents in Brazil Legal aspects – translation realized from original in Brazilian portuguese. Reference –The physician shall preserve the confidentiality of any information acquired in the performance of his or her duties, except when legally mandated otherwise.–The physician is forbidden from:–Delegating to other providers acts or duties restricted to the medical profession.–Shirking responsibility for a medical procedure he or she indicated or in which he or she participated, even when the patient was assisted by several physicians.–Aiding and abetting those who practice medicine illegally or with medical professionals or facilities which engage in illicit activities.–Failing to obtain consent from the patient or his or her legal representative after explaining the procedure to be performed, except in case of imminent risk of death.–Failing to safeguard the patient's right to decide freely about his or her person or well-being, or utilizing his or her authority to violate this right.–Failing to keep a legible medical record for each patient.–Breaching physician–patient confidentiality relative to a child or adolescent patient, as long as the patient has legal capacity to discern, including to their parents or legal guardians, except when nondisclosure could cause harm to the patient.–Failing to obtain from the patient or their legal guardian a written informed consent form before carrying out any research involving human beings, after the nature and consequences of the research have been duly explained. § 1 In the event that the research participant is a child, adolescent, person with a mental disorder or illness, or otherwise in a situation of diminished capacity, in addition to the consent of their legal guardian, the participant's free and informed assent to the fullest extent of their understanding is required. Brazilian Code of Medical Ethics (Código de Ética Médica), CFM Resolutions No. 2217/2018, 2222/2018, and 2226/2019.1018–1020 Sets forth the requirements for Focused Practice Designation in Exercise Testing: 1 (one) year of training; having completed Medical Residency in Cardiology before such training; after training, take the Brazilian Medical Association/Brazilian Society of Cardiology board exam to obtain certification; as a prerequisite for sitting the aforementioned exam, in addition to training, holding a current Board Certification in Cardiology from the Brazilian Medical Association. CFM Resolution No. 2,380/2024; Ordinance No. 1/2024.1021 Whereas, it is advisable that written informed consent be obtained from the patient or his/her legal guardian (for patients under 18 years of age); Whereas, in the case of underage patients, a legal guardian must remain in the examination room; The ET must be individualized and carried out, at all stages, by a qualified physician who has been trained to respond to cardiovascular emergencies, and must thus be physically present in the room at all times. As ET is a medical procedure under the sole responsibility of the performing physician, delegating its performance to other providers is considered a violation of medical ethics. The necessary and appropriate conditions for carrying out ET are listed in the CFM Inspection Manual. CFM Resolution No. 2021/13.1022 Guiding criteria for advertising in medicine, conceptualizing advertisements, dissemination of medical matters, sensationalism, self-promotion, and prohibitions related thereto. CFM Resolution No. 2,336/2023.1023 Ensuring the privacy and confidentiality of patients’ data and digitally stored information; organizing secure and reliable databases; ensuring the secure transmission of data and information; maintaining backup copies to the fullest possible extent. CFM Resolution No. 1821/2007.272 Art. 226. The family, which is the foundation of society, shall enjoy special protection from the State. Paragraph 4. The community formed by either parent and their descendants is also considered as a family entity. Art. 229. Parents have the responsibility to assist, up bring and educate their underage children, and adult children have the responsibility to help and assist their parents in old age, need, or sickness. Constitution of the Federative Republic of Brazil.1024 Art. 5. A Legal minority ends at the age of eighteen, at which point a person is entitled to perform all acts of civil life. Sole paragraph. Before said age, legal incapacity can end: upon emancipation granted by the minor's parents, or by one parent in the absence of the other, by means of a public instrument, regardless of judicial approval, or by a sentence of emancipation issued by a judge, having heard the legal guardian, provided the minor is sixteen years of age;through marriage;through the discharge of one's duties as a public servant;upon graduation from an institution of higher learning;upon incorporation of a civil or commercial enterprise, or through the establishment of an employment relationship, provided that the minor is sixteen years of age and, as a result of either, achieves financial independence." Art. 186. Anyone who, by willful action or inaction, negligence, or recklessness, violates a right and causes damage to others, even if exclusively moral, commits a wrongful act. Brazilian Civil Code (Law No. 10,406/2002).1025 Chapter III, Art. 6 – The following are basic consumer rights: the protection of the consumer's life, health, and safety against any risks arising from any practices in the supply of products and services considered harmful or dangerous;education and information about the adequate consumption of products and services, ensuring freedom of choice and equality in transactions;adequate and clear information about different products and services, with correct specification of quantity, characteristics, composition, quality, price, and taxes, as well as the risks presented. Brazilian Consumer Protection Code. Basic Consumer Rights (Law No. 8,078 of September 11, 1990).1026,1027 CFM: Brazilian Federal Medical Council (CFM from portuguese: Conselho Federal de Medicina). ).261261 Min JK, Gilmore A, Jones EC, Berman DS, Stuijfzand WJ, Shaw LJ, et al. Cost-Effectiveness of Diagnostic Evaluation Strategies for Individuals with Stable Chest Pain Syndrome and Suspected Coronary Artery Disease. Clin Imaging. 2017;43:97-105. doi: 10.1016/j.clinimag.2017.01.015.
https://doi.org/10.1016/j.clinimag.2017....
264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...

3.2. Essential Conditions for Performing ET and CPET in Children and Adolescents

Based on the foregoing, some essential conditions must be met when performing ET/CPET in children and adolescents:

  1. Exercise testing and cardiopulmonary exercise testing are medical procedures under the exclusive responsibility of a qualified, board-registered physician, who must be fit to practice. The Department of Exercise Testing, Sports, Exercise, Nuclear Cardiology and Cardiovascular Rehabilitation of the Brazilian Society of Cardiology (SBC/DERC) recommends that the physician be board-certified in Cardiology by the Brazilian Medical Association and hold a focused practice designation in Exercise Testing, both duly registered with the Federal Medical Council, as well as additional training in ET/CPET in the pediatric population.

  2. Whenever a test with potential risk of complications (including death, however rare) is performed on minors or legally incapacitated patients, one of the parents or legal guardians is advised to remain in the room. The performing physician must recognize adolescents – between 12 and 18 years of age – as having potential legal capacity and provide care to them accordingly, respecting their individuality and maintaining an attitude centered on providing guidance and ensuring the adolescent's participation.

  3. Informed consent must be obtained in writing, via an informed consent form (ICF) signed by at least one parent or legal guardian. When the patient is an adolescent, he or she should preferably be included in the decision-making process by obtaining an appropriated informed assent form (IAF). If the patient and/or parent or legal guardian refuses to sign the ICF and/or IAF, the test cannot proceed. In scientific research settings, the ICF and IAF are mandatory. The term "assent" is used to distinguish this process from "consent", which can only be obtained from adults who are legally fully capable of making their own decisions.

  4. Testing must be carried out on equipment adapted to the pediatric population, and the testing site must be stocked with all essential supplies (equipment/medicines) needed to provide emergency care to this population, as stated elsewhere in this Guideline.265265 Conselho Federal de Medicina. Resolução CFM no 2.153/2016. Altera o anexo da resolução CFM n.2056/2013 e dispõe a nova redação do manual de vistoria de fiscalização da medicina no Brasil. Diário Oficial da União, Brasília, 18 sep. 2017.268268 Guimarães HP, Timerman S, Rodrigues RDR, Corrêa TD, Schubert DUC, Freitas AP, et al. Position Statement: Cardiopulmonary Resuscitation of Patients with Confirmed or Suspected COVID-19 - 2020. Arq Bras Cardiol. 2020;114(6):1078-87. doi: 10.36660/abc.20200548.
    https://doi.org/10.36660/abc.20200548...

  5. The physician performing the test must expressly follow all recommendations of public health authorities and medical societies regarding any ongoing endemics, epidemics, and pandemics, as well as the applicable rules and regulations of the patient safety system.269269 Brasil. Lei no 8.080, de 19 de setembro de 1990. Dispõe sobre as condições para a promoção, proteção e recuperação da saúde, a organização e o funcionamento dos serviços correspondentes e dá outras providências. Diário Oficial da União, Brasília, 20 sep. 1990.271271 Bittencourt MS, Generoso G, Melo PHMC, Peixoto D, Miranda ÉJFP, Mesquita ET, et al. Statement - Protocol for the Reconnection of Cardiology Services with Patients During the COVID-19 Pandemic - 2020. Arq Bras Cardiol. 2020;115(4):776-99. doi: 10.36660/abc.20201004.
    https://doi.org/10.36660/abc.20201004...

  6. All procedures relevant to ET and CPET described in this guideline must be followed and complied with.

  7. ET and CPET should only be performed upon formal medical request.

  8. Relative and absolute contraindications to ET/CPET must be assessed.

  9. If serious adverse events arise during the test, the physician responsible for the test will provide the necessary support until the attending physician and/or emergency medical services are able to effectively take over or transfer to the emergency department can be completed. If the event is fatal, the physician responsible for the test is advised to notify the Regional Medical Council and request an opinion from its Ethics Committee.

  10. After the test, the patient's parent(s) or legal guardian(s) should be instructed to return to the requesting physician for further management. If the patient or his/her parents, legal guardian, or proxy inquires as to the result of the test, the physician performing the test must provide any relevant information.

  11. Compensation for the test should include a fair physician's fee and cover all operating costs.

  12. ET and/or CPET involves obtaining and processing sensitive patient data, and exercise testing services must therefore respect the Brazilian General Data Protection Law (LGPD; from portuguese: Lei Geral de Proteção de Dados Pessoais) and other relevant legislation and CFM ordinances.272272 Conselho Federal de Medicina. Resolução CFM no 1.821/2007. Aprova as normas técnicas concernentes à digitalização e uso dos sistemas informatizados para a guarda e manuseio dos documentos dos prontuários dos pacientes, autorizando a eliminação do papel e a troca de informação identificada em saúde. Diário Oficial da União, Brasília, 23 nov. 2007.274274 Brasil. Lei n° 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Diário Oficial da União, Brasília, 15 aug. 2018.

3.3. Informed Consent and Assent for ET and CPET in Children and Adolescents

Informed consent form (ICF) for ET/CPET and the consenting process itself must follow the guidelines of the Brazilian Code of Medical Ethics and CFM Recommendation No. 1/2016, and must be signed by at least one parent or legal guardian.275275 Conselho Federal de Medicina. Recomendação CFM No 1/2016. Dispõe sobre o processo de obtenção de consentimento livre e esclarecido na assistência médica. Brasília: Conselho Federal de Medicina; 21 jan. 2016. As noted above, if the patient is an adolescent, obtaining informed assent is also recommended.

4. Essential Conditions for Training in Pediatric ET/CPET

ET/CPET in the pediatric population is different from that performed in adults due to the specific prevalence of CVD (including CHD), the need for adjustment of protocols and parameters, and several age-specific aspects involved in interpretation, diagnosis, and prognosis.

It is recommended that cardiologists undergo specific training in pediatric ET/CPET, as follows:276276 Sousa MR, Mourilhe-Rocha R, Paola AA, Köhler I, Feitosa GS, Schneider JC, et al. 1st Guidelines of the Brazilian Society of Cardiology on Processes and Skills for Education in Cardiology in Brazil--Executive Summary. Arq Bras Cardiol. 2012;98(2):98-103. doi: 10.1590/S0066-782X2012000200001.
https://doi.org/10.1590/S0066-782X201200...
,277277 Rodgers GP, Ayanian JZ, Balady G, Beasley JW, Brown KA, Gervino EV, et al. American College of Cardiology/American Heart Association Clinical Competence Statement on Stress Testing: A Report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. J Am Coll Cardiol. 2000;36(4):1441-53. doi: 10.1016/s0735-1097(00)01029-9.
https://doi.org/10.1016/s0735-1097(00)01...

  1. May take place during (concurrently) or after (consecutively) training in Exercise Testing as an area of focused practice (see part 1, section 4 of the Brazilian Guideline for Exercise Testing in the Adult Population – 2024), in an additional and complementary fashion, incorporating the workloads and requirements described below. Such training does not replace training in Exercise Testing as an area of focused practice, does not grant any additional qualifications, and does not constitute a new area of focused practice.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
    https://doi.org/10.36660/abc.20240110...

  2. Must take place at an educational facility with an active, formally constituted pediatric Exercise Testing service, registered with all relevant public authorities, with regular and up-to-date paperwork (including Department of Health clearance). The facility may be subject to registration, assessment, and accreditation by DERC/SBC.

  3. As a mandatory prerequisite for training, candidates must have completed a medical residency in Cardiology or be board-certified in Cardiology and registered as such with the Brazilian Medical Association/CFM, and must either be in training or have completed training toward a focused practice designation in Exercise Testing in accordance with Brazilian Medical Association/CFM regulations.

  4. Training should allow the cardiologist to acquire the necessary experience in ET and CPET in the pediatric population (children and adolescents) to be responsible for the performance, interpretation, and organization of pediatric ET/CPET services. Programs shall be theoretical and practical, with a minimum workload of 100 hours.

  5. The theoretical portion can be carried out at the facility itself or in partnership with DERC/SBC, and the theoretical syllabus must include, at a minimum, all topics and subjects covered in this Guideline. Furthermore, it is recommended that the theoretical syllabus include the following additional content:

    • A review of CVD in children and adolescents (including CHD), their treatment and workup.

    • A review of medications commonly used in the pediatric population and the necessary dosage adjustments.

    • A review of cardiovascular physiology and exercise physiology both in the healthy pediatric population and in children and adolescents with heart disease (including unrepaired, repaired, and palliatively treated CHD).

  6. The practical portion shall correspond to at least 80% of the total program workload and must cover both ET and CPET. It must take place under the direct, on-site supervision of a preceptor, who must be board-certified in Cardiology, hold a focused practice designation in Exercise Testing and have experience in performing ET/CPET in the pediatric population. Practical training must have a minimum ratio of one preceptor to two participants or fewer.

  7. Periodic training in emergency care is recommended. This training should correspond to completion of Pediatric Advanced Life Support (PALS) and Advanced Cardiovascular Life Support (ACLS) courses.

  8. The training facility shall be responsible for conducting and submitting evaluations of each participant, during and/or at the end of the training program. Transparency in assessments can be ensured by predefining a set of objective criteria that must be met by participants. When candidates fail the program, it is suggested that the training facility provide additional training options to remedy any pending issues, followed by a reassessment. The training facility must provide an official certificate to all approved candidates, as well as a declaration of compliance with all requirements of theoretical and practical training listed herein.

  9. After completion of the training program, periodic participation in scientific events/refresher programs in ET and CPET in children and adolescents, at the national and/or international level, is essential for continuous education and improvement of the knowledge acquired during training.

Part 2 – The Exercise Test

1. ET Methodology in Children and Adolescents

1.1. Core Conditions for ET/CPET

1.1.1. Team

ET/CPET must be performed by a qualified, experienced physician, with expertise in exercise testing of children and adolescents and PALS training.

Any other health care providers (registered nurse, nurse technician, or nursing assistant) who are assisting the performing physician must have been specifically trained in the care of children and adolescents, as well as in how to manage emergencies in the pediatric population.265265 Conselho Federal de Medicina. Resolução CFM no 2.153/2016. Altera o anexo da resolução CFM n.2056/2013 e dispõe a nova redação do manual de vistoria de fiscalização da medicina no Brasil. Diário Oficial da União, Brasília, 18 sep. 2017.268268 Guimarães HP, Timerman S, Rodrigues RDR, Corrêa TD, Schubert DUC, Freitas AP, et al. Position Statement: Cardiopulmonary Resuscitation of Patients with Confirmed or Suspected COVID-19 - 2020. Arq Bras Cardiol. 2020;114(6):1078-87. doi: 10.36660/abc.20200548.
https://doi.org/10.36660/abc.20200548...

In patients with complex CHD or at increased risk of complications (see Chart 1), it is recommended that ET/CPET be carried out in a hospital setting, with a specialist pediatric emergency physician on standby.

The facility and/or the physician should properly guide and train any other providers potentially involved in the ET/CPET regarding the scheduling of the test, patient education, cleaning of equipment, cleaning of the examination room, and patient care/transport.

1.1.2. Physical Infrastructure

ET/CPET must be performed in a planned, well-lit and well-ventilated environment, large enough to accommodate all ET/CPET equipment (including an examination table or stretcher/gurney, patient chair, and a crash cart) and any additional equipment needed for exercise testing of children and adolescents, while also allowing circulation of at least four people (at least 10 m2), at a controlled ambient temperature of 18-22°C and a relative humidity of at least 40%. A parent or legal guardian must be present in the exam room.264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...
,278278 Serra S, Leão R. Teste Ergométrico, Teste Cardiopulmonar de Exercício, Cardiologia Nuclear, Reabilitação Cardiopulmonar e Metabólica e Cardiologia do Esporte e do Exercício. Rio de Janeiro: Guanabara Koogan; 2019. ISBN-10: 8535293493; ISBN-13: 978-8535293494.284284 Zhao J, Lorenzo S, An N, Feng W, Lai L, Cui S. Effects of Heat and Different Humidity Levels on Aerobic and Anaerobic Exercise Performance in Athletes. J Exerc Sci Fit. 2013;11(1):35-41. doi: 10.1016/j.jesf.2013.04.002.
https://doi.org/10.1016/j.jesf.2013.04.0...

1.1.3. Equipment

Recommended essential equipment: ergometer; exercise testing system for monitoring electrocardiogram (ECG); printer (or print server access); calibrated sphygmomanometer; stethoscope; wall thermometer and hygrometer; fingertip pulse oximeter; armchairs for patient, chaperone, and physician; examination table or stretcher/gurney; crash cart (if there is only one examination room); oxygen cylinder (next to crash cart) or wall-mounted oxygen port in each ET/CPET room; portable suction device (next to crash cart) or wall-mounted suction in each ET/CPET room; waste receptacles (for common and hospital waste).149149 American College of Sports Medicine, Liguori G, Feito Y, Fountaine C, Roy B, editors. ACSM's Guidelines for Exercise Testing and Prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021. ISBN-13: 9781975150181.,264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...
,278278 Serra S, Leão R. Teste Ergométrico, Teste Cardiopulmonar de Exercício, Cardiologia Nuclear, Reabilitação Cardiopulmonar e Metabólica e Cardiologia do Esporte e do Exercício. Rio de Janeiro: Guanabara Koogan; 2019. ISBN-10: 8535293493; ISBN-13: 978-8535293494.280280 Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.,285285 Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 1): Methods and Interpretation. Arch Cardiovasc Dis. 2018;111(12):782-90. doi: 10.1016/j.acvd.2018.05.005.
https://doi.org/10.1016/j.acvd.2018.05.0...
,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.

All equipment must be customized for the pediatric population:

  1. Ergometers must be adapted for the age, height, and weight of children/adolescents:

    • Treadmills should incorporate safety side handrails and a height-adjustable front rail to give smaller children somewhere to hold onto. They should also start at a lower speed, consistent with the walking pace of younger children.

    • A padded mat should be placed on the floor immediately behind the treadmill to protect the child.

    • Cycle ergometers must allow adjustment of seat height, handlebar height and position, and pedal strap length, and should exert less braking force, consistent with the pedaling cadence of younger children.

    • For the youngest children, use of a safety harness (consisting of a set of interconnected straps wrapped around the torso and waist and attached to the treadmill or to a secure attachment point) is recommended.

  2. For CPET, a special pediatric interface (face mask or mouthpiece) allowing for the necessary adjustments should be used.

  3. Age-appropriate cardiac monitoring electrodes should be used. Pediatric electrodes/pads are appropriate for children and smaller adolescents; adult electrodes/pads are fine for taller adolescents and those with a larger chest circumference.

  4. A wide-ranging set of blood pressure (BP) cuffs of various sizes should be available for pediatric BP monitoring.287287 Sociedade Brasileira de Pediatria. Departamento Científico de Nefrologia. Manual de Orientação. Hipertensão arterial na infância e adolescência. São Paulo: Sociedade Brasileira de Pediatria; N° 2. Abril, 2019. Disponível em: https://www.sbp.com.br/fileadmin/user_upload/21635c-MO_-_Hipertensao_Arterial_Infanc_e_Adolesc.pdf.
    https://www.sbp.com.br/fileadmin/user_up...

  5. The settings of the ergometry system should incorporate specific criteria and parameters for the pediatric population, and should allow magnification of the ECG waveform for adequate visualization.

  6. If noninvasive oximetry is performed simultaneously with or in addition to ET/CPET, pediatric sensors should be used.

1.1.4. Emergency Supplies

A pediatric crash cart stocked with basic and advanced life support supplies must be available on site wherever pediatric ET and/or CPET are performed. This guideline recommends that facilities adopt the standardized crash cart composition given in the Brazilian Society of Cardiology Guideline for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (Chart 17.3 – Padronização do carro de emergência pediátrica na unidade de internação, terapia intensiva e pronto-socorro).266266 Bernoche C, Timerman S, Polastri TF, Giannetti NS, Siqueira AWDS, Piscopo A, et al. Atualização da Diretriz de Ressuscitação Cardiopulmonar e Cuidados Cardiovasculares de Emergência da Sociedade Brasileira de Cardiologia - 2019. Arq Bras Cardiol. 2019;113(3):449-663. doi: 10.5935/abc.20190203.
https://doi.org/10.5935/abc.20190203...

1.1.5. Guidelines for Patients and Parents/Guardians when Scheduling ET/CPET

At the time of scheduling the ET/CPET, patients and their families should be provided guidance (preferably in writing) on the pre-test preparations needed to ensure proper conduct of the test. When very young children are to be tested, parents should be instructed to explain the recommendations to the child as necessary in order to obtain maximum cooperation.

The recommendations are as follows:77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

  1. The patient must come to the facility well-rested (physical exertion is to be avoided on the day of the test).

  2. Avoid fasting or eating to excess before the test; have a light meal 2 hours before. Refrain from drinking any caffeinated beverages (including soft drinks/sodas) on the day of the test.

  3. The patient should wear comfortable clothes: shorts, a T-shirt, and appropriate footwear (preferably sneakers/tennis shoes; open-toed shoes and sandals should be avoided). Female teenagers should wear a regular or sports bra.

  4. Bring the ET request or order form.

  5. Bring the reports of any previous ETs/CPETs.

  6. Whether to withhold or continue any medication remains at the discretion of the patient's attending physician.

  7. One parent or legal guardian must serve as chaperone for the child/adolescent at all times.

  8. In case of CPET, the patient should be advised that they will have to wear a face mask/mouthpiece, but that it will not interfere with their breathing.

Note: adolescents should be screened for alcohol and/or tobacco intake (regardless of the legality of these substances for minors) and, when applicable, advised to discontinue use before the test.

1.1.6. Guidelines for Patients and Parents/Guardians at the Time of ET/CPET

When the child/adolescent and their parents (or legal guardian) arrive for the test, the entire procedure must be explained in language they can both understand. The child and parents must be allowed to ask as many questions as they wish to clarify any potential uncertainty regarding the test.1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...

The team should then show the child/adolescent how to use the ergometer and make it clear that the examination usually does not cause any pain and can even be a fun experience. Parents should be informed that:

  • The child/adolescent will be asked to exercise (walk on a treadmill or cycle), within his or her abilities and capacities, and may stop at any time if he or she wishes or needs to stop.

  • The doctor and other team members will carry out various procedures needed to monitor the patient and record the test data.

  • The child/adolescent may experience symptoms such as fatigue resulting from exercise, as well as other symptoms associated with his or her underlying condition.

1.1.7. Guidance Regarding Medication Intake

Unlike in adults, discontinuation of medications before ET/CPET is rarely indicated in children and adolescents. The pediatric population generally only takes medications that are proven necessary to keep any underlying diseases under control. If discontinuation is deemed necessary, this should be indicated by the child/adolescent's attending physician, taking into account the risks involved. The timing of discontinuation must consider the washout time of each medication and the extent to which this can vary in the pediatric age group.66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1212 Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
https://doi.org/10.1016/j.recesp.2024.02...

In patients with asthma, whether or not to withhold medication depends on the indication for exercise testing.288288 Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, et al. Guidelines for Methacholine and Exercise Challenge Testing-1999. This Official Statement of the American Thoracic Society was Adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309-29. doi: 10.1164/ajrccm.161.1.ats11-99.
https://doi.org/10.1164/ajrccm.161.1.ats...
Discontinuation of other medications must consider possible impacts on physical performance, chronotropic response, ischemia and angina thresholds, ST-segment response, exercise-induced arrhythmias, etc.

1.2. Basic ET Procedure

ET/CPET in children is more challenging than in adolescents, especially in those with chronic health conditions. Difficulties in testing children are mainly attributable to three reasons:289289 Hebestreit H. Exercise Testing in Children - What Works, what doesn‘t, and Where to Go? Paediatr Respir Rev. 2004;(5 Suppl A):S11-4. doi: 10.1016/s1526-0542(04)90002-4.
https://doi.org/10.1016/s1526-0542(04)90...

  1. Very small body size even when the equipment is adapted for the pediatric population.

  2. Greatly reduced physical capacity, making adaptation difficult, even with the use of protocols with small increments in effort load.

  3. Generally shorter attention span, reduced motivation during prolonged activities and poor cooperativeness, which make it difficult to distinguish limited exercise capacity from lack of cooperation.

1.2.1. Pre-test Phase, Initial Assessment, and Targeted and Specific Physical Examination

It is recommended that the performing physician evaluate the stated indication for the test and the patient's current symptoms, ascertain whether the pre-test recommendations were followed, obtain a detailed history, and perform a targeted physical examination focusing on the cardiovascular and respiratory systems (Chart 3).264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...
,279279 Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.,280280 Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.

Chart 3
Recommendations regarding targeted history and physical examination in pediatric patients264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...
,279279 Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.,280280 Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.

It is critical that potential relative and absolute contraindications for ET/CPET be identified. Information on previous treatments must also be obtained (especially in cases of CHD). The use of adult pre-test clinical scores is not recommended, as they are not validated for the pediatric population.

1.2.2. Electrocardiographic Monitoring and Recording System

Continuous ECG monitoring and recording are mandatory at all stages of the ET: rest, stress, and recovery. Ideally, a computerized stress testing system, including software that allows continuous ECG monitoring, data collection, recording, and interpretation specific for the pediatric population, should be used. Hypoallergenic long-term monitoring electrodes with extra tacky (diaphoretic) adhesive are recommended; in young children, special pediatric electrodes should be used.264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...
,279279 Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.,280280 Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.

The number of leads to be used (12 or 13) and positioning of the electrode array should follow the Brazilian Guideline for Exercise Testing in the Adult Population – 2024. In 12-lead systems, use the classic Mason-Likar lead system or its modified version (without substitution of the CM5 lead). The 13-lead system is obtained using the classic Mason-Likar lead system by adding the CM5 bipolar lead. Three-lead systems are no longer recommended, given the established superiority of systems with 12, 13, or more leads.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

Skin preparation procedures are similar to those for adults, which, in male adolescents, can include shaving to remove excess body hair in areas where electrodes will be placed. In young children, alcohol skin prep should be performed with great care to avoid excess skin abrasion. It is also important to reassure the child that no injection will follow the procedure (many children associate alcohol pads with injections). A mesh vest or shirt can be used to help keep the electrodes and wires firmly in place.

1.2.3. Ergometers

The choice of ergometer should be made on a case-by-case basis, taking into account the child or adolescent's age, height, ability to adapt, safety, and potential physical limitations. There are three main types of ergometer used in ET/CPET: cycle ergometer, treadmill, and upper body ergometer (arm machine or arm cycle). Both the cycle ergometer and treadmill produce adequate, reliable, and reproducible maximum loads, allowing the collection of diagnostic and physical performance information in the pediatric population.290290 Chang RR, Gurvitz M, Rodriguez S, Hong E, Klitzner TS. Current Practice of Exercise Stress Testing among Pediatric Cardiology and Pulmonology Centers in the United States. Pediatr Cardiol. 2006;27(1):110-6. doi: 10.1007/s00246-005-1046-9.
https://doi.org/10.1007/s00246-005-1046-...

1.2.3.1. Conventional Cycle Ergometer

The conventional lower-limb cycle ergometer (stationary bicycle) is most commonly used in children over 6 years of age. Children who are not used to cycling often experience:

  • Early muscle fatigue in the lower limbs, which may not reach maximum effort.

  • Difficulty maintaining a pedaling cadence between 40 and 70 rpm.

  • Difficulty keeping their feet on the pedals, even when these are appropriately child-sized.

To properly accommodate the child or the adolescent, the cycle ergometer must have adjustable seat height, handlebar height and position, and pedal strap lengths. Children and adolescents with a height of ≥125 cm can perform ET/CPET on a standard adult cycle ergometer or stationary bicycle.200200 Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ. Cardiopulmonary Exercise Testing in Congenital Heart Disease: Equipment and Test Protocols. Neth Heart J. 2009;17(9):339-44. doi: 10.1007/BF03086280.
https://doi.org/10.1007/BF03086280...
Use of a cycle ergometer is preferred when a more accurate assessment of blood pressure is required.

1.2.3.2. Treadmill

ET/CPET on a treadmill is possible in children from 3 years of age, as they are more familiar with walking quickly and even running. However, exercise on a treadmill does not replicate natural walking, and clinicians are advised to first assess the child's capacity to adapt to and coordinate walking on the ergometer. The height of the front handrail should be adjusted as appropriate for the child's height.

In ET of very young or limited children, the following special precautions are suggested:66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
1212 Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
https://doi.org/10.1016/j.recesp.2024.02...

  • Use of a safety harness to protect the child in the event of sudden collapse or loss of balance.

  • Safety side rails and a padded mat placed on the floor at the end of the treadmill to protect the child.

  • Having an extra team member positioned immediately behind the treadmill to assist and protect the child as necessary during the test.

Treadmill ET generally yields maximum oxygen consumption (VO2max) values ≈10% higher than those obtained on a cycle ergometer.291291 Turley KR, Wilmore JH. Cardiovascular Responses to Treadmill and Cycle Ergometer Exercise in Children and Adults. J Appl Physiol. 1997;83(3):948-57. doi: 10.1152/jappl.1997.83.3.948.
https://doi.org/10.1152/jappl.1997.83.3....
293293 Bar-Yoseph R, Porszasz J, Radom-Aizik S, Stehli A, Law P, Cooper DM. The Effect of Test Modality on Dynamic Exercise Biomarkers in Children, Adolescents, and Young Adults. Physiol Rep. 2019;7(14):e14178. doi: 10.14814/phy2.14178.
https://doi.org/10.14814/phy2.14178...

1.2.3.3. Upper Body Ergometer

Upper body ergometers are rarely used in children and adolescents. Their use is generally restricted in patients with impaired lower-body mobility caused by lesions of the thoracic or upper lumbar spine, lower-limb amputation, meningocele, spina bifida, etc.294294 Oliveira A, Jácome C, Marques A. Physical Fitness and Exercise Training on Individuals with Spina Bifida: A Systematic Review. Res Dev Disabil. 2014;35(5):1119-36. doi: 10.1016/j.ridd.2014.02.002.
https://doi.org/10.1016/j.ridd.2014.02.0...
,295295 Widman LM, Abresch RT, Styne DM, McDonald CM. Aerobic Fitness and Upper Extremity Strength in Patients Aged 11 to 21 Years with Spinal Cord Dysfunction as Compared to Ideal Weight and Overweight Controls. J Spinal Cord Med. 2007;(Suppl 1):S88-96. doi: 10.1080/10790268.2007.11754611.
https://doi.org/10.1080/10790268.2007.11...

Nevertheless, ET with an arm ergometer using a validated ramp protocol allows adequate assessment of cardiorespiratory fitness in children and adolescents.295295 Widman LM, Abresch RT, Styne DM, McDonald CM. Aerobic Fitness and Upper Extremity Strength in Patients Aged 11 to 21 Years with Spinal Cord Dysfunction as Compared to Ideal Weight and Overweight Controls. J Spinal Cord Med. 2007;(Suppl 1):S88-96. doi: 10.1080/10790268.2007.11754611.
https://doi.org/10.1080/10790268.2007.11...
,296296 Kouwijzer I, Valize M, Valent LJM, Comtesse PGP, van der Woude LHV, Groot S. The Influence of Protocol Design on the Identification of Ventilatory Thresholds and the Attainment of Peak Physiological Responses During Synchronous Arm Crank Ergometry in Able-Bodied Participants. Eur J Appl Physiol. 2019;119(10):2275-86. doi: 10.1007/s00421-019-04211-9.
https://doi.org/10.1007/s00421-019-04211...

1.2.4. Choice of Protocol

The choice of protocol should be individualized, taking into account the indication for ET, the patient's level of daily physical activity, and possible physical limitations, aiming at an ideal exercise time of approximately 10 minutes (ranging from 6 to 12 minutes). The protocol must also respect the patient's individual characteristics (age, body size, ability to adapt to incremental load, etc.).66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...

Exercise testing protocols are divided according to the mode of effort exerted:

  1. Incremental (gradual increase in load):

    • Step (or stepwise): load is increased in stages (in a stepwise manner, as the name implies) at predetermined time points (every one or more minutes per stage).

    • Ramp: small, frequent load increments (tending to a linear increase) at very short time intervals (increments in seconds, always less than 1 minute).

  2. Fixed-load: there is no increase in load at any point during the test. When performed on a treadmill, speed and grade (incline) are simply kept constant.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
    https://doi.org/10.36660/abc.20240110...
    ,1212 Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
    https://doi.org/10.1016/j.recesp.2024.02...
    ,285285 Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 1): Methods and Interpretation. Arch Cardiovasc Dis. 2018;111(12):782-90. doi: 10.1016/j.acvd.2018.05.005.
    https://doi.org/10.1016/j.acvd.2018.05.0...

1.2.4.1. Cycle Ergometer Protocols

The main ET protocols for cycle ergometers are listed in Table 13. The workload performed on a cycle ergometer is generally expressed in watts (W). Most protocols require a pedaling cadence between 50 and 60 rpm, with variation limited to 40-70 rpm.

Table 13
Comparison of major cycle ergometer protocols

The Balke and Astrand protocols have the disadvantage of not taking body size into account, and may be too intense for younger children (especially those with heart disease).

Conversely, in the McMaster, James, and Godfrey protocols, initial loads and subsequent increments are dependent on body size (height or body surface area [BSA]) and/or sex (Table 14). In adolescents, their high loads can be a limiting factor for sedentary or very ill patients (i.e. cardiopaths, pneumopaths, etc.).297297 Tanner CS, Heise CT, Barber G. Correlation of the Physiologic Parameters of a Continuous Ramp versus an Incremental James Exercise Protocol in Normal Children. Am J Cardiol. 1991;67(4):309-12. doi: 10.1016/0002-9149(91)90566-4.
https://doi.org/10.1016/0002-9149(91)905...
,298298 Octavio JM, Folk AL, Falini L, Xie S, Goudie BW, Gidding SS, et al. Standardization of a Continuous Ramp Ergometer Protocol for Clinical Exercise Testing in Children. Pediatr Cardiol. 2019;40(4):834-40. doi: 10.1007/s00246-019-02079-2.
https://doi.org/10.1007/s00246-019-02079...

Table 14
Godfrey, McMaster, and James cycle ergometer protocols300300 Rowland TW, Tighe DA. Pediatric Exercise Testing. In: Tighe DA, Gentile BA, Chung EK, editors. Pocket Guide Stress Test. Second edition. Hoboken, New York: Wiley; 2020, p. 281-99. ISBN: 9781119481751.304304 Godfrey S, Davies CT, Wozniak E, Barnes CA. Cardio-Respiratory Response to Exercise in Normal Children. Clin Sci. 1971;40(5):419-31. doi: 10.1042/cs0400419.
https://doi.org/10.1042/cs0400419...

1.2.4.2. Treadmill Protocols

1.2.4.2.1. Step Protocols

1.2.4.2.1.1. Bruce Protocol

The Bruce protocol is most widely used step protocol (Table 15). It is most appropriate for ET in children without severe heart disease and (apparently) healthy children and adolescents, including preschoolers. It can also be used in serial exercise testing to compare data as the child grows. Potential disadvantages:

Table 15
Most common graded exercise protocols for the pediatric population and their characteristics11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,306306 Marinov B, Kostianev S, Turnovska T. Modified Treadmill Protocol for Evaluation of Physical Fitness in Pediatric Age Group-Comparison with Bruce and Balke Protocols. Acta Physiol Pharmacol Bulg. 2003;27(2-3): 47-51. PMID: 14570147.
  • In younger or more limited children, the load increments between stages can be very abrupt, which often leads to dropout within the first minute of a new stage.

  • Can be too long (to the point of boredom) for active children and adolescents/trained youth athletes.

1.2.4.2.1.2. Modified Bruce Protocol

The modified Bruce protocol, which begins with no slope/grade, is more suitable for younger or more physically limited children. It can be used in children aged 3 years and older with known heart disease or lung disease. The most serious limitation is that it involves abrupt load increments (similar to those of the unmodified Bruce protocol) after the third stage.

1.2.4.2.1.3. Ellestad Protocol

This protocol employs marked increases in speed and is preferably reserved for physically active teenagers and trained athletes. The main limitations of this protocol are that it begins at fairly high speeds, making adaptation difficult for subjects who are not used to running, and that it hinders BP measurement somewhat.

1.2.4.2.1.4. Balke Protocol

Balke protocol incorporates a constant treadmill speed (3.5 mph) with an incremental grade (1% every minute). It is most suitable for obese, very young, chronically ill, or greatly physically limited children.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,306306 Marinov B, Kostianev S, Turnovska T. Modified Treadmill Protocol for Evaluation of Physical Fitness in Pediatric Age Group-Comparison with Bruce and Balke Protocols. Acta Physiol Pharmacol Bulg. 2003;27(2-3): 47-51. PMID: 14570147.

One disadvantage is that, in physically active patients, the test duration is extremely long. For these patients, a modified ("running Balke") version of the protocol, which uses a faster constant speed aiming to keep the test duration between 8 and 10 minutes, is preferred.

1.2.4.2.1.5. Naughton Protocol

There are several adaptations of the Naughton protocol for the pediatric population, with variations in initial speed and grade and smaller load increments per stage, allowing better adaptation of younger children and/or those with physical limitations. The Naughton protocol should not be used in healthy children and adolescents, as it prolongs the test unnecessarily.307307 Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill Exercise in Assessment of the Functional Capacity of Patients with Cardiac Disease. Am J Cardiol. 1972;30(7):757-62. doi: 10.1016/0002-9149(72)90151-8.
https://doi.org/10.1016/0002-9149(72)901...

1.2.4.2.2. Ramp Protocol

Ramp protocols can be fully individualized in terms of speed, grade (initial and final), and duration to meet the needs of each child/adolescent. They allow better determination of maximum oxygen consumption (direct or estimated), ventilatory thresholds (direct), and maximum power (measured or estimated), as well as better assessment of the causes of exercise intolerance, ischemia, and arrhythmias. The target test duration should remain at 8 to 12 minutes, with the slope of the ramp adjusted to the child's size and physical abilities.

For children with heart disease, this guideline suggests starting the protocol at a speed of 1 km/h and 0% grade, with subsequent small, constant increments in intensity.

Table 16 presents an individualization of the ramp protocol based on a study of the Brazilian pediatric population, in which this protocol proved to be more comfortable than the Bruce protocol.121121 Silva OB, Saraiva LCR, Sobral DC Filho. Teste Ergométrico em Crianças e Adolescentes: Maior Tolerância ao Esforço com o Protocolo em Rampa. Arq Bras Cardiol. 2007;89(6):355-360. doi: 10.1590/S0066-782X2007001800007.
https://doi.org/10.1590/S0066-782X200700...

Table 16
Individualization of the ramp protocol by sex and age group based on a study of the Brazilian pediatric population

1.2.5. Heart Rate Monitoring

Heart rate (HR) should be monitored and measured directly from the ECG waveform during all phases of ET/CPET. HR should be recorded (at the very least): before exercise; at the end of each stage of a step incremental protocol or every 2 minutes with a ramp incremental protocol; and during recovery (at 1, 2, 4, and 6 minutes). Measurements should be continued for as long as is necessary during the recovery period.

Performing a conventional 12-lead ECG before the ET/CPET is also advised. Conventional ECG is a supplemental test for assessment of the patient's cardiac condition, and can even help uncover potential contraindications to ET/CPET. A conventional 12-lead ECG is considered a medical procedure, and as such is covered in the Brazilian Hierarchical Classification of Medical Procedures (code 4.01.01.01-0).11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,278278 Serra S, Leão R. Teste Ergométrico, Teste Cardiopulmonar de Exercício, Cardiologia Nuclear, Reabilitação Cardiopulmonar e Metabólica e Cardiologia do Esporte e do Exercício. Rio de Janeiro: Guanabara Koogan; 2019. ISBN-10: 8535293493; ISBN-13: 978-8535293494.,308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...

In ET, HR is conceptualized as follows:9595 Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 2): Indications for Exercise Tests in Cardiac Diseases. Arch Cardiovasc Dis. 2019;112(1):56-66. doi: 10.1016/j.acvd.2018.07.001.
https://doi.org/10.1016/j.acvd.2018.07.0...
,264264 Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
https://doi.org/10.1161/CIR.0b013e31829b...

  • Maximal heart rate (HRmax): that reached at the point of exhaustion.

  • Peak heart rate (HRpeak): the highest HR observed at peak exertion, even if the subject has not reached the point of exhaustion.

It is important to emphasize that, in apparently healthy children, HRmax remains essentially unchanged throughout childhood, and the use of regression equations to estimate HRmax in the pediatric population is limited (less accurate prediction, average dispersion 5-10 bpm). In adolescence, around the age of 16, HRmax begins to decline at a rate of 0.7 or 0.8 bpm per year of advancing age.177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

It is therefore suggested that an average predicted HRmax value of 197 bpm and a predicted submaximal HR of 180 bpm (which corresponds to -2 standard deviations) be adopted for the entire pediatric age group (children and adolescents).309309 Pedroni AS, Schiavo A, Macedo E, Campos NE, Winck AD, Heinzmann-Filho JP. Predictive Maximal Heart Rate Equations in Child and Adolescent Athletes: A Systematic Review. Fisioter Em Mov. 2018;31(1):1-9. doi: 10.1590/1980-5918.031.ao31.
https://doi.org/10.1590/1980-5918.031.ao...
,310310 Gelbart M, Ziv-Baran T, Williams CA, Yarom Y, Dubnov-Raz G. Prediction of Maximal Heart Rate in Children and Adolescents. Clin J Sport Med. 2017;27(2):139-44. doi: 10.1097/JSM.0000000000000315.
https://doi.org/10.1097/JSM.000000000000...

If, nevertheless, equations are used to estimate HRmax in the pediatric population, the following factors should be taken into account:309309 Pedroni AS, Schiavo A, Macedo E, Campos NE, Winck AD, Heinzmann-Filho JP. Predictive Maximal Heart Rate Equations in Child and Adolescent Athletes: A Systematic Review. Fisioter Em Mov. 2018;31(1):1-9. doi: 10.1590/1980-5918.031.ao31.
https://doi.org/10.1590/1980-5918.031.ao...
,311311 Cicone ZS, Holmes CJ, Fedewa MV, MacDonald HV, Esco MR. Age-Based Prediction of Maximal Heart Rate in Children and Adolescents: A Systematic Review and Meta-Analysis. Res Q Exerc Sport. 2019;90(3):417-28. doi: 10.1080/02701367.2019.1615605.
https://doi.org/10.1080/02701367.2019.16...

  • The Karvonen equation (HRmax = 220 – age) generally overestimates HRmax.312312 Mahon AD, Marjerrison AD, Lee JD, Woodruff ME, Hanna LE. Evaluating the Prediction of Maximal Heart Rate in Children and Adolescents. Res Q Exerc Sport. 2010;81(4):466-71. doi: 10.1080/02701367.2010.10599707.
    https://doi.org/10.1080/02701367.2010.10...
    ,313313 Machado FA, Denadai BS. Validity of Maximum Heart Rate Prediction Equations for Children and Adolescents. Arq Bras Cardiol. 2011;97(2):136-40. doi: 10.1590/s0066-782x2011005000078.
    https://doi.org/10.1590/s0066-782x201100...

  • The Tanaka equation (HRmax = 208 – [0.7 x age]) may underestimate or overestimate HRmax, but is considered the most precise equation.311311 Cicone ZS, Holmes CJ, Fedewa MV, MacDonald HV, Esco MR. Age-Based Prediction of Maximal Heart Rate in Children and Adolescents: A Systematic Review and Meta-Analysis. Res Q Exerc Sport. 2019;90(3):417-28. doi: 10.1080/02701367.2019.1615605.
    https://doi.org/10.1080/02701367.2019.16...
    ,314314 Caputo EL, Silva MC, Rombaldi A. Comparação da Frequência Cardíaca Máxima Obtida por Diferentes Métodos. Rev Educ FísicaUEM. 2012;23(2):277-84. doi: 10.4025/reveducfis.v23i2.12311.
    https://doi.org/10.4025/reveducfis.v23i2...
    ,315315 Nikolaidis PT. Maximal Heart Rate in Soccer Players: Measured versus Age-Predicted. Biomed J. 2015;38(1):84-9. doi: 10.4103/2319-4170.131397.
    https://doi.org/10.4103/2319-4170.131397...

  • The Nikolaidis equation (HRmax = 223 – [1.44 x age]), which was developed for adolescent athletes, has proven inadequate.315315 Nikolaidis PT. Maximal Heart Rate in Soccer Players: Measured versus Age-Predicted. Biomed J. 2015;38(1):84-9. doi: 10.4103/2319-4170.131397.
    https://doi.org/10.4103/2319-4170.131397...
    ,316316 Nikolaidis PT. Age-Predicted vs. Measured Maximal Heart Rate in Young Team Sport Athletes. Niger Med J. 2014;55(4):314-20. doi: 10.4103/0300-1652.137192.
    https://doi.org/10.4103/0300-1652.137192...

1.2.6. Blood Pressure Monitoring

Blood pressure (BP) measurement must be performed during all stages of the ET (pre-test, exercise, and recovery) by a duly trained physician experienced in caring for pediatric patients.

Manual measurement performed with an aneroid sphygmomanometer is still the most common. Semiautomated and/or automated devices are available, but may not provide accurate measurements under certain circumstances, due to:317317 Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension. 2019;73(5):e35-e66. doi: 10.1161/HYP.0000000000000087.
https://doi.org/10.1161/HYP.000000000000...
,318318 Flynn JT, Urbina EM, Brady TM, Baker-Smith C, Daniels SR, Hayman LL, Mitsnefes M, Tran A, Zachariah JP; Atherosclerosis, Hypertension, and Obesity in the Young Committee of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Radiology and Intervention; Council on Epidemiology and Prevention; Council on Hypertension; and Council on Lifestyle and Cardiometabolic Health. Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement From the American Heart Association. Hypertension. 2022 Jul;79(7):e114-e124. doi: 10.1161/HYP.0000000000000215.
https://doi.org/10.1161/HYP.000000000000...

  • Excess movement and vibration (especially in younger children).

  • Some devices work by measuring mean BP and calculating systolic and diastolic BP algorithmically. In younger children, this method may present limitations in the assessment of diastolic BP (DBP), as it fails to distinguish between Korotkoff sounds phases IV and V.319319 Feitosa ADM, Barroso WKS, Mion Junior D, Nobre F, Mota-Gomes MA, Jardim PCB, et al. Brazilian Guidelines for In-Office and Out-of-Office Blood Pressure Measurement – 2023. Arq Bras Cardiol. 2024;121(4):e20240113. doi: 10.36660/abc.20240113i.
    https://doi.org/10.36660/abc.20240113i...
    ,320320 Gersak G, Zemva A, Drnovsek J. A Procedure For Evaluation of Non-Invasive Blood Pressure Simulators. Med Biol Eng Comput. 2009;47(12):1221-8. doi: 10.1007/s11517-009-0532-2.
    https://doi.org/10.1007/s11517-009-0532-...

  • Most automated equipment has not been validated in the pediatric population for measurements at rest and during intense exertion.44 Bouhanick B, Sosner P, Brochard K, Mounier-Véhier C, Plu-Bureau G, Hascoet S, et al. Hypertension in Children and Adolescents: A Position Statement from a Panel of Multidisciplinary Experts Coordinated by the French Society of Hypertension. Front Pediatr. 2021;9:680803. doi: 10.3389/fped.2021.680803.
    https://doi.org/10.3389/fped.2021.680803...

Regardless of the measurement method adopted, use a Velcro® cuff of the appropriate size for the patient's arm circumference. The cuff width should be at least 40% of the upper-arm circumference and cover 80 to 100% of the arm length.44 Bouhanick B, Sosner P, Brochard K, Mounier-Véhier C, Plu-Bureau G, Hascoet S, et al. Hypertension in Children and Adolescents: A Position Statement from a Panel of Multidisciplinary Experts Coordinated by the French Society of Hypertension. Front Pediatr. 2021;9:680803. doi: 10.3389/fped.2021.680803.
https://doi.org/10.3389/fped.2021.680803...
.321321 Nerenberg KA, Zarnke KB, Leung AA, Dasgupta K, Butalia S, McBrien K, et al. Hypertension Canada‘s 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children. Can J Cardiol. 2018;34(5):506-25. doi: 10.1016/j.cjca.2018.02.022.
https://doi.org/10.1016/j.cjca.2018.02.0...
We advise use of the cuff dimensions recommended in the "Brazilian Guidelines for In-Office and Out-of-Office Blood Pressure Measurement – 2023" and "Brazilian Guidelines of Hypertension – 2020" (Table 17).319319 Feitosa ADM, Barroso WKS, Mion Junior D, Nobre F, Mota-Gomes MA, Jardim PCB, et al. Brazilian Guidelines for In-Office and Out-of-Office Blood Pressure Measurement – 2023. Arq Bras Cardiol. 2024;121(4):e20240113. doi: 10.36660/abc.20240113i.
https://doi.org/10.36660/abc.20240113i...
,322322 Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol. 2021;116(3):516-658. doi: 10.36660/abc.20201238.
https://doi.org/10.36660/abc.20201238...

Table 17
Cuff dimensions according to upper-arm circumference

The sphygmomanometer and cuffs must be cleaned and inspected regularly to prevent technical issues that might affect the quality and accuracy of measurements.323323 Mion D, Pierin AM. How Accurate are Sphygmomanometers? J Hum Hypertens. 1998;12(4):245-8. doi: 10.1038/sj.jhh.1000589.
https://doi.org/10.1038/sj.jhh.1000589...

When measuring manually, listen for Korotkoff sounds while bearing in mind that:

  • SBP corresponds to the reappearance of blood flow (Korotkoff phase I).

  • DBP corresponds to the point at which sounds become muffled (Korotkoff phase IV). Phase IV is used instead of phase V (the point at which sounds disappear) because in children, most of the time, Korotkoff sounds can be heard all the way down to 0 mmHg.

Pre-test BP measurements should preferably be obtained:

  • At rest, in the seated position, with the arm supported at heart level.

  • In whichever position the child/adolescent will perform the exercise.

HR should be measured at the end of each stage of a step incremental protocol or every 2 minutes with a ramp incremental protocol, as well as during recovery (at 1, 2, 4, and 6 minutes). Measurements should be repeated for as long as is necessary during the recovery period. BP should be reassessed whenever there are any discrepancies or a measurement is deemed unreliable or otherwise questionable.

Arm BP measurement is contraindicated in case of arteriovenous fistula, history of lymph node dissection, thrombosis, lymphedema, and/or coarctation of the aorta.

2. Pretest Risk Stratification

Studies and guidelines have provided new evidence regarding cardiovascular risk factors in childhood, their relationship with atherosclerosis and premature CVD, and disease-specific risk scores (i.e. body mass index,324324 Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular Disease Risk in Healthy Children and Its Association with Body Mass Index: Systematic Review and Meta-Analysis. BMJ. 2012;345:e4759. doi: 10.1136/bmj.e4759.
https://doi.org/10.1136/bmj.e4759...
Kawasaki disease,3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
https://doi.org/10.1161/CIR.000000000000...
systemic lupus erythematosus325325 Medeiros PBS, Salomão RG, Teixeira SR, Rassi DM, Rodrigues L, Aragon DC, et al. Disease Activity Index is Associated with Subclinical Atherosclerosis in Childhood-Onset Systemic Lupus Erythematosus. Pediatr Rheumatol Online J. 2021;19(1):35. doi: 10.1186/s12969-021-00513-5.
https://doi.org/10.1186/s12969-021-00513...
). CV risk in children and adolescents can also be described in relation to the magnitude of the risk of atheriosclerotic disease in the overall population.5959 Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
https://doi.org/10.1161/CIR.000000000000...
,6161 de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, Mietus-Snyder M, Mitsnefes MM, Peterson AL, St-Pierre J, Urbina EM, Zachariah JP, Zaidi AN. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. Circulation. 2019 Mar 26;139(13):e603-e634. doi: 10.1161/CIR.0000000000000618.
https://doi.org/10.1161/CIR.000000000000...
,326326 Berger JH, Faerber JA, Chen F, Lin KY, Brothers JA, O‘Byrne ML. Adherence with Lipid Screening Guidelines in Children with Acquired and Congenital Heart Disease: An Observational Study Using Data from the MarketScan Commercial and Medicaid Databases. J Am Heart Assoc. 2022;11(7):e024197. doi: 10.1161/JAHA.121.024197.
https://doi.org/10.1161/JAHA.121.024197...

Pretest CVD risk stratification in the pediatric population based on the presence of underlying diseases is recommended (Table 18).5959 Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
https://doi.org/10.1161/CIR.000000000000...
Disease-specific indices and scores should be used when deemed relevant.

Table 18
Risk stratification of the pediatric population based on the presence of underlying diseases

In adolescents, in addition to risk stratification by underlying disease, checking for traditional cardiovascular risk factors is also advised: lipid profile; smoking; family history of early CAD in first-degree relatives (men aged ≤55 years; women aged ≤65 years); blood pressure; body mass index (BMI); fasting blood glucose; and history of physical activity.5959 Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
https://doi.org/10.1161/CIR.000000000000...

Studies have highlighted the relevance of several cardiometabolic risk factors in the pediatric population: SBP, DBP, waist circumference, BMI, sum of four skinfolds, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), TC/HDL-C ratio, blood glucose, insulinemia, homeostatic model assessment of insulin resistance score (HOMA-IR), and cardiorespiratory fitness (mL/kg/min, estimated or measured).6060 Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference Values for Cardiometabolic Risk Scores in Children and Adolescents: Suggesting a Common Standard. Atherosclerosis. 2018;278:299-306. doi: 10.1016/j.atherosclerosis.2018.10.003.
https://doi.org/10.1016/j.atherosclerosi...
Determining cardiorespiratory fitness increases the precision of risk stratification, and is recommended especially when other risk factors are present.327327 Stavnsbo M, Skrede T, Aadland E, Aadland KN, Chinapaw M, Anderssen SA, et al. Cardiometabolic Risk Factor Levels in Norwegian Children Compared to International Reference Values: The ASK Study. PLoS One. 2019;14(8):e0220239. doi: 10.1371/journal.pone.0220239.
https://doi.org/10.1371/journal.pone.022...
329329 Reuter CP, Renner JDP, Silveira JFC, Silva PT, Lima RA, Pfeiffer KA, et al. Clustering of Cardiometabolic Risk Factors and the Continuous Cardiometabolic Risk Score in Children from Southern Brazil: A Cross-Sectional Study. J Diabetes Metab Disord. 2021;20(2):1221-8. doi: 10.1007/s40200-021-00845-9.
https://doi.org/10.1007/s40200-021-00845...

Most CHD are associated with an increased risk of early CVD (from childhood to young adulthood) (see Table 19). Children and adolescents with these conditions are at greater risk of complications during ET/CPET.5959 Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
https://doi.org/10.1161/CIR.000000000000...
,8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
https://doi.org/10.5935/abc.20160103...
,8383 Khairy P, van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: Developed in Partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the Governing Bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm. 2014;11(10):e102-65. doi: 10.1016/j.hrthm.2014.05.009.
https://doi.org/10.1016/j.hrthm.2014.05....
,8888 Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91-220. doi: 10.1016/j.jacc.2017.10.054.
https://doi.org/10.1016/j.jacc.2017.10.0...
,119119 Hernández-Madrid A, Paul T, Abrams D, Aziz PF, Blom NA, Chen J, et al. Arrhythmias in Congenital Heart Disease: A Position Paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital Heart Disease, Endorsed by HRS, PACES, APHRS, and SOLAECE. Europace. 2018;20(11):1719-53. doi: 10.1093/europace/eux380.
https://doi.org/10.1093/europace/eux380...
,330330 Kumar S, Stevenson WG, Tedrow UB. Bicuspid Aortic Valve Supporting Supravalvular "Substrate" for Multiple Ventricular Tachycardias. HeartRhythm Case Rep. 2017;3(3):155-8. doi: 10.1016/j.hrcr.2016.09.006.
https://doi.org/10.1016/j.hrcr.2016.09.0...
333333 Lotfy WN, Samra NM, Al Ghwass ME, Amin SA, AboElnour SI. Repolarization Patterns in Congenital Heart Disease. Pediatr Cardiol. 2016;37(7):1235-40. doi: 10.1007/s00246-016-1422-7.
https://doi.org/10.1007/s00246-016-1422-...

Table 19
Risk of developing cardiovascular disease associated with congenital heart diseases

3. Clinical, Hemodynamic, and Electrocardiographic Responses to Exercise

3.1. Clinical Responses

3.1.1. Exercise Tolerance

Determination of exercise tolerance allows the intensity of physical exertion and resulting symptoms (fatigue, dyspnea, lower limb fatigue, etc.) to be quantified. Exercise tolerance can be quantified objectively in any age group by the power generated in watts, by the duration of exercise or by the metabolic equivalent of task (MET) achieved. Compared to adults, children tolerate short-duration exercise better and are less susceptible to fatigue during dynamic exercises.334334 Souron R, Carayol M, Martin V, Piponnier E, Duché P, Gruet M. Differences in Time to Task Failure and Fatigability Between Children and Young Adults: A Systematic Review and Meta-Analysis. Front Physiol. 2022;13:1026012. doi: 10.3389/fphys.2022.1026012.
https://doi.org/10.3389/fphys.2022.10260...

Exercise tolerance can be quantified subjectively using scales of perceived exertion, such as the Borg scale, modified Borg scale, Pictorial Children's Effort Rating Table (P-CERT), or OMNI scale.335335 Tolusso DV, Dobbs WC, Esco MR. The Predictability of Peak Oxygen Consumption Using Submaximal Ratings of Perceived Exertion in Adolescents. Int J Exerc Sci. 2018;11(4):1173-83. PMCID: PMC6179431. PMID: 30338020.,336336 Martins R, Assumpção MS, Schivinski CIS. Percepção de Esforço e Dispneia em Pediatria: Revisão das Escalas de Avaliação. Med Ribeirão Preto. 2014;47(1):25-35. doi: 10.11606/issn.2176-7262.v47i1p25-35.
https://doi.org/10.11606/issn.2176-7262....
All such scales have limitations related to the degree of cognitive development of children and adolescents:337337 Groslambert A, Mahon AD. Perceived Exertion: Influence of Age and Cognitive Development. Sports Med. 2006;36(11):911-28. doi: 10.2165/00007256-200636110-00001.
https://doi.org/10.2165/00007256-2006361...
,338338 Kasai D, Parfitt G, Tarca B, Eston R, Tsiros MD. The Use of Ratings of Perceived Exertion in Children and Adolescents: A Scoping Review. Sports Med. 2021;51(1):33-50. doi: 10.1007/s40279-020-01374-w.
https://doi.org/10.1007/s40279-020-01374...

  • Children aged 0 to 3 years cannot adequately assess their perceived exertion, even during activities of daily living.

  • From ages 4 through 7, children become progressively able to evaluate peripheral sensory changes resulting from exercise, but quantification of perceived exertion remains inaccurate.339339 Gammon C, Pfeiffer KA, Pivarnik JM, Moore RW, Rice KR, Trost SG. Age-Related Differences in OMNI-RPE Scale Validity in Youth: A Longitudinal Analysis. Med Sci Sports Exerc. 2016;48(8):1590-4. doi: 10.1249/MSS.0000000000000918.
    https://doi.org/10.1249/MSS.000000000000...

  • From ages 8 through 12, children are able to estimate the intensity of exertion and distinguish the origin of sensory changes relative to different parts of their bodies. The type of exercise and the scale of perceived exertion used can influence the reported response, especially in intense exercise.337337 Groslambert A, Mahon AD. Perceived Exertion: Influence of Age and Cognitive Development. Sports Med. 2006;36(11):911-28. doi: 10.2165/00007256-200636110-00001.
    https://doi.org/10.2165/00007256-2006361...
    ,340340 Robertson RJ, Goss FL, Boer N, Gallagher JD, Thompkins T, Bufalino K, et al. OMNI Scale Perceived Exertion at Ventilatory Breakpoint in Children: Response Normalized. Med Sci Sports Exerc. 2001;33(11):1946-52. doi: 10.1097/00005768-200111000-00022.
    https://doi.org/10.1097/00005768-2001110...
    342342 Robertson RJ, Goss FL, Aaron DJ, Tessmer KA, Gairola A, Ghigiarelli JJ, et al. Observation of Perceived Exertion in Children Using the OMNI Pictorial Scale. Med Sci Sports Exerc. 2006;38(1):158-66. doi: 10.1249/01.mss.0000190595.03402.66.
    https://doi.org/10.1249/01.mss.000019059...

  • During adolescence, perceived exertion is a useful measure, but its relationship with actual achieved HR is less pronounced than in adults.341341 Robertson RJ, Goss FL, Aaron DJ, Utter AC, Nagle E. Omni Scale Rating of Perceived Exertion at Ventilatory Breakpoint by Direct Observation of Children‘s Kinematics. Percept Mot Skills. 2007;104(3 Pt 1):975-84. doi: 10.2466/pms.104.3.975-984.
    https://doi.org/10.2466/pms.104.3.975-98...
    ,343343 Pfeiffer KA, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Reliability and Validity of the Borg and OMNI Rating of Perceived Exertion Scales in Adolescent Girls. Med Sci Sports Exerc. 2002;34(12):2057-61. doi: 10.1097/00005768-200212000-00029.
    https://doi.org/10.1097/00005768-2002120...
    ,344344 Schmitz G. Moderators of Perceived Effort in Adolescent Rowers During a Graded Exercise Test. Int J Environ Res Public Health. 2020;17(21):8063. doi: 10.3390/ijerph17218063.
    https://doi.org/10.3390/ijerph17218063...

The P-CERT was designed to evaluate perceived exertion in children aged 6 to 9 years, using a perceptual scale containing both text and illustrative pictures, to improve the correlation with achieved HR; however, it is of limited utility in children who cannot read.345345 Groslambert A, Hintzy F, Hoffman MD, Dugué B, Rouillon JD. Validation of a Rating Scale of Perceived Exertion in Young Children. Int J Sports Med. 2001;22(2):116-9. doi: 10.1055/s-2001-11340.
https://doi.org/10.1055/s-2001-11340...
347347 Roemmich JN, Barkley JE, Epstein LH, Lobarinas CL, White TM, Foster JH. Validity of PCERT and OMNI Walk/Run Ratings of Perceived Exertion. Med Sci Sports Exerc. 2006;38(5):1014-9. doi: 10.1249/01.mss.0000218123.81079.49.
https://doi.org/10.1249/01.mss.000021812...

The OMNI Picture System of Perceived Exertion uses illustrations of children, of both sexes, performing various physical exercises (walking, cycling, climbing stairs, swimming, etc.) at various intensities, which facilitates understanding and cooperation by the child.348348 Robertson RJ, Goss FL, Boer NF, Peoples JA, Foreman AJ, Dabayebeh IM, et al. Children‘s OMNI Scale of Perceived Exertion: Mixed Gender and Race Validation. Med Sci Sports Exerc. 2000;32(2):452-8. doi: 10.1097/00005768-200002000-00029.
https://doi.org/10.1097/00005768-2000020...
350350 Muyor JM. Exercise Intensity and Validity of the Ratings of Perceived Exertion (Borg and OMNI Scales) in an Indoor Cycling Session. J Hum Kinet. 2013;39:93-101. doi: 10.2478/hukin-2013-0072.
https://doi.org/10.2478/hukin-2013-0072...

3.1.2. Cardiorespiratory Fitness/Functional Capacity

The assessment of cardiorespiratory fitness (CRF)/functional capacity in children and adolescents is an important clinical tool for quantification of symptoms, prognostic assessment, and evaluation of treatment response. It can also quantify cardiovascular and pulmonary dysfunctions and their repercussions in children with congenital or acquired heart disease.8080 Schaan CW, Macedo ACP, Sbruzzi G, Umpierre D, Schaan BD, Pellanda LC. Functional Capacity in Congenital Heart Disease: A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2017;109(4):357-67. doi: 10.5935/abc.20170125.
https://doi.org/10.5935/abc.20170125...

CRF can be assessed:

  • Indirectly in ET, through estimated VO2max (expressed in METs) and its respective percentage in relation to the predicted value for age.

  • Directly in CPET, through measured VO2 and its respective percentage in relation to the predicted value for age.351351 Haapala EA, Gao Y, Hartikainen J, Rantalainen T, Finni T. Associations of Fitness, Motor Competence, and Adiposity with the Indicators of Physical Activity Intensity During Different Physical Activities in Children. Sci Rep. 2021;11(1):12521. doi: 10.1038/s41598-021-92040-2.
    https://doi.org/10.1038/s41598-021-92040...

Healthy children exhibit cardiorespiratory and metabolic responses different from those observed in adults. Normally, during maximum exertion, they exhibit a higher chronotropic response, lower inotropic response, and lower cardiovascular and ventilatory efficiency. However, children have greater metabolic efficiency and similar levels of exercise capacity compared to adults.352352 Prado DM, Braga AM, Rondon MU, Azevedo LF, Matos LD, Negrão CE, et al. Cardiorespiratory Responses During Progressive Maximal Exercise Test in Healthy Children. Arq Bras Cardiol. 2010;94(4):493-9. doi: 10.1590/s0066-782x2010005000007.
https://doi.org/10.1590/s0066-782x201000...
,353353 Lintu N, Tompuri T, Viitasalo A, Soininen S, Laitinen T, Savonen K, et al. Cardiovascular Fitness and Haemodynamic Responses to Maximal Cycle Ergometer Exercise Test in Children 6-8 Years of Age. J Sports Sci. 2014;32(7):652-9. doi: 10.1080/02640414.2013.845681.
https://doi.org/10.1080/02640414.2013.84...

CRF is influenced by age, sex, level of daily physical activity, obesity, presence of heart and lung diseases, current treatments, etc.8080 Schaan CW, Macedo ACP, Sbruzzi G, Umpierre D, Schaan BD, Pellanda LC. Functional Capacity in Congenital Heart Disease: A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2017;109(4):357-67. doi: 10.5935/abc.20170125.
https://doi.org/10.5935/abc.20170125...
,9191 Fernandes SM, Alexander ME, Graham DA, Khairy P, Clair M, Rodriguez E, et al. Exercise Testing Identifies Patients at Increased Risk for Morbidity and Mortality Following Fontan Surgery. Congenit Heart Dis. 2011;6(4):294-303. doi: 10.1111/j.1747-0803.2011.00500.x.
https://doi.org/10.1111/j.1747-0803.2011...
,354354 Lintu N, Viitasalo A, Tompuri T, Veijalainen A, Hakulinen M, Laitinen T, et al. Cardiorespiratory Fitness, Respiratory Function and Hemodynamic Responses to Maximal Cycle Ergometer Exercise Test in Girls and Boys Aged 9-11 Years: The PANIC Study. Eur J Appl Physiol. 2015;115(2):235-43. doi: 10.1007/s00421-014-3013-8.
https://doi.org/10.1007/s00421-014-3013-...

Children with congenital or acquired heart disease often experience reduced CRF, regardless of their status (preoperative, postoperative, or long-term follow-up). This impairment may be associated with primary heart disease, treatments for said heart disease, reduced activity/sedentary lifestyle, and behavioral factors (such as overprotection by parents). Adolescents with CHD may have misconceptions about safe and desirable levels of physical activity, which perpetuates the vicious cycle of sedentariness.355355 Bar-Or O. Pathophysiological Factors Which Limit the Exercise Capacity of the Sick Child. Med Sci Sports Exerc. 1986;18(3):276-82. doi: 10.1249/00005768-198606000-00004.
https://doi.org/10.1249/00005768-1986060...
357357 van Deutekom AW, Lewandowski AJ. Physical Activity Modification in Youth with Congenital Heart Disease: A Comprehensive Narrative Review. Pediatr Res. 2021;89(7):1650-8. doi: 10.1038/s41390-020-01194-8.
https://doi.org/10.1038/s41390-020-01194...

Figure 1 presents pediatric diseases, pathophysiological factors and clinical situations (i.e. comorbidities, treatments, etc.) that compromise the specific components of the Fick equation used to determine CRF (VO2max).355355 Bar-Or O. Pathophysiological Factors Which Limit the Exercise Capacity of the Sick Child. Med Sci Sports Exerc. 1986;18(3):276-82. doi: 10.1249/00005768-198606000-00004.
https://doi.org/10.1249/00005768-1986060...

Figure 1
Pediatric diseases that affect specific components of the Fick equation and thus compromise cardiorespiratory fitness. SVmax: maximum stroke volume during exercise; HRmax: maximum heart rate; (CaO2-CvO2)max: arteriovenous oxygen difference; CaO2: arterial oxygen content; CvO2: venous oxygen content; HF: heart failure; LV: left ventricular; CHD: congenital heart disease; AVB: atrioventricular block. Adapted from: Bar-Or O. Pathophysiological Factors Which Limit the Exercise Capacity of the Sick Child.355355 Bar-Or O. Pathophysiological Factors Which Limit the Exercise Capacity of the Sick Child. Med Sci Sports Exerc. 1986;18(3):276-82. doi: 10.1249/00005768-198606000-00004.
https://doi.org/10.1249/00005768-1986060...

3.1.3. Symptoms, Inspection, and Auscultation

Clinical observation of symptoms, visual inspection, and physical examination during ET/CPET are essential in children and adolescents (Chart 3) for the following reasons:

  • Younger children have limited ability to perceive exertion and interpret peripheral sensory changes.337337 Groslambert A, Mahon AD. Perceived Exertion: Influence of Age and Cognitive Development. Sports Med. 2006;36(11):911-28. doi: 10.2165/00007256-200636110-00001.
    https://doi.org/10.2165/00007256-2006361...
    ,338338 Kasai D, Parfitt G, Tarca B, Eston R, Tsiros MD. The Use of Ratings of Perceived Exertion in Children and Adolescents: A Scoping Review. Sports Med. 2021;51(1):33-50. doi: 10.1007/s40279-020-01374-w.
    https://doi.org/10.1007/s40279-020-01374...
    ,358358 Robertson RJ, Goss FL, Andreacci JL, Dubé JJ, Rutkowski JJ, Snee BM, et al. Validation of the Children's OMNI RPE Scale for Stepping Exercise. Med Sci Sports Exerc. 2005;37(2):290-8. doi: 10.1249/01.mss.0000149888.39928.9f.
    https://doi.org/10.1249/01.mss.000014988...

  • A complaint of fatigue is the main reason for cessation of exercise in the pediatric population, but correlation with physical findings (breathing pattern, accessory muscle use, dyspnea, etc.) is necessary, not least to determine exercise tolerance and functional class.

  • The development of exercise-induced chest pain requires detailed assessment and characterization to assist in the differential diagnosis of possible noncardiac origins (i.e. exercise-induced asthma). Typical chest pain is generally associated with anomalous origin of coronary arteries, aortic stenosis, and Kawasaki disease.1515 Tuan SH, Li MH, Hsu MJ, Tsai YJ, Chen YH, Liao TY, et al. Cardiopulmonary Function, Exercise Capacity, and Echocardiography Finding of Pediatric Patients with Kawasaki Disease: An Observational Study. Medicine. 2016;95(2):e2444. doi: 10.1097/MD.0000000000002444.
    https://doi.org/10.1097/MD.0000000000002...
    ,3535 Sumski CA, Goot BH. Evaluating Chest Pain and Heart Murmurs in Pediatric and Adolescent Patients. Pediatr Clin North Am. 2020;67(5):783-99. doi: 10.1016/j.pcl.2020.05.003.
    https://doi.org/10.1016/j.pcl.2020.05.00...
    ,3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
    https://doi.org/10.1161/CIR.000000000000...
    ,359359 Hanson CL, Hokanson JS. Etiology of Chest Pain in Children and Adolescents Referred to Cardiology Clinic. WMJ. 2011;110(2):58-62. PMID: 21560558.,360360 Loiselle KA, Lee JL, Gilleland J, Campbell R, Simpson P, Johnson G, et al. Factors Associated with Healthcare Utilization Among Children with Noncardiac Chest Pain and Innocent Heart Murmurs. J Pediatr Psychol. 2012;37(7):817-25. doi: 10.1093/jpepsy/jss055.
    https://doi.org/10.1093/jpepsy/jss055...

  • Before the test, especially in children with CHD and valvular heart disease, the femoral and peripheral pulses must be palpated to identify changes in amplitude, radiofemoral delay, and possible obstructions.361361 Otto CM, Bonow RO, editors. Valvular Heart Disease: A Companion to Braunwald's Heart Disease. 5th ed. Philadelphia: Elsevier; 2021. ISBN-10: 0323546331; ISBN-13: 978-0323546331.,362362 Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. ISBN-10: 3030622924; ISBN-13: 978-3030622923.

  • Cardiac auscultation performed immediately after peak exertion will allow assessment of new heart murmurs or changes in existing murmur patterns as compared to pre-test auscultation. Children and adolescents often have an audible third heart sound on baseline auscultation; if one appears during exercise, is generally considered a physiological adaptation which does not correlate with structural heart disease.363363 Tavel ME. The Appearance of Gallop Rhythm after Exercise Stress Testing. Clin Cardiol. 1996;19(11):887-91. doi: 10.1002/clc.4960191109.
    https://doi.org/10.1002/clc.4960191109...
    365365 Zhong LS, Guo XM, Xiao SZ, Wang D, Wu WZ. The Third Heart Sound After Exercise in Athletes: An Exploratory Study. Chin J Physiol. 2011;54(4):219-24. doi: 10.4077/CJP.2011.AMM049.
    https://doi.org/10.4077/CJP.2011.AMM049...
    Conversely, the occurrence of a systolic murmur and/or split S3 are generally associated with CHD and valvular heart disease.362362 Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. ISBN-10: 3030622924; ISBN-13: 978-3030622923.,366366 Etoom Y, Ratnapalan S. Evaluation of Children with Heart Murmurs. Clin Pediatr. 2014;53(2):111-7. doi: 10.1177/0009922813488653.
    https://doi.org/10.1177/0009922813488653...

  • On auscultation of the respiratory system, rhonchi and lung wheezing may indicate exercise-induced bronchospasm associated with asthma.367367 Nudel DB, Diamant S, Brady T, Jarenwattananon M, Buckley BJ, Gootman N. Chest Pain, Dyspnea on Exertion, and Exercise Induced Asthma in Children and Adolescents. Clin Pediatr. 1987;26(8):388-92. doi: 10.1177/000992288702600802.
    https://doi.org/10.1177/0009922887026008...
    Auscultation of inspiratory stridor and/or wheezing in the upper chest and trachea can aid in the diagnosis of exercise-induced laryngeal obstruction. In these cases, visualization of the laryngeal structures through laryngoscopy is recommended, as it contributes to diagnosis of the type of laryngeal obstruction and management of the obstructive crisis.368368 Balkissoon R, Kenn K. Asthma: Vocal Cord Dysfunction (VCD) and Other Dysfunctional Breathing Disorders. Semin Respir Crit Care Med. 2012;33(6):595-605. doi: 10.1055/s-0032-1326959.
    https://doi.org/10.1055/s-0032-1326959...
    ,369369 Dunn NM, Katial RK, Hoyte FCL. Vocal Cord Dysfunction: A Review. Asthma Res Pract. 2015;1:9. doi: 10.1186/s40733-015-0009-z.
    https://doi.org/10.1186/s40733-015-0009-...

Aspects of symptomatology, visual inspection, and auscultation during ET and CPET which are specific to the pediatric population:177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,361361 Otto CM, Bonow RO, editors. Valvular Heart Disease: A Companion to Braunwald's Heart Disease. 5th ed. Philadelphia: Elsevier; 2021. ISBN-10: 0323546331; ISBN-13: 978-0323546331.,362362 Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. ISBN-10: 3030622924; ISBN-13: 978-3030622923.,370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.

  • Sedentary children and adolescents may present a disproportionate increase in respiratory frequency (RF) in relation to the intensity of exertion and dyspnea. Physical examination is usually unremarkable, with no signs of restrictive or obstructive causes of dyspnea.286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,371371 Marinov B, Kostianev S, Turnovska T. Ventilatory Efficiency and Rate of Perceived Exertion in Obese and Non-Obese Children Performing Standardized Exercise. Clin Physiol Funct Imaging. 2002;22(4):254-60. doi: 10.1046/j.1475-097x.2002.00427.x.
    https://doi.org/10.1046/j.1475-097x.2002...

  • Children with chest wall abnormalities (i.e. scoliosis, pectus excavatum, pectus carinatum) may present with exercise-induced dyspnea and, depending on the severity of the deformity, a restrictive process.372372 Jaroszewski DE, Farina JM, Gotway MB, Stearns JD, Peterson MA, Pulivarthi VSKK, et al. Cardiopulmonary Outcomes after the Nuss Procedure in Pectus Excavatum. J Am Heart Assoc. 2022;11(7):e022149. doi: 10.1161/JAHA.121.022149.
    https://doi.org/10.1161/JAHA.121.022149...
    375375 Martínez-Llorens J, Ramírez M, Colomina MJ, Bagó J, Molina A, Cáceres E, et al. Muscle Dysfunction and Exercise Limitation in Adolescent Idiopathic Scoliosis. Eur Respir J. 2010;36(2):393-400. doi: 10.1183/09031936.00025509.
    https://doi.org/10.1183/09031936.0002550...

  • In muscular dystrophy and other myopathies, dyspnea and low exercise tolerance associated with restrictive lung disease and respiratory muscle impairment are common.203203 van den Akker LE, Heine M, van der Veldt N, Dekker J, de Groot V, Beckerman H. Feasibility and Safety of Cardiopulmonary Exercise Testing in Multiple Sclerosis: A Systematic Review. Arch Phys Med Rehabil. 2015;96(11):2055-66. doi: 10.1016/j.apmr.2015.04.021.
    https://doi.org/10.1016/j.apmr.2015.04.0...
    206206 Abresch RT, Han JJ, Carter GT. Rehabilitation Management of Neuromuscular Disease: The Role of Exercise Training. J Clin Neuromuscul Dis. 2009;11(1):7-21. doi: 10.1097/CND.0b013e3181a8d36b.
    https://doi.org/10.1097/CND.0b013e3181a8...

  • Children with hypertrophic obstructive cardiomyopathy may experience exercise-induced chest pain associated with myocardial ischemia. Generally, during pre-test cardiac auscultation, a more perceptible heart murmur is heard in the standing position or after a Valsalva maneuver.1313 Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of Pediatric Chest Pain using a Standardized Assessment and Management Plan. Pediatrics. 2011;128(2):239-45. doi: 10.1542/peds.2011-0141.
    https://doi.org/10.1542/peds.2011-0141...

  • Children with pulmonary artery hypertension (PAH) may present with exercise-induced chest pain, which is the most common initial symptom of idiopathic PAH.196196 Weatherald J, Farina S, Bruno N, Laveneziana P. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Ann Am Thorac Soc. 2017;14(Suppl 1):S84-92. doi: 10.1513/AnnalsATS.201610-788FR.
    https://doi.org/10.1513/AnnalsATS.201610...
    ,376376 Müller J, Heck PB, Ewert P, Hager A. Noninvasive Screening for Pulmonary Hypertension by Exercise Testing in Congenital Heart Disease. Ann Thorac Surg. 2017;103(5):1544-9. doi: 10.1016/j.athoracsur.2016.09.038.
    https://doi.org/10.1016/j.athoracsur.201...
    ,377377 Yetman AT, Taylor AL, Doran A, Ivy DD. Utility of Cardiopulmonary Stress Testing in Assessing Disease Severity in Children with Pulmonary Arterial Hypertension. Am J Cardiol. 2005;95(5):697-9. doi: 10.1016/j.amjcard.2004.10.056.
    https://doi.org/10.1016/j.amjcard.2004.1...

  • In dilated cardiomyopathies, chest pain may occur, generally associated with intense fatigue on exertion. Patients must also be watched closely for possible desaturation and cyanosis.378378 Hsu DT, Canter CE. Dilated Cardiomyopathy and Heart Failure in Children. Heart Fail Clin. 2010;6(4):415-32, vii. doi: 10.1016/j.hfc.2010.05.003.
    https://doi.org/10.1016/j.hfc.2010.05.00...
    ,379379 Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535-52. doi: 10.1016/j.cjca.2013.08.008.
    https://doi.org/10.1016/j.cjca.2013.08.0...

  • Severe pulmonic stenosis can cause crushing chest pain associated with myocardial ischemia.8787 Steinberger J, Moller JH. Exercise Testing in Children with Pulmonary Valvar Stenosis. Pediatr Cardiol. 1999;20(1):27-31. doi: 10.1007/s002469900389.
    https://doi.org/10.1007/s002469900389...
    ,380380 Teng LY, Tsai SW, Hsiao CY, Sung WH, Lin KL. Cardiopulmonary Function Assessment in Children with Pulmonary Valve Stenosis. Front Pediatr. 2022;9:802645. doi: 10.3389/fped.2021.802645.
    https://doi.org/10.3389/fped.2021.802645...
    ,381381 Linglart L, Gelb BD. Congenital Heart Defects in Noonan Syndrome: Diagnosis, Management, and Treatment. Am J Med Genet C Semin Med Genet. 2020;184(1):73-80. doi: 10.1002/ajmg.c.31765.
    https://doi.org/10.1002/ajmg.c.31765...

  • Aortic, supra-aortic, and subaortic valve stenosis can cause exercise-induced chest pain, dizziness, and fatigue. These children usually have a harsh ejection murmur, sometimes accompanied by an ejection click, from a bicuspid aortic valve.134134 Santana S, Gidding SS, Xie S, Jiang T, Kharouf R, Robinson BW. Correlation of Echocardiogram and Exercise Test Data in Children with Aortic Stenosis. Pediatr Cardiol. 2019;40(7):1516-22. doi: 10.1007/s00246-019-02177-1.
    https://doi.org/10.1007/s00246-019-02177...
    ,382382 Kipps AK, McElhinney DB, Kane J, Rhodes J. Exercise Function of Children with Congenital Aortic Stenosis Following Aortic Valvuloplasty During Early Infancy. Congenit Heart Dis. 2009;4(4):258-64. doi: 10.1111/j.1747-0803.2009.00304.x.
    https://doi.org/10.1111/j.1747-0803.2009...
    ,383383 Yilmaz G, Ozme S, Ozer S, Tokel K, Celiker A. Evaluation by Exercise Testing of Children with Mild and Moderate Valvular Aortic Stenosis. Pediatr Int. 2000;42(1):48-52. doi: 10.1046/j.1442-200x.2000.01179.x.
    https://doi.org/10.1046/j.1442-200x.2000...

  • In children, supraventricular and ventricular tachycardias generally present as palpitations (which can be exacerbated by exertion), but may also present as brief, sharp chest pain.361361 Otto CM, Bonow RO, editors. Valvular Heart Disease: A Companion to Braunwald's Heart Disease. 5th ed. Philadelphia: Elsevier; 2021. ISBN-10: 0323546331; ISBN-13: 978-0323546331.,370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,384384 Issa ZF. Clinical Arrhythmology and Electrophysiology: A Companion to Baunwald's Heart Disease. 3rd ed. Philadelphia: Elsevier; 2018. ISBN-10: 0323523560; ISBN-13: 978-0323523561.

3.2. Hemodynamic Responses

3.2.1. Heart Rate

3.2.1.1. Resting Heart Rate

Resting HR, at baseline, decreases with increasing age and varies from an average of 85 bpm at 4 years of age to 60 bpm at 16 years of age. This reduction in HR is directly related to the decline in metabolic rate as the child ages.385385 Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, et al. Normal Ranges of Heart Rate and Respiratory Rate in Children from Birth to 18 Years of Age: A Systematic Review of Observational Studies. Lancet. 2011;377(9770):1011-8. doi: 10.1016/S0140-6736(10)62226-X.
https://doi.org/10.1016/S0140-6736(10)62...
387387 Sarganas G, Rosario AS, Neuhauser HK. Resting Heart Rate Percentiles and Associated Factors in Children and Adolescents. J Pediatr. 2017;187:174-81. doi: 10.1016/j.jpeds.2017.05.021.
https://doi.org/10.1016/j.jpeds.2017.05....
Resting HR values (minimum and maximum) should be correlated with those predicted for pediatric age groups.

In the pediatric population, resting bradycardia is often seen in highly trained athletes, secondary to medications (particularly beta-blockers), hypothyroidism, and sinus node dysfunction.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,389389 Park MK. Park's Pediatric Cardiology for Practitioners. 6th ed. Philadelphia: Elsevier; 2014. ISBN-10: 0323169511; ISBN-13: 978-0323169516. Resting sinus tachycardia usually occurs as a result of hot weather conditions, hyperthyroidism, anemia, obesity, pre-test anxiety, and inappropriate sinus tachycardia, rarely associated with supraventricular tachyarrhythmia.390390 Zipes DP, Jalife J, Stevenson WG, editors. Cardiac Electrophysiology: From Cell to Bedside. 7th edn. Philadelphia: Elsevier; 2018. ISBN-10: 0323447333; ISBN-13: 978-0323447331.393393 Farah BQ, Christofaro DG, Balagopal PB, Cavalcante BR, Barros MV, Ritti-Dias RM. Association between Resting Heart Rate and Cardiovascular Risk Factors in Adolescents. Eur J Pediatr. 2015;174(12):1621-8. doi: 10.1007/s00431-015-2580-y.
https://doi.org/10.1007/s00431-015-2580-...

In children with dilated cardiomyopathy, a higher resting HR is associated with risk of death and need for heart transplantation. Pharmacological control of HR has been associated with improvement in ventricular function and disease progression.394394 Rossano JW, Kantor PF, Shaddy RE, Shi L, Wilkinson JD, Jefferies JL, et al. Elevated Heart Rate and Survival in Children with Dilated Cardiomyopathy: A Multicenter Study from the Pediatric Cardiomyopathy Registry. J Am Heart Assoc. 2020;9(15):e015916. doi: 10.1161/JAHA.119.015916.
https://doi.org/10.1161/JAHA.119.015916...
396396 Adorisio R, Cantarutti N, Ciabattini M, Amodeo A, Drago F. Real-World Use of Carvedilol in Children with Dilated Cardiomyopathy: Long-Term Effect on Survival and Ventricular Function. Front Pediatr. 2022;10:845406. doi: 10.3389/fped.2022.845406.
https://doi.org/10.3389/fped.2022.845406...

3.2.1.2. Chronotropic Response

Assessment of the chronotropic response is essential during exercise and in the recovery phase. In children and adolescents, during an incremental ET, HR increases linearly and proportionally to VO2, from baseline levels to peak HR. HRmax is generally not affected by cardiorespiratory fitness level or sex, remaining constant throughout childhood and adolescence. However, in serial ET, as the child grows, a reduction in submaximal HR is observed for a same given workload.88 Connuck DM. The Role of Exercise Stress Testing in Pediatric Patients with Heart Disease. Prog Pediatr Cardiol. 2005;20(1):45-52. doi: 10.1016/j.ppedcard.2004.12.004.
https://doi.org/10.1016/j.ppedcard.2004....
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,397397 Bourque JM, Beller GA. Value of Exercise ECG for Risk Stratification in Suspected or Known CAD in the Era of Advanced Imaging Technologies. JACC Cardiovasc Imaging. 2015;8(11):1309-21. doi: 10.1016/j.jcmg.2015.09.006.
https://doi.org/10.1016/j.jcmg.2015.09.0...
,398398 Gravel H, Curnier D, Dallaire F, Fournier A, Portman M, Dahdah N. Cardiovascular Response to Exercise Testing in Children and Adolescents Late after Kawasaki Disease According to Coronary Condition Upon Onset. Pediatr Cardiol. 2015;36(7):1458-64. doi: 10.1007/s00246-015-1186-5.
https://doi.org/10.1007/s00246-015-1186-...

During recovery, there is normally a progressive decline in HR with a return to baseline by the sixth minute. In the 1st minute of recovery, apparently healthy adolescents show a reduction of ≈44 bpm (males) and ≈36 bpm (females). Boys also tend to have a greater reduction in HR in the 1st minute than girls.302302 Washington RL, van Gundy JC, Cohen C, Sondheimer HM, Wolfe RR. Normal Aerobic and Anaerobic Exercise Data for North American School-Age Children. J Pediatr. 1988;112(2):223-33. doi: 10.1016/s0022-3476(88)80059-3.
https://doi.org/10.1016/s0022-3476(88)80...
,352352 Prado DM, Braga AM, Rondon MU, Azevedo LF, Matos LD, Negrão CE, et al. Cardiorespiratory Responses During Progressive Maximal Exercise Test in Healthy Children. Arq Bras Cardiol. 2010;94(4):493-9. doi: 10.1590/s0066-782x2010005000007.
https://doi.org/10.1590/s0066-782x201000...
,399399 Mahon AD, Anderson CS, Hipp MJ, Hunt KA. Heart Rate Recovery from Submaximal Exercise in Boys and Girls. Med Sci Sports Exerc. 2003;35(12):2093-7. doi: 10.1249/01.MSS.0000099180.80952.83.
https://doi.org/10.1249/01.MSS.000009918...
Children who are overweight and/or have less exercise tolerance generally exhibit a slower HR recovery in the 1st minute.400400 Ellestad MH. Stress Testing: Principles and Practice. 5th ed. Oxford: Oxford University Press; 2003. ISBN-10: 0195159284; ISBN-13: 978-0195159288.,401401 Claessen G, La Gerche A, Van De Bruaene A, Claeys M, Willems R, Dymarkowski S, et al. Heart Rate Reserve in Fontan Patients: Chronotropic Incompetence or Hemodynamic Limitation? J Am Heart Assoc. 2019;8(9):e012008. doi: 10.1161/JAHA.119.012008.
https://doi.org/10.1161/JAHA.119.012008...

Patients with sinus node dysfunction (SND), or after CHD surgery, may not adequately increase their HR with exercise and may exhibit a lower peak HR. An slow increase in HR as work intensity increases is typically observed in young trained athletes. A blunted or depressed chronotropic response in the pediatric population generally occurs secondary to high vagal tone, sinus node dysfunction, status post CHD surgery, and certain medications (i.e. beta-blockers, calcium channel blockers, and antiarrhythmics).177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,389389 Park MK. Park's Pediatric Cardiology for Practitioners. 6th ed. Philadelphia: Elsevier; 2014. ISBN-10: 0323169511; ISBN-13: 978-0323169516.,400400 Ellestad MH. Stress Testing: Principles and Practice. 5th ed. Oxford: Oxford University Press; 2003. ISBN-10: 0195159284; ISBN-13: 978-0195159288.

Table 20 presents definitions referring to HR behavior during ET/CPET in the pediatric population, as well as the respective criteria and possible interpretations.

Table 20
Definitions, criteria, and interpretation of the HR response to ET/CPET in children and adolescents

3.2.2. Blood Pressure Response

The blood pressure response is an important ET/CPET variable in the pediatric population, as it reflects the adaptations of cardiac output and peripheral vascular resistance to exertion.418418 Wanne OP, Haapoja E. Blood Pressure During Exercise in Healthy Children. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):62-7. doi: 10.1007/BF00636604.
https://doi.org/10.1007/BF00636604...
,419419 Clarke MM, Zannino D, Stewart NP, Glenning JP, Pineda-Guevara S, Kik J, et al. Normative Blood Pressure Response to Exercise Stress Testing in Children and Adolescents. Open Heart. 2021;8(2):e001807. doi: 10.1136/openhrt-2021-001807.
https://doi.org/10.1136/openhrt-2021-001...

For pre-test (resting) BP measurement, this guideline recommends adoption of the BP criteria given in Table 21, based on the Brazilian Guidelines of Hypertension, which take into account the age, sex, and height of children and adolescents (see Appendices 2 Appendix 2 Resting BP values in males by age and height percentile BP: blood pressure; P: percentile. Adapted from: Barroso WKS et al. Brazilian Guidelines of Hypertension - 2020.322 and 3 Appendix 3 Resting BP values in females by age and height percentile BP: blood pressure; P: percentile. Adapted from: Barroso WKS et al. Brazilian Guidelines of Hypertension - 2020.322 ).322322 Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol. 2021;116(3):516-658. doi: 10.36660/abc.20201238.
https://doi.org/10.36660/abc.20201238...

Table 21
Definitions of resting blood pressure for ET/CPET according to age group322322 Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol. 2021;116(3):516-658. doi: 10.36660/abc.20201238.
https://doi.org/10.36660/abc.20201238...

The normal BP response to exertion entails a progressive increase in systolic blood pressure (SBP), which contributes to the increase in cardiac output, the magnitude of which is directly related to the intensity of exercise. The SBP values reached at peak exertion (SBPpeak), even if not associated with physical exhaustion (maximum effort), are also proportional to age (the older the age, the higher the SBPpeak), body surface area (the larger the area, higher is the SBPpeak), and SBP in the pre-test phase (resting). Maximum SBP (SBPmax) is considered the SBP measured at maximum effort. Occasionally, apparently healthy pediatric patients may present only a slight increase in SBP with exertion.403403 Riopel DA, Taylor AB, Hohn AR. Blood Pressure, Heart Rate, Pressure-Rate Product and Electrocardiographic Changes in Healthy Children During Treadmill Exercise. Am J Cardiol. 1979;44(4):697-704. doi: 10.1016/0002-9149(79)90290-x.
https://doi.org/10.1016/0002-9149(79)902...
,420420 Klasson-Heggebø L, Andersen LB, Wennlöf AH, Sardinha LB, Harro M, Froberg K, et al. Graded Associations Between Cardiorespiratory Fitness, Fatness, and Blood Pressure in Children and Adolescents. Br J Sports Med. 2006;40(1):25-9; discussion 25-9. doi: 10.1136/bjsm.2004.016113.
https://doi.org/10.1136/bjsm.2004.016113...

Body surface area (BSA) has been used as a criterion for defining percentiles of normality and evaluating SBP response to exercise. For example, children of the same sex and age with different BSAs will exhibit differences in maximum SBPmax behavior: a child with a BSA of 1.25m2 will have a SBPmax of 140 mmHg, while another with a BSA of 1.75m2 will reach 160 mmHg.421421 Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ. Cardiopulmonary Exercise Testing in Congenital Heart Disease: (Contra)Indications and Interpretation. Neth Heart J. 2009;17(10):385-92. doi: 10.1007/BF03086289.
https://doi.org/10.1007/BF03086289...
,422422 Alpert BS, Flood NL, Strong WB, Dover EV, DuRant RH, Martin AM, et al. Responses to Ergometer Exercise in a Healthy Biracial Population of Children. J Pediatr. 1982;101(4):538-45. doi: 10.1016/s0022-3476(82)80696-3.
https://doi.org/10.1016/s0022-3476(82)80...

SBPpeak/SBPmax, or that measured immediately after cessation of exertion, are considered the standard for assessing cardiac inotropic capacity. Changes in BP behavior are useful for diagnosis, definition of treatment, and risk stratification in children and adolescents with CHD, valvular heart disease, HF, or suspected hypertension.5353 Alvarez-Pitti J, Herceg-Čavrak V, Wójcik M, Radovanović D, Brzeziński M, Grabitz C, et al. Blood Pressure Response to Exercise in Children and Adolescents. Front Cardiovasc Med. 2022;9:1004508. doi: 10.3389/fcvm.2022.1004508.
https://doi.org/10.3389/fcvm.2022.100450...
,418418 Wanne OP, Haapoja E. Blood Pressure During Exercise in Healthy Children. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):62-7. doi: 10.1007/BF00636604.
https://doi.org/10.1007/BF00636604...
,419419 Clarke MM, Zannino D, Stewart NP, Glenning JP, Pineda-Guevara S, Kik J, et al. Normative Blood Pressure Response to Exercise Stress Testing in Children and Adolescents. Open Heart. 2021;8(2):e001807. doi: 10.1136/openhrt-2021-001807.
https://doi.org/10.1136/openhrt-2021-001...

During the recovery period, a progressive decline in SBP is observed, returning to resting levels in approximately 6 minutes. SBP generally remains below pre-exercise levels for several hours thereafter.423423 Havasi K, Maróti Z, Jakab A, Raskó I, Kalmár T, Bereczki C. Reference Values for Resting and Post Exercise Hemodynamic Parameters in a 6-18 Year Old Population. Sci Data. 2020;7(1):26. doi: 10.1038/s41597-020-0368-z.
https://doi.org/10.1038/s41597-020-0368-...

Diastolic blood pressure (DBP) normally remains unchanged with exertion, regardless of age and sex, due to exercise-induced vasodilation. Minor fluctuations (±10 mmHg) may occur. In apparently healthy children, a slight drop in DBP may be observed.424424 Sasaki T, Kawasaki Y, Takajo D, Sriram C, Ross RD, Kobayashi D. Blood Pressure Response to Treadmill Cardiopulmonary Exercise Test in Children with Normal Cardiac Anatomy and Function. J Pediatr. 2021;233:169-74. doi: 10.1016/j.jpeds.2021.02.043.
https://doi.org/10.1016/j.jpeds.2021.02....

A study on the BP response to ET in normotensive Brazilian adolescents found an increase in SBP and a decline in DBP during exercise in all age groups and both sexes.425425 Becker MMC, Silva OB, Moreira IEG, Victor EG. Arterial Blood Pressure in Adolescents During Exercise Stress Testing. Arq Bras Cardiol. 2007;88(3):329-33. doi: 10.1590/s0066-782x2007000300012.
https://doi.org/10.1590/s0066-782x200700...
Other studies found that the increase in SBP and chronotropic response were significantly lower in children with complex CHD and dilated cardiomyopathy.155155 Sadoul N, Prasad K, Elliott PM, Bannerjee S, Frenneaux MP, McKenna WJ. Prospective Prognostic Assessment of Blood Pressure Response During Exercise in Patients with Hypertrophic Cardiomyopathy. Circulation. 1997;96(9):2987-91. doi: 10.1161/01.cir.96.9.2987.
https://doi.org/10.1161/01.cir.96.9.2987...
,395395 Bonnet D, Berger F, Jokinen E, Kantor PF, Daubeney PEF. Ivabradine in Children with Dilated Cardiomyopathy and Symptomatic Chronic Heart Failure. J Am Coll Cardiol. 2017;70(10):1262-72. doi: 10.1016/j.jacc.2017.07.725.
https://doi.org/10.1016/j.jacc.2017.07.7...
,426426 Sumitomo N, Ito S, Harada K, Kobayashi H, Okuni M. Treadmill Exercise Test in Children with Cardiomyopathy and Postmyocarditic Myocardial Hypertrophy. Heart Vessels. 1986;2(1):47-50. doi: 10.1007/BF02060245.
https://doi.org/10.1007/BF02060245...

Failure of SBP to increase with exertion may be indicative of possible cardiac dysfunction. A persistent drop in SBP with progression of exercise may be secondary to HF or left ventricular outflow tract obstruction (i.e. severe aortic stenosis, asymmetric hypertrophic cardiomyopathy).

National and international studies have sought to evaluate the BP response in children and adolescents undergoing ET and define reference values and predictive equations for BP behavior in this setting. Due to great heterogeneity across the studied populations and the results obtained, a single "normal" BP response to ET has, so far, proved impossible to define.3838 Hacke C, Weisser B. Reference Values for Exercise Systolic Blood Pressure in 12- to 17-Year-Old Adolescents. Am J Hypertens. 2016;29(6):747-53. doi: 10.1093/ajh/hpv178.
https://doi.org/10.1093/ajh/hpv178...
,305305 Burstein DS, McBride MG, Min J, Paridon AA, Perelman S, Huffman EM, et al. Normative Values for Cardiopulmonary Exercise Stress Testing Using Ramp Cycle Ergometry in Children and Adolescents. J Pediatr. 2021;229:61-9. doi: 10.1016/j.jpeds.2020.09.018.
https://doi.org/10.1016/j.jpeds.2020.09....
,403403 Riopel DA, Taylor AB, Hohn AR. Blood Pressure, Heart Rate, Pressure-Rate Product and Electrocardiographic Changes in Healthy Children During Treadmill Exercise. Am J Cardiol. 1979;44(4):697-704. doi: 10.1016/0002-9149(79)90290-x.
https://doi.org/10.1016/0002-9149(79)902...
,419419 Clarke MM, Zannino D, Stewart NP, Glenning JP, Pineda-Guevara S, Kik J, et al. Normative Blood Pressure Response to Exercise Stress Testing in Children and Adolescents. Open Heart. 2021;8(2):e001807. doi: 10.1136/openhrt-2021-001807.
https://doi.org/10.1136/openhrt-2021-001...
,422422 Alpert BS, Flood NL, Strong WB, Dover EV, DuRant RH, Martin AM, et al. Responses to Ergometer Exercise in a Healthy Biracial Population of Children. J Pediatr. 1982;101(4):538-45. doi: 10.1016/s0022-3476(82)80696-3.
https://doi.org/10.1016/s0022-3476(82)80...
,425425 Becker MMC, Silva OB, Moreira IEG, Victor EG. Arterial Blood Pressure in Adolescents During Exercise Stress Testing. Arq Bras Cardiol. 2007;88(3):329-33. doi: 10.1590/s0066-782x2007000300012.
https://doi.org/10.1590/s0066-782x200700...
,427427 Alpert BS, Dover EV, Booker DL, Martin AM, Strong WB. Blood Pressure Response to Dynamic Exercise in Healthy Children--Black vs White. J Pediatr. 1981;99(4):556-60. doi: 10.1016/s0022-3476(81)80253-3.
https://doi.org/10.1016/s0022-3476(81)80...
,428428 Kaafarani M, Schroer C, Takken T. Reference Values for Blood Pressure Response to Cycle Ergometry in the First Two Decades of Life: Comparison with Patients with a Repaired Coarctation of the Aorta. Expert Rev Cardiovasc Ther. 2017;15(12):945-51. doi: 10.1080/14779072.2017.1385392.
https://doi.org/10.1080/14779072.2017.13...

To assess SBPmax, we suggest using:

  • A predictive equation based on sex and age (Table 22) for the age group 7 to 17 years; or

  • A nomogram based on sex and body surface area (Figure 2) for the age group 6 to 15 years.

Table 22
Predicted peak SBP values based on a linear regression model for age and sex
Figure 2
Nomograms of maximum systolic blood pressure behavior based on sex, ethnicity, and body surface area. The solid line represents the 50th percentile (P50) of systolic blood pressure. The upper dashed line represents the 95th percentile (P95), while the lower dashed line represents the 5th percentile (P05). Body surface area (m²). Adapted from: Alpert et al. Responses to Ergometer Exercise in a Healthy Biracial Population of Children.422422 Alpert BS, Flood NL, Strong WB, Dover EV, DuRant RH, Martin AM, et al. Responses to Ergometer Exercise in a Healthy Biracial Population of Children. J Pediatr. 1982;101(4):538-45. doi: 10.1016/s0022-3476(82)80696-3.
https://doi.org/10.1016/s0022-3476(82)80...

Recommended criteria for evaluating and describing the BP response to ET in children and adolescents are given in Table 23.

Table 23
Blood pressure response to ET/CPET in children and adolescents

Particular features of the BP response to ET specific to the pediatric population:

  • White coat hypertension: patients with this condition generally present with an exaggerated SBP response to exercise, which may represent a pre-hypertensive stage.4646 Kavey RE, Kveselis DA, Atallah N, Smith FC. White Coat Hypertension in Childhood: Evidence for End-Organ Effect. J Pediatr. 2007;150(5):491-7. doi: 10.1016/j.jpeds.2007.01.033.
    https://doi.org/10.1016/j.jpeds.2007.01....

  • Future risk of hypertension: there is evidence that an exaggerated BP response to exercise in apparently healthy children and adolescents is a predictor of future hypertension.429429 Hansen HS, Hyldebrandt N, Nielsen JR, Froberg K. Exercise Testing in Children as a Diagnostic tool of Future Hypertension: The Odense Schoolchild Study. J Hypertens Suppl. 1989;7(1):S41-2. doi: 10.1097/00004872-198902001-00012.
    https://doi.org/10.1097/00004872-1989020...
    ,430430 Lauer RM, Burns TL, Clarke WR, Mahoney LT. Childhood Predictors of Future Blood Pressure. Hypertension. 1991;18(3 Suppl):I74-81. doi: 10.1161/01.hyp.18.3_suppl.i74.
    https://doi.org/10.1161/01.hyp.18.3_supp...

  • Association withleft ventricular hypertrophy (LVH): a hypertensive SBP and/or DBP response in normotensive children and adolescents (especially those with a family history of hypertension) correlates with the degree of LVH.4747 Schultz MG, Park C, Fraser A, Howe LD, Jones S, Rapala A, et al. Submaximal Exercise Blood Pressure and Cardiovascular Structure in Adolescence. Int J Cardiol. 2019;275:152-7. doi: 10.1016/j.ijcard.2018.10.060.
    https://doi.org/10.1016/j.ijcard.2018.10...
    ,431431 Muñoz S, Soltero I, Onorato E, Pietri C, Zambrano F. Morphological and Functional Parameters of the Left Ventricle (Mass, Wall Thickness and End-Systolic Stress) in School Children with Different Levels of Blood Pressure, at Rest and During Maximal Exercise. Acta Cient Venez. 1990;41(2):106-13. PMID: 2135560.433433 Schultz M, Park C, Sharman J, Fraser A, Howe L, Lawlor D, et al. Exaggerated Exercise Blood Pressure is Associated with Higher Left Ventricular Mass in Adolescence. The Avon Longitudinal Study of Parents and Children. J Hypertens. 2016;34(Suppl 1):e55. doi: 10.1097/01.hjh.0000499992.80444.b7.
    https://doi.org/10.1097/01.hjh.000049999...

  • Aortic stenosis: As aortic valve stenosis (subvalvular or supravalvular) becomes more severe, the increase in SBP during exercise is significantly reduced. In severe stenosis, the increase in SBP is generally between 10 and 20 mmHg.134134 Santana S, Gidding SS, Xie S, Jiang T, Kharouf R, Robinson BW. Correlation of Echocardiogram and Exercise Test Data in Children with Aortic Stenosis. Pediatr Cardiol. 2019;40(7):1516-22. doi: 10.1007/s00246-019-02177-1.
    https://doi.org/10.1007/s00246-019-02177...
    ,383383 Yilmaz G, Ozme S, Ozer S, Tokel K, Celiker A. Evaluation by Exercise Testing of Children with Mild and Moderate Valvular Aortic Stenosis. Pediatr Int. 2000;42(1):48-52. doi: 10.1046/j.1442-200x.2000.01179.x.
    https://doi.org/10.1046/j.1442-200x.2000...
    ,434434 Cyran SE, James FW, Daniels S, Mays W, Shukla R, Kaplan S. Comparison of the Cardiac Output and Stroke Volume Response to Upright Exercise in Children with Valvular and Subvalvular Aortic Stenosis. J Am Coll Cardiol. 1988;11(3):651-8. doi: 10.1016/0735-1097(88)91545-8.
    https://doi.org/10.1016/0735-1097(88)915...
    ,435435 Atwood JE, Kawanishi S, Myers J, Froelicher VF. Exercise Testing in Patients with Aortic Stenosis. Chest. 1988;93(5):1083-7. doi: 10.1378/chest.93.5.1083.
    https://doi.org/10.1378/chest.93.5.1083...
    Rarely, a drop in SBP during exercise may occur, which is associated with impaired ventricular function (gradient >70 mmHg).436436 James FW, Schwartz DC, Kaplan S, Spilkin SP. Exercise Electrocardiogram, Blood Pressure, and Working Capacity in Young Patients with Valvular or Discrete Subvalvular Aortic Stenosis. Am J Cardiol. 1982;50(4):769-75. doi: 10.1016/0002-9149(82)91232-2.
    https://doi.org/10.1016/0002-9149(82)912...
    ΔSBP on exertion ≥35 mmHg has been associated with better prognosis.437437 Alpert BS, Kartodihardjo W, Harp R, Izukawa T, Strong WB. Exercise Blood Pressure Response--a Predictor of Severity of Aortic Stenosis in Children. J Pediatr. 1981;98(5):763-5. doi: 10.1016/s0022-3476(81)80839-6.
    https://doi.org/10.1016/s0022-3476(81)80...

  • Hypertrophic cardiomyopathy: ΔSBP on exertion <20 mmHg or a drop in SBP >20 mmHg in children and adolescents is associated with increased risk of cardiac death.155155 Sadoul N, Prasad K, Elliott PM, Bannerjee S, Frenneaux MP, McKenna WJ. Prospective Prognostic Assessment of Blood Pressure Response During Exercise in Patients with Hypertrophic Cardiomyopathy. Circulation. 1997;96(9):2987-91. doi: 10.1161/01.cir.96.9.2987.
    https://doi.org/10.1161/01.cir.96.9.2987...
    ,438438 Norrish G, Cantarutti N, Pissaridou E, Ridout DA, Limongelli G, Elliott PM, et al. Risk Factors for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. Eur J Prev Cardiol. 2017;24(11):1220-30. doi: 10.1177/2047487317702519.
    https://doi.org/10.1177/2047487317702519...

  • Coarctation of the aorta: After successful surgical repair, up to one third of patients remain or become hypertensive. A hypertensive response to exercise is common, even in the absence of significant residual obstruction.4949 Luitingh TL, Lee MGY, Jones B, Kowalski R, Aguero SW, Koleff J, et al. A Cross-Sectional Study of the Prevalence of Exercise-Induced Hypertension in Childhood Following Repair of Coarctation of the Aorta. Heart Lung Circ. 2019;28(5):792-9. doi: 10.1016/j.hlc.2018.03.015.
    https://doi.org/10.1016/j.hlc.2018.03.01...
    ,439439 Donazzan L, Crepaz R, Stuefer J, Stellin G. Abnormalities of Aortic Arch Shape, Central Aortic Flow Dynamics, and Distensibility Predispose to Hypertension after Successful Repair of Aortic Coarctation. World J Pediatr Congenit Heart Surg. 2014;5(4):546-53. doi: 10.1177/2150135114551028.
    https://doi.org/10.1177/2150135114551028...
    ,440440 Madueme PC, Khoury PR, Urbina EM, Kimball TR. Predictors of Exaggerated Exercise-Induced Systolic Blood Pressures in Young Patients After Coarctation Repair. Cardiol Young. 2013;23(3):416-22. doi: 10.1017/S1047951112001114.
    https://doi.org/10.1017/S104795111200111...

  • Athletes: in physically active children and adolescents, the increase in SBP in response to exertion is usually slower than in sedentary and obese subjects.441441 Huang Z, Park C, Chaturvedi N, Howe LD, Sharman JE, Hughes AD, et al. Cardiorespiratory Fitness, Fatness, and the Acute Blood Pressure Response to Exercise in Adolescence. Scand J Med Sci Sports. 2021;31(8):1693-8. doi: 10.1111/sms.13976.
    https://doi.org/10.1111/sms.13976...
    Apparently healthy, highly trained adolescents generally have higher ΔSBP than untrained youth. Equations for predicting SBP in athletes (aged 10 to 18 years) at any time during ET:442442 Szmigielska K, Szmigielska-Kapłon A, Jegier A. Blood Pressure Response to Exercise in Young Athletes Aged 10 to 18 Years. Appl Physiol Nutr Metab. 2016;41(1):41-8. doi: 10.1139/apnm-2015-0101.
    https://doi.org/10.1139/apnm-2015-0101...

Male: SBP during exercise (mmHg) = –1.92 × age + 0.55 × workload + 120.84

Female: SBP during exercise (mmHg) = –0.88 × age + 0.48 × workload + 111.22

Note: age in years; workload in watts (W).

3.2.3. Double Product

The double product (DP), or rate pressure product, expresses myocardial oxygen consumption. It is calculated by multiplying the HR by the SBP at any time during ET/CPET:

D P ( b p m . m m H g ) = H R x S B P

In children and adolescents, resting DP is generally influenced by sex (lower in females), anthropometric parameters (BMI, waist-to-hip ratio, and body fat percentage), and level of CRF. Annex 4 presents information on DP values at rest and at peak exertion in an apparently healthy pediatric population, in patients with HF and with coarctation of the aorta.428428 Kaafarani M, Schroer C, Takken T. Reference Values for Blood Pressure Response to Cycle Ergometry in the First Two Decades of Life: Comparison with Patients with a Repaired Coarctation of the Aorta. Expert Rev Cardiovasc Ther. 2017;15(12):945-51. doi: 10.1080/14779072.2017.1385392.
https://doi.org/10.1080/14779072.2017.13...
,443443 Katamba G, Musasizi A, Kinene MA, Namaganda A, Muzaale F. Relationship of Anthropometric Indices with Rate Pressure Product, Pulse Pressure and Mean Arterial Pressure Among Secondary Adolescents of 12-17 Years. BMC Res Notes. 2021;14(1):101. doi: 10.1186/s13104-021-05515-w.
https://doi.org/10.1186/s13104-021-05515...
,444444 Mota J, Soares-Miranda L, Silva JM, Dos Santos SS, Vale S. Influence of Body Fat and Level of Physical Activity on Rate-Pressure Product at Rest in Preschool Children. Am J Hum Biol. 2012;24(5):661-5. doi: 10.1002/ajhb.22294.
https://doi.org/10.1002/ajhb.22294...

DP response:

  • In apparently healthy children, correlates positively with age.

  • In the second stage of incremental protocols and at peak exertion, it is a useful predictor of systolic hypertension in adolescence, regardless of resting SBP and conventional cardiovascular risk factors.445445 Grøntved A, Brage S, Møller NC, Kristensen PL, Wedderkopp N, Froberg K, et al. Hemodynamic Variables During Exercise in Childhood and Resting Systolic Blood Pressure Levels 6 Years Later in Adolescence: The European Youth Heart Study. J Hum Hypertens. 2011;25(10):608-14. doi: 10.1038/jhh.2010.103.
    https://doi.org/10.1038/jhh.2010.103...

  • Patients with Kawasaki disease have a significantly lower maximum DP.1515 Tuan SH, Li MH, Hsu MJ, Tsai YJ, Chen YH, Liao TY, et al. Cardiopulmonary Function, Exercise Capacity, and Echocardiography Finding of Pediatric Patients with Kawasaki Disease: An Observational Study. Medicine. 2016;95(2):e2444. doi: 10.1097/MD.0000000000002444.
    https://doi.org/10.1097/MD.0000000000002...

3.3. ECG Responses

For proper analysis, description, and interpretation of ECG responses to ET in the pediatric population, the following factors should be taken into account:

  • Check proper electrode placement and attachment to minimize errors and artifacts.446446 García-Niebla J, Llontop-García P, Valle-Racero JI, Serra-Autonell G, Batchvarov VN, de Luna AB. Technical Mistakes During the Acquisition of the Electrocardiogram. Ann Noninvasive Electrocardiol. 2009;14(4):389-403. doi: 10.1111/j.1542-474X.2009.00328.x.
    https://doi.org/10.1111/j.1542-474X.2009...
    ,447447 Pérez-Riera AR, Barbosa-Barros R, Daminello-Raimundo R, de Abreu LC. Main Artifacts in Electrocardiography. Ann Noninvasive Electrocardiol. 2018;23(2):e12494. doi: 10.1111/anec.12494.
    https://doi.org/10.1111/anec.12494...

  • Consider the effects of any ECG filters applied (high, medium, low) for baseline stabilization and reduction of muscle and electrical artifacts. For teenagers, use high-frequency filters (at least 150 Hz); for children, up to 250 Hz. Filters with lower frequencies may interfere with capture of pacemaker spikes.308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
    https://doi.org/10.36660/abc.20220623...
    ,448448 Luo S, Johnston P. A Review of Electrocardiogram Filtering. J Electrocardiol. 2010;43(6):486-96. doi: 10.1016/j.jelectrocard.2010.07.007.
    https://doi.org/10.1016/j.jelectrocard.2...
    ,449449 Buendía-Fuentes F, Arnau-Vives MA, Arnau-Vives A, Jiménez-Jiménez Y, Rueda-Soriano J, Zorio-Grima E, et al. High-Bandpass Filters in Electrocardiography: Source of Error in the Interpretation of the ST Segment. ISRN Cardiol. 2012;2012:706217. doi: 10.5402/2012/706217.
    https://doi.org/10.5402/2012/706217...

  • It is suggested to use automated measurement systems for intervals, durations, and amplitudes of ECG waves and segments, adapted and validated for the pediatric population.1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,188188 Takken T, Ulu HS, Hulzebos EHJ. Clinical Recommendations for Cardiopulmonary Exercise Testing in Children with Respiratory Diseases. Expert Rev Respir Med. 2020;14(7):691-701. doi: 10.1080/17476348.2020.1752195.
    https://doi.org/10.1080/17476348.2020.17...
    ,450450 Dickinson DF. The Normal ECG in Childhood and Adolescence. Heart. 2005;91(12):1626-30. doi: 10.1136/hrt.2004.057307.
    https://doi.org/10.1136/hrt.2004.057307...

  • Follow the standard ECG reporting guidance of the Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports – 2022 and the reference values for key ECG parameters adjusted for the various age ranges of the pediatric population (Table 24).308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
    https://doi.org/10.36660/abc.20220623...
    ,451451 Pastore CA, Pinho JA, Pinho C, Samesima N, Pereira Filho HG, Kruse JC, et al. III Diretrizes da Sociedade Brasileira de Cardiologia Sobre Análise e Emissão de Laudos Eletrocardiográficos. Arq Bras Cardiol. 2016;106(4 Suppl 1):1-23. doi: 10.5935/abc.20160054.
    https://doi.org/10.5935/abc.20160054...

  • Review any automated measurements to rule out errors due to possible interference, artifacts, or abnormalities in the underlying tracing.452452 Kligfield P, Badilini F, Denjoy I, Babaeizadeh S, Clark E, De Bie J, et al. Comparison of Automated Interval Measurements by Widely Used Algorithms in Digital Electrocardiographs. Am Heart J. 2018;200:1-10. doi: 10.1016/j.ahj.2018.02.014.
    https://doi.org/10.1016/j.ahj.2018.02.01...
    ,453453 Lux RL. Basis and ECG Measurement of Global Ventricular Repolarization. J Electrocardiol. 2017;50(6):792-7. doi: 10.1016/j.jelectrocard.2017.07.008.
    https://doi.org/10.1016/j.jelectrocard.2...

  • Provide a detailed, contextualized description in the ECG record, adapted for the pediatric population and its diseases.

Table 24
Reference values of key ECG parameters at rest in children and adolescents

The following factors must be taken into account regarding ECG in the pediatric population:451451 Pastore CA, Pinho JA, Pinho C, Samesima N, Pereira Filho HG, Kruse JC, et al. III Diretrizes da Sociedade Brasileira de Cardiologia Sobre Análise e Emissão de Laudos Eletrocardiográficos. Arq Bras Cardiol. 2016;106(4 Suppl 1):1-23. doi: 10.5935/abc.20160054.
https://doi.org/10.5935/abc.20160054...

  • The ECG must be interpreted according to the child's age. Younger children have a precordial pattern with right ventricular dominance; as they age, the waveform takes on the adult ECG pattern, with physiological left ventricular predominance.

  • In CHD, the ECG reflects any anatomic changes and their hemodynamic repercussions on the chambers of the heart.

  • Chest deformities, cardiac malposition, and/or changes in heart rhythm will hinder interpretation.

3.3.1. Resting ECG

In children and adolescents, certain resting ECG abnormalities are associated with pathological conditions, increased risk of complications during ET/CPET, and risk of sudden death (Table 25). These abnormalities can interfere with the interpretation of exercise-induced changes.

Table 25
Resting ECG abnormalities in children and adolescents known to be associated with pathological conditions, increased risk of complications during ET/CPET, and risk of sudden death6464 Corrado D, Pelliccia A, Bjørnstad HH, Vanhees L, Biffi A, Borjesson M, et al. Cardiovascular Pre-Participation Screening of Young Competitive Athletes for Prevention of Sudden Death: Proposal for a Common European Protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(5):516-24. doi: 10.1093/eurheartj/ehi108.
https://doi.org/10.1093/eurheartj/ehi108...
,462462 Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. Eur Heart J. 2018;39(16):1466-80. doi: 10.1093/eurheartj/ehw631.
https://doi.org/10.1093/eurheartj/ehw631...

The early repolarization pattern (ERP) is common in the pediatric population and must be interpreted in context:454454 Ahmed H, Czosek RJ, Spar DS, Knilans TK, Anderson JB. Early Repolarization in Normal Adolescents is Common. Pediatr Cardiol. 2017;38(4):864-72. doi: 10.1007/s00246-017-1594-9.
https://doi.org/10.1007/s00246-017-1594-...
,455455 Surawicz B, Parikh SR. Prevalence of Male and Female Patterns of Early Ventricular Repolarization in the Normal ECG of Males and Females from Childhood to Old Age. J Am Coll Cardiol. 2002;40(10):1870-6. doi: 10.1016/s0735-1097(02)02492-0.
https://doi.org/10.1016/s0735-1097(02)02...

  • The diffuse ascending pattern is common among the young, in those of European ethnicity, found equally in both sexes and has no apparent correlation with atrial or ventricular arrhythmias.456456 Safa R, Thomas R, Karpawich PP. Electrocardiographic Early Repolarization Characteristics and Clinical Presentations in the Young: A Benign Finding or Worrisome Marker for Arrhythmias. Congenit Heart Dis. 2017;12(1):99-104. doi: 10.1111/chd.12410.
    https://doi.org/10.1111/chd.12410...

  • Pediatric athletes often present with a notched J-point and a rapidly ascending, concave ST segment, especially in the inferolateral leads. Other changes include resting sinus bradycardia, increased R wave voltage in precordial and peripheral leads, and an increased Sokolow-Lyon index.457457 Halasz G, Cattaneo M, Piepoli M, Biagi A, Romano S, Biasini V, et al. Early Repolarization in Pediatric Athletes: A Dynamic Electrocardiographic Pattern with Benign Prognosis. J Am Heart Assoc. 2021;10(16):e020776. doi: 10.1161/JAHA.121.020776.
    https://doi.org/10.1161/JAHA.121.020776...

  • In athletes aged ≥14 years, use of the Seattle criteria is recommended for improved diagnosis.458458 Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher V. Comparison of Three ECG Criteria for Athlete Pre-Participation Screening. J Electrocardiol. 2014;47(6):769-74. doi: 10.1016/j.jelectrocard.2014.07.019.
    https://doi.org/10.1016/j.jelectrocard.2...
    460460 Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic Interpretation in Athletes: The ‘Seattle Criteria’. Br J Sports Med. 2013;47(3):122-4. doi: 10.1136/bjsports-2012-092067.
    https://doi.org/10.1136/bjsports-2012-09...

Other causes of ERP include: juvenile T wave pattern; hypothermia or hyperthermia; hypocalcemia; hyperkalemia; pericardial disease (pericarditis, pericardial cyst, pericardial tumor); myocardial tumor (lipoma); hypertensive cardiomyopathy; myocardial ischemia; thymoma; arrhythmogenic right ventricular cardiomyopathy; Takotsubo cardiomyopathy; myocarditis; and Chagas disease.458458 Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher V. Comparison of Three ECG Criteria for Athlete Pre-Participation Screening. J Electrocardiol. 2014;47(6):769-74. doi: 10.1016/j.jelectrocard.2014.07.019.
https://doi.org/10.1016/j.jelectrocard.2...
,459459 Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69(8):1057-75. doi: 10.1016/j.jacc.2017.01.015.
https://doi.org/10.1016/j.jacc.2017.01.0...
,461461 Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, et al. J-Wave Syndromes Expert Consensus Conference Report: Emerging Concepts and Gaps in Knowledge. Europace. 2017;19(4):665-94. doi: 10.1093/europace/euw235.
https://doi.org/10.1093/europace/euw235...

3.3.2. Responses to Exercise and Recovery

In the healthy pediatric population, the ECG responses to ET/CPET (exercise and recovery) are generally different from those observed in adults, including in terms of criteria for diagnosis of ischemia; these differences will be presented below.

3.3.2.1. P Wave and PR Interval

On the resting ECG, P waves represent atrial depolarization and are best visualized in leads II and V1. Normal sinoatrial node conduction will result in a positive P wave in leads I, II, and aVF. The maximum amplitude of the P wave does not change significantly during childhood (Table 24), and its duration is usually <100 ms. An amplitude >0.25 mV (2.5 mm) in lead II is considered abnormal at any age.450450 Dickinson DF. The Normal ECG in Childhood and Adolescence. Heart. 2005;91(12):1626-30. doi: 10.1136/hrt.2004.057307.
https://doi.org/10.1136/hrt.2004.057307...
,463463 Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New Normal Limits for the Paediatric Electrocardiogram. Eur Heart J. 2001;22(8):702-11. doi: 10.1053/euhj.2000.2399.
https://doi.org/10.1053/euhj.2000.2399...
465465 Dilaveris P, Raftopoulos L, Giannopoulos G, Katinakis S, Maragiannis D, Roussos D, et al. Prevalence of Interatrial Block in Healthy School-Aged Children: Definition by P-Wave Duration or Morphological Analysis. Ann Noninvasive Electrocardiol. 2010;15(1):17-25. doi: 10.1111/j.1542-474X.2009.00335.x.
https://doi.org/10.1111/j.1542-474X.2009...

In children, the amplitude and duration criteria for atrial hypertrophy should only be applied in sinus rhythm with a P wave axis between 0 and 90°. A P wave amplitude >0.25 mV (2.5 mm) suggests right atrial enlargement. A broad, notched (bifid) P wave (duration >110 ms) in lead II and/or a biphasic P wave in lead V1 with a terminal negative deflection >40 ms suggests left atrial enlargement.466466 Ng C, Ahmad A, Budhram DR, He M, Balakrishnan N, Mondal T. Accuracy of Electrocardiography and Agreement with Echocardiography in the Diagnosis of Pediatric Left Atrial Enlargement. Sci Rep. 2020;10(1):10027. doi: 10.1038/s41598-020-66987-7.
https://doi.org/10.1038/s41598-020-66987...
,467467 Yoshinaga M, Iwamoto M, Horigome H, Sumitomo N, Ushinohama H, Izumida N, et al. Standard Values and Characteristics of Electrocardiographic Findings in Children and Adolescents. Circ J. 2018;82(3):831-9. doi: 10.1253/circj.CJ-17-0735.
https://doi.org/10.1253/circj.CJ-17-0735...

P wave dispersion (Pdis, Pd or PWD) corresponds to the difference between the maximum and minimum duration values of the P waves in the ECG leads. Pdis and maximum P wave duration on the resting ECG are useful for evaluating the sinus impulse propagation pattern and intra- and interatrial conduction times, and has PPV for arrhythmias in children with CHD.468468 Hallioglu O, Aytemir K, Celiker A. The Significance of P Wave Duration and P Wave Dispersion for Risk Assessment of Atrial Tachyarrhythmias in Patients with Corrected Tetralogy of Fallot. Ann Noninvasive Electrocardiol. 2004;9(4):339-44. doi: 10.1111/j.1542-474X.2004.94569.x.
https://doi.org/10.1111/j.1542-474X.2004...
,469469 Saleh A, Shabana A, El Amrousy D, Zoair A. Predictive Value of P-Wave and QT Interval Dispersion in Children with Congenital Heart Disease and Pulmonary Arterial Hypertension for the Occurrence of Arrhythmias. J Saudi Heart Assoc. 2019;31(2):57-63. doi: 10.1016/j.jsha.2018.11.006.
https://doi.org/10.1016/j.jsha.2018.11.0...

The PR interval varies with age range (see Table 24). Its lower limit is between 80 and 90 ms, and the upper limit, between 150 and 180 ms. Key changes in PRi duration:

  • Prolonged: generally associated with CHD, myocarditis, and hyperkalemia.

  • Short: associated with Wolff-Parkinson-White (WPW) syndrome and its pre-excitation variations, and glycogen storage diseases.

During ET, the following are generally observed:

  • Increased P wave amplitude. In apparently healthy children of both sexes aged 5 to 12 (mean age 10.3 years), the P wave amplitude at peak exertion can be as high as 2.57±0.76 mm (resting ECG: 1.84±0.48 mm; p<0.001).470470 Malakan Rad E, Karimi M, Momtazmanesh S, Shabanian R, Saatchi M, Asbagh PA, et al. Exercise-Induced Electrocardiographic Changes After Treadmill Exercise Testing in Healthy Children: A Comprehensive Study. Ann Pediatr Cardiol. 2021;14(4):449-58. doi: 10.4103/apc.apc_254_20.
    https://doi.org/10.4103/apc.apc_254_20...

  • Progressive decrease in PRi with increasing HR, due to accelerating propagation of potentials through the atria and atrioventricular node (sympathetic activation). At peak exertion, the PRi generally ranges from 100 to 140 ms.177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

  • During recovery, an increase in PRi duration is often observed, with a concomitant decrease in HR; this may be associated with sinus arrhythmia, short runs of junctional rhythm, and ectopic atrial rhythm.

Abnormal responses to ET:

  • Prolonged P wave duration, increased maximum P wave duration, and increased PDW on resting ECG have been described in association with ostium secundum atrial septal defect in otherwise healthy children, atrial hypertrophy, pulmonic stenosis, tetralogy of Fallot, Eisenmenger syndrome, status post Fontan procedure, interatrial block, chemotherapy-induced cardiomyopathy, arrhythmias, hypertension, and viral infections.464464 Cismaru G, Lazea C, Mureşan L, Gusetu G, Rosu R, Pop D, et al. Validation of Normal P-Wave Parameters in a Large Unselected Pediatric Population of North-Western Romania: Results of the CARDIOPED Project. Dis Markers. 2021;2021:6657982. doi: 10.1155/2021/6657982.
    https://doi.org/10.1155/2021/6657982...
    ,468468 Hallioglu O, Aytemir K, Celiker A. The Significance of P Wave Duration and P Wave Dispersion for Risk Assessment of Atrial Tachyarrhythmias in Patients with Corrected Tetralogy of Fallot. Ann Noninvasive Electrocardiol. 2004;9(4):339-44. doi: 10.1111/j.1542-474X.2004.94569.x.
    https://doi.org/10.1111/j.1542-474X.2004...
    ,471471 Ho TF, Chia EL, Yip WC, Chan KY. Analysis of P Wave and P Dispersion in Children with Secundum Atrial Septal Defect. Ann Noninvasive Electrocardiol. 2001;6(4):305-9. doi: 10.1111/j.1542-474x.2001.tb00123.x.
    https://doi.org/10.1111/j.1542-474x.2001...
    475475 Kocaoglu C, Sert A, Aypar E, Oran B, Odabas D, Arslan D, et al. P-Wave Dispersion in Children with Acute Rheumatic Fever. Pediatr Cardiol. 2012;33(1):90-4. doi: 10.1007/s00246-011-0096-4.
    https://doi.org/10.1007/s00246-011-0096-...

  • Ectopic atrial rhythm (inverted P waves in leads II and/or aVF) on resting ECG usually returns to sinus rhythm with exertion/increasing HR. Persistence of ectopic atrial rhythm is generally observed in patients with CHD.476476 Goodacre S, McLeod K. ABC of Clinical Electrocardiography: Paediatric Electrocardiography. BMJ. 2002;324(7350):1382-5. doi: 10.1136/bmj.324.7350.1382.
    https://doi.org/10.1136/bmj.324.7350.138...
    ,477477 Blaufox AD, Sleeper LA, Bradley DJ, Breitbart RE, Hordof A, Kanter RJ, et al. Functional Status, Heart Rate, and Rhythm Abnormalities in 521 Fontan Patients 6 to 18 Years of Age. J Thorac Cardiovasc Surg. 2008;136(1):100-7. doi: 10.1016/j.jtcvs.2007.12.024.
    https://doi.org/10.1016/j.jtcvs.2007.12....

  • In children and adolescents with marked first-degree AV block (extremely prolonged PRi) on resting ECG and persistence of this abnormality as the test progresses, exercise intolerance, palpitations, and pre-syncope/syncope often occur; this is associated with atrioventricular dissociation and is diagnostic of the pseudo-pacemaker syndrome.478478 Ogunlade O, Akintomide AO, Ajayi OE, Eluwole OA. Marked First Degree Atrioventricular Block: An Extremely Prolonged PR Interval Associated with Atrioventricular Dissociation in a Young Nigerian Man with Pseudo-Pacemaker Syndrome: A Case Report. BMC Res Notes. 2014;7:781. doi: 10.1186/1756-0500-7-781.
    https://doi.org/10.1186/1756-0500-7-781...
    .479479 Barold SS, Ilercil A, Leonelli F, Herweg B. First-Degree Atrioventricular Block. Clinical Manifestations, Indications for Pacing, Pacemaker Management & Consequences During Cardiac Resynchronization. J Interv Card Electrophysiol. 2006;17(2):139-52. doi: 10.1007/s10840-006-9065-x.
    https://doi.org/10.1007/s10840-006-9065-...

3.3.2.2. Q Wave

Q-wave behavior differs as the child grows. In newborns, it is normally absent or of small amplitude. Children aged 6 months to 3 years may have abnormal Q waves (in leads III and V6) of up to 0.6-0.8 mV. Q wave amplitude in the first months of life reaches peak around 3 to 5 years of age, with a subsequent decrease, but without normalizing.450450 Dickinson DF. The Normal ECG in Childhood and Adolescence. Heart. 2005;91(12):1626-30. doi: 10.1136/hrt.2004.057307.
https://doi.org/10.1136/hrt.2004.057307...
,463463 Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New Normal Limits for the Paediatric Electrocardiogram. Eur Heart J. 2001;22(8):702-11. doi: 10.1053/euhj.2000.2399.
https://doi.org/10.1053/euhj.2000.2399...
,480480 Davignon A, Rautaharju P, Boisselle E, Soumis F, Mégélas M, Choquette A. Normal ECG Standards for Infants and Children. Pediatr Cardiol. 1980;1:123-31. doi: 10.1007/BF02083144.
https://doi.org/10.1007/BF02083144...
,481481 Semizel E, Oztürk B, Bostan OM, Cil E, Ediz B. The Effect of Age and Gender on the Electrocardiogram in Children. Cardiol Young. 2008;18(1):26-40. doi: 10.1017/S1047951107001722.
https://doi.org/10.1017/S104795110700172...

In apparently healthy children between 8 and 16 years of age, Q waves in lead V6 can reach up to 0.23-0.5 mV. In adolescents, it is suggested that, instead of the Seattle Criteria, the International Criteria for pathological Q waves be adopted:482482 Hyde N, Prutkin JM, Drezner JA. Electrocardiogram Interpretation in NCAA Athletes: Comparison of the ‘Seattle’ and ‘International’ Criteria. J Electrocardiol. 2019;56:81-4. doi: 10.1016/j.jelectrocard.2019.07.001.
https://doi.org/10.1016/j.jelectrocard.2...
,483483 Weiss M, Rao P, Johnson D, Billups T, Taing C, LaNoue M, et al. Physician Adherence to ‚Seattle‘ and ‚International‘ ECG Criteria in Adolescent Athletes: An Analysis of Compliance by Specialty, Experience, and Practice Environment. J Electrocardiol. 2020;60:98-101. doi: 10.1016/j.jelectrocard.2020.04.005.
https://doi.org/10.1016/j.jelectrocard.2...

  • In the Seattle Criteria, pathological Q waves are defined as those >3 mm in depth or >40 ms in duration in two or more leads (excluding leads III and aVR).460460 Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic Interpretation in Athletes: The ‘Seattle Criteria’. Br J Sports Med. 2013;47(3):122-4. doi: 10.1136/bjsports-2012-092067.
    https://doi.org/10.1136/bjsports-2012-09...

  • In the International Criteria, pathological Q waves are defined as a Q/R ratio ≥0.25 or a Q wave ≥40 ms in duration in two or more leads (excluding III and aVR).484484 Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    https://doi.org/10.1136/bjsports-2016-09...

  • Adoption of the International Criteria led to an ≈84% reduction in false-positive ECGs due to pathological Q waves, as they reduce the effects of increased QRS complex voltage secondary to athletic training and/or low impedance in lean adolescents.485485 Drezner JA, Owens DS, Prutkin JM, Salerno JC, Harmon KG, Prosise S, et al. Electrocardiographic Screening in National Collegiate Athletic Association Athletes. Am J Cardiol. 2016;118(5):754-9. doi: 10.1016/j.amjcard.2016.06.004.
    https://doi.org/10.1016/j.amjcard.2016.0...
    ,486486 Riding NR, Salah O, Sharma S, Carré F, George KP, Farooq A, et al. ECG and Morphologic Adaptations in Arabic Athletes: Are the European Society of Cardiology's Recommendations for the Interpretation of the 12-Lead ECG Appropriate for this Ethnicity? Br J Sports Med. 2014;48(15):1138-43. doi: 10.1136/bjsports-2012-091871.
    https://doi.org/10.1136/bjsports-2012-09...

Particular features of the Q wave:

  • During pre-test evaluation, abnormal Q waves on a resting ECG suggest an accessory pathway to be confirmed. Isolated pathological Q waves in leads V1 and V2 are generally due to inadequate electrode placement. The finding of pathological Q waves in two or more contiguous leads may be associated with dilated cardiomyopathy, hypertrophic cardiomyopathy, left ventricular noncompaction, and past myocardial infarction (due to Kawasaki disease, anomalous origin of coronary arteries, etc.).476476 Goodacre S, McLeod K. ABC of Clinical Electrocardiography: Paediatric Electrocardiography. BMJ. 2002;324(7350):1382-5. doi: 10.1136/bmj.324.7350.1382.
    https://doi.org/10.1136/bmj.324.7350.138...
    ,484484 Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    https://doi.org/10.1136/bjsports-2016-09...
    ,487487 Nakanishi T, Takao A, Kondoh C, Nakazawa M, Hiroe M, Matsumoto Y. ECG Findings after Myocardial Infarction in Children After Kawasaki Disease. Am Heart J. 1988;116(4):1028-33. doi: 10.1016/0002-8703(88)90155-x.
    https://doi.org/10.1016/0002-8703(88)901...
    ,488488 Campbell MJ, Zhou X, Han C, Abrishami H, Webster G, Miyake CY, et al. Electrocardiography Screening for Hypertrophic Cardiomyopathy. Pacing Clin Electrophysiol. 2016;39(9):944-50. doi: 10.1111/pace.12913.
    https://doi.org/10.1111/pace.12913...

  • In a case-control study of 44 patients with Kawasaki disease (age 7.7±4.8 years), 22 patients underwent ET to investigate myocardial ischemia, of whom 50% exhibited ischemic changes (7 with abnormal Q waves) with significant CAD on coronary angiography. The coronary lesion severity score on SPECT was significantly higher in those with abnormal Q waves (51.0±38.8 versus 20.0±12.1, p<0.05).489489 Fukuda T. Myocardial Ischemia in Kawasaki Disease; Evaluation by Dipyridamole Stress Thallium-201 (Tl-201) Myocardial Imaging and Exercise Stress Test. Kurume Med J. 1992;39(4):245-55. doi: 10.2739/kurumemedj.39.245.
    https://doi.org/10.2739/kurumemedj.39.24...

3.3.2.3. R Wave and S Wave

In children >3 years of age (as in adults), normal ventricular activation is observed in the horizontal plane (precordial leads), with a dominant S wave in V1, similar R and S amplitudes in V2 and V3, and dominant R waves from V4 to V6.490490 Mikrou P, Shivaram P, Kanaris C. How to Interpret the Paediatric 12-Lead ECG. Arch Dis Child Educ Pract Ed. 2022;107(4):279-87. doi: 10.1136/archdischild-2021-322428.
https://doi.org/10.1136/archdischild-202...

In apparently healthy children, the amplitude of the R wave in leads in which it is normally prominent (V5 and V6) generally decreases by an average of 5 mm with exercise. However, the amplitude of the R wave may remain unchanged or even increase.470470 Malakan Rad E, Karimi M, Momtazmanesh S, Shabanian R, Saatchi M, Asbagh PA, et al. Exercise-Induced Electrocardiographic Changes After Treadmill Exercise Testing in Healthy Children: A Comprehensive Study. Ann Pediatr Cardiol. 2021;14(4):449-58. doi: 10.4103/apc.apc_254_20.
https://doi.org/10.4103/apc.apc_254_20...
,491491 Thapar MK, Strong WB, Miller MD, Leatherbury L, Salehbhai M. Exercise Electrocardiography of Health Black Children. Am J Dis Child. 1978;132(6):592-5. doi: 10.1001/archpedi.1978.02120310056011.
https://doi.org/10.1001/archpedi.1978.02...
R wave amplitude responses appear to have no diagnostic significance, unlike in the adult population.

On the pediatric resting ECG, the finding of an R wave >25 mm in V6, a Q wave >5 mm in V6, and an S wave >20 mm in V1 suggests left ventricular hypertrophy.

During exertion, S-wave amplitude generally remains unchanged or increases slightly, while during recovery there is usually an increase.470470 Malakan Rad E, Karimi M, Momtazmanesh S, Shabanian R, Saatchi M, Asbagh PA, et al. Exercise-Induced Electrocardiographic Changes After Treadmill Exercise Testing in Healthy Children: A Comprehensive Study. Ann Pediatr Cardiol. 2021;14(4):449-58. doi: 10.4103/apc.apc_254_20.
https://doi.org/10.4103/apc.apc_254_20...

Particular features of R and S waves in the pediatric population:

  • A study of 170 apparently healthy Black children aged 7 to 14 years (mean age 10.5 years; 56% female), designed to determine the pattern of ECG response to exertion, found that R wave amplitude decreased by 27±8 to 22±8mm (p<0.01) while S-wave amplitude increased from 6.9±4.4 to 7.8±5 mm (p<0.01).491491 Thapar MK, Strong WB, Miller MD, Leatherbury L, Salehbhai M. Exercise Electrocardiography of Health Black Children. Am J Dis Child. 1978;132(6):592-5. doi: 10.1001/archpedi.1978.02120310056011.
    https://doi.org/10.1001/archpedi.1978.02...

  • A study of 46 adolescents (average age 16.1 years; all male) designed to evaluate the change in R wave amplitude in lead V5 during ET found that, in normotensive subjects, there was a progressive reduction in R wave amplitude (up to −3.8mm), while in hypertensive patients there was no such reduction (p<0.001).492492 Falkner B, Lowenthal DT, Affrime MB, Hamstra B. Changes in R Wave Amplitude During Aerobic Exercise Stress Testing in Hypertensive Adolescents. Am J Cardiol. 1982;50(1):152-6. doi: 10.1016/0002-9149(82)90022-4.
    https://doi.org/10.1016/0002-9149(82)900...

  • A study of 55 adolescents (average age 15.9 years; 29 with HTN), designed to evaluate the effect of pharmacotherapy on the R wave amplitude response during ET, found that, after 16 weeks of antihypertensive treatment, the amplitude showed reduction and pattern similar to that observed in normotensive subjects.493493 Falkner B, Lowenthal DT, Affrime MB, Hamstra B. R-Wave Amplitude Change During Aerobic Exercise in Hypertensive Adolescents after Treatment. Am J Cardiol. 1983;51(3):459-63. doi: 10.1016/s0002-9149(83)80080-0.
    https://doi.org/10.1016/s0002-9149(83)80...

  • QRS duration usually remains unchanged or decreases slightly during progressive exertion.

3.3.2.4. T Wave and U Wave

In childhood, the T wave pattern – particularly in the precordial leads – is different from that seen in adults, with a progressive change in the T wave axis with age. Persistence of a positive T wave in V1 or V3R beyond the first week of life usually occurs in right ventricular hypertrophy (RVH). The T wave generally remains inverted in V1 and V3R from age 12 to 16 years.494494 Lambrechts L, Fourie B. How to Interpret an Electrocardiogram in Children. BJA Educ. 2020;20(8):266-77. doi: 10.1016/j.bjae.2020.03.009.
https://doi.org/10.1016/j.bjae.2020.03.0...
,495495 Garson A. The Electrocardiogram in Infants and Children: A Systematic Approach. Philadelphia: Lea & Febiger; 1983. ISBN: 9780812108729.

In early childhood, the T wave is often inverted in leads V2 and V3, progressing to positivity with advancing age. Only 5 to 10% of 8-to-12-year-olds have inverted T waves in V2. 496496 Malhotra A, Dhutia H, Gati S, Yeo TJ, Dores H, Bastiaenen R, et al. Anterior T-Wave Inversion in Young White Athletes and Nonathletes: Prevalence and Significance. J Am Coll Cardiol. 2017;69(1):1-9. doi: 10.1016/j.jacc.2016.10.044.
https://doi.org/10.1016/j.jacc.2016.10.0...
499499 D’Ascenzi F, Anselmi F, Berti B, Capitani E, Chiti C, Franchini A, et al. Prevalence and Significance of T-Wave Inversion in Children Practicing Sport: A Prospective, 4-Year Follow-Up Study. Int J Cardiol. 2019;279:100-4. doi: 10.1016/j.ijcard.2018.09.069.
https://doi.org/10.1016/j.ijcard.2018.09...
In V5 and V6, the T wave is generally positive in all age groups.388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,500500 Tipple M. Interpretation of Electrocardiograms in Infants and Children. Images Paediatr Cardiol. 1999;1(1):3-13. PMCID: PMC3232475. PMID: 22368537.

Presence of negative T waves (NTW), or T wave inversion, on resting ECG:

  • Is considered abnormal if seen in two or more contiguous leads (excluding V1, aVR, and III) and with a depth of ≥1 mm. In lateral leads (II, III, aVF, V4-V6), it is usually associated with hypertrophic cardiomyopathy and LV hypertrophy.501501 Migliore F, Zorzi A, Michieli P, Perazzolo Marra M, Siciliano M, et al. Prevalence of Cardiomyopathy in Italian Asymptomatic Children with Electrocardiographic T-Wave Inversion at Preparticipation Screening. Circulation. 2012;125(3):529-38. doi: 10.1161/CIRCULATIONAHA.111.055673.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    503503 Calò L, Sperandii F, Martino A, Guerra E, Cavarretta E, Quaranta F, et al. Echocardiographic Findings in 2261 Peri-Pubertal Athletes with or without Inverted T Waves at Electrocardiogram. Heart. 2015;101(3):193-200. doi: 10.1136/heartjnl-2014-306110.
    https://doi.org/10.1136/heartjnl-2014-30...
    In adolescent athletes, inverted T waves in lateral leads are also usually associated with hypertrophy and apical displacement of the papillary muscles, which can be considered normal.504504 Abela M, Sharma S. Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations. Curr Treat Options Cardiovasc Med. 2019;21(12):95. doi: 10.1007/s11936-019-0794-4.
    https://doi.org/10.1007/s11936-019-0794-...
    506506 Papadakis M, Basavarajaiah S, Rawlins J, Edwards C, Makan J, Firoozi S, et al. Prevalence and Significance of T-Wave Inversions in Predominantly Caucasian Adolescent Athletes. Eur Heart J. 2009;30(14):1728-35. doi: 10.1093/eurheartj/ehp164.
    https://doi.org/10.1093/eurheartj/ehp164...

  • Asymmetric or biphasic inverted T waves without ST-segment depression in leads V1-V4 are relatively common in asymptomatic adolescents (age <16 years) and Black youth athletes.484484 Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    https://doi.org/10.1136/bjsports-2016-09...
    ,496496 Malhotra A, Dhutia H, Gati S, Yeo TJ, Dores H, Bastiaenen R, et al. Anterior T-Wave Inversion in Young White Athletes and Nonathletes: Prevalence and Significance. J Am Coll Cardiol. 2017;69(1):1-9. doi: 10.1016/j.jacc.2016.10.044.
    https://doi.org/10.1016/j.jacc.2016.10.0...
    ,501501 Migliore F, Zorzi A, Michieli P, Perazzolo Marra M, Siciliano M, et al. Prevalence of Cardiomyopathy in Italian Asymptomatic Children with Electrocardiographic T-Wave Inversion at Preparticipation Screening. Circulation. 2012;125(3):529-38. doi: 10.1161/CIRCULATIONAHA.111.055673.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,507507 Abela M, Yamagata K, Buttigieg L, Xuereb S, Bonello J, Soler JF, et al. The Juvenile ECG Pattern in Adolescent Athletes and Non-Athletes in a National Cardiac Screening Program (BEAT-IT). Int J Cardiol. 2023;371:508-15. doi: 10.1016/j.ijcard.2022.09.005.
    https://doi.org/10.1016/j.ijcard.2022.09...

  • NTW in anterior leads preceded by J-point elevation with ST-segment elevation are present in up to 25% of young Afro-Caribbean athletes and is considered particularly characteristic of "the Black athlete's heart".501501 Migliore F, Zorzi A, Michieli P, Perazzolo Marra M, Siciliano M, et al. Prevalence of Cardiomyopathy in Italian Asymptomatic Children with Electrocardiographic T-Wave Inversion at Preparticipation Screening. Circulation. 2012;125(3):529-38. doi: 10.1161/CIRCULATIONAHA.111.055673.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,508508 Calore C, Zorzi A, Sheikh N, Nese A, Facci M, Malhotra A, et al. Electrocardiographic Anterior T-Wave Inversion in Athletes of Different Ethnicities: Differential Diagnosis between Athlete's Heart and Cardiomyopathy. Eur Heart J. 2016;37(32):2515-27. doi: 10.1093/eurheartj/ehv591.
    https://doi.org/10.1093/eurheartj/ehv591...
    ,509509 McClean G, Riding NR, Pieles G, Sharma S, Watt V, Adamuz C, et al. Prevalence and Significance of T-Wave Inversion in Arab and Black Paediatric Athletes: Should Anterior T-Wave Inversion Interpretation be Governed by Biological or Chronological Age?. Eur J Prev Cardiol. 2019;26(6):641-52. doi: 10.1177/2047487318811956.
    https://doi.org/10.1177/2047487318811956...
    However, the finding of ST-segment elevation without J-point elevation preceding inverted T waves may associate to cardiomyopathy.508508 Calore C, Zorzi A, Sheikh N, Nese A, Facci M, Malhotra A, et al. Electrocardiographic Anterior T-Wave Inversion in Athletes of Different Ethnicities: Differential Diagnosis between Athlete's Heart and Cardiomyopathy. Eur Heart J. 2016;37(32):2515-27. doi: 10.1093/eurheartj/ehv591.
    https://doi.org/10.1093/eurheartj/ehv591...
    ,510510 D’Ascenzi F, Anselmi F, Adami PE, Pelliccia A. Interpretation of T-Wave Inversion in Physiological and Pathological Conditions: Current State and Future Perspectives. Clin Cardiol. 2020;43(8):827-33. doi: 10.1002/clc.23365.
    https://doi.org/10.1002/clc.23365...

  • NTW in inferior and anterior leads (from V1 to V3) followed by positive T waves in V5 (the T wave discontinuity phenomenon) are generally associated with arrhythmogenic right ventricular cardiomyopathy (ARVC).511511 Sato A, Saiki H, Kudo M, Takizawa Y, Kuwata S, Nakano S, et al. Chronological T-Wave Alternation before and after the Onset of Arrhythmogenic Right Ventricular Cardiomyopathy. Ann Noninvasive Electrocardiol. 2022;27(6):e12965. doi: 10.1111/anec.12965.
    https://doi.org/10.1111/anec.12965...
    ,512512 Imamura T, Sumitomo N, Muraji S, Yasuda K, Nishihara E, Iwamoto M, et al. Impact of the T-Wave Characteristics on Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy from Healthy Children. Int J Cardiol. 2021;323:168-74. doi: 10.1016/j.ijcard.2020.08.088.
    https://doi.org/10.1016/j.ijcard.2020.08...

Particular features of the T wave in ET:

  • In healthy children, T wave duration decreases progressively with increasing exertion. While the amplitude generally decreases during light exercise, it subsequently increases with progression of exertion, and may exceed the baseline amplitude at peak exertion (in V5, 4.8mm at rest to 7.3mm at V5).177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,470470 Malakan Rad E, Karimi M, Momtazmanesh S, Shabanian R, Saatchi M, Asbagh PA, et al. Exercise-Induced Electrocardiographic Changes After Treadmill Exercise Testing in Healthy Children: A Comprehensive Study. Ann Pediatr Cardiol. 2021;14(4):449-58. doi: 10.4103/apc.apc_254_20.
    https://doi.org/10.4103/apc.apc_254_20...
    ,491491 Thapar MK, Strong WB, Miller MD, Leatherbury L, Salehbhai M. Exercise Electrocardiography of Health Black Children. Am J Dis Child. 1978;132(6):592-5. doi: 10.1001/archpedi.1978.02120310056011.
    https://doi.org/10.1001/archpedi.1978.02...
    ,500500 Tipple M. Interpretation of Electrocardiograms in Infants and Children. Images Paediatr Cardiol. 1999;1(1):3-13. PMCID: PMC3232475. PMID: 22368537.

  • ET is normally used to evaluate NTW behavior and associated exercise-induced arrhythmia, including in adolescent athletes.462462 Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. Eur Heart J. 2018;39(16):1466-80. doi: 10.1093/eurheartj/ehw631.
    https://doi.org/10.1093/eurheartj/ehw631...
    ,484484 Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    https://doi.org/10.1136/bjsports-2016-09...
    ,504504 Abela M, Sharma S. Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations. Curr Treat Options Cardiovasc Med. 2019;21(12):95. doi: 10.1007/s11936-019-0794-4.
    https://doi.org/10.1007/s11936-019-0794-...
    ,513513 Şengül FS, Şahin GT, Özgür S, Kafalı HC, Akıncı O, Güzeltaş A, et al. Clinical Features and Arrhythmic Complications of Patients with Pediatric-Onset Arrhythmogenic Right Ventricular Dysplasia. Anatol J Cardiol. 2019;22(2):60-7. doi: 10.14744/AnatolJCardiol.2019.56985.
    https://doi.org/10.14744/AnatolJCardiol....

  • In the pediatric population with NTW, asymptomatic and in the absence of heart disease, pseudonormalization of the T wave (positive T wave) is common, either complete (in all leads) or partial (in lateral leads). This is a generally benign phenomenon and is not associated with a risk of cardiac events.514514 Hoyt WJ Jr, Ardoin KB, Cannon BC, Snyder CS. T-Wave Reversion in Pediatric Patients During Exercise Stress Testing. Congenit Heart Dis. 2015;10(2):E68-72. doi: 10.1111/chd.12216.
    https://doi.org/10.1111/chd.12216...
    ,515515 Gupta A, Bansal N, Jour LS, Clark BC. Utility of Exercise Stress Testing in Pediatric Patients with T-Wave Inversions. Pediatr Cardiol. 2022;43(4):713-8. doi: 10.1007/s00246-021-02776-x.
    https://doi.org/10.1007/s00246-021-02776...

  • In young athletes with NTW, development of ventricular tachycardia or increased density of exercise-induced ventricular ectopic beats is considered suggestive of arrhythmogenic cardiomyopathy.516516 Zaidi A, Sheikh N, Jongman JK, Gati S, Panoulas VF, Carr-White G, et al. Clinical Differentiation between Physiological Remodeling and Arrhythmogenic Right Ventricular Cardiomyopathy in Athletes with Marked Electrocardiographic Repolarization Anomalies. J Am Coll Cardiol. 2015;65(25):2702-11. doi: 10.1016/j.jacc.2015.04.035.
    https://doi.org/10.1016/j.jacc.2015.04.0...
    ,517517 Finocchiaro G, Papadakis M, Dhutia H, Zaidi A, Malhotra A, Fabi E, et al. Electrocardiographic Differentiation between ‘Benign T-Wave Inversion’ and Arrhythmogenic Right Ventricular Cardiomyopathy. Europace. 2019;21(2):332-8. doi: 10.1093/europace/euy179.
    https://doi.org/10.1093/europace/euy179...

  • In congenital long QT syndrome, T wave alternans may occur, with chronotropic incompetence, ventricular tachyarrhythmias, and paradoxical QTi behavior (increasing instead of decreasing).66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
    https://doi.org/10.1016/j.acvd.2014.04.0...

3.3.2.5. ST Segment/ST Segment Depression

Exercise-induced ST segment changes have been used to identify myocardial ischemia in children, adolescents, and adults. In the pediatric population, the criteria for ischemia are different from those applied in adults, corresponding to ST-segment depression, horizontal or downsloping (>1 mm below baseline), measured at the Y point (at 60 ms after the J point).77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,300300 Rowland TW, Tighe DA. Pediatric Exercise Testing. In: Tighe DA, Gentile BA, Chung EK, editors. Pocket Guide Stress Test. Second edition. Hoboken, New York: Wiley; 2020, p. 281-99. ISBN: 9781119481751.

In this population, two baseline definition criteria are used to measure ST segment depression (Figure 3):77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...

Figure 3
Isoelectric baseline definition methods for measuring ST segment changes. Regardless of the method used, the resulting baselines yield similar points for measuring/quantifying possible St-segment depression or elevation. * Point on which the measurement of depression or elevation should be based when using the PR isoelectric line method.
  1. PR method – the baseline (P-R isoelectric line) is superimposed on the P-R segment of the QRS complex to identify the J point.

  2. PQ-PQ method – the baseline is defined by connecting the P-Q points of at least three consecutive QRS complexes to identify the J point.

Exercise-induced isolated J-point depression (without ST depression) has no bearing in the diagnosis of ischemia. In the asymptomatic, apparently healthy pediatric population, J-point depression in relation to a PQ isoelectric line was observed in 9% of boys and 18% of girls, while by the PR isoelectric line method, it was seen in 2.3% of both sexes.

In the apparently healthy pediatric population, exercise-induced ST depression is considered a normal, non-ischemic finding (Figure 4) under the following circumstances:77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,300300 Rowland TW, Tighe DA. Pediatric Exercise Testing. In: Tighe DA, Gentile BA, Chung EK, editors. Pocket Guide Stress Test. Second edition. Hoboken, New York: Wiley; 2020, p. 281-99. ISBN: 9781119481751.

Figure 4
ST segment behavior and types of ST depression. ST-seg.: ST segment; ms: milliseconds. ST segment depression <1mm of any morphology, especially if there is early normalization (in the first minute of recovery), is considered a normal, non-ischemic finding. *Upsloping (J point depression followed by rapidly ascending depression of the ST segment and no depression at the Y point, measured at 60 ms from the J point) or slow ascending (decreased J point with the ST segment slowly ascending beyond the Y point) are considered normal and non-ischemic. **Horizontal or downsloping (ST segment depression >1mm measured at point Y) is considered abnormal and indicative of ischemia.
  • Morphology upsloping (J point depression followed by rapidly ascending depression of the ST segment and no depression at the Y point, measured at 60 ms from the J point) or slow ascending (decreased J point with the ST segment slowly ascending beyond the Y point).

  • Any morphology if <1 mm, especially if there is early normalization (in the 1st minute of recovery).

The following situations render interpretation of repolarization changes useless for diagnosis of ischemia: Wolff-Parkinson-White syndrome; variants of the pre-excitation syndromes; left bundle branch block; artificial ventricular pacemaker; ST segment depression >1mm on resting ECG; digitalis therapy; and unsatisfactory technical quality of the ECG tracing.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...

Particular features of ST-segment depression in the pediatric population:

  • Exercise-induced ST depression not associated with ischemia due to CAD may occur due to hyperventilation, fluid-electrolyte imbalance, anemia, pectus excavatum, and mitral valve prolapse.177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.

  • In acquired aortic stenosis, exercise-induced ST-segment depression occurs in ≈83% of patients and is associated with LV systolic pressure, LV outflow gradient, and O2 supply-demand imbalance. After surgical correction of severe aortic stenosis, exercise-induced ST-segment depression usually improves or disappears altogether.434434 Cyran SE, James FW, Daniels S, Mays W, Shukla R, Kaplan S. Comparison of the Cardiac Output and Stroke Volume Response to Upright Exercise in Children with Valvular and Subvalvular Aortic Stenosis. J Am Coll Cardiol. 1988;11(3):651-8. doi: 10.1016/0735-1097(88)91545-8.
    https://doi.org/10.1016/0735-1097(88)915...
    ,518518 Kveselis DA, Rocchini AP, Rosenthal A, Crowley DC, Dick M, Snider AR, et al. Hemodynamic Determinants of Exercise-Induced ST-Segment Depression in Children with Valvar Aortic Stenosis. Am J Cardiol. 1985;55(9):1133-9. doi: 10.1016/0002-9149(85)90650-2.
    https://doi.org/10.1016/0002-9149(85)906...
    ,519519 Whitmer JT, James FW, Kaplan S, Schwartz DC, Knight MJ. Exercise Testing in Children before and after Surgical Treatment of Aortic Stenosis. Circulation. 1981;63(2):254-63. doi: 10.1161/01.cir.63.2.254.
    https://doi.org/10.1161/01.cir.63.2.254...

  • Exercise-induced ST-segment depression is also common in congenital aortic stenosis. However, after Ross surgery there is no significant reduction in exercise-induced ST-segment depression. An increase in exercise-induced ST-segment depression has been observed after aortic valvuloplasty (surgical or balloon).140140 Mitchell BM, Strasburger JF, Hubbard JE, Wessel HU. Serial Exercise Performance in Children with Surgically Corrected Congenital Aortic Stenosis. Pediatr Cardiol. 2003;24(4):319-24. doi: 10.1007/s00246-002-0281-6.
    https://doi.org/10.1007/s00246-002-0281-...

  • After Fontan procedure in hypoplastic left heart syndrome (HLHS), exercise-induced ST depression – which occurs in ≈48% of patients – is not associated with ventricular dysfunction, CAD, or anomalous origin of coronary arteries.520520 Kyle WB, Denfield SW, Valdes SO, Penny DJ, Bolin EH, Lopez KN. Assessing ST Segment Changes and Ischemia During Exercise Stress Testing in Patients with Hypoplastic Left Heart Syndrome and Fontan Palliation. Pediatr Cardiol. 2016;37(3):545-51. doi: 10.1007/s00246-015-1312-4.
    https://doi.org/10.1007/s00246-015-1312-...

  • Exercise-induced ischemia in patients with HCM is associated with a higher risk of sudden cardiac death (RR: 3.32; 95% CI: 1.27-8.70) and a composite of all-cause mortality and/or transplantation (RR: 4.86; 95% CI: 1.69-13.99).157157 Conway J, Min S, Villa C, Weintraub RG, Nakano S, Godown J, et al. The Prevalence and Association of Exercise Test Abnormalities with Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation. 2023;147(9):718-27. doi: 10.1161/CIRCULATIONAHA.122.062699.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

3.3.2.6. ST Segment Elevation

Exercise-induced ST-segment elevation is defined as an ST-segment elevation ≥1.0 mm (≥0.10 mV) at 60 ms after the J-point, occurring in two or more leads, regardless of the presence of a Q wave (Figure 5).11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,521521 Katircibaşi MT, Koçum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-Induced ST-Segment Elevation in Leads Avr and V1 for the Prediction of Left Main Disease. Int J Cardiol. 2008;128(2):240-3. doi: 10.1016/j.ijcard.2007.05.022.
https://doi.org/10.1016/j.ijcard.2007.05...

Figure 5
ST-segment elevation patterns, including early repolarization. ST-seg.: ST segment; ms: milliseconds. * Exercise-induced ST-segment elevation (≥1.0 mm measured at 60 ms after the J-point). ** In the early repolarization pattern, ST-segment elevation should be measured 100 ms after the Jt point, and the pattern of elevation (upsloping, horizontal, or downsloping) should also be assessed.

In the pediatric population, exercise-induced ST-segment elevation is generally associated with: severe myocardial ischemia (usually transmural) in patients with Kawasaki disease, anomalous origin of coronary arteries, and after coronary reimplantation surgery, among others; coronary artery spasm due to vasospastic or Prinzmetal angina; left ventricular aneurysm; and peri-infarction ischemia.521521 Katircibaşi MT, Koçum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-Induced ST-Segment Elevation in Leads Avr and V1 for the Prediction of Left Main Disease. Int J Cardiol. 2008;128(2):240-3. doi: 10.1016/j.ijcard.2007.05.022.
https://doi.org/10.1016/j.ijcard.2007.05...
524524 Sucato V, Novo G, Saladino A, Rubino M, Caronna N, Luparelli M, et al. Ischemia in Patients with no Obstructive Coronary Artery Disease: Classification, Diagnosis and Treatment of Coronary Microvascular Dysfunction. Coron Artery Dis. 2020;31(5):472-6. doi: 10.1097/MCA.0000000000000855.
https://doi.org/10.1097/MCA.000000000000...

The following anatomic-topographic correspondences can be used when describing leads showing ischemic manifestations:11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...

  1. V1, V2, V3 (likely anteroseptal wall).

  2. V1, V2, V3, and V4 (likely anterior wall).

  3. V3, V4, or V3-V5 (likely localized anterior wall).

  4. V4, V5, V6, lead I, and aVL (likely anterolateral wall).

  5. V1-V6, lead I, and aVL (likely extensive anterior wall).

  6. V5 and V6 (likely lateral wall).

  7. Lead I and aVL (likely high lateral wall).

  8. Lead II, III, and aVF (likely inferior wall).

Particular features of exercise-induced ST segment elevation:11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,521521 Katircibaşi MT, Koçum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-Induced ST-Segment Elevation in Leads Avr and V1 for the Prediction of Left Main Disease. Int J Cardiol. 2008;128(2):240-3. doi: 10.1016/j.ijcard.2007.05.022.
https://doi.org/10.1016/j.ijcard.2007.05...

  • On a resting ECG, the presence of ST segment elevation is generally associated with ERP, Brugada syndrome, myocarditis/pericarditis, and prior myocardial infarction (with pathological Q wave).

  • In ERP and Brugada syndrome, a reduction/disappearance of ST segment elevation is generally observed with exercise.126126 Masrur S, Memon S, Thompson PD. Brugada Syndrome, Exercise, and Exercise Testing. Clin Cardiol. 2015;38(5):323-6. doi: 10.1002/clc.22386.
    https://doi.org/10.1002/clc.22386...
    ,525525 Amin AS, Groot EA, Ruijter JM, Wilde AA, Tan HL. Exercise-Induced ECG Changes in Brugada Syndrome. Circ Arrhythm Electrophysiol. 2009;2(5):531-9. doi: 10.1161/CIRCEP.109.862441.
    https://doi.org/10.1161/CIRCEP.109.86244...
    ,526526 Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-Segment Elevation During Recovery from Exercise Predicts Cardiac Events in Patients with Brugada Syndrome. J Am Coll Cardiol. 2010;56(19):1576-84. doi: 10.1016/j.jacc.2010.06.033.
    https://doi.org/10.1016/j.jacc.2010.06.0...

  • Exercise-induced ST segment elevation ≥0.3 mV (3 mm) in leads without Q waves mandates test cessation.

3.3.2.7. Early Repolarization

In most patients, early repolarization (ER) is an asymptomatic, benign ECG variant, with elevation of the J point and characteristic elevation of the ST segment. However, some patients exhibit clinical features and specific ER patterns on ECG that are associated with SCD, and thus constitute early repolarization syndrome (ERS). The early repolarization pattern (ERP) is seen in 1% to 13% of the general population.527527 Bourier F, Denis A, Cheniti G, Lam A, Vlachos K, Takigawa M, et al. Early Repolarization Syndrome: Diagnostic and Therapeutic Approach. Front Cardiovasc Med. 2018;5:169. doi: 10.3389/fcvm.2018.00169.
https://doi.org/10.3389/fcvm.2018.00169...
,528528 Ji HY, Hu N, Liu R, Zhou HR, Gao WL, Quan XQ. Worldwide Prevalence of Early Repolarization Pattern in General Population and Physically Active Individuals: A Meta-Analysis. Medicine. 2021;100(22):e25978. doi: 10.1097/MD.0000000000025978.
https://doi.org/10.1097/MD.0000000000025...

Particular features of the resting ECG with ERP include:529529 Patton KK, Ellinor PT, Ezekowitz M, Kowey P, Lubitz SA, Perez Met, al. Electrocardiographic Early Repolarization: A Scientific Statement from the American Heart Association. Circulation. 2016;133(15):1520-9. doi: 10.1161/CIR.0000000000000388.
https://doi.org/10.1161/CIR.000000000000...
,530530 Macfarlane PW, Antzelevitch C, Haissaguerre M, Huikuri HV, Potse M, Rosso R, et al. The Early Repolarization Pattern: A Consensus Paper. J Am Coll Cardiol. 2015;66(4):470-7. doi: 10.1016/j.jacc.2015.05.033.
https://doi.org/10.1016/j.jacc.2015.05.0...

  1. QRS complex duration <120 ms.

  2. Terminal QRS notching or slurring on the downstroke of a prominent R wave. If there is notching, it must be completely above the baseline. The point of J-wave onset (Jo) must also be above the baseline (Figure 5).

  3. The peak of the J-point notch (Jp) must be ≥0.1 mV in two or more contiguous leads of ECG, except V1 through V3.531531 Junttila MJ, Sager SJ, Tikkanen JT, Anttonen O, Huikuri HV, Myerburg RJ. Clinical Significance of Variants of J-Points and J-Waves: Early Repolarization Patterns and Risk. Eur Heart J. 2012;33(21):2639-43. doi: 10.1093/eurheartj/ehs110.
    https://doi.org/10.1093/eurheartj/ehs110...

  4. Pediatric athletes often present with a notched J-point and a rapidly ascending, concave ST segment, especially in the inferolateral leads. Other changes include resting sinus bradycardia, increased R wave voltage in precordial and peripheral leads, and an increased Sokolow-Lyon index.457457 Halasz G, Cattaneo M, Piepoli M, Biagi A, Romano S, Biasini V, et al. Early Repolarization in Pediatric Athletes: A Dynamic Electrocardiographic Pattern with Benign Prognosis. J Am Heart Assoc. 2021;10(16):e020776. doi: 10.1161/JAHA.121.020776.
    https://doi.org/10.1161/JAHA.121.020776...

  5. In athletes aged ≥14 years, use of the Seattle criteria is recommended for improved diagnosis.458458 Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher V. Comparison of Three ECG Criteria for Athlete Pre-Participation Screening. J Electrocardiol. 2014;47(6):769-74. doi: 10.1016/j.jelectrocard.2014.07.019.
    https://doi.org/10.1016/j.jelectrocard.2...
    460460 Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic Interpretation in Athletes: The ‘Seattle Criteria’. Br J Sports Med. 2013;47(3):122-4. doi: 10.1136/bjsports-2012-092067.
    https://doi.org/10.1136/bjsports-2012-09...
    ,484484 Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    https://doi.org/10.1136/bjsports-2016-09...
    ,501501 Migliore F, Zorzi A, Michieli P, Perazzolo Marra M, Siciliano M, et al. Prevalence of Cardiomyopathy in Italian Asymptomatic Children with Electrocardiographic T-Wave Inversion at Preparticipation Screening. Circulation. 2012;125(3):529-38. doi: 10.1161/CIRCULATIONAHA.111.055673.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,532532 Koch S, Cassel M, Linné K, Mayer F, Scharhag J. ECG and Echocardiographic Findings in 10-15-Year-Old Elite Athletes. Eur J Prev Cardiol. 2014;21(6):774-81. doi: 10.1177/2047487312462147.
    https://doi.org/10.1177/2047487312462147...

In ERP, ST-segment elevation should be measured 100 ms after the Jt point (termination of the J-point notch). In addition to the magnitude of elevation, the pattern should be described:454454 Ahmed H, Czosek RJ, Spar DS, Knilans TK, Anderson JB. Early Repolarization in Normal Adolescents is Common. Pediatr Cardiol. 2017;38(4):864-72. doi: 10.1007/s00246-017-1594-9.
https://doi.org/10.1007/s00246-017-1594-...
,455455 Surawicz B, Parikh SR. Prevalence of Male and Female Patterns of Early Ventricular Repolarization in the Normal ECG of Males and Females from Childhood to Old Age. J Am Coll Cardiol. 2002;40(10):1870-6. doi: 10.1016/s0735-1097(02)02492-0.
https://doi.org/10.1016/s0735-1097(02)02...

  • "Early repolarization with upsloping ST segment", when the ST segment is ascending (inclined upwards) and followed by a vertical T wave.

  • "Early repolarization with horizontal or downsloping ST segment", when the ST segment is horizontal or descending (inclined downwards).

Behavior and significance of ERP in ET:

  • Common in adolescents. In this setting, usually reduces progressively with increasing exertion, and may disappear altogether at moderate loads. ERP with rapidly upsloping ST segment elevation in the anterolateral leads has been reported in athletes.533533 Spratt KA, Borans SM, Michelson EL. Early Repolarization: Normalization of the Electrocardiogram with Exercise as a Clinically useful Diagnostic Feature. J Invasive Cardiol. 1995;7(8):238-42. PMID: 10158115.

  • Persistent ERP, sustained ventricular arrhythmia, and/or unexplained syncope has been observed in ET after aborted sudden cardiac death.534534 Bastiaenen R, Raju H, Sharma S, Papadakis M, Chandra N, Muggenthaler M, et al. Characterization of Early Repolarization During Ajmaline Provocation and Exercise Tolerance Testing. Heart Rhythm. 2013;10(2):247-54. doi: 10.1016/j.hrthm.2012.10.032.
    https://doi.org/10.1016/j.hrthm.2012.10....

  • Exercise-induced polymorphic VT is a marker of high risk for SCD.527527 Bourier F, Denis A, Cheniti G, Lam A, Vlachos K, Takigawa M, et al. Early Repolarization Syndrome: Diagnostic and Therapeutic Approach. Front Cardiovasc Med. 2018;5:169. doi: 10.3389/fcvm.2018.00169.
    https://doi.org/10.3389/fcvm.2018.00169...
    ,535535 Refaat MM, Hotait M, Tseng ZH. Utility of the Exercise Electrocardiogram Testing in Sudden Cardiac Death Risk Stratification. Ann Noninvasive Electrocardiol. 2014;19(4):311-8. doi: 10.1111/anec.12191.
    https://doi.org/10.1111/anec.12191...

  • In the general population, the ERP usually reappears progressively and slowly during recovery.536536 Nouraei H, Rabkin SW. The Effect of Exercise on the ECG Criteria for Early Repolarization Pattern. J Electrocardiol. 2019;55:59-64. doi: 10.1016/j.jelectrocard.2019.03.005.
    https://doi.org/10.1016/j.jelectrocard.2...
    ,537537 Barbosa EC, Bomfim AS, Barbosa PRB, Ginefra P. Ionic Mechanisms and Vectorial Model of Early Repolarization Pattern in the Surface Electrocardiogram of the Athlete. Ann Noninvasive Electrocardiol. 2008;13(3):301-7. doi: 10.1111/j.1542-474X.2008.00235.x.
    https://doi.org/10.1111/j.1542-474X.2008...

3.3.2.8. QT Interval

The QT interval (QTi) represents the total duration of ventricular electrical activity. It is measured from the start of the QRS complex to the end of the T wave.538538 Rabkin SW, Cheng XB. Nomenclature, Categorization and Usage of Formulae to Adjust QT Interval for Heart Rate. World J Cardiol. 2015;7(6):315-25. doi: 10.4330/wjc.v7.i6.315.
https://doi.org/10.4330/wjc.v7.i6.315...
540540 Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM. Autonomic Nervous System Influences on QT Interval in Normal Subjects. J Am Coll Cardiol. 2002;39(11):1820-6. doi: 10.1016/s0735-1097(02)01852-1.
https://doi.org/10.1016/s0735-1097(02)01...

Assessment of QTi during exercise and recovery is beset with challenges in children and adolescents:

  • Accurate measurement of QTi is often hindered by irregular return of the terminal portion of the T wave to baseline.

  • At high HRs, fusion of the T and P waves is common, making the end of the T wave difficult to identify.

The increase in ventricular myocardial repolarization velocity associated with exertion is reflected in the progressive shortening of QTi until maximum exertion and linear widening of the interval during recovery.541541 Viitasalo M, Rovamo L, Toivonen L, Pesonen E, Heikkilä J. Dynamics of the QT Interval During and After Exercise in Healthy Children. Eur Heart J. 1996;17(11):1723-8. doi: 10.1093/oxfordjournals.eurheartj.a014757.
https://doi.org/10.1093/oxfordjournals.e...

Due to the variation of QTi with HR, correction of QTi for HR (QTc) by Bazett's formula is recommended:

Q T c = Q T i R R

*QT measured in milliseconds and distance between RR in seconds.

Table 24 presents QTc reference values for each pediatric age group.

The ideal formula for QTc adjustment in the setting of ET remains controversial. Interpretation of the QTc and comparison of its values with results published in the literature depend on the formula used for correction.124124 Ogawa Y, Tanaka T, Kido S. Reproducibility of Corrected QT Interval in Pediatric Genotyped Long QT Syndrome. Pediatr Int. 2016;58(11):1246-8. doi: 10.1111/ped.13120.
https://doi.org/10.1111/ped.13120...
,542542 Horner JM, Horner MM, Ackerman MJ. The Diagnostic Utility of Recovery Phase Qtc During Treadmill Exercise Stress Testing in the Evaluation of Long QT Syndrome. Heart Rhythm. 2011;8(11):1698-704. doi: 10.1016/j.hrthm.2011.05.018.
https://doi.org/10.1016/j.hrthm.2011.05....
544544 Andršová I, Hnatkova K, Helánová K, Šišáková M, Novotný T, Kala P, et al. Problems with Bazett Qtc Correction in Paediatric Screening of Prolonged Qtc Interval. BMC Pediatr. 2020;20(1):558. doi: 10.1186/s12887-020-02460-8.
https://doi.org/10.1186/s12887-020-02460...

In studies investigating repolarization changes (for example, in long QT syndromes, congenital heart defects, or new drug safety trials), Bazett's formula has limitations for HR <60 bpm or >90 bpm; in these situations, use of the Fridericia or Framingham formulas is recommended instead:308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...
,544544 Andršová I, Hnatkova K, Helánová K, Šišáková M, Novotný T, Kala P, et al. Problems with Bazett Qtc Correction in Paediatric Screening of Prolonged Qtc Interval. BMC Pediatr. 2020;20(1):558. doi: 10.1186/s12887-020-02460-8.
https://doi.org/10.1186/s12887-020-02460...
546546 Benatar A, Decraene T. Comparison of Formulae for Heart Rate Correction of QT Interval in Exercise Ecgs from Healthy Children. Heart. 2001;86(2):199-202. doi: 10.1136/heart.86.2.199.
https://doi.org/10.1136/heart.86.2.199...

Q T c ( F r i d e r i c i a ' s f o r m u l a ) = Q T / R R 3 Q T c ( F r a m i n g h a m f o r m u l a ) = Q T + 0 . 1 5 4 ( 1 - R R )

In children aged 1 to 15 years, a QTc >440 ms is considered borderline/upper limit of normal, while a QTc >460 ms is considered prolonged (irrespective of sex). QTc is considered short when its duration is <340 ms.308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...
,451451 Pastore CA, Pinho JA, Pinho C, Samesima N, Pereira Filho HG, Kruse JC, et al. III Diretrizes da Sociedade Brasileira de Cardiologia Sobre Análise e Emissão de Laudos Eletrocardiográficos. Arq Bras Cardiol. 2016;106(4 Suppl 1):1-23. doi: 10.5935/abc.20160054.
https://doi.org/10.5935/abc.20160054...

Assessment of QT behavior is important in the diagnosis of congenital long QT syndrome, in which QTc prolongation may occur during exercise and recovery alike.

Particular features of the QTi and QTc in the pediatric population:

  • During recovery, the QTi lengthens as HR decreases, by ≈15 ms for each 10-beat reduction in HR, returning to baseline (resting pattern) in approximately 4 to 5 minutes.547547 Berger WR, Gow RM, Kamberi S, Cheung M, Smith KR, Davis AM. The QT and Corrected QT Interval in Recovery after Exercise in Children. Circ Arrhythm Electrophysiol. 2011;4(4):448-55. doi: 10.1161/CIRCEP.110.961094.
    https://doi.org/10.1161/CIRCEP.110.96109...

  • In children with borderline QTc/intermediate Schwartz score, ET allows risk stratification, selecting those who should undergo selective genetic testing.5757 Patel TM, Kamande SM, Jarosz E, Bost JE, Hanumanthaiah S, Berul CI, et al. Treadmill Exercise Testing Improves Diagnostic Accuracy in Children with Concealed Congenital Long QT Syndrome. Pacing Clin Electrophysiol. 2020;43(12):1521-8. doi: 10.1111/pace.14085.
    https://doi.org/10.1111/pace.14085...
    ,547547 Berger WR, Gow RM, Kamberi S, Cheung M, Smith KR, Davis AM. The QT and Corrected QT Interval in Recovery after Exercise in Children. Circ Arrhythm Electrophysiol. 2011;4(4):448-55. doi: 10.1161/CIRCEP.110.961094.
    https://doi.org/10.1161/CIRCEP.110.96109...
    549549 Miyazaki A, Sakaguchi H, Matsumura Y, Hayama Y, Noritake K, Negishi J, et al. Mid-Term Follow-Up of School-Aged Children with Borderline Long QT Interval. Circ J. 2017;81(5):726-32. doi: 10.1253/circj.CJ-16-0991.
    https://doi.org/10.1253/circj.CJ-16-0991...

  • Absolute QTc ≥460ms during recovery or a paradoxical increase in QTc (ΔQTc = QTc recovery – QTc baseline, with value ≥30ms) can distinguish patients with LQT1 manifest vs. hidden.542542 Horner JM, Horner MM, Ackerman MJ. The Diagnostic Utility of Recovery Phase Qtc During Treadmill Exercise Stress Testing in the Evaluation of Long QT Syndrome. Heart Rhythm. 2011;8(11):1698-704. doi: 10.1016/j.hrthm.2011.05.018.
    https://doi.org/10.1016/j.hrthm.2011.05....

  • In screening for LQTS in children, use of Bazett's formula is associated with a high number of false positives, especially if the HR is increased. In these cases, the Fridericia formula must be used instead.544544 Andršová I, Hnatkova K, Helánová K, Šišáková M, Novotný T, Kala P, et al. Problems with Bazett Qtc Correction in Paediatric Screening of Prolonged Qtc Interval. BMC Pediatr. 2020;20(1):558. doi: 10.1186/s12887-020-02460-8.
    https://doi.org/10.1186/s12887-020-02460...

3.3.3. Disorders of Atrioventricular Conduction, Intraventricular Conduction, and Impulse Formation in the Pediatric Population

3.3.3.1. Atrioventricular Conduction Disorders

In children and adolescents, first-degree atrioventricular (AV) block and type I second-degree (Mobitz I) AV block are generally manifestations of marked parasympathetic activity. They are common in highly trained adolescents and individuals with increased vagal tone. It is observed on resting ECG in 0.65 to 1.1% of children and up to 12% of apparently healthy adolescents.550550 Dickinson DF, Scott O. Ambulatory Electrocardiographic Monitoring in 100 Healthy Teenage Boys. Br Heart J. 1984;51(2):179-83. doi: 10.1136/hrt.51.2.179.
https://doi.org/10.1136/hrt.51.2.179...
,551551 Bexton RS, Camm AJ. First Degree Atrioventricular Block. Eur Heart J. 1984;5(Suppl A):107-9. doi: 10.1093/eurheartj/5.suppl_a.107.
https://doi.org/10.1093/eurheartj/5.supp...
These phenomena generally disappear with progressive exertion due to withdrawal of vagal activity and increased sympathetic activity. They are rarely triggered by exertion.105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...

Type II second-degree AV block usually represents disease of the AV (infranodal) conduction system. Rarely, it is found in apparently healthy young athletes. It may be associated with bundle branch block and occur secondary to cardiac surgery. ET may be useful in identifying the anatomical level of AV blockade, as well as in risk stratification.552552 Viitasalo MT, Kala R, Eisalo A. Ambulatory Electrocardiographic Findings in Young Athletes between 14 and 16 Years of Age. Eur Heart J. 1984;5(1):2-6. doi: 10.1093/oxfordjournals.eurheartj.a061546.
https://doi.org/10.1093/oxfordjournals.e...
,553553 Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. London: Springer; 2020. ISBN-10: 3030622940; ISBN-13: 978-3030622947.

In the pediatric population, third-degree AV block (or complete heart block):108108 Blank AC, Hakim S, Strengers JL, Tanke RB, van Veen TA, Vos MA, et al. Exercise Capacity in Children with Isolated Congenital Complete Atrioventricular Block: Does Pacing Make a Difference? Pediatr Cardiol. 2012;33(4):576-85. doi: 10.1007/s00246-012-0176-0.
https://doi.org/10.1007/s00246-012-0176-...
,115115 Bordachar P, Zachary W, Ploux S, Labrousse L, Haissaguerre M, Thambo JB. Pathophysiology, Clinical Course, and Management of Congenital Complete Atrioventricular Block. Heart Rhythm. 2013;10(5):760-6. doi: 10.1016/j.hrthm.2012.12.030.
https://doi.org/10.1016/j.hrthm.2012.12....
,554554 Karpawich PP, Gillette PC, Garson A Jr, Hesslein PS, Porter CB, McNamara DG. Congenital Complete Atrioventricular Block: Clinical and Electrophysiologic Predictors of Need for Pacemaker Insertion. Am J Cardiol. 1981;48(6):1098-102. doi: 10.1016/0002-9149(81)90326-x.
https://doi.org/10.1016/0002-9149(81)903...
,555555 Reybrouck T, Eynde BV, Dumoulin M, Van der Hauwaert LG. Cardiorespiratory Response to Exercise in Congenital Complete Atrioventricular Block. Am J Cardiol. 1989;64(14):896-9. doi: 10.1016/0002-9149(89)90838-2.
https://doi.org/10.1016/0002-9149(89)908...

  • In congenital total atrioventricular block (CAVB), definitive PM is indicated: symptomatic; resting HR <55 bpm or <70 bpm when associated with structural heart disease. Table 28 presents the main causes of CAVB.107107 Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
    https://doi.org/10.1007/s00431-016-2748-...
    ,114114 Teixeira RA, Fagundes AA, Baggio JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, et al. Diretriz Brasileira de Dispositivos Cardíacos Eletrônicos Implantáveis – 2023. Arq Bras Cardiol 2023;120:e20220892. doi: 10.36660/abc.20220892.
    https://doi.org/10.36660/abc.20220892...

  • ET can be performed in individuals with congenital AV block if there are no comorbidities (congenital or otherwise) that would jeopardize patient safety.

  • ET is used to document symptoms, assess increased ventricular escape response, ascertain whether ectopy is present, and assess the hemodynamic repercussions of the block.

  • Many patients may exhibit normal functional capacity.

  • VO2max and HRmax prediction equations should not be used.

  • There is considerable variability in the escape HR that can be generated by the ventricular pacemaker (usually between 50 and 145 bpm).

  • The natural history of congenital complete heart block consists of a progressive decline in ventricular rates throughout life. On resting ECG, between the ages of 6 and 10 years, the average HR is 50 bpm; between 16 and 20 years, 45 bpm; and over age 40 years, 38 bpm.

  • Fatigue, dyspnea, dizziness, and exercise-induced ventricular ectopy accounted for 26.5% of pacemaker placements.556556 Michaëlsson M, Jonzon A, Riesenfeld T. Isolated Congenital Complete Atrioventricular Block in Adult Life. A Prospective Study. Circulation. 1995;92(3):442-9. doi: 10.1161/01.cir.92.3.442.
    https://doi.org/10.1161/01.cir.92.3.442...

  • Exercise-induced ventricular ectopy is common (50-70% of patients) and is associated with an increased risk of sudden death.

  • In patients with complete heart block and severe cardiac structural abnormalities, sudden death is generally associated with complex ventricular arrhythmia. Complete heart block located within the His-Purkinje system carries a worse prognosis.116116 Silka MJ, Shah MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Executive Summary. Heart Rhythm. 2021;18(11):1925-50. doi: 10.1016/j.hrthm.2021.07.051.
    https://doi.org/10.1016/j.hrthm.2021.07....
    ,557557 Winkler RB, Freed MD, Nadas AS. Exercise-Induced Ventricular Ectopy in Children and Young Adults with Complete Heart Block. Am Heart J. 1980;99(1):87-92. doi: 10.1016/0002-8703(80)90317-8.
    https://doi.org/10.1016/0002-8703(80)903...
    ,558558 Kertesz NJ, Fenrich AL, Friedman RA. Congenital Complete Atrioventricular Block. Tex Heart Inst J. 1997;24(4):301-7. PMCID: PMC325472. PMID: 9456483.

3.3.3.2. Intraventricular Conduction Disorders

Intraventricular conduction disorders may be associated with systemic disease or underlying heart disease.

Right bundle branch block (RBBB) is common in apparently healthy children (between the ages of 6 and 17), with an incidence ranging from 0.16% to 2.9%, and is most common in females. RBBB can also occur in Ebstein's anomaly (prevalence 80-95%), ostium secundum ASD (prevalence ≈90-100%), arrhythmogenic RV dysplasia, and after surgery to correct ToF (≈11%) or VSD (≈6%). RBBB with left anterior fascicular block (LAFB) occurs mainly in CHD with endocardial cushion defects. RBBB on the baseline ECG invalidates the interpretation of ST changes on exertion, but only in leads V1 to V3.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,279279 Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.,370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,553553 Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. London: Springer; 2020. ISBN-10: 3030622940; ISBN-13: 978-3030622947.

Left bundle branch block (LBBB) on resting ECG must be distinguished from Wolff-Parkinson-White syndrome (right free wall accessory pathway). As an isolated finding, LBBB in adolescents is rare and may be associated with progressive disease of the intraventricular conduction system, with or without cardiomyopathy. It can also occur after left ventricular outflow tract surgery. LBBB on baseline ECG poses a challenge for the analysis of ST segment findings as indicative of myocardial ischemia, thus reducing the specificity and accuracy of ET.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,149149 American College of Sports Medicine, Liguori G, Feito Y, Fountaine C, Roy B, editors. ACSM's Guidelines for Exercise Testing and Prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021. ISBN-13: 9781975150181.,388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,559559 O’Connor M, McDaniel N, Brady WJ. The Pediatric Electrocardiogram Part III: Congenital Heart Disease and Other Cardiac Syndromes. Am J Emerg Med. 2008;26(4):497-503. doi: 10.1016/j.ajem.2007.08.004.
https://doi.org/10.1016/j.ajem.2007.08.0...

Exercise-induced intraventricular conduction disorders, characterized by right bundle branch block or left bundle branch block, rarely occurs in the pediatric population. These phenomena can be observed both in apparently healthy children and in those with structural heart disease.177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

3.3.3.3. Disorders of Impulse Formation

Development of abnormal heart rhythms during ET is common in pediatric patients with and without CVD. These arrhythmias are often isolated, transient, episodic, and asymptomatic. Their classification in terms of morphology, interrelations, and density is similar to that employed in adults, as described in the Brazilian Guideline for Exercise Testing in the Adult Population – 2024.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,149149 American College of Sports Medicine, Liguori G, Feito Y, Fountaine C, Roy B, editors. ACSM's Guidelines for Exercise Testing and Prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021. ISBN-13: 9781975150181.,278278 Serra S, Leão R. Teste Ergométrico, Teste Cardiopulmonar de Exercício, Cardiologia Nuclear, Reabilitação Cardiopulmonar e Metabólica e Cardiologia do Esporte e do Exercício. Rio de Janeiro: Guanabara Koogan; 2019. ISBN-10: 8535293493; ISBN-13: 978-8535293494.,280280 Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.

Key markers for risk of development of exercise-induced arrhythmias include: severe LV dysfunction; artificial pacemaker; history of arrhythmia or rhythm disorder; non-sinus baseline rhythm; CHD; and CHD correction surgery.105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...
,560560 Aggarwal V, Sexson-Tejtal K, Lam W, Valdes SO, De la Uz CM, Kim JJ, et al. The Incidence of Arrhythmias During Exercise Stress Tests among Children with Kawasaki Disease: A Single-Center Case Series. Congenit Heart Dis. 2019;14(6):1032-6. doi: 10.1111/chd.12864.
https://doi.org/10.1111/chd.12864...
,561561 Priromprintr B, Rhodes J, Silka MJ, Batra AS. Prevalence of Arrhythmias During Exercise Stress Testing in Patients with Congenital Heart Disease and Severe Right Ventricular Conduit Dysfunction. Am J Cardiol. 2014;114(3):468-72. doi: 10.1016/j.amjcard.2014.05.019.
https://doi.org/10.1016/j.amjcard.2014.0...
One study found that 28% of pediatric patients undergoing ET developed abnormal heart rhythms, of which 3% were clinically important (ventricular tachycardia, supraventricular tachycardia, second-degree AV block, atrial fibrillation, etc.); this occurrence was associated with severe LV dysfunction and past history of arrhythmia.105105 Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
https://doi.org/10.1007/s00246-014-1053-...

3.3.3.3.1. Ventricular Arrhythmias

In the pediatric population, isolated monomorphic premature ventricular contractions (PVCs) occur with a frequency of 0.3 to 2.2% on resting ECG. In asymptomatic children with no underlying heart disease, a normal ECG, and no family history of sudden cardiac death, this arrhythmia is almost always benign. PVCs tend to disappear as the child grows.562562 Beaufort-Krol GC, Dijkstra SS, Bink-Boelkens MT. Natural History of Ventricular Premature Contractions in Children with a Structurally Normal Heart: Does Origin Matter?. Europace. 2008;10(8):998-1003. doi: 10.1093/europace/eun121.
https://doi.org/10.1093/europace/eun121...
565565 Drago F, Leoni L, Bronzetti G, Sarubbi B, Porcedda G. Premature Ventricular Complexes in Children with Structurally Normal Hearts: Clinical Review and Recommendations for Diagnosis and Treatment. Minerva Pediatr. 2017;69(5):427-33. doi: 10.23736/S0026-4946.17.05031-9.
https://doi.org/10.23736/S0026-4946.17.0...

ET is indicated for the assessment of ventricular arrhythmias in children and adolescents with:

  • PVCs (isolated or paired) identified on an ECG performed during medical consultation.

  • Palpitation, tachycardia, syncope, seizures, or dizziness during sports or other physical activities.

  • Suspected channelopathies, anomalous pathway, or catecholaminergic ventricular tachycardia.

ET provides useful information regarding the behavior and risk of PVCs. These are considered benign when their density is reduced (or they are suppressed altogether) with exertion, as a result of sinus tachycardia.279279 Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.,390390 Zipes DP, Jalife J, Stevenson WG, editors. Cardiac Electrophysiology: From Cell to Bedside. 7th edn. Philadelphia: Elsevier; 2018. ISBN-10: 0323447333; ISBN-13: 978-0323447331.,566566 Wiles HB. Exercise Testing for Arrhythmia: Children and Adolescents. Prog Pediatr Cardiol. 1993;2(2):51-60. doi: 10.1016/1058-9813(93)90018-U.
https://doi.org/10.1016/1058-9813(93)900...
,567567 Rozanski JJ, Dimich I, Steinfeld L, Kupersmith J. Maximal Exercise Stress Testing in Evaluation of Arrhythmias in Children: Results and Reproducibility. Am J Cardiol. 1979;43(5):951-6. doi: 10.1016/0002-9149(79)90358-8.
https://doi.org/10.1016/0002-9149(79)903...

Apparently healthy children occasionally present with rare isolated exercise-induced PVCs, which could be considered benign. However, the occurrence of frequent, polymorphic, or complex ventricular ectopic beats (ventricular doublets and nonsustained ventricular tachycardia) suggests ventricular electrical instability.

Ventricular tachycardia (VT) is rare in the pediatric population. When present, it is generally associated with structural heart disease (particularly in left ventricular hypertrophy), hereditary conditions (catecholaminergic polymorphic ventricular tachycardia), or electrical disturbances (long QT syndrome), although it may be idiopathic (in apparently healthy young people).

Malignant ventricular arrhythmias generally occur early during exercise, due to electrical excitation triggered by sympathetic activity. In these cases, there is an increased risk of hemodynamically unstable tachyarrhythmias and SCD.

3.3.3.3.2. Supraventricular Arrhythmias

Isolated premature atrial contractions on resting ECG are usually benign and disappear with exertion.568568 Biondi EA. Focus on Diagnosis: Cardiac Arrhythmias in Children. Pediatr Rev. 2010;31(9):375-9. doi: 10.1542/pir.31-9-375.
https://doi.org/10.1542/pir.31-9-375...
Isolated supraventricular extrasystoles (SVES) occur in ≈2% of apparently healthy children and in ≈4% of children with structural heart disease.569569 Draper DE, Giddins NG, McCort J, Gross GJ. Diagnostic Usefulness of Graded Exercise Testing in Pediatric Supraventricular Tachycardia. Can J Cardiol. 2009;25(7):407-10. doi: 10.1016/s0828-282x(09)70503-3.
https://doi.org/10.1016/s0828-282x(09)70...

Asymptomatic patients with isolated exercise-induced SVES generally have a good prognosis.568568 Biondi EA. Focus on Diagnosis: Cardiac Arrhythmias in Children. Pediatr Rev. 2010;31(9):375-9. doi: 10.1542/pir.31-9-375.
https://doi.org/10.1542/pir.31-9-375...
However, exercise-induced premature atrial contractions in children with a history of syncope or unexplained tachycardia require closer investigation, as they may trigger an episode of supraventricular tachycardia.

The incidence of paroxysmal supraventricular tachycardia (PSVT) in children is 0.1 to 0.4%. The most common presentations, according to age, are described in Table 26.

Table 26
Prevalence of PSVT in children and adolescents according to age570570 Vignati G, Annoni G. Characterization of Supraventricular Tachycardia in Infants: Clinical and Instrumental Diagnosis. Curr Pharm Des. 2008;14(8):729-35. doi: 10.2174/138161208784007752.
https://doi.org/10.2174/1381612087840077...

In children, exercise-induced PSVT (EI-PSVT) is rare, generally associated with reentry via ventricular conduction within the AV node or via extranodal accessory pathways (ventricular pre-excitation, WPW syndrome). In symptomatic children and adolescents, PSVT occurs in 12% of ETs.569569 Draper DE, Giddins NG, McCort J, Gross GJ. Diagnostic Usefulness of Graded Exercise Testing in Pediatric Supraventricular Tachycardia. Can J Cardiol. 2009;25(7):407-10. doi: 10.1016/s0828-282x(09)70503-3.
https://doi.org/10.1016/s0828-282x(09)70...

Proper diagnosis of EI-PSVT on a background of elevated HR is challenging due to the difficulty in identifying changes in P waves, even with normal QRS complexes (Table 27 and Figure 6). In the pediatric population, the initial presentation of PSVT it is associated with the unexpected and abrupt increase in HR and/or other inadequate HR responses with changes in the exercise load.

Table 27
Electrocardiographic characteristics of sinus and supraventricular tachycardias in the pediatric population570570 Vignati G, Annoni G. Characterization of Supraventricular Tachycardia in Infants: Clinical and Instrumental Diagnosis. Curr Pharm Des. 2008;14(8):729-35. doi: 10.2174/138161208784007752.
https://doi.org/10.2174/1381612087840077...
,571571 Manole MD, Saladino RA. Emergency Department Management of the Pediatric Patient with Supraventricular Tachycardia. Pediatr Emerg Care. 2007;23(3):176-85. doi: 10.1097/PEC.0b013e318032904c.
https://doi.org/10.1097/PEC.0b013e318032...

Figure 6
Diagnosis of non-sinus rhythm tachycardias in the pediatric population.570570 Vignati G, Annoni G. Characterization of Supraventricular Tachycardia in Infants: Clinical and Instrumental Diagnosis. Curr Pharm Des. 2008;14(8):729-35. doi: 10.2174/138161208784007752.
https://doi.org/10.2174/1381612087840077...
,571571 Manole MD, Saladino RA. Emergency Department Management of the Pediatric Patient with Supraventricular Tachycardia. Pediatr Emerg Care. 2007;23(3):176-85. doi: 10.1097/PEC.0b013e318032904c.
https://doi.org/10.1097/PEC.0b013e318032...
Tachyc.: tachycardia; Multif.: multifocal; Inap: inappropriate; AVNRT: atrioventricular nodal reentry tachycardia; AV: atrioventricular; PJRT: permanent junctional reciprocating tachycardia; SANRT: sinoatrial nodal reentrant tachycardia.

Atrial flutter and atrial fibrillation are relatively common in children with cardiomyopathies and CHD. Atrial flutter can be conducted to the ventricles at a 1:1 ratio (ventricular rate >300 bpm) or a 2:1 ratio (rate 150-200 bpm). Atypical atrial flutter (with slower, rounded, lower-voltage P waves separated by an isoelectric line) is a potentially lethal arrhythmia, generally present only in complex heart diseases.

Exercise-induced AF is uncommon in children; it can occur paroxysmally and asymptomatically in patients with heart disease.

3.3.3.3.3. Bradyarrhythmias and Sinus Node Dysfunction

Bradyarrhythmia in the pediatric population is defined as a HR below the lower limit of normal for age (see Table 24). It commonly manifests as sinus bradycardia, junctional (escape) rhythm, or AV block (second-degree, advanced/high-grade, or complete).370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,575575 Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet. 2021;12:654925. doi: 10.3389/fgene.2021.654925.
https://doi.org/10.3389/fgene.2021.65492...
578578 Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and Management of Bradycardia in Neonates and Children. Eur J Pediatr. 2016;175(2):151-61. doi: 10.1007/s00431-015-2689-z.
https://doi.org/10.1007/s00431-015-2689-...

About 15-25% of healthy, asymptomatic children may present with sinus arrhythmia, ectopic atrial rhythm, multifocal atrial rhythm, and junctional rhythm. Junctional rhythm is common in children and adolescents with increased vagal tone, occurring in ≈45% of children aged 7-10 years, ≈13% of boys aged 10-13 years (during sleep), and ≈20% of adolescent athletes.579579 Drago F, Battipaglia I, Di Mambro C. Neonatal and Pediatric Arrhythmias: Clinical and Electrocardiographic Aspects. Card Electrophysiol Clin. 2018;10(2):397-412. doi: 10.1016/j.ccep.2018.02.008.
https://doi.org/10.1016/j.ccep.2018.02.0...

Sinus node dysfunction (SND) is characterized by the spectrum of electrocardiographic and electrophysiological disorders involving the sinoatrial node and its connections with one or more of the following ECG changes: sinus bradycardia, junctional bradycardia, sinus arrest or pause, sinoatrial block, substitution rhythms etc. Children with SND may be completely asymptomatic or may experience weakness, pallor, presyncope/syncope, or HF. Symptomatic SND typically requires pacemaker implantation.576576 Semelka M, Gera J, Usman S. Sick Sinus Syndrome: A Review. Am Fam Physician. 2013;87(10):691-6. PMID: 23939447.,580580 Joung B, Chen PS. Function and Dysfunction of Human Sinoatrial Node. Korean Circ J. 2015;45(3):184-91. doi: 10.4070/kcj.2015.45.3.184.
https://doi.org/10.4070/kcj.2015.45.3.18...
582582 Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Cardiol Young. 2021;31(11):1738-69. doi: 10.1017/S1047951121003413.
https://doi.org/10.1017/S104795112100341...

The main causes of bradyarrhythmias in the pediatric population are given in Table 28. In the pediatric population, bradyarrhythmias can trigger chest pain (including typical chest pain), fatigue, dyspnea, exercise intolerance, palpitations, dizziness, syncope, and HF during exertion.577577 Hawks MK, Paul MLB, Malu OO. Sinus Node Dysfunction. Am Fam Physician. 2021;104(2):179-85. PMID: 34383451.,578578 Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and Management of Bradycardia in Neonates and Children. Eur J Pediatr. 2016;175(2):151-61. doi: 10.1007/s00431-015-2689-z.
https://doi.org/10.1007/s00431-015-2689-...
,582582 Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Cardiol Young. 2021;31(11):1738-69. doi: 10.1017/S1047951121003413.
https://doi.org/10.1017/S104795112100341...

Table 28
Etiology of bradyarrhythmias in the pediatric population575575 Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet. 2021;12:654925. doi: 10.3389/fgene.2021.654925.
https://doi.org/10.3389/fgene.2021.65492...
,578578 Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and Management of Bradycardia in Neonates and Children. Eur J Pediatr. 2016;175(2):151-61. doi: 10.1007/s00431-015-2689-z.
https://doi.org/10.1007/s00431-015-2689-...
,583583 Baruteau AE, Probst V, Abriel H. Inherited Progressive Cardiac Conduction Disorders. Curr Opin Cardiol. 2015;30(1):33-9. doi: 10.1097/HCO.0000000000000134.
https://doi.org/10.1097/HCO.000000000000...
585585 Mangrum JM, DiMarco JP. The Evaluation and Management of Bradycardia. N Engl J Med. 2000;342(10):703-9. doi: 10.1056/NEJM200003093421006.
https://doi.org/10.1056/NEJM200003093421...

Markers of high risk of morbidity and mortality in the pediatric population with bradyarrhythmias:576576 Semelka M, Gera J, Usman S. Sick Sinus Syndrome: A Review. Am Fam Physician. 2013;87(10):691-6. PMID: 23939447.,578578 Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and Management of Bradycardia in Neonates and Children. Eur J Pediatr. 2016;175(2):151-61. doi: 10.1007/s00431-015-2689-z.
https://doi.org/10.1007/s00431-015-2689-...
,582582 Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Cardiol Young. 2021;31(11):1738-69. doi: 10.1017/S1047951121003413.
https://doi.org/10.1017/S104795112100341...

  • History of heart murmur or CHD.

  • Syncope, especially if triggered by exertion, loud noises (startle), fear, or extreme emotional stress.

  • Presyncope or syncope without premonitory symptoms or precipitating factors.

  • Chest pain, palpitations, or dyspnea.

  • Family history of SCD, long QT syndrome, sensorineural hearing loss, and pacemaker implantation.

  • Taking medications that may cause bradycardia.

Particular features of ET/CPET in bradyarrhythmias and SND in the pediatric population:

  • Provides information about the ability of the sinus node and AV node to respond to increased adrenergic activity in response to exertion.4343 Rhodes J, Tikkanen AU, Jenkins KJ. Exercise Testing and Training in Children with Congenital Heart Disease. Circulation. 2010;122(19):1957-67. doi: 10.1161/CIRCULATIONAHA.110.958025.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

  • Allows assessment of exercise-induced symptoms, the chronotropic response to exertion, associated arrhythmias, cardiorespiratory fitness, and risk stratification.4343 Rhodes J, Tikkanen AU, Jenkins KJ. Exercise Testing and Training in Children with Congenital Heart Disease. Circulation. 2010;122(19):1957-67. doi: 10.1161/CIRCULATIONAHA.110.958025.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,404404 Norozi K, Wessel A, Alpers V, Arnhold JO, Binder L, Geyer S, et al. Chronotropic Incompetence in Adolescents and Adults with Congenital Heart Disease After Cardiac Surgery. J Card Fail. 2007;13(4):263-8. doi: 10.1016/j.cardfail.2006.12.002.
    https://doi.org/10.1016/j.cardfail.2006....
    ,586586 Norozi K, Wessel A, Alpers V, Arnhold JO, Geyer S, Zoege M, et al. Incidence and Risk Distribution of Heart Failure in Adolescents and Adults with Congenital Heart Disease after Cardiac Surgery. Am J Cardiol. 2006;97(8):1238-43. doi: 10.1016/j.amjcard.2005.10.065.
    https://doi.org/10.1016/j.amjcard.2005.1...

  • In patients with resting bradycardia, the finding of a normal chronotropic response helps rule out SND.

  • Patients with complex CHD generally present with comorbid SND, chronotropic incompetence, and impaired CRF.189189 Miliaresis C, Beker S, Gewitz M. Cardiopulmonary Stress Testing in Children and Adults with Congenital Heart Disease. Cardiol Rev. 2014;22(6):275-8. doi: 10.1097/CRD.0000000000000039.
    https://doi.org/10.1097/CRD.000000000000...
    ,587587 Reybrouck T, Weymans M, Stijns H, van der Hauwaert LG. Exercise Testing after Correction of Tetralogy of Fallot: The Fallacy of a Reduced Heart Rate Response. Am Heart J. 1986;112(5):998-1003. doi: 10.1016/0002-8703(86)90312-1.
    https://doi.org/10.1016/0002-8703(86)903...
    ,588588 Takken T, Tacken MH, Blank AC, Hulzebos EH, Strengers JL, Helders PJ. Exercise Limitation in Patients with Fontan Circulation: A Review. J Cardiovasc Med. 2007;8(10):775-81. doi: 10.2459/JCM.0b013e328011c999.
    https://doi.org/10.2459/JCM.0b013e328011...

  • Patients with ASD generally present with chronotropic incompetence after transcatheter or surgical repair.589589 Massin MM, Dessy H, Malekzadeh-Milani SG, Khaldi K, Topac B, Edelman R. Chronotropic Impairment after Surgical or Percutaneous Closure of Atrial Septal Defect. Catheter Cardiovasc Interv. 2009;73(4):564-7. doi: 10.1002/ccd.21857.
    https://doi.org/10.1002/ccd.21857...
    ,590590 Pfammatter JP, Zanolari M, Schibler A. Cardiopulmonary Exercise Parameters in Children with Atrial Septal Defect and Increased Pulmonary Blood Flow: Short-Term Effects of Defect Closure. Acta Paediatr. 2002;91(1):65-70. doi: 10.1080/080352502753457987.
    https://doi.org/10.1080/0803525027534579...

  • After ToF repair, chronotropic incompetence and severe sinus node dysfunction are common, occurring in ≈4% of patients.591591 Hock J, Häcker AL, Reiner B, Oberhoffer R, Hager A, Ewert P, et al. Functional Outcome in Contemporary Children and Young Adults with Tetralogy of Fallot after Repair. Arch Dis Child. 2019;104(2):129-33. doi: 10.1136/archdischild-2017-314733.
    https://doi.org/10.1136/archdischild-201...

  • After Fontain procedure, chronotropic incompetence occurs in up to 62% of patients and contributes to impaired CRF.592592 Zajac A, Tomkiewicz L, Podolec P, Tracz W, Malec E. Cardiorespiratory Response to Exercise in Children after Modified Fontan Operation. Scand Cardiovasc J. 2002;36(2):80-5. doi: 10.1080/140174302753675348.
    https://doi.org/10.1080/1401743027536753...
    ,593593 Talavera MM, Manso B, Ramos PC, Puras MJR, Rodriguez AJW, Vinuesa PGG. Determinants of Oxygen Uptake and Prognostic Factors in Cardiopulmonary Exercise Test in Patients with Fontan Surgery. Cardiol Young. 2022;32(8):1285-8. doi: 10.1017/S1047951121004054.
    https://doi.org/10.1017/S104795112100405...

3.4. Indirect Metabolic Assessment

3.4.1. VO2/Cardiorespiratory Fitness/Functional Classification

In ET, the indirect determination (estimate) of oxygen consumption (VO2) is considered the main metabolic assessment of effort. VO2 is one of the main parameters of CHD severity, being relevant for risk stratification and prognosis. It is recommended to present VO2 results in mL/kg/min (mL.kg-1.min-1 is also acceptable). It can also be expressed through the metabolic equivalent of task - MET. Each 1 MET corresponds to 3.5 mL/kg/min of VO2.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

Maximum oxygen consumption (VO2max) expresses the greatest amount of oxygen extracted from the air inspired during the performance of ET considered maximal effort (examples: signs or symptoms of physical exhaustion; inability to continue the effort, etc.). In ET that do not have the characteristics of a maximum effort, the VO2 obtained must be called VO2peak.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

Up to 12 years of age, there are no significant sex differences in VO2peak. After this age, male adolescents can reach VO2 values up to 25-30% higher than those achieved by females.2222 Tsuda T, Baffa JM, Octavio J, Robinson BW, Radtke W, Mody T, et al. Identifying Subclinical Coronary Abnormalities and Silent Myocardial Ischemia after Arterial Switch Operation. Pediatr Cardiol. 2019;40(5):901-8. doi: 10.1007/s00246-019-02085-4.
https://doi.org/10.1007/s00246-019-02085...

Cardiorespiratory fitness (CRF)/functional classification by ET/CPET involves stratification of physical performance based on oxygen consumption, or uptake (estimated by ET; measured directly by CPET). Maximal oxygen consumption (VO2max) expresses the highest amount of oxygen extracted from inspired air during dynamic exercise involving a large muscle mass.

To obtain the predicted VO2max, we suggest using reference tables specific for the pediatric age group (children and adolescents), based on sex, age and BMI. The use of specific reference tables in CHD and/or lung disease is also useful, and contributes to risk stratification in these conditions (Appendix 4 Appendix 4 Markers of cardiorespiratory fitness (predicted VO2max) and OUES in an apparently healthy pediatric population with heart disease Material Age Location DOI Available at Apparently healthy: VO2max percentiles for sex and age.176 8-18 Figure 2 10.1513/AnnalsATS.201611-912FR https://www.atsjournals.org/doi/10.1513/AnnalsATS.201611-912FR VO2max percentiles for sex and age.1030 12-18 Figure 2 and Figure 3 10.1016/j.amepre.2011.07.005 https://linkinghub.elsevier.com/retrieve/pii/S0749-3797(11)00491-0 VO2max values for sex and age group in the Brazilian population.1031 7-12 and 13-19 Table 6 10.5935/2359-4802.20190057 https://www.scielo.br/j/ijcs/a/x8bB3qQHQKCXHRbZRbpXMrm/?lang=en DP at rest and DPpeak at moderately high altitude.1030 4-18 Table 3 10.1016/j.acmx.2013.04.003 https://www.elsevier.es/es-revista-archivos-cardiologia-mexico-293-articulo-cardiopulmonary-exercise-testing-in-healthy-S1405994013000621 OUES percentile chart (for sex and age) and OUES prediction equations.622 8-19 Figure 2 and Table 2 10.1177/2047487315611769 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487315611769 Graph of average OUES behavior by sex and age.614 7-18 Figure 1 10.1123/pes.22.3.431 https://journals.humankinetics.com/doi/10.1123/pes.22.3.431 In heart disease: Charts and tables, stratified by sex, of VO2max/VO2peak and %VO2 predicted in patients with univentricular hearts, tetralogy of Fallot, transposition of the great arteries, and other heart diseases.1032 6-18 Table 1, Table 2, Figure 2. 10.1007/s00431-022-04648-9 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829639/ Charts and tables of association between VO2max and HRmax in children and adolescents with CHD.80 6-18 Table 1, Figure 2, Figure 4. 10.5935/abc.20170125 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28876372/ Charts and tables of VO2peak for healthy children and adolescents and those with CHD.1033 8-16 Table 7, Figure 3, Figure 4. 10.1007/s004210050612 https://link.springer.com/article/10.1007/s004210050612 Graph and equation predicting DP values in the first two decades of life and in comparison with patients with repaired aortic coarctation.428 12.6±2.96 and 13.0±3.2 years Table 2 and Figure 3 10.1080/14779072.2017.1385392 https://www.tandfonline.com/doi/epdf/10.1080/14779072.2017.1385392?needAccess=true Table with DP behavior (rest and peak effort) in relation to the survival of children with heart failure secondary to idiopathic dilated cardiomyopathy.1033 8.6±1.9 years Table 2 and Table 3 10.1016/j.ejheart.2008.04.009 https://onlinelibrary.wiley.com/doi/epdf/10.1016/j.ejheart.2008.04.009 Charts and tables of OUES behavior by sex and corrected for weight in the apparently healthy pediatric population and in 10 congenital heart diseases.624 5-18 Table 2, Figure 2, Figure 3. 10.1136/archdischild-2019-317724 https://adc.bmj.com/lookup/pmidlookup?view=long&pmid=32732318 Reference values for OUES/kg by age, stratified by normal vs. abnormal functional capacity, in children and adolescents with and without CHD.623 4-21 Table 5 and Table 6. 10.1177/2047487318807977 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487318807977 VO2max: maximum oxygen consumption; DP: double-product; DPpeak: double-product at peak effort; OUES: oxygen uptake efficiency slope; HRmax: maximum heart rate; CHD: congenital heart disease. ).

If equations are needed to estimate predicted VO2max in the pediatric population, the following are recommended:

  1. For cycle ergometer, step protocol:594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
    https://doi.org/10.1164/rccm.167.2.211...

    • Males: predicted VO2max = weight × (50.75 – 0.372 × age)

    • Females: predicted VO2max = (weight + 43) × (22.78 – 0.17 × age)

    Where: age is in years; height, in centimeters; weight, in kg. When the actual weight is greater than predicted for age and sex, the predicted weight should be used in the equations: predicted weight for sex: males = (0.79 × height) – 60.7; females = (0.65 × height) – 42.8.

  2. For treadmill, incremental protocol:594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
    https://doi.org/10.1164/rccm.167.2.211...

    predicted VO2max = (0.046 × height) – (0.021 × age) – (0.62 × sex) – 4.31

    Where: male = 0 and female = 1; age is in years; height, in centimeters.

  3. For cycle ergometer, ramp protocol: Healthy children and adolescents aged 12 to 17 years:595595 Takken T, Mylius CF, Paap D, Broeders W, Hulzebos HJ, Van Brussel M, et al. Reference Values for Cardiopulmonary Exercise Testing in Healthy Subjects - an Updated Systematic Review. Expert Rev Cardiovasc Ther. 2019;17(6):413-26. doi: 10.1080/14779072.2019.1627874.
    https://doi.org/10.1080/14779072.2019.16...
    ,596596 Blanchard J, Blais S, Chetaille P, Bisson M, Counil FP, Huard-Girard T, et al. New Reference Values for Cardiopulmonary Exercise Testing in Children. Med Sci Sports Exerc. 2018;50(6):1125-33. doi: 10.1249/MSS.0000000000001559.
    https://doi.org/10.1249/MSS.000000000000...

    • Males: predicted VO2max = (−0.297 × height2) + (105.9 × height) + (36.6 × body mass) – 8,660

    • Females: predicted VO2max = (−0.24 × height2) + (86.8 × height) + (14.7 × body mass) – 6,424

    Where: height is in centimeters and body mass in kilograms. If BMI is ≤ the 85th percentile for age, use actual body mass. If BMI is > the 85th percentile for age, use corrected body mass by estimating the body mass value corresponding to the 85th percentile for age.

Due to the great heterogeneity of the pediatric population, including across countries, it has not yet been possible to establish a unified classification of normality for VO2 and cardiorespiratory fitness.595595 Takken T, Mylius CF, Paap D, Broeders W, Hulzebos HJ, Van Brussel M, et al. Reference Values for Cardiopulmonary Exercise Testing in Healthy Subjects - an Updated Systematic Review. Expert Rev Cardiovasc Ther. 2019;17(6):413-26. doi: 10.1080/14779072.2019.1627874.
https://doi.org/10.1080/14779072.2019.16...

In children with cardiomyopathy, CHD, HF, and VHD, a pre-test evaluation with one of the following scales is suggested to determine their functional status according to age group: modified Ross (children <6 years old) or NYHA (children >6 years old) – see Table 29.

Table 29
Functional classifications based on clinical manifestations, by age group379379 Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535-52. doi: 10.1016/j.cjca.2013.08.008.
https://doi.org/10.1016/j.cjca.2013.08.0...
,793793 Hsu DT, Pearson GD. Heart Failure in Children: Part II: Diagnosis, Treatment, and Future Directions. Circ Heart Fail. 2009;2(5):490-8. doi: 10.1161/CIRCHEARTFAILURE.109.856229.
https://doi.org/10.1161/CIRCHEARTFAILURE...

Table 30 presents a proposal for a national classification of cardiorespiratory fitness by VO2max and sex for Brazilian population aged 10 to 14 years.597597 Rodrigues AN, Perez AJ, Carletti L, Bissoli NS, Abreu GR. Maximum Oxygen Uptake in Adolescents as Measured by Cardiopulmonary Exercise Testing: A Classification Proposal. J Pediatr. 2006;82(6):426-30. doi: 10.2223/JPED.1533.
https://doi.org/10.2223/JPED.1533...
Table 31 describes the behavior of cardiorespiratory fitness in the most common CHD and cardiomyopathies in the pediatric population.

Table 30
Classification of cardiorespiratory fitness by VO2 (mL/kg/min) measured directly in CPET for children aged 10 to 14 years
Table 31
Cardiorespiratory fitness in children and adolescents with common congenital heart diseases and cardiomyopathies1010 Edelson JB, Burstein DS, Paridon S, Stephens P. Exercise Stress Testing: A Valuable Tool to Predict Risk and Prognosis. Prog Pediatr Cardiol. 2019;54:101130. doi: 10.1016/j.ppedcard.2019.101130.
https://doi.org/10.1016/j.ppedcard.2019....
,7979 Abassi H, Gavotto A, Picot MC, Bertet H, Matecki S, Guillaumont S, et al. Impaired Pulmonary Function and its Association with Clinical Outcomes, Exercise Capacity and Quality of Life in Children with Congenital Heart Disease. Int J Cardiol. 2019;285:86-92. doi: 10.1016/j.ijcard.2019.02.069.
https://doi.org/10.1016/j.ijcard.2019.02...
,8080 Schaan CW, Macedo ACP, Sbruzzi G, Umpierre D, Schaan BD, Pellanda LC. Functional Capacity in Congenital Heart Disease: A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2017;109(4):357-67. doi: 10.5935/abc.20170125.
https://doi.org/10.5935/abc.20170125...
,9595 Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 2): Indications for Exercise Tests in Cardiac Diseases. Arch Cardiovasc Dis. 2019;112(1):56-66. doi: 10.1016/j.acvd.2018.07.001.
https://doi.org/10.1016/j.acvd.2018.07.0...

4. Test Cessation Criteria (Clinical, Hemodynamic, and Electrocardiographic)

The main test cessation criteria for the pediatric population are given in Table 32.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487. Test cessation may also be justified in other situations not described herein, but considered to pose a risk of serious complications; any such intercurrent events should be described in detail in the test report.

Table 32
ET/CPET cessation criteria for the pediatric population77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

5. ET Reporting

ET reports for children and adolescents must follow the exact same structure and minimum requirements recommended for adults, as given in the Brazilian Guideline for Exercise Testing in the Adult Population – 2024:11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

  1. Description of general ET data.

  2. Observed, measured, and recorded data.

  3. Descriptive report of the ET.

  4. Conclusions.

  5. ECG recordings.

Additionally, the following practices are recommended:

  • Do not use pre- and post-test risk scores designed for the adult population in pediatric patients; these scores have not been validated and cannot be extrapolated to the pediatric population.

  • Make note of any adjustments made to the ET protocol, test cessation criteria, and test variables due to patient characteristics such as underlying diseases, age, sex, BMI, body surface area, current medications, etc.

  • Preferably, present reference ranges or values for all measured variables.

  • When relevant and available, comment on any findings in relation to the patient's underlying diseases, including prognostic impact and risk.

  • In case of serial ETs, comment on the progression of test findings over time if possible.

6. CPET in Children and Adolescents

6.1. Metabolic, Ventilatory, and Gas-exchange Responses in Children and Adolescents

6.1.1. Cell Metabolism, and Physiological and Hormonal Responses to Exercise

Children and adolescents have metabolic responses to exercise that are different from those observed in adults. Adenosine triphosphate (ATP) and phosphocreatine reserves are unrelated to age. Muscle glycogen levels at rest are lower in children, reaching adult levels by adolescence.598598 Boisseau N, Delamarche P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000;30(6):405-22. doi: 10.2165/00007256-200030060-00003.
https://doi.org/10.2165/00007256-2000300...
,599599 Prado DM, Dias RG, Trombetta IC. Cardiovascular, Ventilatory, and Metabolic Parameters During Exercise: Differences between Children and Adults. Arq Bras Cardiol. 2006;87(4):e149-55. doi: 10.1590/s0066-782x2006001700035.
https://doi.org/10.1590/s0066-782x200600...

Compared to adults, children have a smaller muscle mass, with differences in utilization of energy sources and metabolic/hormonal adaptations, such as a greater dependence on fat oxidation, resulting in greater mobilization of free fatty acids. The release of glycerol and increase in growth hormone in pre-adolescent children corroborate these findings.600600 Almeida PF Neto, Silva LFD, Miarka B, Medeiros JA, Medeiros RCDSC, Teixeira RPA, et al. Influence of Advancing Biological Maturation on Aerobic and Anaerobic Power and on Sport Performance of Junior Rowers: A Longitudinal Study. Front Physiol. 2022;13:892966. doi: 10.3389/fphys.2022.892966.
https://doi.org/10.3389/fphys.2022.89296...
,601601 Mero A, Jaakkola L, Komi PV. Relationships between Muscle Fibre Characteristics and Physical Performance Capacity in Trained Athletic Boys. J Sports Sci. 1991;9(2):161-71. doi: 10.1080/02640419108729877.
https://doi.org/10.1080/0264041910872987...

The immaturity of anaerobic metabolism (reduced glycolytic activity) in children is due to:598598 Boisseau N, Delamarche P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000;30(6):405-22. doi: 10.2165/00007256-200030060-00003.
https://doi.org/10.2165/00007256-2000300...
,599599 Prado DM, Dias RG, Trombetta IC. Cardiovascular, Ventilatory, and Metabolic Parameters During Exercise: Differences between Children and Adults. Arq Bras Cardiol. 2006;87(4):e149-55. doi: 10.1590/s0066-782x2006001700035.
https://doi.org/10.1590/s0066-782x200600...
,602602 Fellmann N, Coudert J. Physiology of Muscular Exercise in Children. Arch Pediatr. 1994;1(9):827-40. PMID: 7842128.

  • Differences in skeletal muscle fiber types, with a greater proportion of slow-twitch (type I) fibers than in untrained adults.

  • Anaerobic lactic pathway for ATP resynthesis is generally reduced in young individuals during high-intensity exercise.

  • In prepubertal children, there is reduced activity of the enzymes phosphofructokinase-1 and lactate dehydrogenase, with limited production of muscle lactate compared to adults.

Therefore, children and adolescents adapt well to prolonged, moderate-to-intense exercise, showing rapid recovery after exertion.603603 Rowland TW, Auchinachie JA, Keenan TJ, Green GM. Physiologic Responses to Treadmill Running in Adult and Prepubertal Males. Int J Sports Med. 1987;8(4):292-7. doi: 10.1055/s-2008-1025672.
https://doi.org/10.1055/s-2008-1025672...
,604604 Bessa AL, Oliveira VN, Agostini GG, Oliveira RJ, Oliveira AC, White GE, et al. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res. 2016;30(2):311-9. doi: 10.1519/JSC.0b013e31828f1ee9.
https://doi.org/10.1519/JSC.0b013e31828f...

In children, hormonal adaptations in energy expenditure during prolonged exercise are associated with a smaller reduction in insulin levels and an increase in catecholamines and glucagon. This response corresponds to less effective regulation of blood glucose levels and a greater risk of hypoglycemia.598598 Boisseau N, Delamarche P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000;30(6):405-22. doi: 10.2165/00007256-200030060-00003.
https://doi.org/10.2165/00007256-2000300...
,605605 Guth LM, Rogowski MP, Guilkey JP, Mahon AD. Carbohydrate Consumption and Variable-Intensity Exercise Responses in Boys and Men. Eur J Appl Physiol. 2019;119(4):1019-27. doi: 10.1007/s00421-019-04091-z.
https://doi.org/10.1007/s00421-019-04091...
,606606 Montfort-Steiger V, Williams CA. Carbohydrate Intake Considerations for Young Athletes. J Sports Sci Med. 2007;6(3):343-52. PMCID: PMC3787285; PMID: 24149421.

The pubertal growth spurt is characterized by release of hormones (i.e. somatotropin, insulin-like growth factors, and sex steroids) responsible for changes in body composition and an increase in lean body mass, resulting in improved fitness and physical performance, particularly for anaerobic exercise.599599 Prado DM, Dias RG, Trombetta IC. Cardiovascular, Ventilatory, and Metabolic Parameters During Exercise: Differences between Children and Adults. Arq Bras Cardiol. 2006;87(4):e149-55. doi: 10.1590/s0066-782x2006001700035.
https://doi.org/10.1590/s0066-782x200600...
,607607 Isacco L, Duché P, Boisseau N. Influence of Hormonal Status on Substrate Utilization at Rest and During Exercise in the Female Population. Sports Med. 2012;42(4):327-42. doi: 10.2165/11598900-000000000-00000.
https://doi.org/10.2165/11598900-0000000...
609609 Almeida PF Neto, Dantas PMS, Pinto VCM, Cesário TM, Campos NMR, Santana EE, et al. Biological Maturation and Hormonal Markers, Relationship to Neuromotor Performance in Female Children. Int J Environ Res Public Health. 2020;17(9):3277. doi: 10.3390/ijerph17093277.
https://doi.org/10.3390/ijerph17093277...

6.1.2. Pulmonary Ventilation, Expired Gas Analysis, Spirometry, and Derived Variables

The key CPET variables (metabolism, pulmonary ventilation, expired air gases, spirometry) and derived variables in the pediatric population, as well as their respective units and interpretations, are given in Table 33. The differences in behavior, or response, of these variables to exercise between children and adults are described in Table 34.1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,179179 van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
https://doi.org/10.1123/pes.2018-0235...
,610610 Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
https://doi.org/10.21037/jtd.2017.11.30...

Table 33
Key CPET variables and their respective interpretations1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,179179 van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
https://doi.org/10.1123/pes.2018-0235...
,610610 Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
https://doi.org/10.21037/jtd.2017.11.30...
,611611 Das BB. A Systematic Approach for the Interpretation of Cardiopulmonary Exercise Testing in Children with Focus on Cardiovascular Diseases. J Cardiovasc Dev Dis. 2023;10(4):178. doi: 10.3390/jcdd10040178.
https://doi.org/10.3390/jcdd10040178...

Table 34
Comparison of cardiovascular, ventilatory, and metabolic CPET variables between children and adults, during any exertion, submaximal exercise, and maximal exercise11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,1111 Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,176176 Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
https://doi.org/10.1513/AnnalsATS.201611...
,179179 van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
https://doi.org/10.1123/pes.2018-0235...
,599599 Prado DM, Dias RG, Trombetta IC. Cardiovascular, Ventilatory, and Metabolic Parameters During Exercise: Differences between Children and Adults. Arq Bras Cardiol. 2006;87(4):e149-55. doi: 10.1590/s0066-782x2006001700035.
https://doi.org/10.1590/s0066-782x200600...
,610610 Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
https://doi.org/10.21037/jtd.2017.11.30...

6.1.2.1. Oxygen Consumption (VO2)

Assessment of cardiorespiratory fitness (CRF) through direct measurement of VO2peak or VO2max in a CPET is considered the main metabolic variable during exertion. The VO2 at the ventilatory thresholds (particularly the first ventilatory threshold, VT1) has diagnostic and prognostic importance in children and adolescents. VO2 at VT1 and VO2max are generally higher than those observed in adults.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

In a maximal test, CRF can be assessed by the VO2peak (mL/kg/min), considered to be within normal limits when ≥2 SD. In adolescents, adoption of 80% of predicted VO2max as the lower limit of normality is not recommended, as this value may be overestimated.

The anaerobic capacity of children is lower than that of adults, even when expressed per unit of total or lean body mass.

It is not always possible to assess cardiorespiratory fitness based on VO2peak in submaximal tests. Other CPET parameters, such as VT1 and OUES, can be used to provide a better indication of fitness.

Physical deconditioning is generally defined as reduced oxygen transport capacity by the cardiovascular system and/or reduced efficiency in peripheral oxygen extraction, leading to an early VT1. A VT1 at <50% of predicted VO2max is associated with physical deconditioning; at <40% of predicted, it generally denotes underlying disease with significant impairment of CRF.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

6.1.2.2. Oxygen Pulse

The oxygen pulse (OP or O2 pulse; OP = VO2/HR) is a noninvasive variable that reflects cardiac output. It is useful in the assessment of ventricular dysfunction, with or without associated ischemia. Under normal circumstances, OP increases with exertion due to the linear increase in HR and VO2, plateauing close to maximum effort.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

A decrease in OP (normal value: ≥2 SD) at submaximal loads suggests ventricular dysfunction, and is indicative of reduced stroke volume. When combined with a drop in ΔVO2/ΔWR, such a reduction indicates severe ventricular dysfunction, often of ischemic etiology.

During CPET, the combination of decreased OP (<2 SD of predicted) at peak exercise, early VT1 (<40-50% of predicted VO2max), decreased VO2peak, and rapid increase in HR may be associated with physical deconditioning.

6.1.2.3. Respiratory Quotient (VCO2/VO2 Ratio)

In the pediatric population, the respiratory quotient (RQ; also known as RER) at rest ranges from 0.70 to 0.85. During progressive exertion, once VT1 is crossed the VCO2 increases disproportionately in relation to VO2, which translates into an increase in RQ due to changes in energy substrates. It is essential that RQ be evaluated at the point of VO2peak, as it continues to increase after cessation of exertion, including in the early recovery stage. Once the RQ is ≥1.1, the exercise test can be considered maximal.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

In pediatric populations, HRpeak and RQ at peak exertion (RQpeak) are recommended as objective criteria to assess the level of exertion achieved. The following are considered optimal:

  • HR ≥180 beats/min (or at least at ≥95% of predicted HRmax) at VO2peak.

  • RQ of at least 1.00 at VO2peak. This value represents the lower limit of normal for CPET performed on a conventional cycle ergometer.

RQ ≥1.00 at VO2peak denotes exclusive use of carbohydrate (glucose) as a source of energy, through predominantly anaerobic metabolism. RQ values <1.00 at VO2peak may indicate submaximal exertion or may be pathological, indicating conditions such as lung disease, decompensated cyanotic CHD, or glycogen storage diseases. In apparently healthy children and adolescents, RQ values will decrease within 2 to 3 minutes of recovery.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

6.1.2.4. Oxygen Uptake Efficiency Slope (OUES)

The oxygen uptake efficiency slope (OUES) reflects a nonlinear relationship of the ventilatory response to exertion, corresponding to the absolute increase in VO2 associated with increased VE. It expresses the efficiency of alveolar O2 extraction in ventilated air. OUES values are best presented relative to body surface area, weight, or fat-free body mass.612612 Tang Y, Luo Q, Liu Z, Ma X, Zhao Z, Huang Z, et al. Oxygen Uptake Efficiency Slope Predicts Poor Outcome in Patients with Idiopathic Pulmonary Arterial Hypertension. J Am Heart Assoc. 2017;6(7):e005037. doi: 10.1161/JAHA.116.005037.
https://doi.org/10.1161/JAHA.116.005037...
621621 Sun XG, Hansen JE, Stringer WW. Oxygen Uptake Efficiency Plateau: Physiology and Reference Values. Eur J Appl Physiol. 2012;112(3):919-28. doi: 10.1007/s00421-011-2030-0.
https://doi.org/10.1007/s00421-011-2030-...
Appendix 4 Appendix 4 Markers of cardiorespiratory fitness (predicted VO2max) and OUES in an apparently healthy pediatric population with heart disease Material Age Location DOI Available at Apparently healthy: VO2max percentiles for sex and age.176 8-18 Figure 2 10.1513/AnnalsATS.201611-912FR https://www.atsjournals.org/doi/10.1513/AnnalsATS.201611-912FR VO2max percentiles for sex and age.1030 12-18 Figure 2 and Figure 3 10.1016/j.amepre.2011.07.005 https://linkinghub.elsevier.com/retrieve/pii/S0749-3797(11)00491-0 VO2max values for sex and age group in the Brazilian population.1031 7-12 and 13-19 Table 6 10.5935/2359-4802.20190057 https://www.scielo.br/j/ijcs/a/x8bB3qQHQKCXHRbZRbpXMrm/?lang=en DP at rest and DPpeak at moderately high altitude.1030 4-18 Table 3 10.1016/j.acmx.2013.04.003 https://www.elsevier.es/es-revista-archivos-cardiologia-mexico-293-articulo-cardiopulmonary-exercise-testing-in-healthy-S1405994013000621 OUES percentile chart (for sex and age) and OUES prediction equations.622 8-19 Figure 2 and Table 2 10.1177/2047487315611769 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487315611769 Graph of average OUES behavior by sex and age.614 7-18 Figure 1 10.1123/pes.22.3.431 https://journals.humankinetics.com/doi/10.1123/pes.22.3.431 In heart disease: Charts and tables, stratified by sex, of VO2max/VO2peak and %VO2 predicted in patients with univentricular hearts, tetralogy of Fallot, transposition of the great arteries, and other heart diseases.1032 6-18 Table 1, Table 2, Figure 2. 10.1007/s00431-022-04648-9 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829639/ Charts and tables of association between VO2max and HRmax in children and adolescents with CHD.80 6-18 Table 1, Figure 2, Figure 4. 10.5935/abc.20170125 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28876372/ Charts and tables of VO2peak for healthy children and adolescents and those with CHD.1033 8-16 Table 7, Figure 3, Figure 4. 10.1007/s004210050612 https://link.springer.com/article/10.1007/s004210050612 Graph and equation predicting DP values in the first two decades of life and in comparison with patients with repaired aortic coarctation.428 12.6±2.96 and 13.0±3.2 years Table 2 and Figure 3 10.1080/14779072.2017.1385392 https://www.tandfonline.com/doi/epdf/10.1080/14779072.2017.1385392?needAccess=true Table with DP behavior (rest and peak effort) in relation to the survival of children with heart failure secondary to idiopathic dilated cardiomyopathy.1033 8.6±1.9 years Table 2 and Table 3 10.1016/j.ejheart.2008.04.009 https://onlinelibrary.wiley.com/doi/epdf/10.1016/j.ejheart.2008.04.009 Charts and tables of OUES behavior by sex and corrected for weight in the apparently healthy pediatric population and in 10 congenital heart diseases.624 5-18 Table 2, Figure 2, Figure 3. 10.1136/archdischild-2019-317724 https://adc.bmj.com/lookup/pmidlookup?view=long&pmid=32732318 Reference values for OUES/kg by age, stratified by normal vs. abnormal functional capacity, in children and adolescents with and without CHD.623 4-21 Table 5 and Table 6. 10.1177/2047487318807977 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487318807977 VO2max: maximum oxygen consumption; DP: double-product; DPpeak: double-product at peak effort; OUES: oxygen uptake efficiency slope; HRmax: maximum heart rate; CHD: congenital heart disease. provides information on OUES values/percentiles and predictive equations for the apparently healthy pediatric population.622622 Bongers BC, Hulzebos EH, Helbing WA, Harkel ADT, van Brussel M, Takken T. Response Profiles of Oxygen Uptake Efficiency During Exercise in Healthy Children. Eur J Prev Cardiol. 2016;23(8):865-73. doi: 10.1177/2047487315611769.
https://doi.org/10.1177/2047487315611769...

A Brazilian study involving healthy children and children with CHD suggested the use of weight-indexed OUES (OUES/Kg), and proposed OUES values >35 as indicative of normal functional capacity.623623 Hossri CA, Souza IPA, Oliveira JS, Mastrocola LE. Assessment of Oxygen-Uptake Efficiency Slope in Healthy Children and Children with Heart Disease: Generation of Appropriate Reference Values for the OUES Variable. Eur J Prev Cardiol. 2019;26(2):177-84. doi: 10.1177/2047487318807977.
https://doi.org/10.1177/2047487318807977...
An international multicenter trial found cutoff points of 38.4 for boys and 31.0 for girls.624624 Gavotto A, Vandenberghe D, Abassi H, Huguet H, Macioce V, Picot MC, et al. Oxygen Uptake Efficiency Slope: A Reliable Surrogate Parameter for Exercise Capacity in Healthy and Cardiac Children?. Arch Dis Child. 2020;105(12):1167-74. doi: 10.1136/archdischild-2019-317724.
https://doi.org/10.1136/archdischild-201...

Submaximal OUES correlates with VO2peak, VEpeak, and VO2 at VT1, and is thus a valid measure for determination of CRF and risk stratification in submaximal tests.613613 Bongers BC, Hulzebos HJ, Blank AC, van Brussel M, Takken T. The Oxygen Uptake Efficiency Slope in Children with Congenital Heart Disease: Construct and Group Validity. Eur J Cardiovasc Prev Rehabil. 2011;18(3):384-92. doi: 10.1177/1741826710389390.
https://doi.org/10.1177/1741826710389390...
,625625 Tsai YJ, Li MH, Tsai WJ, Tuan SH, Liao TY, Lin KL. Oxygen Uptake Efficiency Slope and Peak Oxygen Consumption Predict Prognosis in Children with Tetralogy of Fallot. Eur J Prev Cardiol. 2016;23(10):1045-50. doi: 10.1177/2047487315623405.
https://doi.org/10.1177/2047487315623405...
,626626 Los Monteros CTE, Van der Palen RLF, Hazekamp MG, Rammeloo L, Jongbloed MRM, Blom NA, ET AL. Oxygen Uptake Efficiency Slope is Strongly Correlated to VO2peak Long-Term after Arterial Switch Operation. Pediatr Cardiol. 2021;42(4):866-74. doi: 10.1007/s00246-021-02554-9.
https://doi.org/10.1007/s00246-021-02554...

6.1.2.5. Ventilatory Equivalents of Oxygen and Carbon Dioxide

During CPET, the ventilatory equivalents of O2 (VE/VO2) and of CO2 (VE/VCO2) indicate, respectively, the VE required to consume 1 L/min of O2 and produce/dispose of 1 L/min of CO2. During progressive exertion, the VE/VO2 ratio decreases up to VT1, at which point it progressively increases, with positive inflections at VT1 and VT2. The VE/VCO2 ratio decreases up to VT2, then increases thereafter.

The ventilatory equivalents contribute to the assessment of cardiorespiratory efficiency, help identify ventilatory thresholds, and have diagnostic and prognostic value in pediatric patients with CHD, HF, and pulmonary artery hypertension. Cardiocirculatory conditions with low cardiac output are associated with a steeply sloping VE/VCO2 curve. The VE/VO ratio2 is usually elevated in pulmonic regurgitation and HF.

In a study of 700 apparently healthy patients (aged 5 to 18 years) with CHD, the slope of the VE/VCO curve2 was significantly higher in patients with heart disease (greatest increase seen in patients with RV outflow tract obstruction). This study suggests a value of 29 as the cutoff for normality.624624 Gavotto A, Vandenberghe D, Abassi H, Huguet H, Macioce V, Picot MC, et al. Oxygen Uptake Efficiency Slope: A Reliable Surrogate Parameter for Exercise Capacity in Healthy and Cardiac Children?. Arch Dis Child. 2020;105(12):1167-74. doi: 10.1136/archdischild-2019-317724.
https://doi.org/10.1136/archdischild-201...
,627627 Gavotto A, Huguet H, Picot MC, Guillaumont S, Matecki S, Amedro P. The VE/VCo2 Slope: A Useful Tool to Evaluate the Physiological Status of Children with Congenital Heart Disease. J Appl Physiol. 2020;129(5):1102-10. doi: 10.1152/japplphysiol.00520.2020.
https://doi.org/10.1152/japplphysiol.005...

6.1.2.6. Other Considerations Regarding Ventilatory and Metabolic Parameters11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

Minute ventilation (VE) increases with progressive exertion, in a manner dependent on the intensity of the effort exerted and the subject's physical fitness, and correlates with VO2 and VCO2.

An elevated respiratory frequency (RF) may be indicative of a sedentary lifestyle or abnormalities in ventilatory mechanics. The normal RF in children is usually higher than in adults: ≈65 breaths/min in children aged 5 to 8 years and ≈50-55 breaths/min in children >11 years.

Compared to adults, children have a closer relationship between RF and tidal volume (VT), generally associated with reduced ventilation/perfusion. This phenomenon is commonly observed in some forms of cyanotic CHD.

Ventilatory limitation is traditionally defined as a ventilatory reserve (VR) <20% during exertion. Healthy children have a VR ≥11 L/min, or 20% to 40% of their maximum voluntary ventilation (MVV).179179 van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
https://doi.org/10.1123/pes.2018-0235...
,628628 Borel B, Leclair E, Thevenet D, Beghin L, Gottrand F, Fabre C. Mechanical Ventilatory Constraints During Incremental Exercise in Healthy and Cystic Fibrosis Children. Pediatr Pulmonol. 2014;49(3):221-9. doi: 10.1002/ppul.22804.
https://doi.org/10.1002/ppul.22804...

VR prediction equations:

M V V = F E V 1 × 3 5 V R = M V V - V E m a x M V V x 1 0 0

MVV: maximal voluntary ventilation

FEV1: forced expiratory volume in one second

VR: ventilatory reserve

VEmax: maximal exercise ventilation

VR contributes to the differential diagnosis between heart disease and lung disease. Low VR is characteristic of primary lung disease and obstructive pulmonary disease, while elevated VR occurs in cardiovascular conditions that limit physical performance.629629 Toma N, Bicescu G, Enache R, Dragoi R, Cinteza M. Cardiopulmonary Exercise Testing in Differential Diagnosis of Dyspnea. Maedica. 2010;5(3):214-8. PMCID: PMC3177547; PMID: 21977155.

Generally, children with restrictive lung diseases have reduced exercise capacity (low VO2peak and low VO2 at VT1) and increased tidal volume (50% of vital capacity and/or 80% of inspiratory capacity), with relatively low VR.630630 Rowland TW, Rowland TW. Children's Exercise Physiology. 2nd ed. Champaign: Human Kinetics; 2005. ISBN-10: 0736051449; ISBN-13: 978-0736051446. Any further increase in VE is due to an increase in RR. If there is ventilation limitation during exertion, SpO2 decreases with increasing workload.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...
,177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.,286286 Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

In PAH, there is a marked reduction in ventilatory efficiency, with elevated VE/VO2 and VE/VCO2 ratios, indicating abnormal gas exchange in the lungs.631631 Cooper CB, Storer TW. Exercise Testing and Interpretation: A Practical Approach. Cambridge: Cambridge University Press; 2001. ISBN-13: 978-0521648424.

PETO2 and PETCO2 reflect arterial gas tensions. A combination of low PETCO2 and elevated PETO2 and RQ is indicative of hyperventilation.

A ≥5% drop in SpO2 during ET/CPET is defined as exercise-induced hypoxemia. A decline of at least 10 percentage points in relation to resting saturation plus symptoms or an SpO2 <85% regardless of symptoms are test cessation criteria. Desaturation is considered serious when SpO2 is <80% and accompanied by signs and symptoms of severe hypoxemia; this generally occurs in children with severe lung disease or HF.260260 Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases. Eur Respir Rev. 2019;28(154):180101. doi: 10.1183/16000617.0101-2018.
https://doi.org/10.1183/16000617.0101-20...
,594594 American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
https://doi.org/10.1164/rccm.167.2.211...

7. CPET Reporting in Children and Adolescents

CPET reports for children and adolescents must follow the same structure recommended for adults, as given in the Brazilian Guideline for Exercise Testing in the Adult Population – 2024.11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
https://doi.org/10.36660/abc.20240110...

The CPET report must cover an overview of all main ergospirometric variables (hemodynamic, ventilatory, and metabolic), a description of any abnormalities that led to cessation of the test, and diagnostic and prognostic hypotheses.

The report must include:

  • A description of the HR, BP, ECG behavior, VO2, and metabolic equivalents of task (MET) achieved, in relation to the predicted values for age and sex.

  • A description of the first ventilatory or anaerobic threshold (VT1), standardized for body mass (expressed as a percentage of actual VO2peak reached and predicted VO2max) and in relation to HR and work load.

  • Measured cardiorespiratory fitness and its repercussions, considering the indication for CPET and other test findings.

  • When relevant, the normal (reference) values used for sex, age, weight, and BMI, as well as a note on the presence or absence of underlying diseases.

Note: the parameters listed above carry great diagnostic and prognostic relevance and can be used to inform the exercise prescription, particularly for CVR purposes.

Part 3 – Particular Aspects of ET/CPET in Specific Clinical Conditions

1. Congenital and Acquired Heart Diseases

Among the most common indications for ET/CPET in children, adolescents and young adults is the clinical, hemodynamic, and electrocardiographic workup of patients with CHD, especially after partial or complete correction or repair of a congenital heart defect. Cardiorespiratory fitness may be poor in patients with complex CHD (even in those apparently asymptomatic), especially if PAH and chronic HF are present.7777 Zaqout M, Vandekerckhove K, De Wolf D, Panzer J, Bové T, François K, et al. Determinants of Physical Fitness in Children with Repaired Congenital Heart Disease. Pediatr Cardiol. 2021;42(4):857-65. doi: 10.1007/s00246-021-02551-y.
https://doi.org/10.1007/s00246-021-02551...
,632632 Guirgis L, Khraiche D, Ladouceur M, Iserin L, Bonnet D, Legendre A. Cardiac Performance Assessment During Cardiopulmonary Exercise Test can Improve the Management of Children with Repaired Congenital Heart Disease. Int J Cardiol. 2020;300:121-6. doi: 10.1016/j.ijcard.2019.10.032.
https://doi.org/10.1016/j.ijcard.2019.10...
,633633 Mestre NM, Reychler G, Goubau C, Moniotte S. Correlation between Cardiopulmonary Exercise Test, Spirometry, and Congenital Heart Disease Severity in Pediatric Population. Pediatr Cardiol. 2019;40(4):871-7. doi: 10.1007/s00246-019-02084-5.
https://doi.org/10.1007/s00246-019-02084...

Table 35 describes the behavior of key ET/CPET variables in the most prevalent CVD across the pediatric age group.

Table 35
Key ET/CPET variables and their behavior in common cardiovascular diseases in the pediatric population66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...

1.1. Atrial Septal Defects

Most patients with atrial septal defects (ASD) remain asymptomatic throughout childhood, even in the presence of a major left-to-right shunt. There are five main types of ASD: ostium secundum, ostium primum, sinus venosus, coronary sinus defects, and patent foramen ovale. These defects will be treated as a single entity (DSA) for the purposes of this guideline because they share similar symptoms, behavior of variables during exercise, and interpretations of ET findings, depending on the predominance of the shunt (whether right-to-left or left-to-right), defect size, and presence of PAH and/or HF.634634 Geva T, Martins JD, Wald RM. Atrial Septal Defects. Lancet. 2014;383(9932):1921-32. doi: 10.1016/S0140-6736(13)62145-5.
https://doi.org/10.1016/S0140-6736(13)62...
,635635 Alkashkari W, Albugami S, Hijazi ZM. Current Practice in Atrial Septal Defect Occlusion in Children and Adults. Expert Rev Cardiovasc Ther. 2020;18(6):315-29. doi: 10.1080/14779072.2020.1767595.
https://doi.org/10.1080/14779072.2020.17...

Particular features of the resting ECG in pediatric patients with ASD:370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,636636 Anbarasan S, Swaminathan N, Shankar GR, Majella J CM. Electrocardiographic Changes in Ostium Secundum Atrial Septal Defect- before and after Shunt Closure- A Retrospective Cohort Analysis. J Assoc Physicians India. 2022;70(1):11-12. PMID: 35062807.,637637 Kharouf R, Luxenberg DM, Khalid O, Abdulla R. Atrial Septal Defect: Spectrum of Care. Pediatr Cardiol. 2008;29(2):271-80. doi: 10.1007/s00246-007-9052-8.
https://doi.org/10.1007/s00246-007-9052-...

  • In most patients, P wave amplitude and duration are within normal limits. In ostium secundum ASD, peaked P waves usually occur in lead II due to right atrial enlargement.

  • In ostium secundum ASD and significant left-to-right shunts, PRi prolongation (1st degree AV block) and intraventricular conduction delay (RBBB pattern) may occur in association with RVH.

  • After surgical repair of ostium secundum ASD, there is generally a decrease in P wave duration and dispersion, although not to the point of normality.

  • After transcatheter repair, partial or complete regression of ECG abnormalities is observed in most patients.638638 Schenck MH, Sterba R, Foreman CK, Latson LA. Improvement in Noninvasive Electrophysiologic Findings in Children after Transcatheter Atrial Septal Defect Closure. Am J Cardiol. 1995;76(10):695-8. doi: 10.1016/s0002-9149(99)80199-4.
    https://doi.org/10.1016/s0002-9149(99)80...
    ,639639 Di Bernardo S, Berger F, Fasnacht M, Bauersfeld U. Impact of Right Ventricular Size on ECG after Percutaneous Closure of Atrial Septal Defect with Amplatzer Septal Occluder. Swiss Med Wkly. 2005;135(43-44):647-51. doi: 10.4414/smw.2005.11067.
    https://doi.org/10.4414/smw.2005.11067...

  • After surgical repair of sinus venosus ASD, relatively high rates of sinus node dysfunction (6%) and atrial fibrillation (14%) are observed.640640 Jost CHA, Connolly HM, Danielson GK, Bailey KR, Schaff HV, Shen WK, et al. Sinus Venosus Atrial Septal Defect: Long-Term Postoperative Outcome for 115 Patients. Circulation. 2005;112(13):1953-8. doi: 10.1161/CIRCULATIONAHA.104.493775.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

Particular features of ET/CPET in uncorrected ASD:

  • Children generally have preserved cardiorespiratory fitness.641641 Rhodes J, Patel H, Hijazi ZM. Effect of Transcatheter Closure of Atrial Septal Defect on the Cardiopulmonary Response to Exercise. Am J Cardiol. 2002;90(7):803-6. doi: 10.1016/s0002-9149(02)02620-6.
    https://doi.org/10.1016/s0002-9149(02)02...

  • Adolescents and young adults may experience reduced cardiorespiratory fitness, especially when symptomatic. In these patients, reductions of up to 60% in predicted VO2max are observed.610610 Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
    https://doi.org/10.21037/jtd.2017.11.30...

  • Asymptomatic patients (with no volume overload and normal RV function at rest) may develop a significant increase in afterload and/or exercise-induced RV dysfunction.642642 van de Bruaene A, de Meester P, Buys R, Vanhees L, Delcroix M, Voigt JU, et al. Right Ventricular Load and Function During Exercise in Patients with Open and Closed Atrial Septal Defect Type Secundum. Eur J Prev Cardiol. 2013;20(4):597-604. doi: 10.1177/2047487312444372.
    https://doi.org/10.1177/2047487312444372...

  • The VE/VCO2 slope is generally normal. However, in patients with ASD and HF, RV dysfunction, PAH, and/or lung disease, the slope may increase due to ventilation/perfusion mismatch.610610 Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
    https://doi.org/10.21037/jtd.2017.11.30...
    ,627627 Gavotto A, Huguet H, Picot MC, Guillaumont S, Matecki S, Amedro P. The VE/VCo2 Slope: A Useful Tool to Evaluate the Physiological Status of Children with Congenital Heart Disease. J Appl Physiol. 2020;129(5):1102-10. doi: 10.1152/japplphysiol.00520.2020.
    https://doi.org/10.1152/japplphysiol.005...

Particular features seen in ET after ASD repair:

  • In early surgical repair, normal cardiorespiratory fitness is observed within 6 months and maintained throughout adult life.643643 Matthys D. Pre- and Postoperative Exercise Testing of the Child with Atrial Septal Defect. Pediatr Cardiol. 1999;20(1):22-5. doi: 10.1007/s002469900387.
    https://doi.org/10.1007/s002469900387...
    645645 Roos-Hesselink JW, Meijboom FJ, Spitaels SE, van Domburg R, van Rijen EH, Utens EM, et al. Excellent Survival and Low Incidence of Arrhythmias, Stroke and Heart Failure Long-Term after Surgical ASD Closure at Young Age. A Prospective Follow-Up Study of 21-33 Years. Eur Heart J. 2003;24(2):190-7. doi: 10.1016/s0195-668x(02)00383-4.
    https://doi.org/10.1016/s0195-668x(02)00...

  • Manifestations of exercise-induced arrhythmias and/or exercise-induced dyspnea are rare and determine the severity of CHD.646646 Hirth A, Reybrouck T, Bjarnason-Wehrens B, Lawrenz W, Hoffmann A. Recommendations for Participation in Competitive and Leisure Sports in Patients with Congenital Heart Disease: A Consensus Document. Eur J Cardiovasc Prev Rehabil. 2006;13(3):293-9. doi: 10.1097/01.hjr.0000220574.22195.d6.
    https://doi.org/10.1097/01.hjr.000022057...
    ,647647 Jategaonkar S, Scholtz W, Schmidt H, Fassbender D, Horstkotte D. Cardiac Remodeling and Effects on Exercise Capacity after Interventional Closure of Atrial Septal Defects in Different Adult Age Groups. Clin Res Cardiol. 2010;99(3):183-91. doi: 10.1007/s00392-009-0105-2.
    https://doi.org/10.1007/s00392-009-0105-...

  • Depressed chronotropic response (chronotropic incompetence) is more common after surgical repair than after transcatheter repair.589589 Massin MM, Dessy H, Malekzadeh-Milani SG, Khaldi K, Topac B, Edelman R. Chronotropic Impairment after Surgical or Percutaneous Closure of Atrial Septal Defect. Catheter Cardiovasc Interv. 2009;73(4):564-7. doi: 10.1002/ccd.21857.
    https://doi.org/10.1002/ccd.21857...
    ,590590 Pfammatter JP, Zanolari M, Schibler A. Cardiopulmonary Exercise Parameters in Children with Atrial Septal Defect and Increased Pulmonary Blood Flow: Short-Term Effects of Defect Closure. Acta Paediatr. 2002;91(1):65-70. doi: 10.1080/080352502753457987.
    https://doi.org/10.1080/0803525027534579...

  • After surgical repair, aerobic capacity is generally reduced and right ventricular performance is significantly lowered.648648 Möller T, Brun H, Fredriksen PM, Holmstrøm H, Peersen K, Pettersen E, et al. Right Ventricular Systolic Pressure Response During Exercise in Adolescents Born with Atrial or Ventricular Septal Defect. Am J Cardiol. 2010;105(11):1610-6. doi: 10.1016/j.amjcard.2010.01.024.
    https://doi.org/10.1016/j.amjcard.2010.0...

  • Late surgical repair (i.e. in adolescence) and/or surgical repair once PAH is already established generally results in lower cardiorespiratory fitness and a higher incidence of exercise-induced atrial arrhythmias.649649 Huysmans HA, Vrakking M, van Boven WJ. Late Follow-Up after Surgical Correction of Atrial Septal Defect of the Secundum Type. Z Kardiol. 1989;78 (Suppl 7):43-5. PMID: 2623927.,650650 Mandelik J, Moodie DS, Sterba R, Murphy D, Rosenkranz E, Medendorp S, et al. Long-Term Follow-Up of Children after Repair of Atrial Septal Defects. Cleve Clin J Med. 1994;61(1):29-33. doi: 10.3949/ccjm.61.1.29.
    https://doi.org/10.3949/ccjm.61.1.29...

  • Exercise-induced arrhythmias in children after ASD repair are rare, but may manifest as sinus bradycardia, sinus tachycardia, supraventricular tachycardia, premature atrial contractions, premature ventricular contractions, sinus node dysfunction, atrioventricular block, atrial flutter, and atrial fibrillation.651651 Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou XM, et al. Prevalence and Spectrum of NKX2.5 Mutations in Patients with Congenital Atrial Septal Defect and Atrioventricular Block. Mol Med Rep. 2017;15(4):2247-54. doi: 10.3892/mmr.2017.6249.
    https://doi.org/10.3892/mmr.2017.6249...
    654654 Jin M, Ding WH, Wang XF, Guo BJ, Liang YM, Xiao YY, et al. Value of the Ratio of Occluder Versus Atrial Septal Length for Predicting Arrhythmia Occurrence after Transcatheter Closure in Children with Ostium Secundum Atrial Septal Defect. Chin Med J. 2015;128(12):1574-8. doi: 10.4103/0366-6999.158291.
    https://doi.org/10.4103/0366-6999.158291...

  • Additional features are noted in Table 36.

Table 36
Behavior of key ET/CPET variables in repaired and unrepaired atrial septal defects

1.2. Ventricular Septal Defect

Pre-test cardiac auscultation may allow detection of ventricular septal defects (VSD). Murmurs are typically described as holosystolic (pansystolic). Murmur grade depends on the flow velocity, with smaller defects producing louder murmurs and potentially even a thrill.671671 Penny DJ, Vick GW 3rd. Ventricular Septal Defect. Lancet. 2011;377(9771):1103-12. doi: 10.1016/S0140-6736(10)61339-6.
https://doi.org/10.1016/S0140-6736(10)61...

Resting ECG generally reflects the degree of hemodynamic instability with VSD:388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,672672 Doshi U, Wang-Giuffre E. Ventricular Septal Defects: A Review. In: Congenital Heart Defects - Recent Advances. London: IntechOpen; 2022. doi: 10.5772/intechopen.104809.
https://doi.org/10.5772/intechopen.10480...
,673673 Spicer DE, Hsu HH, Co-Vu J, Anderson RH, Fricker FJ. Ventricular Septal Defect. Orphanet J Rare Dis. 2014;9:144. doi: 10.1186/s13023-014-0144-2.
https://doi.org/10.1186/s13023-014-0144-...

  • Normal ECG suggests a small, isolated VSD with a minor left-to-right shunt.

  • LVH pattern with left atrial enlargement indicates a moderate-to-severe left-to-right shunt, but no PAH.

  • A combined LVH/RVH pattern, with large, biphasic QRS complexes in the peripheral and middle precordial leads (Katz-Wachtel pattern), is often found in patients with a large VSD and variable degrees of PAH.

  • In severe PAH (example: Eisenmenger syndrome), there is a predominance of RVH patterns, QRS axis deviation to the right, and evidence of right atrial enlargement.

  • Approximately 10% of patients with VSD have RBBB (complete or incomplete).

  • Even in patients with small VSDs, the risk of serious arrhythmia and sudden death is greater than in apparently healthy children.

  • A minority of patients undergoing transcatheter repair of perimembranous VSD may develop RBBB, LAFB, and complete heart block.

Particular aspects of VSD in ET/CPET:

  • Small VSDs in the pediatric population generally present with hemodynamically insignificant left-to-right shunting, including during exercise, and no significant impairment of functional capacity.674674 Binkhorst M, van de Belt T, Hoog M, van Dijk A, Schokking M, Hopman M. Exercise Capacity and Participation of Children with a Ventricular Septal Defect. Am J Cardiol. 2008;102(8):1079-84. doi: 10.1016/j.amjcard.2008.05.063.
    https://doi.org/10.1016/j.amjcard.2008.0...

  • Children with patent or surgically repaired VSDs generally have normal cardiorespiratory fitness, despite slight impairment of the chronotropic response.99 ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
    https://doi.org/10.1155/2010/791980...
    ,675675 Gabriel HM, Heger M, Innerhofer P, Zehetgruber M, Mundigler G, Wimmer M, et al. Long-Term Outcome of Patients with Ventricular Septal Defect Considered not to Require Surgical Closure During Childhood. J Am Coll Cardiol. 2002;39(6):1066-71. doi: 10.1016/s0735-1097(02)01706-0.
    https://doi.org/10.1016/s0735-1097(02)01...

  • Young adults with small VSDs not repaired in childhood may develop poor cardiorespiratory fitness related to shunt size and biventricular dysfunction.676676 Eckerström F, Rex CE, Maagaard M, Heiberg J, Rubak S, Redington A, et al. Cardiopulmonary Dysfunction in Adults with a Small, Unrepaired Ventricular Septal Defect: A Long-Term Follow-Up. Int J Cardiol. 2020;306:168-74. doi: 10.1016/j.ijcard.2020.02.069.
    https://doi.org/10.1016/j.ijcard.2020.02...
    ,677677 Maagaard M, Heiberg J, Asschenfeldt B, Ringgaard S, Hjortdal VE. Does Functional Capacity Depend on the Size of the Shunt?. A Prospective, Cohort Study of Adults with Small, Unrepaired Ventricular Septal Defects. Eur J Cardiothorac Surg. 2017;51(4):722-7. doi: 10.1093/ejcts/ezw420.
    https://doi.org/10.1093/ejcts/ezw420...

  • Surgical repair of major VSDs in the first 2 years of life reduces the risk of symptom persistence and development of cardiopulmonary abnormalities secondary to ventricular dysfunction and/or progressive pulmonary vascular disease.678678 Wolfe RR, Bartle L, Daberkow E, Harrigan L. Exercise Responses in Ventricular Septal Defect. Prog Pediatr Cardiol. 1993;2(3):24-9. doi: 10.1016/1058-9813(93)90052-2.
    https://doi.org/10.1016/1058-9813(93)900...

  • Development of PAH before repair and/or persistence of PAH after repair reduces exercise tolerance and worsens quality of life.679679 Latus H, Wagner I, Ostermayer S, Kerst G, Kreuder J, Schranz D, et al. Hemodynamic Evaluation of Children with Persistent or Recurrent Pulmonary Arterial Hypertension Following Complete Repair of Congenital Heart Disease. Pediatr Cardiol. 2017;38(7):1342-9. doi: 10.1007/s00246-017-1667-9.
    https://doi.org/10.1007/s00246-017-1667-...
    ,680680 Johnson BN, Fierro JL, Panitch HB. Pulmonary Manifestations of Congenital Heart Disease in Children. Pediatr Clin North Am. 2021;68(1):25-40. doi: 10.1016/j.pcl.2020.09.001.
    https://doi.org/10.1016/j.pcl.2020.09.00...

  • In Eisenmenger syndrome, there is generally marked impairment of cardiorespiratory fitness and increased risk of sudden death.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    https://doi.org/10.4103/apc.apc_73_22...
    ,682682 Frank DB, Hanna BD. Pulmonary Arterial Hypertension Associated with Congenital Heart Disease and Eisenmenger Syndrome: Current Practice in Pediatrics. Minerva Pediatr. 2015;67(2):169-85. PMCID: PMC4382100; PMID: 25604592.

  • Additional features are noted in Table 37.

Table 37
Behavior of key ET/CPET variables in repaired and unrepaired VSD

1.3. Patent Ductus Arteriosus

The clinical manifestations of patent ductus arteriosus (PDA) depend mainly on the amount of blood flow from the aorta to the pulmonary artery and whether secondary PAH is present.692692 Heuchan AM, Clyman RI. Managing the Patent Ductus Arteriosus: Current Treatment Options. Arch Dis Child Fetal Neonatal Ed. 2014;99(5):F431-6. doi: 10.1136/archdischild-2014-306176.
https://doi.org/10.1136/archdischild-201...

ET/CPET contributes to clinical follow-up and therapeutic decision-making in the various forms and presentations of PDA: 693693 Backes CH, Hill KD, Shelton EL, Slaughter JL, Lewis TR, Weisz DE, et al. Patent Ductus Arteriosus: A Contemporary Perspective for the Pediatric and Adult Cardiac Care Provider. J Am Heart Assoc. 2022;11(17):e025784. doi: 10.1161/JAHA.122.025784.
https://doi.org/10.1161/JAHA.122.025784...
,694694 Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(12):1494-563. doi: 10.1016/j.jacc.2018.08.1028.
https://doi.org/10.1016/j.jacc.2018.08.1...

  • In "silent" (inaudible) and minor cases (slight left-to-right shunt with no hemodynamic repercussions), to confirm the patient is asymptomatic or elucidate any exercise-induced symptoms and ECG changes.

  • In those with hemodynamic repercussions or PDA with mild/moderate PAH, every 12-24 months as part of serial clinical follow-up and to inform therapeutic decision-making.

  • If there is PAH, exercise testing can be used to check for occurrence of desaturation in the lower limbs, which constitutes a disease severity criterion and may contraindicate PDA closure.695695 Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur Heart J. 2021;42(6):563-645. doi: 10.1093/eurheartj/ehaa554.
    https://doi.org/10.1093/eurheartj/ehaa55...
    697697 Bhalgat PS, Pinto R, Dalvi BV. Transcatheter Closure of Large Patent Ductus Arteriosus with Severe Pulmonary Arterial Hypertension: Short and Intermediate Term Results. Ann Pediatr Cardiol. 2012;5(2):135-40. doi: 10.4103/0974-2069.99614.
    https://doi.org/10.4103/0974-2069.99614...

  • Adolescents and young adults with severe PDA (left heart enlargement, severe PAH, and contraindications for ductus closure) and/or Eisenmenger syndrome should undergo exercise testing every 6-12 months for optimization of HF and/or PAH therapy.

  • In children and adolescents with significant PDA that has progressed to advanced HF, CPET is particularly helpful in ascertaining whether heart transplantation is indicated.

  • After PDA correction to test for persistence of symptoms, residual PDA, residual PAH, and surgical complications, such as obstruction of the left pulmonary artery and coarctation of the aorta.

  • For preparticipation physical assessment of patients with silent/small PDAs or who have undergone successful correction, with no PAH, and wish to engage in exercise and sports.695695 Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur Heart J. 2021;42(6):563-645. doi: 10.1093/eurheartj/ehaa554.
    https://doi.org/10.1093/eurheartj/ehaa55...

The pre-test physical examination findings of patients with uncorrected PDA vary according to the size of the defect and its repercussions. Silent PDAs present with a normal physical examination.698698 Brandão LES, Silva RMFL, Lopes RM, Martins CN. Patent Ductus Arteriosus: Update Review. CA. 2020. 2017;9(4):5-14. doi: 10.9734/ca/2020/v9i430140.
https://doi.org/10.9734/ca/2020/v9i43014...

In PDA, the resting ECG:370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.

  • Is usually normal in smaller shunts.

  • In moderate-to-large shunts, sinus tachycardia or atrial fibrillation, left atrial overload, left ventricular hypertrophy, and ST-segment depression are generally observed.698698 Brandão LES, Silva RMFL, Lopes RM, Martins CN. Patent Ductus Arteriosus: Update Review. CA. 2020. 2017;9(4):5-14. doi: 10.9734/ca/2020/v9i430140.
    https://doi.org/10.9734/ca/2020/v9i43014...

  • In large defects with established PAH, often shows evidence of right atrial enlargement and biventricular hypertrophy.

  • Sinus rhythm is the norm; first-degree AV block occurs in ≈10% of cases. Second-degree AV block, LBBB, and RBBB are only rarely observed.

Particular features of ET/CPET in children and adolescents with PDA:

  • Silent cases are generally asymptomatic, with no hemodynamic or anatomical repercussions, normal lung function, and normal cardiorespiratory fitness. Rarely, these patients may present with exercise intolerance or exercise-induced reactive airway disease.693693 Backes CH, Hill KD, Shelton EL, Slaughter JL, Lewis TR, Weisz DE, et al. Patent Ductus Arteriosus: A Contemporary Perspective for the Pediatric and Adult Cardiac Care Provider. J Am Heart Assoc. 2022;11(17):e025784. doi: 10.1161/JAHA.122.025784.
    https://doi.org/10.1161/JAHA.122.025784...

  • PDA with PAH is generally associated with significant impairment of aerobic capacity, a drop in oxygen saturation with exertion (generally >10%), reduction of VO2peak and VE/VCO2 slope values correlating directly with the severity of PAH. The most common exercise-induced symptoms are dyspnea, chest pain, dizziness, and palpitations (ventricular arrhythmia).197197 Abumehdi MR, Wardle AJ, Nazzal R, Charalampopoulos A, Schulze-Neick I, Derrick G, et al. Feasibility and Safety of Cardiopulmonary Exercise Testing in Children with Pulmonary Hypertension. Cardiol Young. 2016;26(6):1144-50. doi: 10.1017/S1047951115001961.
    https://doi.org/10.1017/S104795111500196...
    ,377377 Yetman AT, Taylor AL, Doran A, Ivy DD. Utility of Cardiopulmonary Stress Testing in Assessing Disease Severity in Children with Pulmonary Arterial Hypertension. Am J Cardiol. 2005;95(5):697-9. doi: 10.1016/j.amjcard.2004.10.056.
    https://doi.org/10.1016/j.amjcard.2004.1...
    ,699699 Rausch CM, Taylor AL, Ross H, Sillau S, Ivy DD. Ventilatory Efficiency Slope Correlates with Functional Capacity, Outcomes, and Disease Severity in Pediatric Patients with Pulmonary Hypertension. Int J Cardiol. 2013;169(6):445-8. doi: 10.1016/j.ijcard.2013.10.012.
    https://doi.org/10.1016/j.ijcard.2013.10...
    SpO2 must be monitored in the upper and lower extremities, including to confirm the occurrence of exercise-induced desaturation of the lower limbs.695695 Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur Heart J. 2021;42(6):563-645. doi: 10.1093/eurheartj/ehaa554.
    https://doi.org/10.1093/eurheartj/ehaa55...

  • After surgical correction, asymptomatic patients generally have a lower HRpeak than apparently healthy subjects. Chronotropic incompetence may occur in some patients.700700 Huang HY, Wang SP, Tuan SH, Li MH, Lin KL. Cardiopulmonary Function Findings of Pediatric Patients with Patent Ductus Arteriosus. Medicine. 2021;100(35):e27099. doi: 10.1097/MD.0000000000027099.
    https://doi.org/10.1097/MD.0000000000027...

  • Patients who are asymptomatic after PDA correction (transcatheter or surgical), with no evidence of structural heart disease (valvular heart disease, arrhythmia, or ventricular hypertrophy) or pulmonary disease, generally exhibit normal a blood pressure response and normal cardiorespiratory fitness.700700 Huang HY, Wang SP, Tuan SH, Li MH, Lin KL. Cardiopulmonary Function Findings of Pediatric Patients with Patent Ductus Arteriosus. Medicine. 2021;100(35):e27099. doi: 10.1097/MD.0000000000027099.
    https://doi.org/10.1097/MD.0000000000027...

  • When surgical correction is complicated by left vocal fold paralysis, patients may present with severe laryngeal stridor and exercise-induced laryngeal obstruction.701701 Engan M, Engeset MS, Sandvik L, Gamlemshaug OCO, Engesæter IØ, Øymar K, et al. Left Vocal Cord Paralysis, Lung Function and Exercise Capacity in Young Adults Born Extremely Preterm with a History of Neonatal Patent Ductus Arteriosus Surgery - a National Cohort Study. Front Pediatr. 2022;9:780045. doi: 10.3389/fped.2021.780045.
    https://doi.org/10.3389/fped.2021.780045...
    ,702702 Røksund OD, Clemm H, Heimdal JH, Aukland SM, Sandvik L, Markestad T, et al. Left Vocal Cord Paralysis after Extreme Preterm Birth, a New Clinical Scenario in Adults. Pediatrics. 2010;126(6):e1569-77. doi: 10.1542/peds.2010-1129.
    https://doi.org/10.1542/peds.2010-1129...

  • Extremely premature infants (gestational age <28 weeks or birth weight <1,000 g) who have undergone surgical correction may present with reduced lung function and cardiorespiratory fitness on CPET in adolescence.701701 Engan M, Engeset MS, Sandvik L, Gamlemshaug OCO, Engesæter IØ, Øymar K, et al. Left Vocal Cord Paralysis, Lung Function and Exercise Capacity in Young Adults Born Extremely Preterm with a History of Neonatal Patent Ductus Arteriosus Surgery - a National Cohort Study. Front Pediatr. 2022;9:780045. doi: 10.3389/fped.2021.780045.
    https://doi.org/10.3389/fped.2021.780045...

1.4. Tetralogy of Fallot

As the name implies, classic tetralogy of Fallot (ToF) consists of a constellation of four defects: ventricular septal defect; pulmonic stenosis; RV hypertrophy; and an overriding aorta connected to both the left and right ventricles. There are also variant presentations, which include ToF with pulmonary atresia and pulmonary valve agenesis (absent pulmonary valve).703703 Karl TR, Stocker C. Tetralogy of Fallot and Its Variants. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S330-6. doi: 10.1097/PCC.0000000000000831.
https://doi.org/10.1097/PCC.000000000000...
,704704 Wilson R, Ross O, Griksaitis MJ. Tetralogy of Fallot. BJA Educ. 2019;19(11):362-9. doi: 10.1016/j.bjae.2019.07.003.
https://doi.org/10.1016/j.bjae.2019.07.0...

The long-term consequences of repaired ToF are many and serious; regular monitoring is required.705705 Gupta U, Polimenakos AC, El-Zein C, Ilbawi MN. Tetralogy of Fallot with Atrioventricular Septal Defect: Surgical Strategies for Repair and Midterm Outcome of Pulmonary Valve-Sparing Approach. Pediatr Cardiol. 2013;34(4):861-71. doi: 10.1007/s00246-012-0558-3.
https://doi.org/10.1007/s00246-012-0558-...
The incidence of arrhythmic sudden cardiac death is estimated at 1 to 5%. The main associated factors are: QRS duration >180ms; LV systolic or diastolic dysfunction; ventriculectomy; LV end-diastolic pressure ≥12mmHg; history of supraventricular arrhythmia; NSVT; and inducible VT on EP study.388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,706706 Cohen MI, Khairy P, Zeppenfeld K, Van Hare GF, Lakkireddy DR, Triedman JK. Preventing Arrhythmic Death in Patients with Tetralogy of Fallot: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(6):761-71. doi: 10.1016/j.jacc.2020.12.021.
https://doi.org/10.1016/j.jacc.2020.12.0...
708708 Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald RM, Hickey K, et al. Preoperative Predictors of Death and Sustained Ventricular Tachycardia after Pulmonary Valve Replacement in Patients with Repaired Tetralogy of Fallot Enrolled in the INDICATOR Cohort. Circulation. 2018;138(19):2106-15. doi: 10.1161/CIRCULATIONAHA.118.034740.
https://doi.org/10.1161/CIRCULATIONAHA.1...

ET/CPET plays a relevant role in follow-up, risk stratification, therapeutic decision-making and assessment of the impact of post-surgical complications (residual pulmonary insufficiency, aortic insufficiency, RV dilation and/or dysfunction, residual pulmonary artery stenosis, RV outflow tract obstruction, complex arrhythmias, HF).100100 Dallaire F, Wald RM, Marelli A. The Role of Cardiopulmonary Exercise Testing for Decision Making in Patients with Repaired Tetralogy of Fallot. Pediatr Cardiol. 2017;38(6):1097-105. doi: 10.1007/s00246-017-1656-z.
https://doi.org/10.1007/s00246-017-1656-...
.709709 Śpiewak M, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, Miłosz-Wieczorek B, Kowalski M, Biernacka EK, et al. The Impact of Pulmonary Regurgitation on Right Ventricular Size and Function in Patients with Repaired Tetralogy of Fallot and Additional Haemodynamic Abnormalities. Pol J Radiol. 2020;85:e607-12. doi: 10.5114/pjr.2020.101058.
https://doi.org/10.5114/pjr.2020.101058...

The pre-test physical examination in patients with repaired ToF is important for investigation to suspect residual anatomical lesions and allow evaluation of the potential risk of complications during ET/CPET.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.

Particular features of the resting ECG in repaired ToF:388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,706706 Cohen MI, Khairy P, Zeppenfeld K, Van Hare GF, Lakkireddy DR, Triedman JK. Preventing Arrhythmic Death in Patients with Tetralogy of Fallot: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(6):761-71. doi: 10.1016/j.jacc.2020.12.021.
https://doi.org/10.1016/j.jacc.2020.12.0...
708708 Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald RM, Hickey K, et al. Preoperative Predictors of Death and Sustained Ventricular Tachycardia after Pulmonary Valve Replacement in Patients with Repaired Tetralogy of Fallot Enrolled in the INDICATOR Cohort. Circulation. 2018;138(19):2106-15. doi: 10.1161/CIRCULATIONAHA.118.034740.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,710710 Villafañe J, Feinstein JA, Jenkins KJ, Vincent RN, Walsh EP, Dubin AM, et al. Hot Topics in Tetralogy of Fallot. J Am Coll Cardiol. 2013;62(23):2155-66. doi: 10.1016/j.jacc.2013.07.100.
https://doi.org/10.1016/j.jacc.2013.07.1...

  • Right atrial enlargement is observed in ≈30 to 50% of patients.

  • The most prevalent pattern is RBBB with or without LAFB. RBBB is generally asymptomatic and does not require intervention.711711 Udink ten Cate FE, Sreeram N, Brockmeier K. The Pathophysiologic Aspects and Clinical Implications of Electrocardiographic Parameters of Ventricular Conduction Delay in Repaired Tetralogy of Fallot. J Electrocardiol. 2014;47(5):618-24. doi: 10.1016/j.jelectrocard.2014.07.005.
    https://doi.org/10.1016/j.jelectrocard.2...
    ,712712 Lumens J, Fan CS, Walmsley J, Yim D, Manlhiot C, Dragulescu A, et al. Relative Impact of Right Ventricular Electromechanical Dyssynchrony Versus Pulmonary Regurgitation on Right Ventricular Dysfunction and Exercise Intolerance in Patients after Repair of Tetralogy of Fallot. J Am Heart Assoc. 2019;8(2):e010903. doi: 10.1161/JAHA.118.010903.
    https://doi.org/10.1161/JAHA.118.010903...

  • QRS duration >150ms is associated with RV dysfunction and significant pulmonary valve insufficiency in the late postoperative period.

  • Supraventricular arrhythmias, including disturbances of SA conduction, atrial fibrillation, and atrial flutter, are found in one-third of patients.

  • Ventricular arrhythmias, including NSVT, are common.

Particular features of ET/CPET in ToF (Table 38):

Table 38
Behavior of key ET/CPET variables in repaired ToF and repercussions thereof100100 Dallaire F, Wald RM, Marelli A. The Role of Cardiopulmonary Exercise Testing for Decision Making in Patients with Repaired Tetralogy of Fallot. Pediatr Cardiol. 2017;38(6):1097-105. doi: 10.1007/s00246-017-1656-z.
https://doi.org/10.1007/s00246-017-1656-...
,716716 Alborikan S, Pandya B, Von Klemperer K, Walker F, Cullen S, Badiani S, et al. Cardiopulmonary Exercise Test (CPET) in Patients with Repaired Tetralogy of Fallot (Rtof); A Systematic Review. Int J Cardiol Congenit Heart Dis. 2020;1:100050. doi: 10.1016/j.ijcchd.2020.100050.
https://doi.org/10.1016/j.ijcchd.2020.10...

  • Patients who have undergone surgical correction with good outcomes (no residual VSD, RV-pulmonary artery pressure gradient <20 mmHg) are generally asymptomatic at rest.

  • After complete surgical correction, there are generally no major physical limitations to activities of daily living. However, CPET often shows reduced VO2max and VO2 at VT1 (anaerobic threshold).713713 Kotby AA, Elnabawy HM, El-Guindy WM, Abd Elaziz RF. Assessment of Exercise Testing after Repair of Tetralogy of Fallot. ISRN Pediatr. 2012;2012:324306. doi: 10.5402/2012/324306.
    https://doi.org/10.5402/2012/324306...

  • Children and adolescents who maintain a normal chronotropic response have greater cardiorespiratory fitness and HR reserve, even when there is pulmonary insufficiency and RV systolic dysfunction at rest.714714 Bhatt SM, Elci OU, Wang Y, Goldmuntz E, McBride M, Paridon S, et al. Determinants of Exercise Performance in Children and Adolescents with Repaired Tetralogy of Fallot using Stress Echocardiography. Pediatr Cardiol. 2019;40(1):71-8. doi: 10.1007/s00246-018-1962-0.
    https://doi.org/10.1007/s00246-018-1962-...

  • Adolescents present with reduced cardiorespiratory fitness relative to biventricular systolic volumes and LV end-diastolic volume indexed to body surface area. The OUES and peak oxygen pulse are also associated with biventricular stroke volumes.715715 Leonardi B, Gentili F, Perrone MA, Sollazzo F, Cocomello L, Kikina SS, et al. Cardiopulmonary Exercise Testing in Repaired Tetralogy of Fallot: Multiparametric Overview and Correlation with Cardiac Magnetic Resonance and Physical Activity Level. J Cardiovasc Dev Dis. 2022;9(1):26. doi: 10.3390/jcdd9010026.
    https://doi.org/10.3390/jcdd9010026...

  • After surgical correction, SBP in the upper limbs, central SBP, and the arterial stiffness index show normal responses during exercise.591591 Hock J, Häcker AL, Reiner B, Oberhoffer R, Hager A, Ewert P, et al. Functional Outcome in Contemporary Children and Young Adults with Tetralogy of Fallot after Repair. Arch Dis Child. 2019;104(2):129-33. doi: 10.1136/archdischild-2017-314733.
    https://doi.org/10.1136/archdischild-201...

  • In patients who are initially asymptomatic after correction of tetralogy of Fallot and develop severe pulmonic stenosis with decreased cardiorespiratory fitness, valve replacement should be considered.8181 Baumgartner H, Bonhoeffer P, De Groot NM, Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the Management of Grown-Up Congenital Heart Disease (New Version 2010). Eur Heart J. 2010;31(23):2915-57. doi: 10.1093/eurheartj/ehq249.
    https://doi.org/10.1093/eurheartj/ehq249...

  • Exercise-induced ventricular arrhythmias may occur, generally associated with late repair, RV dysfunction, and increased risk of cardiovascular events.

1.5. Transposition of the Great Arteries

Transposition of the great arteries (TGA) is a severe cyanotic CHD. It is incompatible with life, requiring the presence of an intracardiac shunt (patent foramen ovale, atrial septal defect, or ventricular septal defect) and/or extracardiac shunt (persistent ductus arteriosus or bronchopulmonary collateral circulation).723723 Haeffele C, Lui GK. Dextro-Transposition of the Great Arteries: Long-Term Sequelae of Atrial and Arterial Switch. Cardiol Clin. 2015;33(4):543-58. doi: 10.1016/j.ccl.2015.07.012.
https://doi.org/10.1016/j.ccl.2015.07.01...

TGA can be classified as:724724 Warnes CA. Transposition of the Great Arteries. Circulation. 2006;114(24):2699-709. doi: 10.1161/CIRCULATIONAHA.105.592352.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,725725 Kutty S, Danford DA, Diller GP, Tutarel O. Contemporary Management and Outcomes in Congenitally Corrected Transposition of the Great Arteries. Heart. 2018;104(14):1148-55. doi: 10.1136/heartjnl-2016-311032.
https://doi.org/10.1136/heartjnl-2016-31...

  • Simple, with no heart defects other than the shunt.

  • Complex, with additional associated lesions. These may include obstruction of the LV outflow tract (≈25% of patients), anomalies of the mitral and tricuspid valves, and coronary artery anomalies; in patients with VSD (≈50%), pulmonic stenosis or atresia, overriding or straddling atrioventricular valve, or coarctation of the aorta may be observed.

TGA requires surgical treatment shortly after birth or within the first few months of life at the latest. Since the late 1980s, arterial switch operation (Jatene procedure) has been recommended instead of the atrial switch (Mustard/Senning) procedure. In cases of complex TGA, other surgical approaches may be necessary (i.e. Rastelli, Nikaidoh, etc.).724724 Warnes CA. Transposition of the Great Arteries. Circulation. 2006;114(24):2699-709. doi: 10.1161/CIRCULATIONAHA.105.592352.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,726726 Kirzner J, Pirmohamed A, Ginns J, Singh HS. Long-Term Management of the Arterial Switch Patient. Curr Cardiol Rep. 2018;20(8):68. doi: 10.1007/s11886-018-1012-9.
https://doi.org/10.1007/s11886-018-1012-...
,727727 Spigel Z, Binsalamah ZM, Caldarone C. Congenitally Corrected Transposition of the Great Arteries: Anatomic, Physiologic Repair, and Palliation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019;22:32-42. doi: 10.1053/j.pcsu.2019.02.008.
https://doi.org/10.1053/j.pcsu.2019.02.0...

Patients require long-term follow-up, as complications are frequent: reintervention in up to 25% (due to pulmonic stenosis, coronary artery obstruction, aortic root dilation, and/or aortic insufficiency); RV dysfunction; bradyarrhythmias and tachyarrhythmias; CAD; and sudden death.726726 Kirzner J, Pirmohamed A, Ginns J, Singh HS. Long-Term Management of the Arterial Switch Patient. Curr Cardiol Rep. 2018;20(8):68. doi: 10.1007/s11886-018-1012-9.
https://doi.org/10.1007/s11886-018-1012-...
,728728 Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, et al. Cardiovascular Outcomes after the Arterial Switch Operation for D-Transposition of the Great Arteries. Circulation. 2013;127(3):331-9. doi: 10.1161/CIRCULATIONAHA.112.135046.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,729729 Baysa SJ, Olen M, Kanter RJ. Arrhythmias Following the Mustard and Senning Operations for Dextro-Transposition of the Great Arteries: Clinical Aspects and Catheter Ablation. Card Electrophysiol Clin. 2017;9(2):255-71. doi: 10.1016/j.ccep.2017.02.008.
https://doi.org/10.1016/j.ccep.2017.02.0...

ET/CPET plays a relevant role in follow-up after TGA repair:2222 Tsuda T, Baffa JM, Octavio J, Robinson BW, Radtke W, Mody T, et al. Identifying Subclinical Coronary Abnormalities and Silent Myocardial Ischemia after Arterial Switch Operation. Pediatr Cardiol. 2019;40(5):901-8. doi: 10.1007/s00246-019-02085-4.
https://doi.org/10.1007/s00246-019-02085...
,723723 Haeffele C, Lui GK. Dextro-Transposition of the Great Arteries: Long-Term Sequelae of Atrial and Arterial Switch. Cardiol Clin. 2015;33(4):543-58. doi: 10.1016/j.ccl.2015.07.012.
https://doi.org/10.1016/j.ccl.2015.07.01...
,724724 Warnes CA. Transposition of the Great Arteries. Circulation. 2006;114(24):2699-709. doi: 10.1161/CIRCULATIONAHA.105.592352.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,726726 Kirzner J, Pirmohamed A, Ginns J, Singh HS. Long-Term Management of the Arterial Switch Patient. Curr Cardiol Rep. 2018;20(8):68. doi: 10.1007/s11886-018-1012-9.
https://doi.org/10.1007/s11886-018-1012-...
,729729 Baysa SJ, Olen M, Kanter RJ. Arrhythmias Following the Mustard and Senning Operations for Dextro-Transposition of the Great Arteries: Clinical Aspects and Catheter Ablation. Card Electrophysiol Clin. 2017;9(2):255-71. doi: 10.1016/j.ccep.2017.02.008.
https://doi.org/10.1016/j.ccep.2017.02.0...
,730730 Tsuda T, Bhat AM, Robinson BW, Baffa JM, Radtke W. Coronary Artery Problems Late after Arterial Switch Operation for Transposition of the Great Arteries. Circ J. 2015;79(11):2372-9. doi: 10.1253/circj.CJ-15-0485.
https://doi.org/10.1253/circj.CJ-15-0485...

  • Routinely every 3-5 years as part of ongoing monitoring for asymptomatic myocardial ischemia, especially in patients undergoing arterial switch.

  • Investigation of episodes of syncope and palpitations, which general resulting from arrhythmias secondary to myocardial ischemia, RV outflow tract obstruction, and/or LV dysfunction. Arrhythmias occur in 2.4 to 9.6% of these patients, and are associated with risk of sudden cardiac death.

  • Investigation of changes in tolerance to activities of daily living or symptoms of chest pain on exertion, which are generally associated with decline in LV function, CAD, and pulmonary artery obstruction.

  • For risk stratification, prognostic assessment, and medical clearance/prescription of cardiopulmonary rehabilitation.

Resting ECG findings will vary depending on the repair technique and the patient's symptoms. Sinus node dysfunction, junctional rhythm, atrioventricular conduction disorders, RV hypertrophy, axis deviation to the right, and Q waves in the right precordial leads are commonly seen after atrial switch procedures. After arterial switch, sinus rhythm is generally observed (91.1%); rarely, ectopic atrial rhythm (5.4%) or junctional rhythm (3.6%) may develop. There is usually no evidence of ischemia or ectopic beats.724724 Warnes CA. Transposition of the Great Arteries. Circulation. 2006;114(24):2699-709. doi: 10.1161/CIRCULATIONAHA.105.592352.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,731731 Hövels-Gürich HH, Kunz D, Seghaye M, Miskova M, Messmer BJ, von Bernuth G. Results of Exercise Testing at a Mean Age of 10 Years after Neonatal Arterial Switch Operation. Acta Paediatr. 2003;92(2):190-6. doi: 10.1111/j.1651-2227.2003.tb00525.x.
https://doi.org/10.1111/j.1651-2227.2003...

Particular features seen in ET/CPET after TGA repair:

  • Regardless of the procedure adopted, patients generally present with some impairment of cardiorespiratory fitness (87.5±2.9% of predicted VO2peak).2121 van Wijk SW, Driessen MM, Meijboom FJ, Doevendans PA, Schoof PH, Breur HM, et al. Left Ventricular Function and Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries: A Systematic Review and Meta-Analysis. Cardiol Young. 2018;28(7):895-902. doi: 10.1017/S1047951117001032.
    https://doi.org/10.1017/S104795111700103...
    However, even with slightly reduced fitness, patients are generally in NYHA functional class I.723723 Haeffele C, Lui GK. Dextro-Transposition of the Great Arteries: Long-Term Sequelae of Atrial and Arterial Switch. Cardiol Clin. 2015;33(4):543-58. doi: 10.1016/j.ccl.2015.07.012.
    https://doi.org/10.1016/j.ccl.2015.07.01...
    ,728728 Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, et al. Cardiovascular Outcomes after the Arterial Switch Operation for D-Transposition of the Great Arteries. Circulation. 2013;127(3):331-9. doi: 10.1161/CIRCULATIONAHA.112.135046.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

  • Arterial switch is associated with better exercise tolerance compared to atrial switch.723723 Haeffele C, Lui GK. Dextro-Transposition of the Great Arteries: Long-Term Sequelae of Atrial and Arterial Switch. Cardiol Clin. 2015;33(4):543-58. doi: 10.1016/j.ccl.2015.07.012.
    https://doi.org/10.1016/j.ccl.2015.07.01...
    ,732732 Fredriksen PM, Pettersen E, Thaulow E. Declining Aerobic Capacity of Patients with Arterial and Atrial Switch Procedures. Pediatr Cardiol. 2009;30(2):166-71. doi: 10.1007/s00246-008-9291-3.
    https://doi.org/10.1007/s00246-008-9291-...

  • Patients undergoing arterial switch and VSD repair or who have residual RV outflow obstruction present with greater impairment of cardiorespiratory fitness.2323 Kuebler JD, Chen MH, Alexander ME, Rhodes J. Exercise Performance in Patients with D-Loop Transposition of the Great Arteries after Arterial Switch Operation: Long-Term Outcomes and Longitudinal Assessment. Pediatr Cardiol. 2016;37(2):283-9. doi: 10.1007/s00246-015-1275-5.
    https://doi.org/10.1007/s00246-015-1275-...
    ,733733 Giardini A, Khambadkone S, Rizzo N, Riley G, Napoleone CP, Muthialu N, et al. Determinants of Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries. Am J Cardiol. 2009;104(7):1007-12. doi: 10.1016/j.amjcard.2009.05.046.
    https://doi.org/10.1016/j.amjcard.2009.0...

  • In the late follow-up of arterial switch operations, HRmax is usually normal or slightly decreased (HRmax: 92±2% of predicted).2121 van Wijk SW, Driessen MM, Meijboom FJ, Doevendans PA, Schoof PH, Breur HM, et al. Left Ventricular Function and Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries: A Systematic Review and Meta-Analysis. Cardiol Young. 2018;28(7):895-902. doi: 10.1017/S1047951117001032.
    https://doi.org/10.1017/S104795111700103...
    .2323 Kuebler JD, Chen MH, Alexander ME, Rhodes J. Exercise Performance in Patients with D-Loop Transposition of the Great Arteries after Arterial Switch Operation: Long-Term Outcomes and Longitudinal Assessment. Pediatr Cardiol. 2016;37(2):283-9. doi: 10.1007/s00246-015-1275-5.
    https://doi.org/10.1007/s00246-015-1275-...
    Chronotropic incompetence is a late complication in ≈5 to 34% of patients. Sinus node dysfunction is usually secondary to involvement of the sinus node artery during balloon septostomy or even arterial switch itself.728728 Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, et al. Cardiovascular Outcomes after the Arterial Switch Operation for D-Transposition of the Great Arteries. Circulation. 2013;127(3):331-9. doi: 10.1161/CIRCULATIONAHA.112.135046.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,733733 Giardini A, Khambadkone S, Rizzo N, Riley G, Napoleone CP, Muthialu N, et al. Determinants of Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries. Am J Cardiol. 2009;104(7):1007-12. doi: 10.1016/j.amjcard.2009.05.046.
    https://doi.org/10.1016/j.amjcard.2009.0...

  • In the late follow-up of arterial switch operations, SBP is generally normal at rest and during exercise. DBP is generally low at rest and at peak exertion.731731 Hövels-Gürich HH, Kunz D, Seghaye M, Miskova M, Messmer BJ, von Bernuth G. Results of Exercise Testing at a Mean Age of 10 Years after Neonatal Arterial Switch Operation. Acta Paediatr. 2003;92(2):190-6. doi: 10.1111/j.1651-2227.2003.tb00525.x.
    https://doi.org/10.1111/j.1651-2227.2003...

  • In the late follow-up of arterial switch operations, a reduction in oxygen pulse is generally observed, with normal VO2peak (no impairment of cardiorespiratory fitness). The good correlation between OUES and VO2peak allows use of this parameter in patients who are unable to complete a maximal test.626626 Los Monteros CTE, Van der Palen RLF, Hazekamp MG, Rammeloo L, Jongbloed MRM, Blom NA, ET AL. Oxygen Uptake Efficiency Slope is Strongly Correlated to VO2peak Long-Term after Arterial Switch Operation. Pediatr Cardiol. 2021;42(4):866-74. doi: 10.1007/s00246-021-02554-9.
    https://doi.org/10.1007/s00246-021-02554...
    ,734734 Takajo D, Sriram CS, Mahadin D, Aggarwal S. Exercise Capacity after Arterial Switch Operation in Patients with D-Transposition of Great Arteries: Does the Coronary Artery Anatomy Matter?. Pediatr Cardiol. 2022;43(8):1752-60. doi: 10.1007/s00246-022-02912-1.
    https://doi.org/10.1007/s00246-022-02912...

  • In the late follow-up of atrial switch (Mustard or Senning operation), ventricular arrhythmia (at rest and exertional) is usually observed, as are: reductions in RV ejection fraction (in up to 84% of patients); reduction of oxygen pulse and earlier VT1; slow normalization of the oxygen pulse during recovery; and prolonged CO2 retention with subsequent hyperpnea.729729 Baysa SJ, Olen M, Kanter RJ. Arrhythmias Following the Mustard and Senning Operations for Dextro-Transposition of the Great Arteries: Clinical Aspects and Catheter Ablation. Card Electrophysiol Clin. 2017;9(2):255-71. doi: 10.1016/j.ccep.2017.02.008.
    https://doi.org/10.1016/j.ccep.2017.02.0...
    ,735735 Paul MH, Wessel HU. Exercise Studies in Patients with Transposition of the Great Arteries after Atrial Repair Operations (Mustard/Senning): A Review. Pediatr Cardiol. 1999;20(1):49-55. doi: 10.1007/s002469900395.
    https://doi.org/10.1007/s002469900395...
    ,736736 Giardini A, Specchia S, Coutsoumbas G, Donti A, Gargiulo G, Bonvicini M, et al. Recovery Kinetics of Oxygen Uptake is Abnormally Prolonged in Patients with Mustard/Senning Repair for Transposition of the Great Arteries. Pediatr Cardiol. 2005;26(6):821-6. doi: 10.1007/s00246-005-0884-9.
    https://doi.org/10.1007/s00246-005-0884-...

  • Serial exercise testing in the late follow-up of atrial switch operations shows a progressive reduction in VO2peak and oxygen pulse across childhood and adolescence, suggesting an inability to increase stroke volume.

  • In the late follow-up of atrial switch operations, VO2peak and oxygen pulse remain relatively stable in young adulthood. However, when RV dysfunction increases, a rapid decline in oxygen pulse, worsening of exercise tolerance, arrhythmias, and clinical deterioration with HF are observed.737737 Buys R, Budts W, Reybrouck T, Gewillig M, Vanhees L. Serial Exercise Testing in Children, Adolescents and Young Adults with Senning Repair for Transposition of the Great Arteries. BMC Cardiovasc Disord. 2012;12:88. doi: 10.1186/1471-2261-12-88.
    https://doi.org/10.1186/1471-2261-12-88...
    ,738738 Sabbah BN, Arabi TZ, Shafqat A, Abdul Rab S, Razak A, Albert-Brotons DC. Heart Failure in Systemic Right Ventricle: Mechanisms and Therapeutic Options. Front Cardiovasc Med. 2023;9:1064196. doi: 10.3389/fcvm.2022.1064196.
    https://doi.org/10.3389/fcvm.2022.106419...

  • Onset of arrhythmias in the early postoperative period of atrial switch procedures represents a risk of arrhythmias as a late outcome (RR: 3.8; 95% CI: 1.5-9.5), as well as of development of HF (RR: 8.1; 95% CI: 2.2-30.7).739739 Cuypers JA, Eindhoven JA, Slager MA, Opić P, Utens EM, Helbing WA, et al. The Natural and Unnatural History of the Mustard Procedure: Long-Term Outcome Up to 40 Years. Eur Heart J. 2014;35(25):1666-74. doi: 10.1093/eurheartj/ehu102.
    https://doi.org/10.1093/eurheartj/ehu102...

  • In the late follow-up of atrial switch operations, reduced HRpeak and chronotropic incompetence are commonly observed.735735 Paul MH, Wessel HU. Exercise Studies in Patients with Transposition of the Great Arteries after Atrial Repair Operations (Mustard/Senning): A Review. Pediatr Cardiol. 1999;20(1):49-55. doi: 10.1007/s002469900395.
    https://doi.org/10.1007/s002469900395...
    ,740740 Reybrouck T, Eyskens B, Mertens L, Defoor J, Daenen W, Gewillig M. Cardiorespiratory Exercise Function after the Arterial Switch Operation for Transposition of the Great Arteries. Eur Heart J. 2001;22(12):1052-9. doi: 10.1053/euhj.2000.2425.
    https://doi.org/10.1053/euhj.2000.2425...

  • Regardless of the repair technique, exercise-induced ST-segment depression is rare, but if it occurs and meets criteria for myocardial ischemia, a thorough workup for CAD (generally asymptomatic, affecting 2 to 11.3% of patients) should be pursued.741741 Baldo MNF, Trad HS, Silva TJD Jr, Manso PH. Evaluation of Coronary Circulation after Arterial Switch Operation. Arq Bras Cardiol. 2021;116(6):1111-16. doi: 10.36660/abc.20200095.
    https://doi.org/10.36660/abc.20200095...

1.6. Fontan Circulation

Fontan surgery is a palliative procedure for CHDs with a functionally univentricular heart, allowing near-normalization of arterial oxygen saturation and removal of chronic volume overload. The natural history of patients with a Fontan circulation is characterized by a progressive increase in peripheral vascular resistance (PVR), subsequent reduction in cardiac output, chronic venous hypertension, peripheral stasis, and lymphatic congestion. The main complications are cyanosis, exercise intolerance, HF, ascites, arrhythmias, liver dysfunction, protein-losing enteropathy (PLE), plastic bronchitis, and coagulation abnormalities. After a Fontan procedure, HF is common, progressive, and may be systolic, diastolic, or both. Contributing factors for the development of HF include diastolic ventricular dysfunction, increased pulmonary vascular resistance, atrial tachycardia, valve insufficiency, and shunting with volume overload.742742 Kutty S, Jacobs ML, Thompson WR, Danford DA. Fontan Circulation of the Next Generation: Why It's Necessary, What it Might Look Like. J Am Heart Assoc. 2020;9(1):e013691. doi: 10.1161/JAHA.119.013691.
https://doi.org/10.1161/JAHA.119.013691...
744744 Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation. 2019;140(6):e234-84. doi: 10.1161/CIR.0000000000000696.
https://doi.org/10.1161/CIR.000000000000...

ET/CPET has many uses in monitoring patients with a Fontan circulation:744744 Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation. 2019;140(6):e234-84. doi: 10.1161/CIR.0000000000000696.
https://doi.org/10.1161/CIR.000000000000...

  • Quantification of cardiorespiratory fitness and elucidation of exercise-limiting factors.

  • Assessment of respiratory reserve, ventilation/perfusion, SpO2, chronotropic response, and arrhythmias, which contribute to exercise intolerance and late complications.

  • Optimization of therapy, which includes ascertaining whether closure of fenestration (due to excess systemic hypoxia) and pacemaker implantation (due to sinus node dysfunction/severe chronotropic incompetence) are indicated.745745 Greenleaf CE, Lim ZN, Li W, LaPar DJ, Salazar JD, Corno AF. Impact on Clinical Outcomes from Transcatheter Closure of the Fontan Fenestration: A Systematic Review and Meta-Analysis. Front Pediatr. 2022;10:915045. doi: 10.3389/fped.2022.915045.
    https://doi.org/10.3389/fped.2022.915045...
    ,746746 Mendel B, Christianto C, Setiawan M, Siagian SN, Prakoso R. Pharmacology Management in Improving Exercise Capacity of Patients with Fontan Circulation: A Systematic Review and Meta-analysis. Curr Cardiol Rev. 2022;18(5):34-49. doi: 10.2174/1573403X18666220404101610.
    https://doi.org/10.2174/1573403X18666220...

  • Selection of candidates for heart transplantation.

  • For risk stratification, prognostic assessment, and medical clearance/prescription of cardiopulmonary rehabilitation.747747 Haley JE, Davis C. Exercising with a Single Ventricle: Limitations and Therapies. J Cardiovasc Dev Dis. 2022;9(6):167. doi: 10.3390/jcdd9060167.
    https://doi.org/10.3390/jcdd9060167...
    750750 Scheffers LE, Berg LEMV, Ismailova G, Dulfer K, Takkenberg JJM, Helbing WA. Physical Exercise Training in Patients with a Fontan Circulation: A Systematic Review. Eur J Prev Cardiol. 2021;28(11):1269-78. doi: 10.1177/2047487320942869.
    https://doi.org/10.1177/2047487320942869...

  • As part of an American Heart Association-recommended intensive surveillance strategy for adolescents, with repeat testing every 1-3 years due to the high risk of HF and of death.744744 Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation. 2019;140(6):e234-84. doi: 10.1161/CIR.0000000000000696.
    https://doi.org/10.1161/CIR.000000000000...

Particular features of ET/CPET in patients with a Fontan circulation:

  • In patients with HF and/or low SpO2 at rest, it is recommended that testing be carried out in a hospital setting, with special measures in place (adapted protocol/work load, SpO2 monitoring, etc.).

  • Cardiorespiratory fitness is largely reduced, with VO2max reaching ≈60 to 65% of predicted.9292 Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, et al. A Cross-Sectional Study of Exercise Performance During the First 2 Decades of Life after the Fontan Operation. J Am Coll Cardiol. 2008;52(2):99-107. doi: 10.1016/j.jacc.2008.02.081.
    https://doi.org/10.1016/j.jacc.2008.02.0...
    ,747747 Haley JE, Davis C. Exercising with a Single Ventricle: Limitations and Therapies. J Cardiovasc Dev Dis. 2022;9(6):167. doi: 10.3390/jcdd9060167.
    https://doi.org/10.3390/jcdd9060167...
    ,751751 Driscoll DJ, Durongpisitkul K. Exercise Testing after the Fontan Operation. Pediatr Cardiol. 1999;20(1):57-9. doi: 10.1007/s002469900397.
    https://doi.org/10.1007/s002469900397...

  • Cardiorespiratory fitness in patients with Fontan circulation can be classified according to the % of predicted VO2 actually achieved: severely impaired if <50%; moderately impaired, 50 to 60%; slightly impaired, 60 to 80%; borderline, 80 to 90%; normal if >90%.752752 Tran DL, Gibson H, Maiorana AJ, Verrall CE, Baker DW, Clode M, et al. Exercise Intolerance, Benefits, and Prescription for People Living with a Fontan Circulation: The Fontan Fitness Intervention Trial (F-FIT)-Rationale and Design. Front Pediatr. 2022;9:799125. doi: 10.3389/fped.2021.799125.
    https://doi.org/10.3389/fped.2021.799125...

  • Low SpO2 at rest is common, with levels often <90%. SpO2 during exercise generally drops below 90% due to decompensation of cyanosis control mechanisms and increased venous return of desaturated blood.588588 Takken T, Tacken MH, Blank AC, Hulzebos EH, Strengers JL, Helders PJ. Exercise Limitation in Patients with Fontan Circulation: A Review. J Cardiovasc Med. 2007;8(10):775-81. doi: 10.2459/JCM.0b013e328011c999.
    https://doi.org/10.2459/JCM.0b013e328011...

  • Children and adolescents commonly present with chronotropic incompetence and reduced HR reserve during exertion. The type of palliative procedure, dominant ventricle subtype, and/or underlying cardiac anatomy all affect the degree of chronotropic incompetence. Generally, HR behavior during recovery is normal.753753 Hedlund ER, Söderström L, Lundell B. Appropriate Heart Rate During Exercise in Fontan Patients. Cardiol Young. 2020;30(5):674-80. doi: 10.1017/S1047951120000761.
    https://doi.org/10.1017/S104795112000076...
    ,754754 Powell AW, Veldtman G. Heart Rate Responses During Exercise by Dominant Ventricle in Pediatric and Young Adult Patients with a Fontan Circulation. Can J Cardiol. 2020;36(9):1508-15. doi: 10.1016/j.cjca.2019.10.042.
    https://doi.org/10.1016/j.cjca.2019.10.0...

  • Resting SBP remains unchanged, while DBP increases significantly postoperatively. During exercise, SBP and DBP responses are normal and consistent with the work load, generally reaching >85% of predicted SBP for age.755755 La Gerche A, Gewillig M. What Limits Cardiac Performance during Exercise in Normal Subjects and in Healthy Fontan Patients?. Int J Pediatr. 2010;2010:791291. doi: 10.1155/2010/791291.
    https://doi.org/10.1155/2010/791291...

  • Increased P wave duration and dispersion on resting ECG are associated with risk of sustained atrial tachyarrhythmias (including atrial fibrillation and intra-atrial reentrant tachycardia), which affect 9.4 to 20% of patients.756756 Wong T, Davlouros PA, Li W, Millington-Sanders C, Francis DP, Gatzoulis MA. Mechano-Electrical Interaction Late after Fontan Operation: Relation between P-Wave Duration and Dispersion, Right Atrial Size, and Atrial Arrhythmias. Circulation. 2004;109(19):2319-25. doi: 10.1161/01.CIR.0000129766.18065.DC.
    https://doi.org/10.1161/01.CIR.000012976...
    ,757757 Tuzcu V, Ozkan B, Sullivan N, Karpawich P, Epstein ML. P Wave Signal-Averaged Electrocardiogram as a New Marker for Atrial Tachyarrhythmias in Postoperative Fontan Patients. J Am Coll Cardiol. 2000;36(2):602-7. doi: 10.1016/s0735-1097(00)00737-3.
    https://doi.org/10.1016/s0735-1097(00)00...

  • PVCs are rare and may be due to worsening ventricular function or secondary to electrolyte disorders/medication use. Around 3% to 12% of patients develop VT as a late postoperative complication.758758 Stephenson EA, Lu M, Berul CI, Etheridge SP, Idriss SF, Margossian R, et al. Arrhythmias in a Contemporary Fontan Cohort: Prevalence and Clinical Associations in a Multicenter Cross-Sectional Study. J Am Coll Cardiol. 2010;56(11):890-6. doi: 10.1016/j.jacc.2010.03.079.
    https://doi.org/10.1016/j.jacc.2010.03.0...
    ,759759 Deal BJ. Late Arrhythmias Following Fontan Surgery. World J Pediatr Congenit Heart Surg. 2012;3(2):194-200. doi: 10.1177/2150135111436314.
    https://doi.org/10.1177/2150135111436314...

  • Exercise-induced arrhythmias are rare and generally disappear with cessation of exertion.751751 Driscoll DJ, Durongpisitkul K. Exercise Testing after the Fontan Operation. Pediatr Cardiol. 1999;20(1):57-9. doi: 10.1007/s002469900397.
    https://doi.org/10.1007/s002469900397...

  • The resting ECG usually shows a pattern consistent with LVH, ventricular overload, and significant ST-segment depression (>1.0mm). This ST-segment depression frequently becomes more pronounced with exertion, but is not associated with CAD.520520 Kyle WB, Denfield SW, Valdes SO, Penny DJ, Bolin EH, Lopez KN. Assessing ST Segment Changes and Ischemia During Exercise Stress Testing in Patients with Hypoplastic Left Heart Syndrome and Fontan Palliation. Pediatr Cardiol. 2016;37(3):545-51. doi: 10.1007/s00246-015-1312-4.
    https://doi.org/10.1007/s00246-015-1312-...
    ,760760 Rydberg A, Rask P, Teien DE, Hörnsten R. Electrocardiographic ST Segment Depression and Clinical Function in Children with Fontan Circulation. Pediatr Cardiol. 2003;24(5):468-72. doi: 10.1007/s00246-002-0374-2.
    https://doi.org/10.1007/s00246-002-0374-...

  • Reductions in oxygen pulse, VT1, pulmonary ventilation, and respiratory quotient (RQ), as well as chronotropic incompetence, are the norm (observed in up to 62% of patients). These changes, associated with impaired systolic ventricular function, correlate with worse functional capacity.588588 Takken T, Tacken MH, Blank AC, Hulzebos EH, Strengers JL, Helders PJ. Exercise Limitation in Patients with Fontan Circulation: A Review. J Cardiovasc Med. 2007;8(10):775-81. doi: 10.2459/JCM.0b013e328011c999.
    https://doi.org/10.2459/JCM.0b013e328011...
    ,592592 Zajac A, Tomkiewicz L, Podolec P, Tracz W, Malec E. Cardiorespiratory Response to Exercise in Children after Modified Fontan Operation. Scand Cardiovasc J. 2002;36(2):80-5. doi: 10.1080/140174302753675348.
    https://doi.org/10.1080/1401743027536753...
    ,593593 Talavera MM, Manso B, Ramos PC, Puras MJR, Rodriguez AJW, Vinuesa PGG. Determinants of Oxygen Uptake and Prognostic Factors in Cardiopulmonary Exercise Test in Patients with Fontan Surgery. Cardiol Young. 2022;32(8):1285-8. doi: 10.1017/S1047951121004054.
    https://doi.org/10.1017/S104795112100405...
    ,761761 Goldstein BH, Connor CE, Gooding L, Rocchini AP. Relation of Systemic Venous Return, Pulmonary Vascular Resistance, and Diastolic Dysfunction to Exercise Capacity in Patients with Single Ventricle Receiving Fontan Palliation. Am J Cardiol. 2010;105(8):1169-75. doi: 10.1016/j.amjcard.2009.12.020.
    https://doi.org/10.1016/j.amjcard.2009.1...

  • Reduced cardiac reserve, VO2peak, OUES, and chronotropic incompetence identify patients at increased risk of death and need for heart transplantation.9191 Fernandes SM, Alexander ME, Graham DA, Khairy P, Clair M, Rodriguez E, et al. Exercise Testing Identifies Patients at Increased Risk for Morbidity and Mortality Following Fontan Surgery. Congenit Heart Dis. 2011;6(4):294-303. doi: 10.1111/j.1747-0803.2011.00500.x.
    https://doi.org/10.1111/j.1747-0803.2011...
    ,748748 Udholm S, Aldweib N, Hjortdal VE, Veldtman GR. Prognostic Power of Cardiopulmonary Exercise Testing in Fontan Patients: A Systematic Review. Open Heart. 2018;5(1):e000812. doi: 10.1136/openhrt-2018-000812.
    https://doi.org/10.1136/openhrt-2018-000...
    ,749749 Ohuchi H, Negishi J, Noritake K, Hayama Y, Sakaguchi H, Miyazaki A, et al. Prognostic Value of Exercise Variables in 335 Patients after the Fontan Operation: A 23-Year Single-Center Experience of Cardiopulmonary Exercise Testing. Congenit Heart Dis. 2015;10(2):105-16. doi: 10.1111/chd.12222.
    https://doi.org/10.1111/chd.12222...
    ,762762 Diller GP, Giardini A, Dimopoulos K, Gargiulo G, Müller J, Derrick G, et al. Predictors of Morbidity and Mortality in Contemporary Fontan Patients: Results from a Multicenter Study Including Cardiopulmonary Exercise Testing in 321 Patients. Eur Heart J. 2010;31(24):3073-83. doi: 10.1093/eurheartj/ehq356.
    https://doi.org/10.1093/eurheartj/ehq356...
    ,763763 de Los Monteros CTE, Harteveld LM, Kuipers IM, Rammeloo L, Hazekamp MG, Blom NA, et al. Prognostic Value of Maximal and Submaximal Exercise Performance in Fontan Patients <15 Years of Age. Am J Cardiol. 2021;154:92-8. doi: 10.1016/j.amjcard.2021.05.049.
    https://doi.org/10.1016/j.amjcard.2021.0...

  • In adolescents, exercise oscillatory ventilation (EOV) is associated with an increased risk of death/transplantation (RR: 3.9; 95% CI: 1.5-10.0).764764 Nathan AS, Loukas B, Moko L, Wu F, Rhodes J, Rathod RH, et al. Exercise Oscillatory Ventilation in Patients with Fontan Physiology. Circ Heart Fail. 2015;8(2):304-11. doi: 10.1161/CIRCHEARTFAILURE.114.001749.
    https://doi.org/10.1161/CIRCHEARTFAILURE...

  • In adolescents, the following were markers of risk of hospitalization within 2 years (due to HF, arrhythmia, etc. RR: 7.645; 95% CI: 2.317-25.230); VE/VCO2 slope ≥37 (RR: 10.777; 95% CI: 1.378-84.259).765765 Chen CA, Chen SY, Chiu HH, Wang JK, Chang CI, Chiu IS, et al. Prognostic Value of Submaximal Exercise Data for Cardiac Morbidity in Fontan Patients. Med Sci Sports Exerc. 2014;46(1):10-5. doi: 10.1249/MSS.0b013e31829f8326.
    https://doi.org/10.1249/MSS.0b013e31829f...

1.7. Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a genetic disease with an autosomal dominant inheritance pattern (incomplete penetrance and variable expressivity) characterized by hypertrophied, disorganized myocytes separated by areas of interstitial fibrosis. Cardiac hypertrophy is generally asymmetric, most commonly involving the basal part of the interventricular septum, underlying the aortic valve. Occasionally, it is restricted to other cardiac regions, such as the apex, midportion, and posterior wall of the LV. HCM can be classified as primary, if caused by sarcomere gene mutations, or secondary, if associated with a non-sarcomeric cause.766766 Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation. 2019;140(1):e9-68. doi: 10.1161/CIR.0000000000000682.
https://doi.org/10.1161/CIR.000000000000...
,767767 Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, et al. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr. 2021;9:632293. doi: 10.3389/fped.2021.632293.
https://doi.org/10.3389/fped.2021.632293...

The average age at onset is 8.9 years, and there is a male predominance. The risk of SCD in pediatric patients is ≈1 to 7% per year. In adolescents with a family history of SCD the average time after diagnosis to first major cardiac event (including death/SCD) or cardiac intervention (myectomy and/or ICD) is ≈18 months.768768 Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017;121(7):749-70. doi: 10.1161/CIRCRESAHA.117.311059.
https://doi.org/10.1161/CIRCRESAHA.117.3...
770770 Gallo G, Mastromarino V, Limongelli G, Calcagni G, Maruotti A, Ragni L, et al. Insights from Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2021;11(3):376. doi: 10.3390/biom11030376.
https://doi.org/10.3390/biom11030376...

Symptoms generally result from four pathophysiological conditions: diastolic ventricular dysfunction, LVOT obstruction, myocardial ischemia, and cardiac arrhythmias.770770 Gallo G, Mastromarino V, Limongelli G, Calcagni G, Maruotti A, Ragni L, et al. Insights from Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2021;11(3):376. doi: 10.3390/biom11030376.
https://doi.org/10.3390/biom11030376...

In this context, ET/CPET is useful for risk stratification and optimization of clinical management, especially in children >7 years, who are at higher risk. Approximately one-third of patients with HCM have LVOT obstruction at rest, which worsens with exertion. Another one-third have exercise-induced obstruction, and the remaining third have LVH without obstruction (at rest or exercise-induced).771771 Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e558-631. doi: 10.1161/CIR.0000000000000937.
https://doi.org/10.1161/CIR.000000000000...

In patients with LVOT obstruction, a harsh midsystolic murmur (grade 3-4/6, loudest between the apex and left sternal border) is usually audible. The murmur increases in intensity when LV volume decreases during a Valsalva maneuver, when assuming an upright position, and during and immediately after exertion.771771 Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e558-631. doi: 10.1161/CIR.0000000000000937.
https://doi.org/10.1161/CIR.000000000000...

Particular features of the resting ECG in HCM:708708 Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald RM, Hickey K, et al. Preoperative Predictors of Death and Sustained Ventricular Tachycardia after Pulmonary Valve Replacement in Patients with Repaired Tetralogy of Fallot Enrolled in the INDICATOR Cohort. Circulation. 2018;138(19):2106-15. doi: 10.1161/CIRCULATIONAHA.118.034740.
https://doi.org/10.1161/CIRCULATIONAHA.1...
,710710 Villafañe J, Feinstein JA, Jenkins KJ, Vincent RN, Walsh EP, Dubin AM, et al. Hot Topics in Tetralogy of Fallot. J Am Coll Cardiol. 2013;62(23):2155-66. doi: 10.1016/j.jacc.2013.07.100.
https://doi.org/10.1016/j.jacc.2013.07.1...

  • Abnormal in 75-95% of patients, even when there is little or no LVOT obstruction.

  • Evidence of left atrial enlargement.

  • The most common abnormalities are the characteristic LVH pattern, deep Q waves, ST segment depression, and T wave changes.

  • 2 to 5% of patients exhibit pre-excitation ECG findings, and may present with AV nodal supraventricular arrhythmias and Wolff-Parkinson-White syndrome.768768 Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017;121(7):749-70. doi: 10.1161/CIRCRESAHA.117.311059.
    https://doi.org/10.1161/CIRCRESAHA.117.3...

Particular features of ET/CPET in HCM:

  • Informs the decision on whether to escalate therapy, especially if symptoms are unclear based on clinical history alone.

  • Generally shows poor cardiorespiratory fitness.

  • Patients with severe LVOT obstruction generally present with high ventricular diastolic pressure and exercise-induced dyspnea. In the most serious cases, frank acute heart failure may develop.

  • Syncope, whether exercise-induced or at the onset of recovery, results from severe LVOT obstruction, with or without associated ventricular arrhythmia.

  • Ischemic chest pain is common, and may or may not be typical (anginal).

  • Abnormal BP response to exercise, characterized by an increase in SBP <25 mmHg or a drop >10 mmHg, is associated with increased risk of SCD.154154 Decker JA, Rossano JW, Smith EO, Cannon B, Clunie SK, Gates C, et al. Risk Factors and Mode of Death in Isolated Hypertrophic Cardiomyopathy in Children. J Am Coll Cardiol. 2009;54(3):250-4. doi: 10.1016/j.jacc.2009.03.051.
    https://doi.org/10.1016/j.jacc.2009.03.0...
    ,438438 Norrish G, Cantarutti N, Pissaridou E, Ridout DA, Limongelli G, Elliott PM, et al. Risk Factors for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. Eur J Prev Cardiol. 2017;24(11):1220-30. doi: 10.1177/2047487317702519.
    https://doi.org/10.1177/2047487317702519...
    ,773773 Edelson JB, Stanley HM, Min J, Burstein DS, Lane-Fall M, O’Malley S, et al. Cardiopulmonary Exercise Testing in Pediatric Patients With Hypertrophic Cardiomyopathy. JACC Adv. 2022;1(4):100107. doi: 10.1016/j.jacadv.2022.100107.
    https://doi.org/10.1016/j.jacadv.2022.10...

  • Abnormal ET findings are associated with a higher risk of all-cause mortality and/or transplantation: ischemic response (RR: 4.86; 95% CI: 1.69-13.99) and depressed BP response (RR: 3.19; 95% CI: 1.32-7.71). Exercise-induced ischemia is also independently associated with SCD (RR: 3.32; 95% CI: 1.27-8.70).157157 Conway J, Min S, Villa C, Weintraub RG, Nakano S, Godown J, et al. The Prevalence and Association of Exercise Test Abnormalities with Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation. 2023;147(9):718-27. doi: 10.1161/CIRCULATIONAHA.122.062699.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

  • Exercise-induced supraventricular and ventricular ectopics are frequent, and NSVT can occur in up to 20-30% of patients.

  • Exercise-induced arrhythmia (atrial and/or ventricular), irrespective of density, is associated with an increased risk of heart transplantation, ICD implantation, and SCD (RR: 5.8; 95% CI: 1.3-26.7).157157 Conway J, Min S, Villa C, Weintraub RG, Nakano S, Godown J, et al. The Prevalence and Association of Exercise Test Abnormalities with Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation. 2023;147(9):718-27. doi: 10.1161/CIRCULATIONAHA.122.062699.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    ,773773 Edelson JB, Stanley HM, Min J, Burstein DS, Lane-Fall M, O’Malley S, et al. Cardiopulmonary Exercise Testing in Pediatric Patients With Hypertrophic Cardiomyopathy. JACC Adv. 2022;1(4):100107. doi: 10.1016/j.jacadv.2022.100107.
    https://doi.org/10.1016/j.jacadv.2022.10...

  • Atrial fibrillation occurs in ≈25% of patients with HCM, is poorly tolerated, and is often the culprit behind exertional HF symptoms.

  • Cardiorespiratory fitness is poor (VO2peak generally <80% of predicted) and correlates with diastolic dysfunction on echocardiography.207207 Przybylski R, Fischer IR, Gauvreau K, Alexander ME, Shafer KM, Colan SD, et al. Assessment of Exercise Function in Children and Young Adults with Hypertrophic Cardiomyopathy and Correlation with Transthoracic Echocardiographic Parameters. Pediatr Cardiol. 2022;43(5):1037-45. doi: 10.1007/s00246-022-02822-2.
    https://doi.org/10.1007/s00246-022-02822...

  • CPET measures cardiorespiratory fitness directly and is relevant in the assessment of patients with severe symptoms, particularly to ascertain whether heart transplantation is indicated.774774 Edelson JB, Burstein D, Stanley H, Shah M, Mc Bride MW, Stephens P, et al. Abstract 13535: Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Circulation. 2020;142(Suppl 3). doi: 10.1161/circ.142.suppl_3.13535.
    https://doi.org/10.1161/circ.142.suppl_3...
    A reduction in VO2peak <50% of predicted values for age and sex should be considered in the heart transplant selection process.775775 Thakkar K, Karajgi AR, Kallamvalappil AM, Avanthika C, Jhaveri S, Shandilya A, et al. Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy. Dis Mon. 2023;69(4):101548. doi: 10.1016/j.disamonth.2023.101548.
    https://doi.org/10.1016/j.disamonth.2023...

  • VO2peak, oxygen pulse, and HRpeak are generally reduced and worsen gradually over time.207207 Przybylski R, Fischer IR, Gauvreau K, Alexander ME, Shafer KM, Colan SD, et al. Assessment of Exercise Function in Children and Young Adults with Hypertrophic Cardiomyopathy and Correlation with Transthoracic Echocardiographic Parameters. Pediatr Cardiol. 2022;43(5):1037-45. doi: 10.1007/s00246-022-02822-2.
    https://doi.org/10.1007/s00246-022-02822...
    A VO2peak ≤60% of predicted is a marker of HF and SCD risk.770770 Gallo G, Mastromarino V, Limongelli G, Calcagni G, Maruotti A, Ragni L, et al. Insights from Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2021;11(3):376. doi: 10.3390/biom11030376.
    https://doi.org/10.3390/biom11030376...

1.8. Kawasaki Disease

Kawasaki disease (KD) is an acute systemic vasculitis that mainly affects male children (M:F ratio ≈1.5:1) under the age of 5. It is the leading cause of acquired CAD in children, and is most common in Japan.3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
https://doi.org/10.1161/CIR.000000000000...
,776776 Rajasekaran K, Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus. 2022;14(8):e28358. doi: 10.7759/cureus.28358.
https://doi.org/10.7759/cureus.28358...

The most feared complication of acute KD is the development of vascular abnormalities in small- to medium-sized arteries (mainly in the heart), characterized by three interconnected processes: necrotizing arteritis, subacute/chronic vasculitis, and luminal myofibroblastic proliferation. CAD can develop during the healing phase of the acute episode or later on in the course of the disease. Even children with KD who have no overt coronary lesions exhibit lower coronary flow reserve and greater total coronary resistance.777777 Koyama Y, Miura M, Kobayashi T, Hokosaki T, Suganuma E, Numano F, et al. A Registry Study of Kawasaki Disease Patients with Coronary Artery Aneurysms (KIDCAR): A Report on a Multicenter Prospective Registry Study Three Years after Commencement. Eur J Pediatr. 2023;182(2):633-40. doi: 10.1007/s00431-022-04719-x.
https://doi.org/10.1007/s00431-022-04719...
,778778 Brogan P, Burns JC, Cornish J, Diwakar V, Eleftheriou D, Gordon JB, et al. Lifetime Cardiovascular Management of Patients with Previous Kawasaki Disease. Heart. 2020;106(6):411-20. doi: 10.1136/heartjnl-2019-315925.
https://doi.org/10.1136/heartjnl-2019-31...

The risk of developing coronary artery aneurysms (CAA) is ≈25% in untreated cases and 5% in adequately treated cases. CAAs may initially manifest as enlargement and progress to moderate dilation (5 to 8 mm in diameter), or may even develop as large aneurysms (>8 mm). CAAs are classified by comparing the diameters of coronary arteries indexed in units of standard deviation from the mean by body surface area (Z-score). This classification is recommended for the left main coronary artery, anterior descending artery, and right coronary artery. CAA Z-score define aneurysms as: absent if the score is <2; isolated dilation if 2 to <2.5; small if ≥2.5 to <5.0; medium if ≥5.0 to <10.0 and absolute dimension <8 mm; and large or giant if ≥10.0 (or absolute dimension ≥8 mm). Large and/or giant aneurysms do not regress spontaneously, rarely ever rupture, and almost always contain thrombi, which may calcify or become occlusive.3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
https://doi.org/10.1161/CIR.000000000000...
,776776 Rajasekaran K, Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus. 2022;14(8):e28358. doi: 10.7759/cureus.28358.
https://doi.org/10.7759/cureus.28358...

Children with CAAs may progress to late-stage KD, with thrombosis, ischemic heart disease, myocardial infarction, and sudden death (≈0.2 to 0.8% in the first 10 years after KD). The most common late complications of KD are ischemic heart disease (4.6 events/1,000 person-years) and ventricular arrhythmias (4.5/1,000 person-years). Patients in late-stage KD require regular monitoring and adoption of specific protocols for risk stratification and prevention of complications; ET/CPET is particularly useful in this context.779779 Robinson C, Chanchlani R, Gayowsky A, Brar S, Darling E, Demers C, et al. Cardiovascular Outcomes in Children with Kawasaki Disease: A Population-Based Cohort Study. Pediatr Res. 2023;93(5):1267-75. doi: 10.1038/s41390-022-02391-3.
https://doi.org/10.1038/s41390-022-02391...
781781 Miura M, Kobayashi T, Kaneko T, Ayusawa M, Fukazawa R, Fukushima N, et al. Association of Severity of Coronary Artery Aneurysms in Patients with Kawasaki Disease and Risk of Later Coronary Events. JAMA Pediatr. 2018;172(5):e180030. doi: 10.1001/jamapediatrics.2018.0030.
https://doi.org/10.1001/jamapediatrics.2...

The resting ECG varies depending on the complications resulting from the acute stage of KD. In patients who develop CAAs or MI in the acute stage, pathological Q waves and ST-segment/T wave changes associated with areas of ischemia and/or necrosis are common. QTi dispersion (QTd) should be assessed; when abnormal, it is associated with coronary artery sequelae and a greater risk of ventricular arrhythmia during follow-up.487487 Nakanishi T, Takao A, Kondoh C, Nakazawa M, Hiroe M, Matsumoto Y. ECG Findings after Myocardial Infarction in Children After Kawasaki Disease. Am Heart J. 1988;116(4):1028-33. doi: 10.1016/0002-8703(88)90155-x.
https://doi.org/10.1016/0002-8703(88)901...
,782782 Zhu F, Ang JY. 2021 Update on the Clinical Management and Diagnosis of Kawasaki Disease. Curr Infect Dis Rep. 2021;23(3):3. doi: 10.1007/s11908-021-00746-1.
https://doi.org/10.1007/s11908-021-00746...
,783783 Dahdah N, Jaeggi E, Fournier A. Long-Term Changes in Depolarization and Repolarization after Kawasaki Disease. Pediatr Res. 2003;53:162. doi: 10.1203/00006450-200301000-00049.
https://doi.org/10.1203/00006450-2003010...

Main indications for ET/CPET in KD:1818 Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-407. doi: 10.1253/circj.CJ-19-1094.
https://doi.org/10.1253/circj.CJ-19-1094...
,3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
https://doi.org/10.1161/CIR.000000000000...

  • In late-stage disease, to investigate symptoms suggestive of ischemia (Class of Recommendation: I; Level of Evidence: C).

  • In the pediatric population, ET/CPET should not be relied on alone for investigation of exercise-induced myocardial ischemia. In such cases, combination with an imaging method is recommended.

  • In patients with CAA and suspected ischemic events, exercise-induced symptoms, or low exercise tolerance (Class of Recommendation: I; Level of Evidence: C).

  • In patients with CAA seeking to pursue competitive sports or high-intensity exercise, for preparticipation physical assessment, to detect exercise-induced arrhythmias (Class of Recommendation: IIa; Level of Evidence: C).

  • In the monitoring of children and adolescents who have undergone myocardial revascularization (surgical and/or percutaneous), for assessment of cardiorespiratory fitness, optimization of therapy, and detection of CAD progression/restenosis.784784 Salsano A, Liao J, Miette A, Capoccia M, Mariscalco G, Santini F, et al. Surgical Myocardial Revascularization Outcomes in Kawasaki Disease: Systematic Review and Meta-Analysis. Open Med (Wars). 2021;16(1):375-86. doi: 10.1515/med-2021-0242.
    https://doi.org/10.1515/med-2021-0242...

  • For risk stratification, prognostic assessment, and medical clearance/prescription of cardiopulmonary rehabilitation (Class of Recommendation: I; Level of Evidence: B).

Particular features of ET/CPET in KD:

  • In symptomatic patients, helps inform the decision to pursue revascularization. Exercise-induced arrhythmias and/or low exercise tolerance (<3 METs) in the presence of symptoms (angina and dyspnea) are considered poor prognostic factors.1818 Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-407. doi: 10.1253/circj.CJ-19-1094.
    https://doi.org/10.1253/circj.CJ-19-1094...
    ,3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
    https://doi.org/10.1161/CIR.000000000000...

  • Patients in late-stage KD with moderate to severe CAD may exhibit sinus node dysfunction and atrioventricular conduction disorders.785785 Sumitomo N, Karasawa K, Taniguchi K, Ichikawa R, Fukuhara J, Abe O, et al. Association of Sinus Node Dysfunction, Atrioventricular Node Conduction Abnormality and Ventricular Arrhythmia in Patients with Kawasaki Disease and Coronary Involvement. Circ J. 2008;72(2):274-80. doi: 10.1253/circj.72.274.
    https://doi.org/10.1253/circj.72.274...

  • Patients in late-stage KD with CAA z-scores ≥2.0 in the proximal ADA or RCA generally exhibit a reduction in METs achieved proportional to the z-score, lower levels of cardiorespiratory fitness, RER, SBPmax and maximum double-product, when compared to patients with CAA z-scores <2.0.1515 Tuan SH, Li MH, Hsu MJ, Tsai YJ, Chen YH, Liao TY, et al. Cardiopulmonary Function, Exercise Capacity, and Echocardiography Finding of Pediatric Patients with Kawasaki Disease: An Observational Study. Medicine. 2016;95(2):e2444. doi: 10.1097/MD.0000000000002444.
    https://doi.org/10.1097/MD.0000000000002...
    ,786786 Tuan SH, Su HT, Chen CH, Liou IH, Weng TP, Chen GB, et al. Analysis of Exercise Capacity of Children with Kawasaki Disease by a Coronary Artery Z Score Model (ZSP Version 4) Derived by the Lambda-Mu-Sigma Method. J Pediatr. 2018;201:128-33. doi: 10.1016/j.jpeds.2018.05.036.
    https://doi.org/10.1016/j.jpeds.2018.05....
    Reduced cardiorespiratory fitness is generally more severe in adolescents with KD.1616 Lin KL, Liou IH, Chen GB, Sun SF, Weng KP, Li CH, et al. Serial Exercise Testing and Echocardiography Findings of Patients with Kawasaki Disease. Front Pediatr. 2022;10:847343. doi: 10.3389/fped.2022.847343.
    https://doi.org/10.3389/fped.2022.847343...
    ,1717 Yang TH, Lee YY, Wang LY, Chang TC, Chang LS, Kuo HC. Patients with Kawasaki Disease have Significantly Low Aerobic Metabolism Capacity and Peak Exercise Load Capacity during Adolescence. Int J Environ Res Public Health. 2020;17(22):8352. doi: 10.3390/ijerph17228352.
    https://doi.org/10.3390/ijerph17228352...

  • Patients in late-stage KD with CAAs but no myocardial perfusion defects have HR, SBP, and DBP responses to exercise similar to those of patients without CAA. However, patients with CAAs and myocardial perfusion defects usually exhibit a lower HR in the 1st minute of recovery and lower DBP in the 1st and 5th minutes of recovery, which are findings associated with worse prognosis.398398 Gravel H, Curnier D, Dallaire F, Fournier A, Portman M, Dahdah N. Cardiovascular Response to Exercise Testing in Children and Adolescents Late after Kawasaki Disease According to Coronary Condition Upon Onset. Pediatr Cardiol. 2015;36(7):1458-64. doi: 10.1007/s00246-015-1186-5.
    https://doi.org/10.1007/s00246-015-1186-...

  • Exercise-induced ST depression is common in late-stage KD, with low sensitivity and high specificity for obstructive coronary lesions.1818 Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-407. doi: 10.1253/circj.CJ-19-1094.
    https://doi.org/10.1253/circj.CJ-19-1094...
    ,787787 Paridon SM, Galioto FM, Vincent JA, Tomassoni TL, Sullivan NM, Bricker JT. Exercise Capacity and Incidence of Myocardial Perfusion Defects after Kawasaki Disease in Children and Adolescents. J Am Coll Cardiol. 1995;25(6):1420-4. doi: 10.1016/0735-1097(95)00003-m.
    https://doi.org/10.1016/0735-1097(95)000...

  • Patients in late-stage KD rarely exhibit exercise-induced ventricular arrhythmias (associated with CAA z-score ≥5). Complex ventricular arrhythmias and exercise-induced ventricular tachycardia are associated with large CAAs, previous VT, ICD placement, CAD, status post MI (generally >10 years after MI) and status post CABG.560560 Aggarwal V, Sexson-Tejtal K, Lam W, Valdes SO, De la Uz CM, Kim JJ, et al. The Incidence of Arrhythmias During Exercise Stress Tests among Children with Kawasaki Disease: A Single-Center Case Series. Congenit Heart Dis. 2019;14(6):1032-6. doi: 10.1111/chd.12864.
    https://doi.org/10.1111/chd.12864...
    ,788788 Tsuda E, Hirata T, Matsuo O, Abe T, Sugiyama H, Yamada O. The 30-Year Outcome for Patients after Myocardial Infarction Due to Coronary Artery Lesions Caused by Kawasaki Disease. Pediatr Cardiol. 2011;32(2):176-82. doi: 10.1007/s00246-010-9838-y.
    https://doi.org/10.1007/s00246-010-9838-...

  • QTi dispersion during exercise is generally altered in late-stage KD, regardless of QTd at rest or coronary sequelae. This phenomenon poses a risk of developing exercise-induced arrhythmias.789789 Gravel H, Dahdah N, Fournier A, Mathieu MÈ, Curnier D. Ventricular Repolarisation During Exercise Challenge Occurring Late after Kawasaki Disease. Pediatr Cardiol. 2012;33(5):728-34. doi: 10.1007/s00246-012-0201-3.
    https://doi.org/10.1007/s00246-012-0201-...

2. Heart Failure and Heart Transplantation

As of 2017, the prevalence of heart failure (HF) in the 5-14 age group in Brazil was 34.1/100,000 children.790790 Oliveira GMM, Brant LCC, Polanczyk CA, Malta DC, Biolo A, Nascimento BR, et al. Cardiovascular Statistics - Brazil 2021. Arq Bras Cardiol. 2022;118(1):115-373. doi: 10.36660/abc.20211012.
https://doi.org/10.36660/abc.20211012...
In the pediatric population with CHD, this prevalence ranges from 6.2% to 39%. HF in the pediatric population is associated with high morbidity, and in-hospital mortality rates ranging from 7-26%.791791 Burstein DS, Shamszad P, Dai D, Almond CS, Price JF, Lin KY, et al. Significant Mortality, Morbidity and Resource Utilization Associated with Advanced Heart Failure in Congenital Heart Disease in Children and Young Adults. Am Heart J. 2019;209:9-19. doi: 10.1016/j.ahj.2018.11.010.
https://doi.org/10.1016/j.ahj.2018.11.01...
,792792 Adebiyi EO, Edigin E, Shaka H, Hunter J, Swaminathan S. Pediatric Heart Failure Inpatient Mortality: A Cross-Sectional Analysis. Cureus. 2022;14(7):e26721. doi: 10.7759/cureus.26721.
https://doi.org/10.7759/cureus.26721...

The main causes of HF in the pediatric population are given in Table 39. The clinical presentation of HF is related to age: infants and young children present with difficulty feeding, cyanosis, tachypnea, sinus tachycardia, and diaphoresis; older children and adolescents have fatigue, shortness of breath, tachypnea, exercise intolerance, abdominal pain, oliguria, and edema of the lower limbs. The severity of HF should be classified according to age group, using the modified Ross (children <6 years old) or NYHA (children >6 years old) classifications (see Table 29).379379 Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535-52. doi: 10.1016/j.cjca.2013.08.008.
https://doi.org/10.1016/j.cjca.2013.08.0...
,793793 Hsu DT, Pearson GD. Heart Failure in Children: Part II: Diagnosis, Treatment, and Future Directions. Circ Heart Fail. 2009;2(5):490-8. doi: 10.1161/CIRCHEARTFAILURE.109.856229.
https://doi.org/10.1161/CIRCHEARTFAILURE...

Table 39
Leading causes of heart failure in the pediatric population794794 Price JF. Congestive Heart Failure in Children. Pediatr Rev. 2019;40(2):60-70. doi: 10.1542/pir.2016-0168.
https://doi.org/10.1542/pir.2016-0168...
,795795 Rosenthal D, Chrisant MR, Edens E, Mahony L, Canter C, Colan S, et al. International Society for Heart and Lung Transplantation: Practice Guidelines for Management of Heart Failure in Children. J Heart Lung Transplant. 2004;23(12):1313-33. doi: 10.1016/j.healun.2004.03.018.
https://doi.org/10.1016/j.healun.2004.03...

Right HF is not common in children, but may be associated with CHD including tetralogy of Fallot, TGA, ASD, Ebstein anomaly, arrhythmogenic RV cardiomyopathy, and ventricular dysfunction in the functionally univentricular heart. The two leading causes of end-stage HF in the pediatric population are cardiomyopathies and CHD, each accounting for approximately half of cases requiring heart transplantation (HTx). HTx in the pediatric population represents 13% of all transplants, and more than 60% of recipients survive for at least 10 years.191191 Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise Capacity Following Pediatric Heart Transplantation: A Systematic Review. Pediatr Transplant. 2017;21(5). doi: 10.1111/petr.12922.
https://doi.org/10.1111/petr.12922...
,796796 Rossano JW, Singh TP, Cherikh WS, Chambers DC, Harhay MO, Hayes D Jr, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-Second Pediatric Heart Transplantation Report - 2019; Focus Theme: Donor and Recipient Size Match. J Heart Lung Transplant. 2019;38(10):1028-41. doi: 10.1016/j.healun.2019.08.002.
https://doi.org/10.1016/j.healun.2019.08...
,797797 Castaldi B, Cuppini E, Fumanelli J, Di Candia A, Sabatino J, Sirico D, et al. Chronic Heart Failure in Children: State of the Art and New Perspectives. J Clin Med. 2023;12(7):2611. doi: 10.3390/jcm12072611.
https://doi.org/10.3390/jcm12072611...

Particular features of ET/CPET in pediatric patients with HF:182182 Tikkanen AU, Berry E, Le Count E, Engstler K, Sager M, Esteso P. Rehabilitation in Pediatric Heart Failure and Heart Transplant. Front Pediatr. 2021;9:674156. doi: 10.3389/fped.2021.674156.
https://doi.org/10.3389/fped.2021.674156...
,797797 Castaldi B, Cuppini E, Fumanelli J, Di Candia A, Sabatino J, Sirico D, et al. Chronic Heart Failure in Children: State of the Art and New Perspectives. J Clin Med. 2023;12(7):2611. doi: 10.3390/jcm12072611.
https://doi.org/10.3390/jcm12072611...
800800 Loss KL, Shaddy RE, Kantor PF. Recent and Upcoming Drug Therapies for Pediatric Heart Failure. Front Pediatr. 2021;9:681224. doi: 10.3389/fped.2021.681224.
https://doi.org/10.3389/fped.2021.681224...

  • Assessment of cardiorespiratory fitness and of the behavior of CPET variables provide objective information on the functional status of the heart, lungs, and peripheral muscles, elucidating the natural history of HF and informing therapeutic decision-making.66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
    https://doi.org/10.1016/j.acvd.2014.04.0...

  • CPET should be part of the workup of patients aged ≥6-8 years with cardiomyopathy and HF (Class of Recommendation: IIa; Level of Evidence: C).

  • CPET should be used to ascertain the cause of cardiorespiratory limitations to exercise in patients with symptoms of HF (Class of Recommendation: IIa; Level of Evidence: C).

  • In patients with stage C HF, the combination of VO2peak <50% of predicted and severe exercise limitation constitute the basis for a possible indication of HTx (Class of Recommendation: IIa; Level of Evidence: C).

  • Preparticipation medical assessment and risk stratification before a physical training/cardiorespiratory rehabilitation program (Class of Recommendation: I; Level of Evidence: C).

  • In patients with a circulatory assist device and/or after HTx for assessment of cardiorespiratory fitness, risk stratification, serial graft evaluation, and prescription of a physical activity program (including rehabilitation and physical education in school) (Class of Recommendation: IIa; Level of Evidence: C).

  • In patients with suspected cardiotoxicity secondary to chemotherapy/radiotherapy, in the differential diagnosis of dyspnea, screening for cardiac dysfunction (including subclinical), risk stratification, optimization of therapy, and medical clearance/prescription of physical exercise and rehabilitation.801801 Hegazy M, Ghaleb S, Das BB. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. Children (Basel). 2023;10(1):149. doi: 10.3390/children10010149.
    https://doi.org/10.3390/children10010149...

The resting ECG in HF is nonspecific but often abnormal. LV hypertrophy, RV and/or LV overload, and ST-segment and/or T wave changes may be seen. Rhythm disturbances are common, including sinus tachycardia, supraventricular tachycardia, atrial fibrillation/flutter, atrioventricular block, and VT. Intraventricular conduction disorders or QTc prolongation are generally associated with ventricular dysfunction, HF, and structural heart disease (CHD or advanced cardiomyopathy).559559 O’Connor M, McDaniel N, Brady WJ. The Pediatric Electrocardiogram Part III: Congenital Heart Disease and Other Cardiac Syndromes. Am J Emerg Med. 2008;26(4):497-503. doi: 10.1016/j.ajem.2007.08.004.
https://doi.org/10.1016/j.ajem.2007.08.0...
,802802 Mah K, Chen S, Chandhoke G, Kantor PF, Stephenson E. QTc and QRS Abnormalities are Associated with Outcome in Pediatric Heart Failure. Pediatr Cardiol. 2022;43(8):1903-12. doi: 10.1007/s00246-022-02932-x.
https://doi.org/10.1007/s00246-022-02932...
In idiopathic cardiomyopathy, the presence of LBBB and left atrial enlargement correlates with increased risk of mortality.379379 Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535-52. doi: 10.1016/j.cjca.2013.08.008.
https://doi.org/10.1016/j.cjca.2013.08.0...
,803803 Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017;58(4):303-12. doi: 10.1016/j.pedneo.2017.01.001.
https://doi.org/10.1016/j.pedneo.2017.01...

Particular features of ET/CPET in HF:

  • Usually performed with the patient on their usual medications, including antiarrhythmics and beta-blockers. Discontinuation may trigger clinical deterioration and increase the risk of complications during the test. Patients on antiarrhythmic agents have more severe disease and are at a higher risk of SCD during 5-year follow-up (RR: 3.0; 95% CI: 1.1-8.3).803803 Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017;58(4):303-12. doi: 10.1016/j.pedneo.2017.01.001.
    https://doi.org/10.1016/j.pedneo.2017.01...

  • Children with HF secondary to idiopathic dilated cardiomyopathy present with the following at VT1 and at peak exercise: significantly lower values of SBP, VT, VO2, VCO2, and minute ventilation; increased VE/VO2 and VE/CO2 values; abnormal oxygen pulse; and a significantly greater VE/VCO2 slope at peak exertion. CPET variables allow quantification of the reduction in cardiorespiratory fitness and possible mechanisms of exercise limitation.804804 Guimarães GV, Bellotti G, Mocelin AO, Camargo PR, Bocchi EA. Cardiopulmonary Exercise Testing in Children with Heart Failure Secondary to Idiopathic Dilated Cardiomyopathy. Chest. 2001;120(3):816-24. doi: 10.1378/chest.120.3.816.
    https://doi.org/10.1378/chest.120.3.816...

  • Serial CPET in children with dilated cardiomyopathy demonstrated an increased risk of hospitalization due to decompensated HF, circulatory assist/HTx, and death in those who experienced a 10mmHg reduction in SBPpeak (RR: 1.41; 95% CI: 1.12-1.79) or a 10% reduction in VO2peak from predicted (RR: 1.59; 95% CI: 1.16-2.17).805805 Chen CK, Manlhiot C, Russell JL, Kantor PF, McCrindle BW, Conway J. The Utility of Cardiopulmonary Exercise Testing for the Prediction of Outcomes in Ambulatory Children with Dilated Cardiomyopathy. Transplantation. 2017;101(10):2455-60. doi: 10.1097/TP.0000000000001672.
    https://doi.org/10.1097/TP.0000000000001...

  • A VO2peak <44% of predicted in children with biventricular circulation was associated with higher risk of death or deterioration of HF (RR: 5.1; 95% CI: 1.9-13.5).806806 Lytrivi ID, Blume ED, Rhodes J, Dillis S, Gauvreau K, Singh TP. Prognostic Value of Exercise Testing During Heart Transplant Evaluation in Children. Circ Heart Fail. 2013;6(4):792-9. doi: 10.1161/CIRCHEARTFAILURE.112.000103.
    https://doi.org/10.1161/CIRCHEARTFAILURE...

  • Clinicians should always remain vigilant for the possibility of acute exercise-induced decompensated HF, which, although rare, requires immediate intervention/critical care.800800 Loss KL, Shaddy RE, Kantor PF. Recent and Upcoming Drug Therapies for Pediatric Heart Failure. Front Pediatr. 2021;9:681224. doi: 10.3389/fped.2021.681224.
    https://doi.org/10.3389/fped.2021.681224...

  • At late (10-year) follow-up of anthracycline chemotherapy (cumulative dose >300mg/m2), ≈32% of patients had developed compromised cardiorespiratory fitness (VO2max <80% of predicted) and subclinical cardiac dysfunction.798798 Wolf CM, Reiner B, Kühn A, Hager A, Müller J, Meierhofer C, et al. Subclinical Cardiac Dysfunction in Childhood Cancer Survivors 10-Years Follow-Up Correlates with Cumulative Anthracycline Dose and is Best Detected by Cardiopulmonary Exercise Testing, Circulating Serum Biomarker, Speckle Tracking Echocardiography, and Tissue Doppler Imaging. Front Pediatr. 2020;8:123. doi: 10.3389/fped.2020.00123.
    https://doi.org/10.3389/fped.2020.00123...

Particular features of ET/CPET in the pediatric population requiring or undergoing HTx:

  • When evaluating HTx recipients, it is suggested that variables (VO2, HRpeak, work load, etc.) be converted into percentages predicted for age, sex, and/or weight, so as to allow longitudinal comparisons with the patient's own serial tests, as well as with data available in the literature.

  • VO2peak ≤62% of predicted in patients with HF is strongly associated with risk of HTx and death within 2 years (RR: 10.78; 95% CI: 4.04-27.98).807807 Giardini A, Fenton M, Andrews RE, Derrick G, Burch M. Peak Oxygen Uptake Correlates with Survival Without Clinical Deterioration in Ambulatory Children with Dilated Cardiomyopathy. Circulation. 2011;124(16):1713-8. doi: 10.1161/CIRCULATIONAHA.111.035956.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

  • Children with biventricular circulation are at risk of death, requiring circulatory support, and urgent HTx when VO2peak is <50% of predicted (RR: 4.7; 95% CI: 1.8-12.3) and VE/VCO2 slope is ≥34 (RR: 3.2; 95% CI: 1.2-8.4).806806 Lytrivi ID, Blume ED, Rhodes J, Dillis S, Gauvreau K, Singh TP. Prognostic Value of Exercise Testing During Heart Transplant Evaluation in Children. Circ Heart Fail. 2013;6(4):792-9. doi: 10.1161/CIRCHEARTFAILURE.112.000103.
    https://doi.org/10.1161/CIRCHEARTFAILURE...

  • CPET is part of the detailed workup necessary for the indication of HTx, where VO2peak <50% of predicted should be considered a Class I indication.808808 Canter CE, Shaddy RE, Bernstein D, Hsu DT, Chrisant MR, Kirklin JK, et al. Indications for Heart Transplantation in Pediatric Heart Disease: A Scientific Statement from the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;115(5):658-76. doi: 10.1161/CIRCULATIONAHA.106.180449.
    https://doi.org/10.1161/CIRCULATIONAHA.1...
    Other indications include VO2 <14 ml/kg/min (off beta-blockers) or VO2 <12 ml/kg/min (on beta-blockers).809809 Kucera F, Fenton M. Cardiac Transplantation in Children. Paediatr Child Health. 2017;27:58-63. doi: 10.1016/j.paed.2016.12.001.
    https://doi.org/10.1016/j.paed.2016.12.0...

  • After HTx, impairment of cardiorespiratory fitness is generally observed, both in the immediate postoperative period and 3 to 6 years after transplantation, but tends to remain stable. The younger the patient at the time of transplantation, the higher the VO2peak values achieved. A decreased maximum work load (Wmax) (<75% of predicted value) is often observed. The serial response of HR (rest, peak, and chronotropic reserve), SBP, and VO2peak provide information regarding reinnervation (generally remaining stable or increasing) and graft outcomes; a progressive reduction in VO2peak is associated with graft loss due to vasculopathy.810810 Davis JA, McBride MG, Chrisant MR, Patil SM, Hanna BD, Paridon SM. Longitudinal Assessment of Cardiovascular Exercise Performance After Pediatric Heart Transplantation. J Heart Lung Transplant. 2006;25(6):626-33. doi: 10.1016/j.healun.2006.02.011.
    https://doi.org/10.1016/j.healun.2006.02...
    ,811811 Vanderlaan RD, Conway J, Manlhiot C, McCrindle BW, Dipchand AI. Enhanced Exercise Performance and Survival Associated with Evidence of Autonomic Reinnervation in Pediatric Heart Transplant Recipients. Am J Transplant. 2012;12(8):2157-63. doi: 10.1111/j.1600-6143.2012.04046.x.
    https://doi.org/10.1111/j.1600-6143.2012...

  • HR in HTx recipients is generally higher at rest and lower at peak exertion (ranging from 66-86% of predicted HRmax). HR in the 1st and 3rd minutes of recovery is reduced in patients with persistent denervation.191191 Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise Capacity Following Pediatric Heart Transplantation: A Systematic Review. Pediatr Transplant. 2017;21(5). doi: 10.1111/petr.12922.
    https://doi.org/10.1111/petr.12922...

  • On average, 57% of recipients show evidence of autonomic reinnervation (predominantly sympathetic), which is associated with better cardiorespiratory fitness, greater survival, and graft stability. Patients with autonomic denervation generally develop chronotropic incompetence. Deconditioning and side effects of immunosuppression can also affect cardiorespiratory fitness.182182 Tikkanen AU, Berry E, Le Count E, Engstler K, Sager M, Esteso P. Rehabilitation in Pediatric Heart Failure and Heart Transplant. Front Pediatr. 2021;9:674156. doi: 10.3389/fped.2021.674156.
    https://doi.org/10.3389/fped.2021.674156...
    ,191191 Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise Capacity Following Pediatric Heart Transplantation: A Systematic Review. Pediatr Transplant. 2017;21(5). doi: 10.1111/petr.12922.
    https://doi.org/10.1111/petr.12922...
    ,409409 Singh NM, Loomba RS, Kovach JR, Kindel SJ. Chronotropic Incompetence in Paediatric Heart Transplant Recipients with Prior Congenital Heart Disease. Cardiol Young. 2019;29(5):667-71. doi: 10.1017/S1047951119000714.
    https://doi.org/10.1017/S104795111900071...
    ,811811 Vanderlaan RD, Conway J, Manlhiot C, McCrindle BW, Dipchand AI. Enhanced Exercise Performance and Survival Associated with Evidence of Autonomic Reinnervation in Pediatric Heart Transplant Recipients. Am J Transplant. 2012;12(8):2157-63. doi: 10.1111/j.1600-6143.2012.04046.x.
    https://doi.org/10.1111/j.1600-6143.2012...

  • CPET performed in the immediate postoperative period of HTx (1st month) demonstrated reduced VO2 at VT1 and at peak effort (both with values below predicted) in a case series.192192 Chiu HH, Wu MH, Wang SS, Lan C, Chou NK, Chen SY, et al. Cardiorespiratory Function of Pediatric Heart Transplant Recipients in the Early Postoperative Period. Am J Phys Med Rehabil. 2012;91(2):156-61. doi: 10.1097/PHM.0b013e318238a0b1.
    https://doi.org/10.1097/PHM.0b013e318238...

  • Serial CPET in the late postoperative follow-up of HTx demonstrated that a VO2 of 59.3% of predicted and an HRmax 75.8% of predicted were achieved at ≈3 years, and remained below normal in subsequent testing (≈5 years).810810 Davis JA, McBride MG, Chrisant MR, Patil SM, Hanna BD, Paridon SM. Longitudinal Assessment of Cardiovascular Exercise Performance After Pediatric Heart Transplantation. J Heart Lung Transplant. 2006;25(6):626-33. doi: 10.1016/j.healun.2006.02.011.
    https://doi.org/10.1016/j.healun.2006.02...

  • Behavior of other CPET variables in HTx recipients: VEpeak is generally reduced, as is Wmax (ranging from 60-66%); peak aerobic power was on average 56±14% of predicted.191191 Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise Capacity Following Pediatric Heart Transplantation: A Systematic Review. Pediatr Transplant. 2017;21(5). doi: 10.1111/petr.12922.
    https://doi.org/10.1111/petr.12922...

3. Cardiac Arrhythmia

3.1. Congenital Long QT Syndrome

Congenital long QT syndrome (LQTS) is a genetic disease characterized by prolongation of the QTc interval (QTc >440 ms in males and QTc >460 ms in females), with a prevalence of 1:2,000 to 1:5,000. It can cause syncope, ventricular arrhythmias, and cardiac arrest. The average age at presentation is 14 years, with an annual rate of sudden cardiac death between 0.33% and 0.9%. LQTS should be investigated in children and adolescents with this clinical picture, a family history of sudden death, and/or a diagnosis of long QT. In type 1 LQTS, the leading trigger of arrhythmias is physical exercise. The Schwartz criteria are recommended for the diagnosis of LQTS in pediatric and adult populations.812812 Wang M, Peterson DR, Pagan E, Bagnardi V, Mazzanti A, McNitt S, et al. Assessment of Absolute Risk of Life-Threatening Cardiac Events in Long QT Syndrome Patients. Front Cardiovasc Med. 2022;9:988951. doi: 10.3389/fcvm.2022.988951.
https://doi.org/10.3389/fcvm.2022.988951...
814814 Lankaputhra M, Voskoboinik A. Congenital Long QT Syndrome: A Clinician's Guide. Intern Med J. 2021;51(12):1999-2011. doi: 10.1111/imj.15437.
https://doi.org/10.1111/imj.15437...

It is recommended that the QT interval be measured in leads II and V5.8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
https://doi.org/10.5935/abc.20160103...
QTi prolongation on resting ECG is the most common way of diagnosing this syndrome. However, 20-25% of patients with confirmed LQTS have a normal QTc interval at rest.66 Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
https://doi.org/10.1016/j.acvd.2014.04.0...
.308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...
The ideal formula for adjusting QTc in ET remains controversial (see section "3.3.2.8. QT Interval" of this guideline). Interpretation of the QTc depends on the formula used.124124 Ogawa Y, Tanaka T, Kido S. Reproducibility of Corrected QT Interval in Pediatric Genotyped Long QT Syndrome. Pediatr Int. 2016;58(11):1246-8. doi: 10.1111/ped.13120.
https://doi.org/10.1111/ped.13120...
,542542 Horner JM, Horner MM, Ackerman MJ. The Diagnostic Utility of Recovery Phase Qtc During Treadmill Exercise Stress Testing in the Evaluation of Long QT Syndrome. Heart Rhythm. 2011;8(11):1698-704. doi: 10.1016/j.hrthm.2011.05.018.
https://doi.org/10.1016/j.hrthm.2011.05....
544544 Andršová I, Hnatkova K, Helánová K, Šišáková M, Novotný T, Kala P, et al. Problems with Bazett Qtc Correction in Paediatric Screening of Prolonged Qtc Interval. BMC Pediatr. 2020;20(1):558. doi: 10.1186/s12887-020-02460-8.
https://doi.org/10.1186/s12887-020-02460...
Table 24 gives QTc reference values for different pediatric age groups.

According to the Brazilian Guideline on Cardiac Arrhythmias in Children and Congenital Heart Diseases, ET is indicated in:8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
https://doi.org/10.5935/abc.20160103...

  1. Patients with a Schwartz score of 3.0 (intermediate probability), when prolongation of the QTc interval during the recovery phase of the test adds diagnostic value.5757 Patel TM, Kamande SM, Jarosz E, Bost JE, Hanumanthaiah S, Berul CI, et al. Treadmill Exercise Testing Improves Diagnostic Accuracy in Children with Concealed Congenital Long QT Syndrome. Pacing Clin Electrophysiol. 2020;43(12):1521-8. doi: 10.1111/pace.14085.
    https://doi.org/10.1111/pace.14085...

  2. Asymptomatic family members with resting QTc <440 ms.

  3. Patients without a defined phenotype or genotype, for optimization of therapy.

  4. Assessment of nonspecific exertional symptoms.

ET may reveal chronotropic incompetence, wave alternans, ventricular tachyarrhythmias, or paradoxical QT interval response to effort and/or recovery (increasing instead of decreasing).5757 Patel TM, Kamande SM, Jarosz E, Bost JE, Hanumanthaiah S, Berul CI, et al. Treadmill Exercise Testing Improves Diagnostic Accuracy in Children with Concealed Congenital Long QT Syndrome. Pacing Clin Electrophysiol. 2020;43(12):1521-8. doi: 10.1111/pace.14085.
https://doi.org/10.1111/pace.14085...
,813813 Schnell F, Behar N, Carré F. Long-QT Syndrome and Competitive Sports. Arrhythm Electrophysiol Rev. 2018;7(3):187-92. doi: 10.15420/aer.2018.39.3.
https://doi.org/10.15420/aer.2018.39.3...
,815815 Yang Y, Lv TT, Li SY, Liu P, Gao QG, Zhang P. Utility of Provocative Testing in the Diagnosis and Genotyping of Congenital Long QT Syndrome: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2022;11(14):e025246. doi: 10.1161/JAHA.122.025246.
https://doi.org/10.1161/JAHA.122.025246...

Assessment of QTc in the recovery phase has been recommended due to the difficulty in measuring the QT interval at high HR. QTc is measured at 3-4 minutes of recovery; prolongation ≥30 ms is considered significant.109109 Takahashi K, Nabeshima T, Nakayashiro M, Ganaha H. QT Dynamics During Exercise in Asymptomatic Children with Long QT Syndrome Type 3. Pediatr Cardiol. 2016;37(5):860-7. doi: 10.1007/s00246-016-1360-4.
https://doi.org/10.1007/s00246-016-1360-...
,542542 Horner JM, Horner MM, Ackerman MJ. The Diagnostic Utility of Recovery Phase Qtc During Treadmill Exercise Stress Testing in the Evaluation of Long QT Syndrome. Heart Rhythm. 2011;8(11):1698-704. doi: 10.1016/j.hrthm.2011.05.018.
https://doi.org/10.1016/j.hrthm.2011.05....
,548548 Aziz PF, Wieand TS, Ganley J, Henderson J, Patel AR, Iyer VR, et al. Genotype- and Mutation Site-Specific QT Adaptation During Exercise, Recovery, and Postural Changes in Children with Long-QT Syndrome. Circ Arrhythm Electrophysiol. 2011;4(6):867-73. doi: 10.1161/CIRCEP.111.963330.
https://doi.org/10.1161/CIRCEP.111.96333...
,816816 Schwartz PJ, Crotti L. QTc Behavior During Exercise and Genetic Testing for the Long-QT Syndrome. Circulation. 2011;124(20):2181-4. doi: 10.1161/CIRCULATIONAHA.111.062182.
https://doi.org/10.1161/CIRCULATIONAHA.1...

When evaluating efficacy of beta-blocker therapy in patients with LQTS, the objective is to ascertain whether there is a reduction in the chronotropic response and/or suppression of arrhythmias at maximum exertion.817817 Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, et al. Congenital Long QT Syndrome. JACC Clin Electrophysiol. 2022;8(5):687-706. doi: 10.1016/j.jacep.2022.02.017.
https://doi.org/10.1016/j.jacep.2022.02....
819819 Han L, Liu F, Li Q, Qing T, Zhai Z, Xia Z, et al. The Efficacy of Beta-Blockers in Patients with Long QT Syndrome 1-3 According to Individuals‘ Gender, Age, and QTc Intervals: A Network Meta-analysis. Front Pharmacol. 2020;11:579525. doi: 10.3389/fphar.2020.579525.
https://doi.org/10.3389/fphar.2020.57952...

3.2. Brugada Syndrome

Brugada syndrome (BrS) is an autosomal dominant hereditary channelopathy caused by a defect in sodium channels in the right ventricular epicardium. Mutations in the SCN5A gene are the culprit in most cases. The ECG shows a typical pattern of ST-segment elevation in the right precordial leads (V1-V3), with an increased risk of sudden death. The prevalence of BrS in the pediatric population is low (≈1 in 20,000), but the majority of cases are asymptomatic. Some apparently healthy patients present early expression of the disease with initial manifestations such as SND and atrial arrhythmias. BrS can also manifest with syncope, potentially lethal ventricular arrhythmias (polymorphic VT/VF), and cardiac arrest (often during sleep, and/or triggered by hyperthermia and/or medications).820820 Corcia MCG, Asmundis C, Chierchia GB, Brugada P. Brugada Syndrome in the Paediatric Population: A Comprehensive Approach to Clinical Manifestations, Diagnosis, and Management. Cardiol Young. 2016;26(6):1044-55. doi: 10.1017/S1047951116000548.
https://doi.org/10.1017/S104795111600054...
,821821 Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol. 2022;8(3):386-405. doi: 10.1016/j.jacep.2021.12.001.
https://doi.org/10.1016/j.jacep.2021.12....

Risk factors for recurrent arrhythmic events include: previous history of aborted sudden death or syncope; sinus node dysfunction; atrial arrhythmias; intraventricular conduction disorder; large S wave on ECG lead I; and presence of SCN5A mutations in adolescents.822822 Michowitz Y, Milman A, Andorin A, Sarquella-Brugada G, Corcia MCG, Gourraud JB, et al. Characterization and Management of Arrhythmic Events in Young Patients with Brugada Syndrome. J Am Coll Cardiol. 2019;73(14):1756-65. doi: 10.1016/j.jacc.2019.01.048.
https://doi.org/10.1016/j.jacc.2019.01.0...
Some medications and substances are potentially triggering; these include antiarrhythmics, sodium channel blockers, tricyclic antidepressants, local anesthetics, alcohol, and cocaine. A full list is available online at <www.brugadadrugs.org>.823823 Behere SP, Weindling SN. Brugada Syndrome in Children - Stepping Into Unchartered Territory. Ann Pediatr Cardiol. 2017;10(3):248-258. doi: 10.4103/apc.APC_49_17.
https://doi.org/10.4103/apc.APC_49_17...
,824824 Peltenburg PJ, Hoedemaekers YM, Clur SAB, Blom NA, Blank AC, Boesaard EP, et al. Screening, Diagnosis and Follow-Up of Brugada Syndrome in Children: A Dutch Expert Consensus Statement. Neth Heart J. 2023;31(4):133-7. doi: 10.1007/s12471-022-01723-6.
https://doi.org/10.1007/s12471-022-01723...

BrS should be suspected when the resting ECG observed in leads V1 and V2:308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...
,825825 Crosson JE, Nies M. Brugada Syndrome in Children. Expert Rev Cardiovasc Ther. 2015;13(2):173-81. doi: 10.1586/14779072.2015.999765.
https://doi.org/10.1586/14779072.2015.99...

  • Type 1: ST-segment elevation ≥2 mm followed by a downsloping, negative T wave ("coved" ST elevation or "shark fin" sign). These findings are diagnostic for type 1 Brugada syndrome.

  • Types 2 and 3: ST-segment elevation with an upsloping, positive T wave ("saddleback" ST segment), 2 mm and <2 mm respectively, suggest the presence of channelopathy. However, additional investigation is required.

Another diagnostic criterion for BrS is a Shanghai score ≥3.5, as long as one or more ECG criteria are met.824824 Peltenburg PJ, Hoedemaekers YM, Clur SAB, Blom NA, Blank AC, Boesaard EP, et al. Screening, Diagnosis and Follow-Up of Brugada Syndrome in Children: A Dutch Expert Consensus Statement. Neth Heart J. 2023;31(4):133-7. doi: 10.1007/s12471-022-01723-6.
https://doi.org/10.1007/s12471-022-01723...
,826826 Kawada S, Morita H, Antzelevitch C, Morimoto Y, Nakagawa K, Watanabe A, et al. Shanghai Score System for Diagnosis of Brugada Syndrome: Validation of the Score System and System and Reclassification of the Patients. JACC Clin Electrophysiol. 2018;4(6):724-30. doi: 10.1016/j.jacep.2018.02.009.
https://doi.org/10.1016/j.jacep.2018.02....

Particular features of ET/CPET in BrS:

  • As early as age 6-7, ET is indicated for detection of chronotropic incompetence, which is considered a manifestation of sinus node dysfunction. Chronotropic incompetence occurs in ≈ 7% of patients. Approximately 30% of symptomatic children have a history of AFib and SND.820820 Corcia MCG, Asmundis C, Chierchia GB, Brugada P. Brugada Syndrome in the Paediatric Population: A Comprehensive Approach to Clinical Manifestations, Diagnosis, and Management. Cardiol Young. 2016;26(6):1044-55. doi: 10.1017/S1047951116000548.
    https://doi.org/10.1017/S104795111600054...
    ,827827 Conte G, Dewals W, Sieira J, de Asmundis C, Ciconte G, Chierchia GB, et al. Drug-Induced Brugada Syndrome in Children: Clinical Features, Device-Based Management, and Long-Term Follow-Up. J Am Coll Cardiol. 2014;63(21):2272-9. doi: 10.1016/j.jacc.2014.02.574.
    https://doi.org/10.1016/j.jacc.2014.02.5...

  • Attenuation of ST-segment elevation is generally observed at peak exertion, followed by reappearance during the recovery phase.126126 Masrur S, Memon S, Thompson PD. Brugada Syndrome, Exercise, and Exercise Testing. Clin Cardiol. 2015;38(5):323-6. doi: 10.1002/clc.22386.
    https://doi.org/10.1002/clc.22386...
    ,525525 Amin AS, Groot EA, Ruijter JM, Wilde AA, Tan HL. Exercise-Induced ECG Changes in Brugada Syndrome. Circ Arrhythm Electrophysiol. 2009;2(5):531-9. doi: 10.1161/CIRCEP.109.862441.
    https://doi.org/10.1161/CIRCEP.109.86244...
    ,526526 Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-Segment Elevation During Recovery from Exercise Predicts Cardiac Events in Patients with Brugada Syndrome. J Am Coll Cardiol. 2010;56(19):1576-84. doi: 10.1016/j.jacc.2010.06.033.
    https://doi.org/10.1016/j.jacc.2010.06.0...

  • Some patients (usually with SCN5A mutation) experience an increase in ST-segment elevation (≥0.05 mV) at peak exertion and, especially, in the initial phase of recovery, associated with increased parasympathetic tone. This phenomenon is considered a risk factor for cardiac events, especially in asymptomatic patients and in those with a history of syncope.126126 Masrur S, Memon S, Thompson PD. Brugada Syndrome, Exercise, and Exercise Testing. Clin Cardiol. 2015;38(5):323-6. doi: 10.1002/clc.22386.
    https://doi.org/10.1002/clc.22386...
    ,526526 Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-Segment Elevation During Recovery from Exercise Predicts Cardiac Events in Patients with Brugada Syndrome. J Am Coll Cardiol. 2010;56(19):1576-84. doi: 10.1016/j.jacc.2010.06.033.
    https://doi.org/10.1016/j.jacc.2010.06.0...
    ,828828 Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, et al. The Circadian Pattern of the Development of Ventricular Fibrillation in Patients with Brugada Syndrome. Eur Heart J. 1999;20(6):465-70. doi: 10.1053/euhj.1998.1332.
    https://doi.org/10.1053/euhj.1998.1332...

  • There may be increased density and complexity of ventricular arrhythmias as the test progresses.

  • ET/CPET can be considered as part of ongoing follow-up of children with BrS to evaluate symptoms such as syncope and palpitations.824824 Peltenburg PJ, Hoedemaekers YM, Clur SAB, Blom NA, Blank AC, Boesaard EP, et al. Screening, Diagnosis and Follow-Up of Brugada Syndrome in Children: A Dutch Expert Consensus Statement. Neth Heart J. 2023;31(4):133-7. doi: 10.1007/s12471-022-01723-6.
    https://doi.org/10.1007/s12471-022-01723...

3.3. Catecholaminergic Polymorphic Ventricular Tachycardia

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a hereditary arrhythmic syndrome (channelopathy) characterized by bidirectional ventricular tachycardia, polymorphic VT, and/or ventricular fibrillation, triggered by adrenergic stimuli (physical exertion or emotional stress). CPVT normally occurs in structurally and functionally normal hearts.829829 Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.09.
https://doi.org/10.15420/aer.2022.09...
Its prevalence is ≈1-5,000/10,000 persons; ≈30% of cases are familial. Its mode of inheritance may be autosomal dominant (mutations in the RyR2 gene) or, more rarely, recessive (mainly mutations in the CASQ2, TRDN, and CALM1-3 genes). The average age at onset is ≈10 years. The most common symptoms are dizziness, palpitations, and pre-syncope, which can progress to syncope, hypotonia, seizures, and sudden cardiac death. Sudden death occurs in 30-50% of patients between the ages of 20 and 30. Up to 30% of patients with CPVT have a family history of exercise-induced syncope, seizure, or sudden death.830830 Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, et al. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci. 2021;22(17):9293. doi: 10.3390/ijms22179293.
https://doi.org/10.3390/ijms22179293...
832832 Kim CW, Aronow WS, Dutta T, Frenkel D, Frishman WH. Catecholaminergic Polymorphic Ventricular Tachycardia. Cardiol Rev. 2020;28(6):325-31. doi: 10.1097/CRD.0000000000000302.
https://doi.org/10.1097/CRD.000000000000...

ET/CPET is the most relevant diagnostic tool in suspected CPVT, playing a key role in directing therapy of confirmed cases, including clearance for physical exercise.

The pre-test physical examination is usually normal. Suspicion is warranted in patients with a previous history of syncopal episodes that were characterized as vasovagal event or neurological in nature (usually ascribed to epilepsy), considering that in these cases there may simply have been a delay in establishing the diagnosis of CPVT.829829 Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.09.
https://doi.org/10.15420/aer.2022.09...

The resting ECG generally shows sinus rhythm with normal HR or sinus bradycardia (≈20% of patients), without atrioventricular or intraventricular conduction abnormalities, and a normal QTc. Some patients may exhibit prominent U waves and supraventricular arrhythmias with sinus node dysfunction.308308 Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
https://doi.org/10.36660/abc.20220623...
,833833 Miyata K, Ohno S, Itoh H, Horie M. Bradycardia Is a Specific Phenotype of Catecholaminergic Polymorphic Ventricular Tachycardia Induced by RYR2 Mutations. Intern Med. 2018;57(13):1813-7. doi: 10.2169/internalmedicine.9843-17.
https://doi.org/10.2169/internalmedicine...
,834834 Aizawa Y, Komura S, Okada S, Chinushi M, Aizawa Y, Morita H, et al. Distinct U Wave Changes in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Int Heart J. 2006;47(3):381-9. doi: 10.1536/ihj.47.381.
https://doi.org/10.1536/ihj.47.381...

Particular features of ET/CPET in CPVT:

  • If suspected, perform the test in a hospital setting, with special precautions (see Chart 1 for contraindications) due to the possibility of exercise-induced complications.835835 Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, et al. 2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of their Families. Heart Rhythm. 2021;18(1):e1-e50. doi: 10.1016/j.hrthm.2020.10.010.
    https://doi.org/10.1016/j.hrthm.2020.10....

  • The development of typical exercise-induced symptoms (dizziness, palpitations, pre-syncope, syncope, and sudden cardiac death) is generally associated with complex ventricular arrhythmias.

  • Initially, isolated PVCs occur. As the test progresses, PVCs evolve into ventricular bigeminy, followed by polymorphic complexes. If the test is stopped at this stage, the ventricular complexes are likely to disappear gradually. This arrhythmia may be the only abnormality observed in some patients with mild CPVT. Characteristically, the HR at which PVCs occur is between 100 and 130 bpm, and the arrhythmia is typically reproducible.829829 Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.09.
    https://doi.org/10.15420/aer.2022.09...

  • Certain characteristics of PVCs can potentially help distinguish CPVT from ventricular arrhythmias in healthy controls: higher density of PVCs; first onset of PVCs with intense exertion (≥10 METs); PVCs with an LBBB pattern and inferior axis; bigeminy or trigeminy at peak exertion; duration of QRS complexes >120ms; coupling interval >400 ms; disappearance of PVCs in the first minute of recovery.836836 Inoue YY, Aiba T, Kawata H, Sakaguchi T, Mitsuma W, Morita H, et al. Different Responses to Exercise Between Andersen-Tawil Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia. Europace. 2018;20(10):1675-82. doi: 10.1093/europace/eux351.
    https://doi.org/10.1093/europace/eux351...
    ,837837 Blich M, Marai I, Suleiman M, Lorber A, Gepstein L, Boulous M, et al. Electrocardiographic Comparison of Ventricular Premature Complexes During Exercise Test in Patients with CPVT and Healthy Subjects. Pacing Clin Electrophysiol. 2015;38(3):398-402. doi: 10.1111/pace.12574.
    https://doi.org/10.1111/pace.12574...

  • The complexity and density of ventricular arrhythmia can worsen as exertion progresses, with VT generally developing when the HR reaches ≈192 bpm. The occurrence of exercise-induced bidirectional VT, with beat-to-beat 180° rotation of the QRS axis (vector alternans), is highly characteristic of CPVT. Development of polymorphic VT followed by ventricular fibrillation occurs during ≈7% of exercise tests.838838 Sumitomo N, Harada K, Nagashima M, Yasuda T, Nakamura Y, Aragaki Y, et al. Catecholaminergic Polymorphic Ventricular Tachycardia: Electrocardiographic Characteristics and Optimal Therapeutic Strategies to Prevent Sudden Death. Heart. 2003;89(1):66-70. doi: 10.1136/heart.89.1.66.
    https://doi.org/10.1136/heart.89.1.66...

  • Patients with CPVT and chronotropic incompetence present ventricular arrhythmias of greater density and complexity and experience syncope and/or cardiac arrest more frequently compared to those with a normal chronotropic response.408408 Franciosi S, Roston TM, Perry FKG, Knollmann BC, Kannankeril PJ, Sanatani S. Chronotropic Incompetence as a Risk Predictor in Children and Young Adults with Catecholaminergic Polymorphic Ventricular Tachycardia. J Cardiovasc Electrophysiol. 2019;30(10):1923-9. doi: 10.1111/jce.14043.
    https://doi.org/10.1111/jce.14043...

  • Some patients may present with exercise-induced supraventricular tachyarrhythmias (including AFib), but these are nondiagnostic of CPVT.839839 Pflaumer A, Davis AM. Guidelines for the Diagnosis and Management of Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2012;21(2):96-100. doi: 10.1016/j.hlc.2011.10.008.
    https://doi.org/10.1016/j.hlc.2011.10.00...

  • Bidirectional or polymorphic VT during ET/CPET is highly predictive of CPVT (97% specificity), and has a significant association with genetic mutations. However, sensitivity is usually ≈50%, which means diagnosis of CPVT cannot be ruled out with a single normal exercise test, especially in early childhood.112112 Giudicessi JR, Ackerman MJ. Exercise Testing Oversights Underlie Missed and Delayed Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia in Young Sudden Cardiac Arrest Survivors. Heart Rhythm. 2019;16(8):1232-9. doi: 10.1016/j.hrthm.2019.02.012.
    https://doi.org/10.1016/j.hrthm.2019.02....
    ,840840 Marjamaa A, Hiippala A, Arrhenius B, Lahtinen AM, Kontula K, Toivonen L, et al. Intravenous Epinephrine Infusion Test in Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia. J Cardiovasc Electrophysiol. 2012;23(2):194-9. doi: 10.1111/j.1540-8167.2011.02188.x.
    https://doi.org/10.1111/j.1540-8167.2011...

  • In patients with suspected CPVT and previous normal ET/CPET, modified "sprint" (high work load from the very start of the test, performed on a cycle ergometer, lasting 3 to 6 minutes) or "burst" (high-intensity exercise from the very start of the test, equivalent to the maximum load achieved in the previous ET) protocols can be used in an attempt to uncover the syndrome. Only 28% of carriers of the pathogenic RyR2 variant exhibit abnormalities during ET with a standard protocol. With modified protocols, 83% of tests are abnormal.113113 Roston TM, Kallas D, Davies B, Franciosi S, Souza AM, Laksman ZW, et al. Burst Exercise Testing Can Unmask Arrhythmias in Patients with Incompletely Penetrant Catecholaminergic Polymorphic Ventricular Tachycardia. JACC Clin Electrophysiol. 2021;7(4):437-41. doi: 10.1016/j.jacep.2021.02.013.
    https://doi.org/10.1016/j.jacep.2021.02....
    ,839839 Pflaumer A, Davis AM. Guidelines for the Diagnosis and Management of Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2012;21(2):96-100. doi: 10.1016/j.hlc.2011.10.008.
    https://doi.org/10.1016/j.hlc.2011.10.00...
    ,841841 Wangüemert F, Calero CB, Pérez C, Campuzano O, Beltran-Alvarez P, Scornik FS, et al. Clinical and Molecular Characterization of a Cardiac Ryanodine Receptor Founder Mutation Causing Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Rhythm. 2015;12(7):1636-43. doi: 10.1016/j.hrthm.2015.03.033.
    https://doi.org/10.1016/j.hrthm.2015.03....

  • ET is essential for screening of first-degree (and, if possible, second-degree) relatives of persons with confirmed CPVT, due to the severity of clinical manifestations, unfavorable prognosis, and possibility of early identification of asymptomatic carriers who would benefit from specific therapy. Screening is generally done with an attenuated protocol. It is important to stress that some patients with CPVT may have a normal test in early childhood and only show abnormalities on subsequent ETs. Therefore, regular monitoring and serial tests are advised.8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
    https://doi.org/10.5935/abc.20160103...
    ,842842 Imberti JF, Underwood K, Mazzanti A, Priori SG. Clinical Challenges in Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2016;25(8):777-83. doi: 10.1016/j.hlc.2016.01.012.
    https://doi.org/10.1016/j.hlc.2016.01.01...
    844844 Shimamoto K, Ohno S, Kato K, Takayama K, Sonoda K, Fukuyama M, et al. Impact of Cascade Screening for Catecholaminergic Polymorphic Ventricular Tachycardia Type 1. Heart. 2022;108(11):840-7. doi: 10.1136/heartjnl-2021-320220.
    https://doi.org/10.1136/heartjnl-2021-32...

  • Serial monitoring with ET/CPET is mandatory to evaluate the effectiveness of established therapy in controlling ventricular arrhythmias and maintaining HR at levels below the triggering threshold. Tests should always be carried out while patients are on their usual medication (including beta-blockers). In patients who continue to show exercise-induced ventricular arrhythmias in doublets, NSVT, or polymorphic or bidirectional VT, the possibility of additional therapy (with flecainide) should be considered. If exercise-induced ventricular arrhythmia and/or symptoms persist, ICD placement with or without left cardiac sympathetic denervation should be considered.842842 Imberti JF, Underwood K, Mazzanti A, Priori SG. Clinical Challenges in Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2016;25(8):777-83. doi: 10.1016/j.hlc.2016.01.012.
    https://doi.org/10.1016/j.hlc.2016.01.01...
    ,845845 Roston TM, Jones K, Hawkins NM, Bos JM, Schwartz PJ, Perry F, et al. Implantable Cardioverter-Defibrillator Use in Catecholaminergic Polymorphic Ventricular Tachycardia: A Systematic Review. Heart Rhythm. 2018;15(12):1791-9. doi: 10.1016/j.hrthm.2018.06.046.
    https://doi.org/10.1016/j.hrthm.2018.06....
    847847 Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP, et al. Catecholaminergic Polymorphic Ventricular Tachycardia in Children: Analysis of Therapeutic Strategies and Outcomes from an International Multicenter Registry. Circ Arrhythm Electrophysiol. 2015;8(3):633-42. doi: 10.1161/CIRCEP.114.002217.
    https://doi.org/10.1161/CIRCEP.114.00221...

  • ET must also be carried out as part of preparticipation assessment to clear patients for leisure exercise. Patients who have been asymptomatic for a minimum period of 3 months (including patients with ICDs in place), with no evidence of ventricular ectopics or arrhythmias on ET, and stable on appropriate drug therapy may be allowed to engage in leisure exercise (low to moderate intensity). During physical exercise, patients must remain below the HR threshold known to trigger arrhythmias. The need to avoid dehydration, electrolyte disturbances, and hyperthermia must also be taken into account.829829 Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.09.
    https://doi.org/10.15420/aer.2022.09...
    ,848848 Heidbuchel H, Arbelo E, D’Ascenzi F, Borjesson M, Boveda S, Castelletti S, et al. Recommendations for Participation in Leisure-Time Physical Activity and Competitive Sports of Patients with Arrhythmias and Potentially Arrhythmogenic Conditions. Part 2: Ventricular Arrhythmias, Channelopathies, and Implantable Defibrillators. Europace. 2021;23(1):147-8. doi: 10.1093/europace/euaa106.
    https://doi.org/10.1093/europace/euaa106...

3.4. Arrhythmogenic Ventricular Cardiomyopathy/Arrhythmogenic Right Ventricular Dysplasia

Arrhythmogenic ventricular cardiomyopathy (ACM) is a hereditary cardiomyopathy characterized by fibrofatty replacement of ventricular myocytes, resulting in electrical conduction abnormalities, cardiac dysfunction, HF, ventricular arrhythmias, and/or sudden death. Although it manifests predominantly in the RV (ARVC or ARVD), it is in fact a pancardiac disease. In adolescents who become symptomatic, biventricular involvement is most common. The prevalence in the overall population is ≈1:5,000, and males are affected at a ≈3:1 ratio. ACM represents one of the most common causes of juvenile sudden death, especially among athletes.849849 Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(7):784-804. doi: 10.1016/j.jacc.2018.05.065.
https://doi.org/10.1016/j.jacc.2018.05.0...
851851 Te Riele ASJM, James CA, Calkins H, Tsatsopoulou A. Arrhythmogenic Right Ventricular Cardiomyopathy in Pediatric Patients: An Important but Underrecognized Clinical Entity. Front Pediatr. 2021;9:750916. doi: 10.3389/fped.2021.750916.
https://doi.org/10.3389/fped.2021.750916...

In the pediatric population, the presentation of ACM varies with age, sex, and genetic inheritance. The most common manifestations are ventricular fibrillation/sudden cardiac death (SCD), which is generally the presenting manifestation of the disease in adolescents; complaints of palpitations and syncope; and HF, which is generally the first clinical manifestation in prepubertal children (≈37% have biventricular involvement) or at advanced stages of the disease (high prevalence).852852 Cicenia M, Drago F. Arrhythmogenic Cardiomyopathy: Diagnosis, Evolution, Risk Stratification and Pediatric Population-Where Are We? J Cardiovasc Dev Dis. 2022;9(4):98. doi: 10.3390/jcdd9040098.
https://doi.org/10.3390/jcdd9040098...
,853853 Surget E, Maltret A, Raimondi F, Fressart V, Bonnet D, Gandjbakhch E, et al. Clinical Presentation and Heart Failure in Children with Arrhythmogenic Cardiomyopathy. Circ Arrhythm Electrophysiol. 2022;15(2):e010346. doi: 10.1161/CIRCEP.121.010346.
https://doi.org/10.1161/CIRCEP.121.01034...

ARVC in child age ≤12 years is associated with unfavorable outcomes, with a high incidence of cardiac events including heart transplantation and severe ventricular arrhythmias. In young people, strenuous physical exercise (adrenergic stimulation) can act as a phenotypic modifier of ACM, becoming a trigger for malignant arrhythmias and SCD.854854 Smedsrud MK, Chivulescu M, Forså MI, Castrini I, Aabel EW, Rootwelt-Norberg C, et al. Highly Malignant Disease in Childhood-Onset Arrhythmogenic Right Ventricular Cardiomyopathy. Eur Heart J. 2022;43(45):4694-703. doi: 10.1093/eurheartj/ehac485.
https://doi.org/10.1093/eurheartj/ehac48...
,855855 James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, et al. Exercise Increases Age-Related Penetrance and Arrhythmic Risk in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy-Associated Desmosomal Mutation Carriers. J Am Coll Cardiol. 2013;62(14):1290-7. doi: 10.1016/j.jacc.2013.06.033.
https://doi.org/10.1016/j.jacc.2013.06.0...

In equivocal cases, the revised 2010 International Task Force diagnostic criteria and the so-called "Padua criteria" should be applied. In children, the 2010 International Task Force ECG criteria are less applicable, underestimating the actual occurrence of ACM. The Padua criteria, in turn, improve accuracy in children through the use of CMR, stratifying the disease into phenotypic variants (right dominant, left dominant, and biventricular).856856 Corrado D, Marra MP, Zorzi A, Beffagna G, Cipriani A, Lazzari M, et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int J Cardiol. 2020;319:106-14. doi: 10.1016/j.ijcard.2020.06.005.
https://doi.org/10.1016/j.ijcard.2020.06...
858858 Etoom Y, Govindapillai S, Hamilton R, Manlhiot C, Yoo SJ, Farhan M, et al. Importance of CMR Within the Task Force Criteria for the Diagnosis of ARVC in Children and Adolescents. J Am Coll Cardiol. 2015;65(10):987-95. doi: 10.1016/j.jacc.2014.12.041.
https://doi.org/10.1016/j.jacc.2014.12.0...

Particular features of ET/CPET in ACM:

  • Corrado et al. proposed an update to the Padua criteria to include ET as part of noninvasive clinical assessment, aiming to record the density and morphology of ventricular arrhythmias. If ventricular arrhythmia occurs during the test, the clinician should record its density, the morphology of ectopic QRS complexes, and behavior during each phase of the test (rest, exercise, and recovery).856856 Corrado D, Marra MP, Zorzi A, Beffagna G, Cipriani A, Lazzari M, et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int J Cardiol. 2020;319:106-14. doi: 10.1016/j.ijcard.2020.06.005.
    https://doi.org/10.1016/j.ijcard.2020.06...

  • Exercise-induced ventricular arrhythmias are relatively common, with monomorphic VT with LBBB pattern being considered typical of ARVC. However, the absence or suppression of ventricular arrhythmias on exertion does not exclude the diagnosis of ARVC.258258 Sequeira IB, Kirsh JA, Hamilton RM, Russell JL, Gross GJ. Utility of Exercise Testing in Children and Teenagers with Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol. 2009;104(3):411-3. doi: 10.1016/j.amjcard.2009.03.056.
    https://doi.org/10.1016/j.amjcard.2009.0...
    ,859859 Schmied C, Brunckhorst C, Duru F, Haegeli L. Exercise Testing for Risk Stratification of Ventricular Arrhythmias in the Athlete. Card Electrophysiol Clin 2013;5:53-64. doi: 10.1016/j.ccep.2012.11.003.
    https://doi.org/10.1016/j.ccep.2012.11.0...

  • Further indications: in the initial workup; to inform treatment decisions; for preparticipation assessment of adolescents wishing to engage in sports; to distinguish myocardial changes of ACM from those related to physiological remodeling in athletes; to inform exercise prescription or restriction in patients with a confirmed diagnosis; and for optimization of medical surveillance of asymptomatic carriers of ACM-causing genes.258258 Sequeira IB, Kirsh JA, Hamilton RM, Russell JL, Gross GJ. Utility of Exercise Testing in Children and Teenagers with Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol. 2009;104(3):411-3. doi: 10.1016/j.amjcard.2009.03.056.
    https://doi.org/10.1016/j.amjcard.2009.0...
    ,516516 Zaidi A, Sheikh N, Jongman JK, Gati S, Panoulas VF, Carr-White G, et al. Clinical Differentiation between Physiological Remodeling and Arrhythmogenic Right Ventricular Cardiomyopathy in Athletes with Marked Electrocardiographic Repolarization Anomalies. J Am Coll Cardiol. 2015;65(25):2702-11. doi: 10.1016/j.jacc.2015.04.035.
    https://doi.org/10.1016/j.jacc.2015.04.0...
    ,860860 Hamilton RM, Fidler L. Right Ventricular Cardiomyopathy in the Young: An Emerging Challenge. Heart Rhythm. 2009;6(4):571-5. doi: 10.1016/j.hrthm.2009.01.026.
    https://doi.org/10.1016/j.hrthm.2009.01....
    ,861861 Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J, et al. Exercise Testing in Asymptomatic Gene Carriers Exposes a Latent Electrical Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772-9. doi: 10.1016/j.jacc.2013.04.084.
    https://doi.org/10.1016/j.jacc.2013.04.0...

  • ET should be part of periodic assessment (every 6 months) of adolescents and young adults with a confirmed diagnosis who engage in low-to-moderate-intensity recreational sports/physical exercise, for assessment of functional capacity and risk stratification. Testing should not be carried out during the most symptomatic periods of the disease ("hot phases"). The presence of exercise-induced symptoms or arrhythmias should lead to conservative recommendations and greater restrictions on exertion activity.6262 Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Eur Heart J. 2021;42(1):17-96. doi: 10.1093/eurheartj/ehaa605.
    https://doi.org/10.1093/eurheartj/ehaa60...
    ,862862 Martínez-Solé J, Sabater-Molina M, Braza-Boïls A, Santos-Mateo JJ, Molina P, Martínez-Dolz L, et al. Facts and Gaps in Exercise Influence on Arrhythmogenic Cardiomyopathy: New Insights from a Meta-Analysis Approach. Front Cardiovasc Med. 2021;8:702560. doi: 10.3389/fcvm.2021.702560.
    https://doi.org/10.3389/fcvm.2021.702560...

  • In most patients, abnormalities are found on the resting ECG, which in many cases precede structural changes. Symptomatic patients generally have more markedly altered ECGs than asymptomatic patients. Most common ECG findings in patients aged >14 years: inverted T waves in the right precordial leads (V1-V3 or beyond) in the absence of RBBB, epsilon waves (between 7 and 30% of patients), and ventricular arrhythmias.863863 Landry CH, Fatah M, Connelly KA, Angaran P, Hamilton RM, Dorian P. Evaluating the 12-Lead Electrocardiogram for Diagnosing ARVC in Young Populations: Implications for Preparticipation Screening of Athletes. CJC Open. 2020;3(4):498-503. doi: 10.1016/j.cjco.2020.12.011.
    https://doi.org/10.1016/j.cjco.2020.12.0...
    ,864864 Miljoen H, Spera F, Van Kolen K, Saenen J, Claessen G, Huybrechts W, et al. Electrocardiographic Phenotype of Exercise-Induced Arrhythmogenic Cardiomyopathy: A Retrospective Observational Study. Front Cardiovasc Med. 2022;9:1052174. doi: 10.3389/fcvm.2022.1052174.
    https://doi.org/10.3389/fcvm.2022.105217...

  • Exercise intolerance is one of the manifestations of patients with HF, and ET is indicated to assess cardiorespiratory fitness and quantify the degree of impairment.865865 Scheel PJ 3rd, Florido R, Hsu S, Murray B, Tichnell C, James CA, et al. Safety and Utility of Cardiopulmonary Exercise Testing in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. J Am Heart Assoc. 2020;9(3):e013695. doi: 10.1161/JAHA.119.013695.
    https://doi.org/10.1161/JAHA.119.013695...

  • ET of adolescents and young adults with ARVC presented: effort-induced symptoms (limiting chest pain, severe dyspnea, pre-syncope and palpitations) in 11.4%; pseudonormalization of T waves in 40.0%; ISTE at 8.6%; increased density of ventricular ectopy in 31.4% and non-sustained VT in 11.4%.516516 Zaidi A, Sheikh N, Jongman JK, Gati S, Panoulas VF, Carr-White G, et al. Clinical Differentiation between Physiological Remodeling and Arrhythmogenic Right Ventricular Cardiomyopathy in Athletes with Marked Electrocardiographic Repolarization Anomalies. J Am Coll Cardiol. 2015;65(25):2702-11. doi: 10.1016/j.jacc.2015.04.035.
    https://doi.org/10.1016/j.jacc.2015.04.0...

  • In patients with exercise-induced palpitations and/or syncope and/or VT, diagnostic investigation for ACM should be pursued urgently.866866 Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm. 2019;16(11):e301-e372. doi: 10.1016/j.hrthm.2019.05.007.
    https://doi.org/10.1016/j.hrthm.2019.05....

  • Asymptomatic patients with mutations in the PKP2 gene and normal resting ECG may develop exercise-induced epsilon waves.861861 Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J, et al. Exercise Testing in Asymptomatic Gene Carriers Exposes a Latent Electrical Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772-9. doi: 10.1016/j.jacc.2013.04.084.
    https://doi.org/10.1016/j.jacc.2013.04.0...
    ,867867 Adler A, Perrin MJ, Spears D, Gollob MH. Epsilon Wave Uncovered by Exercise Test in a Patient with Desmoplakin-Positive Arrhythmogenic Right Ventricular Cardiomyopathy. Can J Cardiol. 2015;31(6):819.e1-2. doi: 10.1016/j.cjca.2015.01.025.
    https://doi.org/10.1016/j.cjca.2015.01.0...

  • Exercised-induced ventricular depolarization changes are common in asymptomatic carriers of ACM-associated genes: emergence of epsilon waves occurs in 14%; increased duration of terminal activation of QRS complexes (≥55ms) in 32%; and exercise-induced ventricular arrhythmias with a superior QRS axis in 57%.861861 Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J, et al. Exercise Testing in Asymptomatic Gene Carriers Exposes a Latent Electrical Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772-9. doi: 10.1016/j.jacc.2013.04.084.
    https://doi.org/10.1016/j.jacc.2013.04.0...

  • CPET is useful in children and adolescents who develop HF (generally due to biventricular involvement) for prognostic stratification, optimization of therapy, and selection of patients for advanced HF therapies (HTx or ventricular assist devices).852852 Cicenia M, Drago F. Arrhythmogenic Cardiomyopathy: Diagnosis, Evolution, Risk Stratification and Pediatric Population-Where Are We? J Cardiovasc Dev Dis. 2022;9(4):98. doi: 10.3390/jcdd9040098.
    https://doi.org/10.3390/jcdd9040098...
    ,868868 Chungsomprasong P, Hamilton R, Luining W, Fatah M, Yoo SJ, Grosse-Wortmann L. Left Ventricular Function in Children and Adolescents with Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol. 2017;119(5):778-84. doi: 10.1016/j.amjcard.2016.11.020.
    https://doi.org/10.1016/j.amjcard.2016.1...

3.5. Complete Heart Block (Congenital and Childhood)

Complete atrioventricular block (or third-degree AV block) is defined as congenital (CCAVB) if diagnosed in utero, at birth, or within the first month of life, whereas childhood AV block is diagnosed between the first month and 18th year of life. Acquired complete heart block results from an acute insult, reversible or otherwise. The prevalence of CCAVB is 1 in 15,000 to 20,000 live births (60% are females), with cardiac malformations seen in ≈25% to 50% of cases.107107 Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
https://doi.org/10.1007/s00431-016-2748-...
,869869 Manolis AA, Manolis TA, Melita H, Manolis AS. Congenital Heart Block: Pace Earlier (Childhood) than Later (Adulthood). Trends Cardiovasc Med. 2020;30(5):275-86. doi: 10.1016/j.tcm.2019.06.006.
https://doi.org/10.1016/j.tcm.2019.06.00...

More than half of CCAVB cases is immune-mediated, caused by autoantibodies that, in susceptible fetuses, damage cardiomyocytes and AV node conduction tissue. Pregnancies may be asymptomatic and ≈⅓ had a previous diagnosis of rheumatic disease (mainly SLE and rheumatoid arthritis). The mother may be asymptomatic; approximately one-third have a preexisting diagnosis of rheumatic disease (mainly SLE and rheumatoid arthritis). The recurrence rate in subsequent pregnancies is 12 to 25%. CCAVB is associated with a mortality rate of ≈16 to 30% (predominantly in utero and in the first months of life) and development of dilated cardiomyopathy (in 5 to 30% of cases).107107 Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
https://doi.org/10.1007/s00431-016-2748-...
,870870 Jaeggi ET, Hamilton RM, Silverman ED, Zamora SA, Hornberger LK. Outcome of Children with Fetal, Neonatal or Childhood Diagnosis of Isolated Congenital Atrioventricular Block. A Single Institution's Experience of 30 Years. J Am Coll Cardiol. 2002;39(1):130-7. doi: 10.1016/s0735-1097(01)01697-7.
https://doi.org/10.1016/s0735-1097(01)01...
,871871 Moak JP, Barron KS, Hougen TJ, Wiles HB, Balaji S, Sreeram N, et al. Congenital Heart Block: Development of Late-Onset Cardiomyopathy, a Previously Underappreciated Sequela. J Am Coll Cardiol. 2001;37(1):238-42. doi: 10.1016/s0735-1097(00)01048-2.
https://doi.org/10.1016/s0735-1097(00)01...

Childhood complete AV block generally results from previously undiagnosed CCAVB, acquired AV block, or hereditary progressive cardiac conduction diseases (associated with mutations in the SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17 genes); some cases are idiopathic. In most cases, it is not associated with structural heart disease or autoimmunity.583583 Baruteau AE, Probst V, Abriel H. Inherited Progressive Cardiac Conduction Disorders. Curr Opin Cardiol. 2015;30(1):33-9. doi: 10.1097/HCO.0000000000000134.
https://doi.org/10.1097/HCO.000000000000...

Patients with isolated CCAVB (i.e. with no associated cardiac malformation) require close clinical monitoring. They are initially asymptomatic but usually progress to dilated cardiomyopathy due to ventricular dysfunction secondary to bradycardia, which is the leading cause of morbidity and mortality. Significant bradycardia and/or Stokes-Adams attacks are the main indications for pacemaker (PM) implantation.872872 Sülü A, Kafalı HC, Kamalı H, Genç SB, Onan IS, Haydin S, et al. Clinical Characteristics and Mid-term Follow-up in Children with Isolated Complete Atrioventricular Block. Anatol J Cardiol. 2023;27(2):106-12. doi: 10.14744/AnatolJCardiol.2022.2235.
https://doi.org/10.14744/AnatolJCardiol....

Acquired complete heart block generally results from: iatrogenic trauma, whether surgical (occurring in 3 to 8% of patients with repaired CHD) or transcatheter; acute or chronic infectious processes; myocarditis; acute rheumatic carditis; acute rheumatic fever; Chagas disease; metabolic disorders (hypothyroidism); infiltrative processes; or a pathological neurocardiogenic mechanism. Although it is a rare and potentially transient finding, ET/CPET is useful for risk stratification and to inform indications for pacing.107107 Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
https://doi.org/10.1007/s00431-016-2748-...

In patients with complete AV block, ET is indicated to help document symptoms, assess increased ventricular escape response, ascertain whether ectopy is present, and assess the hemodynamic repercussions of the block.114114 Teixeira RA, Fagundes AA, Baggio JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, et al. Diretriz Brasileira de Dispositivos Cardíacos Eletrônicos Implantáveis – 2023. Arq Bras Cardiol 2023;120:e20220892. doi: 10.36660/abc.20220892.
https://doi.org/10.36660/abc.20220892...
,554554 Karpawich PP, Gillette PC, Garson A Jr, Hesslein PS, Porter CB, McNamara DG. Congenital Complete Atrioventricular Block: Clinical and Electrophysiologic Predictors of Need for Pacemaker Insertion. Am J Cardiol. 1981;48(6):1098-102. doi: 10.1016/0002-9149(81)90326-x.
https://doi.org/10.1016/0002-9149(81)903...

Particular aspects of ET in complete heart block:

  • On resting ECG, in complete heart block of supra-Hisian origin, a ventricular escape pattern of QRS complexes with normal duration is observed (in acquired cases, it is similar to that seen on pre-block ECGs), in infra-Hisian blocks, the QRS complexes are wide. QTi prolongation in patients with CCAVB is generally a phenotypic manifestation of latent congenital LQTS, and constitutes a risk factor for syncope and/or sudden death.115115 Bordachar P, Zachary W, Ploux S, Labrousse L, Haissaguerre M, Thambo JB. Pathophysiology, Clinical Course, and Management of Congenital Complete Atrioventricular Block. Heart Rhythm. 2013;10(5):760-6. doi: 10.1016/j.hrthm.2012.12.030.
    https://doi.org/10.1016/j.hrthm.2012.12....
    ,873873 Sumiyoshi M, Nakata Y, Yasuda M, Tokano T, Ogura S, Nakazato Y, et al. Clinical and Electrophysiologic Features of Exercise-Induced Atrioventricular Block. Am Heart J. 1996;132(6):1277-81. doi: 10.1016/s0002-8703(96)90476-7.
    https://doi.org/10.1016/s0002-8703(96)90...

  • The natural history of congenital complete heart block consists of a progressive decline in ventricular rates throughout life. On resting ECG, between the ages of 6 and 10 years, the average HR is 50 bpm; between 16 and 20 years, 45 bpm.556556 Michaëlsson M, Jonzon A, Riesenfeld T. Isolated Congenital Complete Atrioventricular Block in Adult Life. A Prospective Study. Circulation. 1995;92(3):442-9. doi: 10.1161/01.cir.92.3.442.
    https://doi.org/10.1161/01.cir.92.3.442...

  • Cardiorespiratory fitness provides relevant information about health status and the ability to perform age-appropriate physical activities. Impaired CVF, with or without stress-induced symptoms, is one of the criteria for PM implantation.

  • Key exercise-induced symptoms: exercise intolerance, dyspnea, pre-syncope, syncope, Stokes-Adams attacks (especially if the QTi is prolonged).556556 Michaëlsson M, Jonzon A, Riesenfeld T. Isolated Congenital Complete Atrioventricular Block in Adult Life. A Prospective Study. Circulation. 1995;92(3):442-9. doi: 10.1161/01.cir.92.3.442.
    https://doi.org/10.1161/01.cir.92.3.442...
    ,874874 Fischbach PS, Frias PA, Strieper MJ, Campbell RM. Natural History and Current Therapy for Complete Heart Block in Children and Patients with Congenital Heart Disease. Congenit Heart Dis. 2007;2(4):224-34. doi: 10.1111/j.1747-0803.2007.00106.x.
    https://doi.org/10.1111/j.1747-0803.2007...

  • The use of VO2max and HRmax prediction equations is not recommended.

  • The increase in sympathetic activity without a corresponding effective increase in HR due to escape rhythm can result in complex ventricular arrhythmias and serious complications, especially on a background of CHD or HF. Chronotropic reserve <50 bpm, whether with or without reduced functional capacity (<7 METs), is associated with poor prognosis and need for PM implantation. Exercise-induced ventricular arrhythmia (EIVA) is common (50-70% of patients); its density and complexity are related to the duration of the QRS complexes and increasing age (independent of the HR response to exertion). Complete heart block located within the His-Purkinje system is associated with the occurrence of exercise-induced ventricular ectopics, with an increased risk of sudden death.115115 Bordachar P, Zachary W, Ploux S, Labrousse L, Haissaguerre M, Thambo JB. Pathophysiology, Clinical Course, and Management of Congenital Complete Atrioventricular Block. Heart Rhythm. 2013;10(5):760-6. doi: 10.1016/j.hrthm.2012.12.030.
    https://doi.org/10.1016/j.hrthm.2012.12....
    ,555555 Reybrouck T, Eynde BV, Dumoulin M, Van der Hauwaert LG. Cardiorespiratory Response to Exercise in Congenital Complete Atrioventricular Block. Am J Cardiol. 1989;64(14):896-9. doi: 10.1016/0002-9149(89)90838-2.
    https://doi.org/10.1016/0002-9149(89)908...
    ,557557 Winkler RB, Freed MD, Nadas AS. Exercise-Induced Ventricular Ectopy in Children and Young Adults with Complete Heart Block. Am Heart J. 1980;99(1):87-92. doi: 10.1016/0002-8703(80)90317-8.
    https://doi.org/10.1016/0002-8703(80)903...

  • Fatigue, dyspnea, dizziness, and exercise-induced ventricular ectopy accounted for approximately 26.5% of pacemaker placements. In asymptomatic patients, other indications were pronounced, persistent bradycardia (including on exertion) and/or prolonged QTc.107107 Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
    https://doi.org/10.1007/s00431-016-2748-...
    ,115115 Bordachar P, Zachary W, Ploux S, Labrousse L, Haissaguerre M, Thambo JB. Pathophysiology, Clinical Course, and Management of Congenital Complete Atrioventricular Block. Heart Rhythm. 2013;10(5):760-6. doi: 10.1016/j.hrthm.2012.12.030.
    https://doi.org/10.1016/j.hrthm.2012.12....

Particular features seen in ET/CPET after pacemaker implantation for complete heart block:

  • The ET allows investigation of exercise-induced symptoms, assessment of cardiorespiratory fitness, assessment of atrial rate response, verification of effectiveness of pacemaker programming (rate response), and assessment of potential exercise-induced pacemaker failure; it also helps inform the decision to upgrade the pacemaker (dual-chamber/transvenous).872872 Sülü A, Kafalı HC, Kamalı H, Genç SB, Onan IS, Haydin S, et al. Clinical Characteristics and Mid-term Follow-up in Children with Isolated Complete Atrioventricular Block. Anatol J Cardiol. 2023;27(2):106-12. doi: 10.14744/AnatolJCardiol.2022.2235.
    https://doi.org/10.14744/AnatolJCardiol....
    ,875875 Chandler SF, Fynn-Thompson F, Mah DY. Role of Cardiac Pacing in Congenital Complete Heart Block. Expert Rev Cardiovasc Ther. 2017;15(11):853-61. doi: 10.1080/14779072.2017.1376655.
    https://doi.org/10.1080/14779072.2017.13...
    ,876876 Motonaga KS, Punn R, Axelrod DM, Ceresnak SR, Hanisch D, Kazmucha JA, et al. Diminished Exercise Capacity and Chronotropic Incompetence in Pediatric Patients with Congenital Complete Heart Block and Chronic Right Ventricular Pacing. Heart Rhythm. 2015;12(3):560-5. doi: 10.1016/j.hrthm.2014.11.036.
    https://doi.org/10.1016/j.hrthm.2014.11....

  • After pacemaker implantation, ≈20% of children remain symptomatic and/or with impaired cardiorespiratory fitness. This occurs mainly with pacemakers in VVIR (epicardial) stimulation mode at the RV apex.877877 Siddharth CB, Relan J. Is Left Ventricular Superior to Right Ventricular Pacing in Children with Congenital or Postoperative Complete Heart Block? Interact Cardiovasc Thorac Surg. 2021;33(1):131-5. doi: 10.1093/icvts/ivab048.
    https://doi.org/10.1093/icvts/ivab048...

  • The choice of stimulation site (epicardial or transvenous) will generally depend on the patient's weight. The epicardial approach is necessary in patients weighing <10-15 kg, while the transvenous route can be used in those weighing >20 kg. For patients weighing 15-20 kg, either route is feasible. Dual-chamber transvenous pacing is associated with better outcomes in terms of cardiorespiratory fitness.872872 Sülü A, Kafalı HC, Kamalı H, Genç SB, Onan IS, Haydin S, et al. Clinical Characteristics and Mid-term Follow-up in Children with Isolated Complete Atrioventricular Block. Anatol J Cardiol. 2023;27(2):106-12. doi: 10.14744/AnatolJCardiol.2022.2235.
    https://doi.org/10.14744/AnatolJCardiol....
    ,878878 Villain E. Pediatric Cardiac Pacing: Indications, Implant Techniques, Pacing Mode. Ann Cardiol Angeiol. 2005;54(1):2-6. doi: 10.1016/j.ancard.2004.11.006.
    https://doi.org/10.1016/j.ancard.2004.11...

  • Children with a single-lead pacemaker positioned at the RV apex may develop LV activation and contraction dyssynchrony, resulting in decreased LV function, reduced cardiorespiratory fitness, and chronotropic incompetence. Chronic RV apical pacing can lead to HF in ≈7% of children.879879 Vanagt WY, Prinzen FW, Delhaas T. Physiology of Cardiac Pacing in Children: The Importance of the Ventricular Pacing Site. Pacing Clin Electrophysiol. 2008;31(Suppl 1):S24-7. doi: 10.1111/j.1540-8159.2008.00950.x.
    https://doi.org/10.1111/j.1540-8159.2008...

  • Patients with LV apical pacing have higher VO2peak, HRpeak, chronotropic index, withstand longer exertion, and experience fewer effort-induced symptoms than patients with RV apical pacing.877877 Siddharth CB, Relan J. Is Left Ventricular Superior to Right Ventricular Pacing in Children with Congenital or Postoperative Complete Heart Block? Interact Cardiovasc Thorac Surg. 2021;33(1):131-5. doi: 10.1093/icvts/ivab048.
    https://doi.org/10.1093/icvts/ivab048...

4. Myocardial Ischemia

Myocardial ischemia in the pediatric population is generally a manifestation of one of many conditions and diseases (congenital or acquired) which can cause obstruction of the coronary circulation (dynamic or fixed) and/or microcirculatory dysfunction (see Table 40). Although infrequent, myocardial ischemia is a serious, life-threatening event, requiring proper diagnostic investigation, monitoring and follow-up of its natural history, and elucidation of underlying conditions.1919 Cava JR, Sayger PL. Chest Pain in Children and Adolescents. Pediatr Clin North Am. 2004;51(6):1553-68. doi: 10.1016/j.pcl.2004.07.002.
https://doi.org/10.1016/j.pcl.2004.07.00...
,2020 Reddy SR, Singh HR. Chest Pain in Children and Adolescents. Pediatr Rev. 2010;31(1):e1-9. doi: 10.1542/pir.31-1-e1.
https://doi.org/10.1542/pir.31-1-e1...
,880880 Chen L, Duan H, Li X, Yang Z, Jiao M, Sun K, et al. The Causes of Chest Pain in Children and the Criteria for Targeted Myocardial Enzyme Testing in Identifying the Causes of Chest Pain in Children. Front Cardiovasc Med. 2021;8:582129. doi: 10.3389/fcvm.2021.582129.
https://doi.org/10.3389/fcvm.2021.582129...

Table 40
Main causes of myocardial ischemia in the pediatric population1919 Cava JR, Sayger PL. Chest Pain in Children and Adolescents. Pediatr Clin North Am. 2004;51(6):1553-68. doi: 10.1016/j.pcl.2004.07.002.
https://doi.org/10.1016/j.pcl.2004.07.00...
,2020 Reddy SR, Singh HR. Chest Pain in Children and Adolescents. Pediatr Rev. 2010;31(1):e1-9. doi: 10.1542/pir.31-1-e1.
https://doi.org/10.1542/pir.31-1-e1...
,880880 Chen L, Duan H, Li X, Yang Z, Jiao M, Sun K, et al. The Causes of Chest Pain in Children and the Criteria for Targeted Myocardial Enzyme Testing in Identifying the Causes of Chest Pain in Children. Front Cardiovasc Med. 2021;8:582129. doi: 10.3389/fcvm.2021.582129.
https://doi.org/10.3389/fcvm.2021.582129...
882882 Boon AW, Forton J. How to Evaluate a Child with Chest Pain. Curr Paediatr. 2004;14(1):64-70. doi: 10.1016/j.cupe.2003.09.003.
https://doi.org/10.1016/j.cupe.2003.09.0...

Atherosclerotic CAD in the pediatric population is generally associated with conditions that cause premature atherosclerosis:

  1. Familial hypercholesterolemia, an autosomal dominant genetic disorder of cholesterol metabolism. In its heterozygous form, it affects 1:250 individuals, causing premature atherosclerosis in adolescents and young adults.5959 Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
    https://doi.org/10.1161/CIR.000000000000...
    ,883883 Guardamagna O, Abello F, Saracco P, Baracco V, Rolfo E, Pirro M. Endothelial Activation, Inflammation and Premature Atherosclerosis in Children with Familial Dyslipidemia. Atherosclerosis. 2009;207(2):471-5. doi: 10.1016/j.atherosclerosis.2009.06.006.
    https://doi.org/10.1016/j.atherosclerosi...
    ,884884 Narverud I, Retterstøl K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, et al. Markers of Atherosclerotic Development in Children with Familial Hypercholesterolemia: A Literature Review. Atherosclerosis. 2014;235(2):299-309. doi: 10.1016/j.atherosclerosis.2014.05.917.
    https://doi.org/10.1016/j.atherosclerosi...

  2. Advanced chronic kidney disease (CKD), especially end-stage renal disease (ESRD)/dialytic CKD. Coronary calcification is common in this setting and is associated with uremia, abnormal mineral metabolism, increased fibroblast growth factor (FGF)-23 levels, and Klotho factor deficiency. Children with CKD have a high prevalence of risk factors for atherosclerotic CVD, similar to those observed in adults with this condition. The American Heart Association stratifies pediatric patients with CKD into the high-risk category for developing early CVD and atherosclerotic CAD before the age of 30.885885 Mitsnefes MM. Cardiovascular Complications of Pediatric Chronic Kidney Disease. Pediatr Nephrol. 2008;23(1):27-39. doi: 10.1007/s00467-006-0359-0.
    https://doi.org/10.1007/s00467-006-0359-...
    ,886886 Paoli S, Mitsnefes MM. Coronary Artery Calcification and Cardiovascular Disease in Children with Chronic Kidney Disease. Curr Opin Pediatr. 2014;26(2):193-7. doi: 10.1097/MOP.0000000000000059.
    https://doi.org/10.1097/MOP.000000000000...

  3. Systemic lupus erythematosus (SLE), an autoimmune disease characterized by a relapsing-remitting pattern of systemic inflammation with tissue damage caused by formation of immune complexes and/or deposition of autoantibodies. SLE is associated with accelerated atherosclerosis, CAD, PAD, VHD, myocarditis, LV dysfunction (in children with active SLE), and increased risk of CV events. Early atherosclerosis occurs secondary to hyperleptinemia and abnormalities in immune regulation, endothelial cell function, and vascular repair. CAD can occur at any stage of SLE, with younger individuals being at the highest risk.887887 Shen CC, Chung HT, Huang YL, Yeh KW, Huang JL. Coronary Artery Dilation Among Patients with Paediatric-Onset Systemic Lupus Erythematosus. Scand J Rheumatol. 2012;41(6):458-65. doi: 10.3109/03009742.2012.694470.
    https://doi.org/10.3109/03009742.2012.69...
    890890 Gazarian M, Feldman BM, Benson LN, Gilday DL, Laxer RM, Silverman ED. Assessment of Myocardial Perfusion and Function in Childhood Systemic Lupus Erythematosus. J Pediatr. 1998;132(1):109-16. doi: 10.1016/s0022-3476(98)70494-9.
    https://doi.org/10.1016/s0022-3476(98)70...

Markers of high MI risk in children and adolescents complaining of chest pain include: abnormal cardiovascular findings on physical examination (i.e. heart murmur, cyanosis, peripheral pulse changes, etc.); chest pain or syncope on exertion; chest pain associated with palpitations; abnormal ECG; family history of arrhythmias, sudden death, or genetic disorders; history of cardiac surgery or interventional procedures; heart transplantation; history of Kawasaki disease; history of familial hypercholesterolemia; and a diagnosis of CKD and/or SLE.2020 Reddy SR, Singh HR. Chest Pain in Children and Adolescents. Pediatr Rev. 2010;31(1):e1-9. doi: 10.1542/pir.31-1-e1.
https://doi.org/10.1542/pir.31-1-e1...

The resting ECG should highlight any arrhythmias, conduction, and ST-segment/T wave changes (which may suggest pericarditis, myocarditis, or CAD), as well as evidence of LVH. The presence of LBBB, WPW, or an artificial pacemaker will hinder analysis of repolarization changes as markers of ischemia during ET.77 Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
https://doi.org/10.1161/01.cir.90.4.2166...

Particular features of ET/CPET in myocardial ischemia:

  • Indicated as part of the chest pain workup in children and adolescents at high risk of ischemic cardiovascular events (Table 40).

  • Parameters such as VO2peak, oxygen pulse, VE/VCO2 slope, and ΔVO2/ΔWR ratio aid in the diagnosis of myocardial function impairment, treatment decisions, and medical clearance for or prescription of physical activities.179179 van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
    https://doi.org/10.1123/pes.2018-0235...

  • Congenital anomalies of the coronary arteries are a known common cause of exercise-induced myocardial ischemia. They include: anomalous origin of the aorta or pulmonary artery, abnormal ostium, and intra- or intermural arterial course (between the aorta and the pulmonary artery).891891 Takahashi T, Nakano S, Shimazaki Y, Kaneko M, Hirata N, Nakamura T, et al. Long-Term Appraisal of Coronary Bypass Operations in Familial Hypercholesterolemia. Ann Thorac Surg. 1993;56(3):499-505. doi: 10.1016/0003-4975(93)90887-n.
    https://doi.org/10.1016/0003-4975(93)908...

  • After surgical correction of these anomalies, ET is indicated for risk stratification and optimization of therapy (enlargement of the coronary ostia, reimplantation with or without prolongation of the coronary arteries, translocation of the pulmonary artery, myocardial revascularization).891891 Takahashi T, Nakano S, Shimazaki Y, Kaneko M, Hirata N, Nakamura T, et al. Long-Term Appraisal of Coronary Bypass Operations in Familial Hypercholesterolemia. Ann Thorac Surg. 1993;56(3):499-505. doi: 10.1016/0003-4975(93)90887-n.
    https://doi.org/10.1016/0003-4975(93)908...

  • After arterial switch procedures and the Ross procedure, ET is indicated to stratify the risk of early postoperative ischemia and myocardial dysfunction. Late coronary ischemia may require reoperation.891891 Takahashi T, Nakano S, Shimazaki Y, Kaneko M, Hirata N, Nakamura T, et al. Long-Term Appraisal of Coronary Bypass Operations in Familial Hypercholesterolemia. Ann Thorac Surg. 1993;56(3):499-505. doi: 10.1016/0003-4975(93)90887-n.
    https://doi.org/10.1016/0003-4975(93)908...
    ,892892 Bergoënd E, Raisky O, Degandt A, Tamisier D, Sidi D, Vouhé P. Myocardial Revascularization in Infants and Children by Means of Coronary Artery Proximal Patch Arterioplasty or Bypass Grafting: A Single-Institution Experience. J Thorac Cardiovasc Surg. 2008;136(2):298-305. doi: 10.1016/j.jtcvs.2008.02.059.
    https://doi.org/10.1016/j.jtcvs.2008.02....

  • In patients with hypoplastic left heart syndrome and Fontan palliation, the incidence of exercise-induced ST-segment depression was 48%, with no deaths recorded during ≈2 years of follow-up. Patients further investigated did not exhibit reversible perfusion defects or obstructive CAD.520520 Kyle WB, Denfield SW, Valdes SO, Penny DJ, Bolin EH, Lopez KN. Assessing ST Segment Changes and Ischemia During Exercise Stress Testing in Patients with Hypoplastic Left Heart Syndrome and Fontan Palliation. Pediatr Cardiol. 2016;37(3):545-51. doi: 10.1007/s00246-015-1312-4.
    https://doi.org/10.1007/s00246-015-1312-...

  • In patients evaluated for residual coronary artery lesions after corrective surgery (due to TGA, anomalous origin, or ALCAPA), exercise-induced ST-segment elevation had 100% sensitivity and 81% specificity for severe residual lesions (>50%). The risk markers for serious lesions were effort-induced chest pain (RR: 4.72; 95% CI: 1.23-18.17) and intramural pathway (RR: 4.37; 95% CI: 1.14-16.81).893893 Auriau J, Belhadjer Z, Panaioli E, Derridj N, Jais JP, Gaudin R, et al. Exercise Electrocardiogram for Risk-Based Screening of Severe Residual Coronary Lesion in Children After Coronary Surgery. Arch Cardiovasc Dis. 2022;115(12):656-63. doi: 10.1016/j.acvd.2022.10.001.
    https://doi.org/10.1016/j.acvd.2022.10.0...

  • Children with myocardial bridging and hypertrophic cardiomyopathy showed shorter exercise time, lower SBPpeak (mean reduction 17±27 mmHg), greater QTc dispersion (104±46 msec), and exercise-induced ST-segment depression (median 5 mm). During 7.1±5.4 years of follow-up, chest pain was observed in 60% of patients, VT in 80%, and cardiac arrest with subsequent resuscitation in 50%.894894 Yetman AT, McCrindle BW, MacDonald C, Freedom RM, Gow R. Myocardial Bridging in Children with Hypertrophic Cardiomyopathy--a Risk Factor for Sudden Death. N Engl J Med. 1998;339(17):1201-9. doi: 10.1056/NEJM199810223391704.
    https://doi.org/10.1056/NEJM199810223391...

5. Valvular Lesions

5.1. Congenital Aortic Stenosis

Congenital aortic stenosis (AS) is a heart defect that causes hemodynamically fixed, significant obstruction of the LV outflow tract. It accounts for ≈3-6% of CHD cases, and is more common in males (male-to-female ratio 3:1 to 5:1). Approximately 15 to 20% of patients with AS have other associated CHDs, most commonly PDA, coarctation of the aorta, or VSD.895895 Singh GK. Congenital Aortic Valve Stenosis. Children (Basel). 2019;6(5):69. doi: 10.3390/children6050069.
https://doi.org/10.3390/children6050069...

In critical AS, a unicuspid aortic valve is commonly seen, having either an eccentric orifice with a patent commissure or a central orifice with an absent commissure. Bicuspid aortic valves are generally associated with dilation of the ascending aorta, with enlargement and degenerative changes of the valve as the child grows.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,896896 Kliegman R, Behrman RE, Nelson WE, editors. Nelson Textbook of Pediatrics. 20th ed. Phialdelphia: Elsevier; 2016. ISBN-10: 1455775665; ISBN-13: 978-1455775668.

AS in early childhood is usually severe (critical) and is associated with LV failure, signs of low cardiac output, HF, cardiomegaly, pulmonary edema, pallor or gray discoloration of the skin, hypotension, and dyspnea. Most children and adolescents with mild AS remain asymptomatic and have normal growth and development. Dyspnea, angina, or syncope, particularly on exertion, occur in ≈10% of the affected pediatric population aged 5-15 years. The onset of symptoms requires immediate assessment because of the risk of sudden death (≈1-10% in patients with moderate-to-severe AS). Approximately 2 to 4% of all young athletes with SCD have AS.181181 Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich HH, Longmuir PE, et al. Recommendations for Physical Activity, Recreation Sport, and Exercise Training in Paediatric Patients with Congenital Heart Disease: A Report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034-65. doi: 10.1177/1741826711420000.
https://doi.org/10.1177/1741826711420000...

Congenital AS is associated with development of LVH and an increased risk of CVD. Supravalvular aortic stenosis (most commonly associated with Williams syndrome) may confer increased CV risk due to its association with stenosis of the coronaries (with myocardial ischemia and exercise-induced syncope) and renal arteries (which may cause secondary hypertension).8181 Baumgartner H, Bonhoeffer P, De Groot NM, Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the Management of Grown-Up Congenital Heart Disease (New Version 2010). Eur Heart J. 2010;31(23):2915-57. doi: 10.1093/eurheartj/ehq249.
https://doi.org/10.1093/eurheartj/ehq249...

Abnormal findings on resting ECG are nondiagnostic of AS and are not sensitive enough to determine the degree of severity. However, evidence of LVH and ST-segment depression ≥2mm are relatively sensitive indicators of severe AS. Ventricular arrhythmias are common in moderate/severe AS. QT dispersion is prolonged in children (particularly in those with arrhythmia), and the degree of prolongation is related to the pressure gradient and LV mass index.388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,897897 Atalay S, Imamoğlu A, Tutar HE, Altuğ N. Relation of Mass/Volume Ratio to ECG Abnormalities and Symptoms in Children with Aortic Stenosis/Insufficiency. Angiology. 1999;50(2):131-6. doi: 10.1177/000331979905000206.
https://doi.org/10.1177/0003319799050002...
,898898 Piorecka-Makula A, Werner B. Prolonged QT Dispersion in Children with Congenital Valvular Aortic Stenosis. Med Sci Monit. 2009;15(10):CR534-538. PMID: 19789513.

Particular features of ET/CPET in congenital AS:

  • Contraindicated in symptomatic moderate/severe AS.

  • Indicated for the assessment of children and adolescents with AS who have a mean gradient at rest <30 mmHg or a peak gradient <50 mmHg.

  • Indicated in moderate AS for preparticipation assessment of children and adolescents wishing to take pert in sporting activities. For medical clearance, the child must reach a level of effort during ET consistent with the desired activity, demonstrate satisfactory cardiorespiratory fitness, a normal SBP response to exercise, and complete absence of symptoms, ST-segment depression, or ventricular tachyarrhythmias.181181 Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich HH, Longmuir PE, et al. Recommendations for Physical Activity, Recreation Sport, and Exercise Training in Paediatric Patients with Congenital Heart Disease: A Report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034-65. doi: 10.1177/1741826711420000.
    https://doi.org/10.1177/1741826711420000...

  • Asymptomatic patients with moderate/severe AS generally exhibit poor cardiorespiratory fitness, especially if the LV systolic gradient is ≥30 mmHg. The degree of impairment is related to the aortic valve area at rest.436436 James FW, Schwartz DC, Kaplan S, Spilkin SP. Exercise Electrocardiogram, Blood Pressure, and Working Capacity in Young Patients with Valvular or Discrete Subvalvular Aortic Stenosis. Am J Cardiol. 1982;50(4):769-75. doi: 10.1016/0002-9149(82)91232-2.
    https://doi.org/10.1016/0002-9149(82)912...
    ,899899 Naik R, Kunselman A, Wackerle E, Johnson G, Cyran SE, Chowdhury D. Stress Echocardiography: A Useful Tool for Children with Aortic Stenosis. Pediatr Cardiol. 2013;34(5):1237-43. doi: 10.1007/s00246-013-0635-2.
    https://doi.org/10.1007/s00246-013-0635-...

  • Most asymptomatic patients with moderate AS have a moderate increase in SBP (<25 mmHg).

  • The change in SBP from baseline during exertion (ΔSBP) depends on the degree of stenosis, being less in severe AS (ΔSBP = 21.6 mmHg) than in moderate AS (ΔSBP = 32 mmHg).900900 Guo Y, Zhou A, Sun K, Li F, Gao W, Huang M, et al. Exercise Capacity Evaluation after Percutaneous Balloon Pulmonary Valvuloplasty in Children with Pulmonary Valve Stenosis. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(1):55-8. doi: 10.3760/j:issn:0253-3758.2007.01.014.
    https://doi.org/10.3760/j:issn:0253-3758...

  • In moderate/severe AS, exercise-induced ST-segment depression, an inadequate drop or increase in SBP, and exercise-induced arrhythmias may occur.437437 Alpert BS, Kartodihardjo W, Harp R, Izukawa T, Strong WB. Exercise Blood Pressure Response--a Predictor of Severity of Aortic Stenosis in Children. J Pediatr. 1981;98(5):763-5. doi: 10.1016/s0022-3476(81)80839-6.
    https://doi.org/10.1016/s0022-3476(81)80...

  • The severity of AS is associated with exercise-induced ST-segment depression (odds ratio: 12.0; 95% CI: 3.0-49.0). Exercise-induced ST-segment depression is related to LV systolic pressure, LV outflow gradient (especially if ≥70 mmHg), and the oxygen supply-demand relationship.436436 James FW, Schwartz DC, Kaplan S, Spilkin SP. Exercise Electrocardiogram, Blood Pressure, and Working Capacity in Young Patients with Valvular or Discrete Subvalvular Aortic Stenosis. Am J Cardiol. 1982;50(4):769-75. doi: 10.1016/0002-9149(82)91232-2.
    https://doi.org/10.1016/0002-9149(82)912...
    ,518518 Kveselis DA, Rocchini AP, Rosenthal A, Crowley DC, Dick M, Snider AR, et al. Hemodynamic Determinants of Exercise-Induced ST-Segment Depression in Children with Valvar Aortic Stenosis. Am J Cardiol. 1985;55(9):1133-9. doi: 10.1016/0002-9149(85)90650-2.
    https://doi.org/10.1016/0002-9149(85)906...
    ,899899 Naik R, Kunselman A, Wackerle E, Johnson G, Cyran SE, Chowdhury D. Stress Echocardiography: A Useful Tool for Children with Aortic Stenosis. Pediatr Cardiol. 2013;34(5):1237-43. doi: 10.1007/s00246-013-0635-2.
    https://doi.org/10.1007/s00246-013-0635-...

  • In supravalvular AS, complex ventricular arrhythmias and worsening of ST-segment depression with exertion usually occur and are indicative of myocardial ischemia.434434 Cyran SE, James FW, Daniels S, Mays W, Shukla R, Kaplan S. Comparison of the Cardiac Output and Stroke Volume Response to Upright Exercise in Children with Valvular and Subvalvular Aortic Stenosis. J Am Coll Cardiol. 1988;11(3):651-8. doi: 10.1016/0735-1097(88)91545-8.
    https://doi.org/10.1016/0735-1097(88)915...

  • After surgical treatment of AS, there is a reduction in exercise-induced ST-segment depression and increases in ΔSBP and cardiorespiratory fitness.519519 Whitmer JT, James FW, Kaplan S, Schwartz DC, Knight MJ. Exercise Testing in Children before and after Surgical Treatment of Aortic Stenosis. Circulation. 1981;63(2):254-63. doi: 10.1161/01.cir.63.2.254.
    https://doi.org/10.1161/01.cir.63.2.254...

5.2. Aortic Regurgitation

Aortic regurgitation (AR), or aortic insufficiency (AI), is characterized by an increase in left ventricular end-diastolic volume, increased wall strain, and compensatory myocardial hypertrophy. AR rarely occurs as an isolated lesion; it is often comorbid with AS (including after surgical or transcatheter intervention) or VSD. A bicuspid aortic valve is the most common cause of AR.896896 Kliegman R, Behrman RE, Nelson WE, editors. Nelson Textbook of Pediatrics. 20th ed. Phialdelphia: Elsevier; 2016. ISBN-10: 1455775665; ISBN-13: 978-1455775668.

Chronic AR is generally well tolerated and most children remain asymptomatic, even with a major lesion. However, in moderate/severe AR, the development of significant symptoms and/or LV dysfunction is common, and surgical intervention is required. Severe AR results in greatly increased LV end-systolic and end-diastolic volumes, generally leading to progressive dysfunction. In severe AR, reduced diastolic pressures at the aortic root can impair coronary perfusion.901901 Fishbein GA, Fishbein MC. Pathology of the Aortic Valve: Aortic Valve Stenosis/Aortic Regurgitation. Curr Cardiol Rep. 2019;21(8):81. doi: 10.1007/s11886-019-1162-4.
https://doi.org/10.1007/s11886-019-1162-...
905905 Hraška V, Photiadis J, Zartner P, Haun C. Congenital Aortic Valve Stenosis and Regurgitation. In: Cruz EM, Ivy D, Jaggers J. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. p. 1577-98. doi: 10.1007/978-1-4471-4619-3_23.
https://doi.org/10.1007/978-1-4471-4619-...

The resting ECG in moderate/severe AR usually presents a LVH pattern and, in the chronic stage, ST-segment and T wave changes.388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.

Particular features of ET/CPET in AR:903903 Albertí JFF, Mora MN, López AC, Pericàs P, Márquez LP, Montero FJC, et al. Changes in the Severity of Aortic Regurgitation at Peak Effort During Exercise. Int J Cardiol. 2017;228:145-8. doi: 10.1016/j.ijcard.2016.11.168.
https://doi.org/10.1016/j.ijcard.2016.11...
,904904 Généreux P, Stone GW, O’Gara PT, Marquis-Gravel G, Redfors B, Giustino G, et al. Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients with Asymptomatic Severe Aortic Stenosis. J Am Coll Cardiol. 2016;67(19):2263-88. doi: 10.1016/j.jacc.2016.02.057.
https://doi.org/10.1016/j.jacc.2016.02.0...
,906906 Pelliccia A, Fagard R, Bjørnstad HH, Anastassakis A, Arbustini E, Assanelli D, et al. Recommendations for Competitive Sports Participation in Athletes with Cardiovascular Disease: A Consensus Document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(14):1422-45. doi: 10.1093/eurheartj/ehi325.
https://doi.org/10.1093/eurheartj/ehi325...

  • Indicated for assessment of symptoms, CRF, exercise-induced ischemia, optimization of therapy, and medical clearance/prescription of physical exercise.

  • Patients who develop signs or symptoms of HF and/or exercise-induced ischemia or decline in LV function generally require surgical intervention.

  • Patients with moderate or severe AR present with impairment of HRpeak, blood pressure (including intra-exercise pressure drop), and respiratory quotient (RQ). There is also a higher incidence of ectopy and exercise-induced ST-segment depression.

  • In athletes, ET it is indicated to confirm possible symptoms and evaluate exercise tolerance and the BP response to exercise, parameters which must be assessed before the patient can be cleared to practice sports. A level of activity comparable to that of the intended sport, or greater, must be achieved during the ET.

  • Asymptomatic athletes with mild to moderate AR, no LV dysfunction, and a normal ET can participate in all competitive sports (Class of Recommendation: I; Level of Evidence: C).

  • Moderate/severe AI allows participation in recreational sporting activities only if LVEF >50%, the LV is not enlarged (<35 mm/m2), and the ET is normal (Class of Recommendation: IIb; Level of Evidence: C).

5.3. Bicuspid Aortic Valve

Bicuspid aortic valve (BAV) is a congenital malformation that can occur both as an isolated lesion and in association with CHD. The prevalence of isolated BAV is approximately 1-2% in the general population, 15-30% in Turner syndrome, and 50-85% in patients with coarctation of the aorta. BAV is common in chromosomal diseases such as Down syndrome (trisomy 21), DiGeorge syndrome (22q11), Edwards syndrome (trisomy 18), and other genetic syndromes, such as Williams syndrome, Holt-Oram syndrome, Marfan syndrome (4.7%), and Loeys-Dietz syndrome (8.8%).139139 D’Ascenzi F, Valentini F, Anselmi F, Cavigli L, Bandera F, Benfari G, et al. Bicuspid Aortic Valve and Sports: From the Echocardiographic Evaluation to the Eligibility for Sports Competition. Scand J Med Sci Sports. 2021;31(3):510-20. doi: 10.1111/sms.13895.
https://doi.org/10.1111/sms.13895...
,330330 Kumar S, Stevenson WG, Tedrow UB. Bicuspid Aortic Valve Supporting Supravalvular "Substrate" for Multiple Ventricular Tachycardias. HeartRhythm Case Rep. 2017;3(3):155-8. doi: 10.1016/j.hrcr.2016.09.006.
https://doi.org/10.1016/j.hrcr.2016.09.0...
,907907 Rodrigues I, Agapito AF, de Sousa L, Oliveira JA, Branco LM, Galrinho A, et al. Bicuspid Aortic Valve Outcomes. Cardiol Young. 2017;27(3):518-29. doi: 10.1017/S1047951116002560.
https://doi.org/10.1017/S104795111600256...

Abnormalities of the aortic root, sinotubular junction, and ascending aorta occur as part of this lesion. Dilation of the aortic root and ascending aorta is common, even in patients with no stenosis or regurgitation. In AS, the risk of developing severe aortic dilation in adolescence and early adulthood is greater. In Marfan syndrome with BAV and aortic dilation, there is a greater risk of spontaneous rupture. Most children with BAV are asymptomatic until adulthood. In selected pediatric cohorts with BAV but no severe stenosis or concomitant CHD, <5% require intervention on the valve before adulthood.139139 D’Ascenzi F, Valentini F, Anselmi F, Cavigli L, Bandera F, Benfari G, et al. Bicuspid Aortic Valve and Sports: From the Echocardiographic Evaluation to the Eligibility for Sports Competition. Scand J Med Sci Sports. 2021;31(3):510-20. doi: 10.1111/sms.13895.
https://doi.org/10.1111/sms.13895...
,330330 Kumar S, Stevenson WG, Tedrow UB. Bicuspid Aortic Valve Supporting Supravalvular "Substrate" for Multiple Ventricular Tachycardias. HeartRhythm Case Rep. 2017;3(3):155-8. doi: 10.1016/j.hrcr.2016.09.006.
https://doi.org/10.1016/j.hrcr.2016.09.0...
,907907 Rodrigues I, Agapito AF, de Sousa L, Oliveira JA, Branco LM, Galrinho A, et al. Bicuspid Aortic Valve Outcomes. Cardiol Young. 2017;27(3):518-29. doi: 10.1017/S1047951116002560.
https://doi.org/10.1017/S104795111600256...

Particular features of ET/CPET in BAV:

  • ET is indicated for assessment of symptoms and of cardiorespiratory fitness in patients who have developed moderate/severe AS, AR, or coarctation of the aorta.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.

  • Adolescents with BAV and Williams syndrome generally present with reduced total exercise time; an accelerated chronotropic response; a hypertensive SBP response to exertion; and absence of exercise-induced ST-segment depression.908908 Kececioglu D, Kotthoff S, Vogt J. Williams-Beuren Syndrome: A 30-Year Follow-Up of Natural and Postoperative Course. Eur Heart J. 1993;14(11):1458-64. doi: 10.1093/eurheartj/14.11.1458.
    https://doi.org/10.1093/eurheartj/14.11....

  • Indications for balloon valvuloplasty include severe AS, peak systolic gradient at rest ≥50 mmHg without symptoms or ≥40 mmHg with angina, syncope, and ST-segment changes, whether at rest or exercise-induced.909909 Feltes TF, Bacha E, Beekman RH 3rd, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for Cardiac Catheterization and Intervention in Pediatric Cardiac Disease: A Scientific Statement from the American Heart Association. Circulation. 2011;123(22):2607-52. doi: 10.1161/CIR.0b013e31821b1f10.
    https://doi.org/10.1161/CIR.0b013e31821b...

5.4. Pulmonic Stenosis

Pulmonic stenosis (PS) is a narrowing of the pulmonic (or pulmonary valve), usually due to fusion of its leaflets, with obstruction of the RV outflow tract and reduced blood flow to the pulmonary arteries. It is the most common form of RV outflow tract obstruction, accounting for 90% of cases.910910 Kwiatkowski DM, Hanley FL, Krawczeski CD. Right Ventricular Outflow Tract Obstruction: Pulmonary Atresia with Intact Ventricular Septum, Pulmonary Stenosis, and Ebstein's Malformation. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S323-9. doi: 10.1097/PCC.0000000000000818.
https://doi.org/10.1097/PCC.000000000000...
,911911 Guidelines for the Management of Congenital Heart Diseases in Childhood and Adolescence. Cardiol Young. 2017;27(S3):S1-S105. doi: 10.1017/S1047951116001955.
https://doi.org/10.1017/S104795111600195...

The severity of PS determines the treatment strategy, which may include surgical and/or transcatheter intervention. PS is classified on the basis of the right ventricular to pulmonary arterial (RV-PA) pressure gradient: 10 to 30 mmHg, mild; >30 to 60 mmHg, moderate; >60 mmHg or RV pressure greater than systemic pressure, severe.910910 Kwiatkowski DM, Hanley FL, Krawczeski CD. Right Ventricular Outflow Tract Obstruction: Pulmonary Atresia with Intact Ventricular Septum, Pulmonary Stenosis, and Ebstein's Malformation. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S323-9. doi: 10.1097/PCC.0000000000000818.
https://doi.org/10.1097/PCC.000000000000...
,912912 Arunamata A, Goldstein BH. Right Ventricular Outflow Tract Anomalies: Neonatal Interventions and Outcomes. Semin Perinatol. 2022;46(4):151583. doi: 10.1016/j.semperi.2022.151583.
https://doi.org/10.1016/j.semperi.2022.1...
,913913 Skoglund K, Rosengren A, Lappas G, Fedchenko M, Mandalenakis Z. Long-Term Survival in Patients with Isolated Pulmonary Valve Stenosis: A Not so Benign Disease? Open Heart. 2021;8(2):e001836. doi: 10.1136/openhrt-2021-001836.
https://doi.org/10.1136/openhrt-2021-001...

Children with discrete PS, with intact interventricular septum (isolated PS), are generally asymptomatic and exhibit normal CRF. Spontaneous regression of the stenosis may occur with advancing age. Conversely, patients with moderate PS – especially symptomatic ones – develop worsening RV hypertrophy, outflow tract obstruction, and ventricular dysfunction, requiring interventional treatment. Severe PS occurs mainly in childhood and often progresses to RV dysfunction, HF, tricuspid regurgitation, and cyanosis, requiring early interventional treatment.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.,911911 Guidelines for the Management of Congenital Heart Diseases in Childhood and Adolescence. Cardiol Young. 2017;27(S3):S1-S105. doi: 10.1017/S1047951116001955.
https://doi.org/10.1017/S104795111600195...
Over 13.5 years of follow-up, isolated PS (i.e. with an intact interventricular septum) was associated with an increase in overall mortality (RR: 4.67; 95% CI: 3.61-5.99). Patients with early diagnosis (within the first year of life) had the highest risk of mortality (RR: 10.99; 95% CI: 7.84-15.45).910910 Kwiatkowski DM, Hanley FL, Krawczeski CD. Right Ventricular Outflow Tract Obstruction: Pulmonary Atresia with Intact Ventricular Septum, Pulmonary Stenosis, and Ebstein's Malformation. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S323-9. doi: 10.1097/PCC.0000000000000818.
https://doi.org/10.1097/PCC.000000000000...
,912912 Arunamata A, Goldstein BH. Right Ventricular Outflow Tract Anomalies: Neonatal Interventions and Outcomes. Semin Perinatol. 2022;46(4):151583. doi: 10.1016/j.semperi.2022.151583.
https://doi.org/10.1016/j.semperi.2022.1...
,913913 Skoglund K, Rosengren A, Lappas G, Fedchenko M, Mandalenakis Z. Long-Term Survival in Patients with Isolated Pulmonary Valve Stenosis: A Not so Benign Disease? Open Heart. 2021;8(2):e001836. doi: 10.1136/openhrt-2021-001836.
https://doi.org/10.1136/openhrt-2021-001...

After valve intervention, long-term event-free survival is >90%. Complications include pulmonic regurgitation with possible RV volume overload (≈⅓ of patients) and restenosis (5-10% of patients), especially in the first year after intervention.911911 Guidelines for the Management of Congenital Heart Diseases in Childhood and Adolescence. Cardiol Young. 2017;27(S3):S1-S105. doi: 10.1017/S1047951116001955.
https://doi.org/10.1017/S104795111600195...
,914914 Galian-Gay L, Gordon B, Marsal JR, Rafecas A, Domènech AP, Castro MA, et al. Determinants of Long-Term Outcome of Repaired Pulmonary Valve Stenosis. Rev Esp Cardiol. 2020;73(2):131-8. doi: 10.1016/j.rec.2019.02.014.
https://doi.org/10.1016/j.rec.2019.02.01...
,915915 Devanagondi R, Peck D, Sagi J, Donohue J, Yu S, Pasquali SK, et al. Long-Term Outcomes of Balloon Valvuloplasty for Isolated Pulmonary Valve Stenosis. Pediatr Cardiol. 2017;38(2):247-54. doi: 10.1007/s00246-016-1506-4.
https://doi.org/10.1007/s00246-016-1506-...

The resting ECG in mild isolated PS is generally normal, but in children there may be T wave inversion in the right precordial leads. In moderate/severe cases, a pattern of RV hypertrophy and right atrial enlargement ("P pulmonale") is generally observed, as well as deviation of the QRS axis to the right and RBBB.388388 Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.,911911 Guidelines for the Management of Congenital Heart Diseases in Childhood and Adolescence. Cardiol Young. 2017;27(S3):S1-S105. doi: 10.1017/S1047951116001955.
https://doi.org/10.1017/S104795111600195...

Particular features of ET/CPET in isolated PS:

  • Is useful in preparticipation assessment before enrollment in a physical exercise program and aids in symptom assessment by providing direct information about the ability of the RV to maintain cardiac output during conditions of increased workload. RV systolic pressure, assessed through physical stress echocardiography, is normally elevated at rest, increasing further during exertion.8787 Steinberger J, Moller JH. Exercise Testing in Children with Pulmonary Valvar Stenosis. Pediatr Cardiol. 1999;20(1):27-31. doi: 10.1007/s002469900389.
    https://doi.org/10.1007/s002469900389...
    ,906906 Pelliccia A, Fagard R, Bjørnstad HH, Anastassakis A, Arbustini E, Assanelli D, et al. Recommendations for Competitive Sports Participation in Athletes with Cardiovascular Disease: A Consensus Document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(14):1422-45. doi: 10.1093/eurheartj/ehi325.
    https://doi.org/10.1093/eurheartj/ehi325...

  • In mild stenosis, CRF it is generally normal; in moderate cases, it is usually impaired; in severe cases, impairment is more pronounced and symptomatic, leading to a worse quality of life, but generally improves after intervention.916916 de Meester P, Buys R, Van De Bruaene A, Gabriels C, Voigt JU, Vanhees L, et al. Functional and Haemodynamic Assessment of Mild-To-Moderate Pulmonary Valve Stenosis at Rest and During Exercise. Heart. 2014;100(17):1354-9. doi: 10.1136/heartjnl-2014-305627.
    https://doi.org/10.1136/heartjnl-2014-30...
    918918 Müller J, Engelhardt A, Fratz S, Eicken A, Ewert P, Hager A. Improved Exercise Performance and Quality of Life after Percutaneous Pulmonary Valve Implantation. Int J Cardiol. 2014;173(3):388-92. doi: 10.1016/j.ijcard.2014.03.002.
    https://doi.org/10.1016/j.ijcard.2014.03...

  • The chronotropic response is generally normal, regardless of the severity of the stenosis.8787 Steinberger J, Moller JH. Exercise Testing in Children with Pulmonary Valvar Stenosis. Pediatr Cardiol. 1999;20(1):27-31. doi: 10.1007/s002469900389.
    https://doi.org/10.1007/s002469900389...

  • Exercise-induced ST depression is exceedingly rare and exercise-induced arrhythmias may occur.919919 Driscoll DJ, Wolfe RR, Gersony WM, Hayes CJ, Keane JF, Kidd L, et al. Cardiorespiratory Responses to Exercise of Patients with Aortic Stenosis, Pulmonary Stenosis, and Ventricular Septal Defect. Circulation. 1993;87(2 Suppl):I102-13. PMID: 8425316.

  • CPET performed ≈8 years after balloon valvuloplasty of the pulmonic valve in patients with severe PS showed normal VO2peak (32.63±8.38 ml/kg/min), HRpeak (174.88±5.01 bpm), drop in HR in the first minute of recovery (28.04±4.70 bpm), SBPpeak (164.02±11.03 mmHg), peak DBP (84.42±7.63 mmHg), FVC (2.56±0.39 L), and FEV1 (2.43±0.34 L).380380 Teng LY, Tsai SW, Hsiao CY, Sung WH, Lin KL. Cardiopulmonary Function Assessment in Children with Pulmonary Valve Stenosis. Front Pediatr. 2022;9:802645. doi: 10.3389/fped.2021.802645.
    https://doi.org/10.3389/fped.2021.802645...
    Monomorphic exercise-induced ventricular arrhythmias occurred in 10.9% of children, and none exhibited any ST segment changes.900900 Guo Y, Zhou A, Sun K, Li F, Gao W, Huang M, et al. Exercise Capacity Evaluation after Percutaneous Balloon Pulmonary Valvuloplasty in Children with Pulmonary Valve Stenosis. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(1):55-8. doi: 10.3760/j:issn:0253-3758.2007.01.014.
    https://doi.org/10.3760/j:issn:0253-3758...

5.5. Pulmonic Regurgitation

Pulmonic regurgitation (PR) or insufficiency (PI) is usually asymptomatic and well tolerated in childhood. However, in rare cases PR may worsen progressively, leading to RV enlargement and dysfunction, exercise intolerance, ventricular tachycardia, and SCD. Patients with mild/moderate PR are generally asymptomatic. In severe PR, exercise intolerance with dyspnea is often observed, due to the patient's inability to increase RV output. If there is right ventricular failure, patients may experience hepatic congestion, ascites, and lower-limb edema. Atrial and right ventricular remodeling confers a greater risk of arrhythmia with dizziness and/or syncope. Exercise-induced symptoms, progressive exercise intolerance, HF, and sustained arrhythmias suggest an unfavorable course and indicate valve intervention/repair.9797 Ammash NM, Dearani JA, Burkhart HM, Connolly HM. Pulmonary Regurgitation after Tetralogy of Fallot Repair: Clinical Features, Sequelae, and Timing of Pulmonary Valve Replacement. Congenit Heart Dis. 2007;2(6):386-403. doi: 10.1111/j.1747-0803.2007.00131.x.
https://doi.org/10.1111/j.1747-0803.2007...
,709709 Śpiewak M, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, Miłosz-Wieczorek B, Kowalski M, Biernacka EK, et al. The Impact of Pulmonary Regurgitation on Right Ventricular Size and Function in Patients with Repaired Tetralogy of Fallot and Additional Haemodynamic Abnormalities. Pol J Radiol. 2020;85:e607-12. doi: 10.5114/pjr.2020.101058.
https://doi.org/10.5114/pjr.2020.101058...
,920920 Chatrath N, Papadakis M. Physical Activity and Exercise Recommendations for Patients with Valvular Heart Disease. Heart. 2022;108(24):1938-44. doi: 10.1136/heartjnl-2021-319824.
https://doi.org/10.1136/heartjnl-2021-31...

The resting ECG may reveal deviation of the QRS axis to the right, RV hypertrophy pattern, and RBBB. Arrhythmias are common in severe PR.177177 Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.

Particular features of ET/CPET in PR:

  • In a retrospective cohort, children undergoing pulmonary valve replacement surgery and/or conduit revision who had better CRF preoperatively (VO2peak ≥70% of predicted) had a shorter length of stay.921921 Gauthier N, Muter A, Rhodes J, Gauvreau K, Nathan M. Better Preoperative Exercise Function is Associated with Shorter Hospital Stay After Paediatric Pulmonary Valve Replacement or Conduit Revision. Cardiol Young. 2021;31(10):1636-43. doi: 10.1017/S1047951121000743.
    https://doi.org/10.1017/S104795112100074...

  • In a retrospective cohort, pulmonary valve replacement after delayed ToF correction was associated with improvement in RV volume. Approximately 28% of patients achieved normalization of RV end-systolic volume, but no significant improvement in CRF.712712 Lumens J, Fan CS, Walmsley J, Yim D, Manlhiot C, Dragulescu A, et al. Relative Impact of Right Ventricular Electromechanical Dyssynchrony Versus Pulmonary Regurgitation on Right Ventricular Dysfunction and Exercise Intolerance in Patients after Repair of Tetralogy of Fallot. J Am Heart Assoc. 2019;8(2):e010903. doi: 10.1161/JAHA.118.010903.
    https://doi.org/10.1161/JAHA.118.010903...

  • Percutaneous pulmonary valve replacement in patients with PR associated with other CHDs did not lead to improvement in VO2peak, RQ, or oxygen pulse. On multivariate analysis, reduction in the RVOT gradient was the only predictor of improvement in VO2peak.922922 Lurz P, Giardini A, Taylor AM, Nordmeyer J, Muthurangu V, Odendaal D, et al. Effect of Altering Pathologic Right Ventricular Loading Conditions by Percutaneous Pulmonary Valve Implantation on Exercise Capacity. Am J Cardiol. 2010;105(5):721-6. doi: 10.1016/j.amjcard.2009.10.054.
    https://doi.org/10.1016/j.amjcard.2009.1...

  • Patients with severe PR who are asymptomatic, with no significant RV volume overload, no arrhythmias, normal RV systolic function, and a normal ET can be medically cleared for recreational sports.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    https://doi.org/10.4103/apc.apc_73_22...

5.6. Mitral Stenosis

Specific mitral valve defects in mitral stenosis (MS) are classified based on their relationship to its annulus, including valvular, supravalvular, and subvalvular components (chordae tendineae and papillary muscles). The clinical presentation varies depending on the degree of valve obstruction and the presence of mitral regurgitation, secondary PAH, pulmonary diseases, and/or other cardiac lesions.923923 Baird CW, Marx GR, Borisuk M, Emani S, del Nido PJ. Review of Congenital Mitral Valve Stenosis: Analysis, Repair Techniques and Outcomes. Cardiovasc Eng Technol. 2015;6(2):167-73. doi: 10.1007/s13239-015-0223-0.
https://doi.org/10.1007/s13239-015-0223-...

Congenital MS rarely occurs in isolation; it is usually associated with coarctation of the aorta, AS, and CHDs (Ebstein's anomaly, cor triatriatum, ToF, etc.). In moderate-to-severe stenosis, symptoms usually appear in the first or second year of life: failure to thrive, wheezing, and varying degrees of dyspnea and pallor.924924 Nobuyoshi M, Arita T, Shirai S, Hamasaki N, Yokoi H, Iwabuchi M, et al. Percutaneous Balloon Mitral Valvuloplasty: A Review. Circulation. 2009;119(8):e211-9. doi: 10.1161/CIRCULATIONAHA.108.792952.
https://doi.org/10.1161/CIRCULATIONAHA.1...

The resting ECG generally shows a pattern of RV hypertrophy, QRS axis deviation to the right, and notched/bifid or peaked P waves, indicative of left atrial enlargement. Atrial fibrillation is exceedingly rare.

Particular features of ET/CPET in MS:

  • Patients with mild to moderate MS may be asymptomatic even during strenuous exercise.

  • In uncorrected MS, ET is indicated as part of the preparticipation assessment to confirm asymptomatic status; subjects must be able to reach at least the level of exertion consistent with the activity they wish to pursue.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    https://doi.org/10.4103/apc.apc_73_22...

  • In moderate MS, the ET must be normal if patients are to be cleared for low-to-moderate-intensity exercise. Annual follow-up ET is recommended.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    https://doi.org/10.4103/apc.apc_73_22...

  • In moderate/severe MS, the increase in HR and cardiac output upon exertion can increase the gradient, pulmonary capillary pressures, and PAH, causing low exercise tolerance, worsening of symptoms, and, occasionally, acute pulmonary edema.4646 Kavey RE, Kveselis DA, Atallah N, Smith FC. White Coat Hypertension in Childhood: Evidence for End-Organ Effect. J Pediatr. 2007;150(5):491-7. doi: 10.1016/j.jpeds.2007.01.033.
    https://doi.org/10.1016/j.jpeds.2007.01....

  • 6 months after valvuloplasty, improvement in CRF and cardiac output was noted.4747 Schultz MG, Park C, Fraser A, Howe LD, Jones S, Rapala A, et al. Submaximal Exercise Blood Pressure and Cardiovascular Structure in Adolescence. Int J Cardiol. 2019;275:152-7. doi: 10.1016/j.ijcard.2018.10.060.
    https://doi.org/10.1016/j.ijcard.2018.10...

5.7. Mitral Regurgitation

Mitral regurgitation (MR) is a valvular lesion characterized retrograde blood flow from the LV to the left atrium and subsequent LV volume overload. To maintain cardiac output, compensatory changes such as increased contractility and LVH may develop. MR can progress to ventricular remodeling and, eventually, diffuse LV enlargement and dysfunction. Chronic overload of the left atrium and ventricle impairs blood drainage through the pulmonary veins, causing pulmonary congestion and HF symptoms. Congenital MR (CMR) is a rare disease of childhood, and occurs in combination with other cardiac lesions in up to 60% of cases.132132 Iddawela S, Joseph PJS, Ganeshan R, Shah HI, Olatigbe TAT, Anyu AT, et al. Paediatric Mitral Valve Disease - From Presentation to Management. Eur J Pediatr. 2022;181(1):35-44. doi: 10.1007/s00431-021-04208-7.
https://doi.org/10.1007/s00431-021-04208...
,925925 Petek BJ, Baggish AL. Valvular Heart Disease in Athletes. Curr Treat Options Cardiovasc Med. 2021;23(11):69. doi: 10.1007/s11936-021-00950-1.
https://doi.org/10.1007/s11936-021-00950...

Mild MR produces no symptoms; the only abnormal sign is auscultation of an apical holosystolic murmur. Severe insufficiency, however, results in symptoms that can appear at any age, including physical underdevelopment, frequent respiratory infections, fatigue on exertion, pulmonary edema, and congestive HF.

Clearance for or even recommendation of physical exercise/sport depends on the severity of MR, the degree of LV enlargement, LV systolic function, and PAH. Static exercises causing large increases in BP or HR can result in potentially harmful increases in regurgitant volume and pulmonary capillary pressures.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
https://doi.org/10.4103/apc.apc_73_22...
,926926 Bonow RO, Nishimura RA, Thompson PD, Udelson JE; American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 5: Valvular Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e292-7. doi: 10.1161/CIR.0000000000000241.
https://doi.org/10.1161/CIR.000000000000...

In moderate/severe MR, the resting ECG often shows bifid P waves (left atrial enlargement) and evidence of LVH. In the most severe cases, an RVH pattern is visible.

Particular features of ET/CPET in MR:

  • Mild MR generally does not cause impairment of CRF.

  • Compensated mild/moderate MR is generally asymptomatic, with good exercise tolerance and normal CRF, and may remain so for years.927927 Bonow RO, Nikas D, Elefteriades JA. Valve Replacement for Regurgitant Lesions of the Aortic or Mitral Valve in Advanced Left Ventricular Dysfunction. Cardiol Clin. 1995;13(1):73-83, 85. PMID: 7796434.

  • Adolescents with severe MR, asymptomatic, may be released for low-intensity activities if they have normal ET, preserved LV function at rest, pulmonary arterial pressure <50 mmHg and absence of effort-induced ventricular arrhythmia.681681 Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    https://doi.org/10.4103/apc.apc_73_22...

  • Severe MR with LV dysfunction presents with symptoms of HF, exercise intolerance, and poor CRF. CPET aids in risk stratification, optimization of therapy and, in severe cases, to decide if heart transplantation is indicated.

  • After valve replacement or repair, for assessment of CRF, optimization of therapy, and medical clearance for physical activity/exercise prescription, including rehabilitation.

5.8. Mitral Valve Prolapse

Mitral valve prolapse (MVP) is characterized by systolic protrusion of the mitral valve leaflets into the left atrium, with or without mitral regurgitation. A genetic predisposition is involved in the pathogenesis of MVP. It can be primary ("nonsyndromic") or secondary ("syndromic") to connective tissue disorders (Marfan syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome, osteogenesis imperfecta, pseudoxanthoma elasticum, and osteoarthritis syndrome). It can also occur in hypertrophic cardiomyopathy. In the pediatric population, it is often considered benign and asymptomatic. When symptomatic, the chief complaints are palpitations, dizziness, chest pain, dyspnea, pre-syncope, and syncope.132132 Iddawela S, Joseph PJS, Ganeshan R, Shah HI, Olatigbe TAT, Anyu AT, et al. Paediatric Mitral Valve Disease - From Presentation to Management. Eur J Pediatr. 2022;181(1):35-44. doi: 10.1007/s00431-021-04208-7.
https://doi.org/10.1007/s00431-021-04208...
,928928 Delling FN, Vasan RS. Epidemiology and Pathophysiology of Mitral Valve Prolapse: New Insights Into Disease Progression, Genetics, and Molecular Basis. Circulation. 2014;129(21):2158-70. doi: 10.1161/CIRCULATIONAHA.113.006702.
https://doi.org/10.1161/CIRCULATIONAHA.1...

MVP in adolescent and young adult athletes, with myxomatous valve degeneration, is a relevant cause of arrhythmic SCD (arrhythmogenic MVP), with an annual incidence of ≈0.2-1.9%. Prolapse in both valve leaflets, moderate/severe mitral regurgitation, and ventricular arrhythmia are markers of a higher risk of events. Adolescents and young women with mitral leaflet thickening and/or prolapse of both leaflets may have an increased predisposition to complex arrhythmias and arrhythmogenic SCD.929929 Korovesis TG, Koutrolou-Sotiropoulou P, Katritsis DG. Arrhythmogenic Mitral Valve Prolapse. Arrhythm Electrophysiol Rev. 2022;11:e16. doi: 10.15420/aer.2021.28.
https://doi.org/10.15420/aer.2021.28...
931931 Alenazy A, Eltayeb A, Alotaibi MK, Anwar MK, Mulafikh N, Aladmawi M, et al. Diagnosis of Mitral Valve Prolapse: Much More than Simple Prolapse. Multimodality Approach to Risk Stratification and Therapeutic Management. J Clin Med. 2022;11(2):455. doi: 10.3390/jcm11020455.
https://doi.org/10.3390/jcm11020455...

The resting ECG is normal in most patients. However, it may show inverted T waves in inferior wall leads, PVCs with a RBBB pattern, and QTi prolongation (mainly in athletes). In patients with chronic mitral regurgitation, patterns consistent with LA and LV hypertrophy may be observed, as may exercise-induced ST depression.931931 Alenazy A, Eltayeb A, Alotaibi MK, Anwar MK, Mulafikh N, Aladmawi M, et al. Diagnosis of Mitral Valve Prolapse: Much More than Simple Prolapse. Multimodality Approach to Risk Stratification and Therapeutic Management. J Clin Med. 2022;11(2):455. doi: 10.3390/jcm11020455.
https://doi.org/10.3390/jcm11020455...
933933 Nalliah CJ, Mahajan R, Elliott AD, Haqqani H, Lau DH, Vohra JK, et al. Mitral Valve Prolapse and Sudden Cardiac Death: A Systematic Review and Meta-Analysis. Heart. 2019;105(2):144-51. doi: 10.1136/heartjnl-2017-312932.
https://doi.org/10.1136/heartjnl-2017-31...

Particular features of ET in MVP:

  • ET is useful for assessment of symptoms, determination of exercise tolerance, detection of exertional arrhythmias, and medical clearance for physical activity/exercise prescription (including competitive sports).926926 Bonow RO, Nishimura RA, Thompson PD, Udelson JE; American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 5: Valvular Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e292-7. doi: 10.1161/CIR.0000000000000241.
    https://doi.org/10.1161/CIR.000000000000...
    ,934934 Cavarretta E, Peruzzi M, Versaci F, Frati G, Sciarra L. How to Manage an Athlete with Mitral Valve Prolapse. Eur J Prev Cardiol. 2021;28(10):1110-7. doi: 10.1177/2047487320941646.
    https://doi.org/10.1177/2047487320941646...

  • Exercise intolerance / impaired CRF are common.935935 Chung JH, Tsai YJ, Lin KL, Weng KP, Huang MH, Chen GB, et al. Comparison of Cardiorespiratory Fitness Between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. J Cardiovasc Dev Dis. 2023;10(4):167. doi: 10.3390/jcdd10040167.
    https://doi.org/10.3390/jcdd10040167...

  • Even when CRF is normal, patients have a lower peak double product.935935 Chung JH, Tsai YJ, Lin KL, Weng KP, Huang MH, Chen GB, et al. Comparison of Cardiorespiratory Fitness Between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. J Cardiovasc Dev Dis. 2023;10(4):167. doi: 10.3390/jcdd10040167.
    https://doi.org/10.3390/jcdd10040167...
    ,936936 Huang MH, Tuan SH, Tsai YJ, Huang WC, Huang TC, Chang ST, et al. Comparison of the Results of Cardiopulmonary Exercise Testing Between Healthy Peers and Pediatric Patients with Different Echocardiographic Severity of Mitral Valve Prolapse. Life. 2023;13(2):302. doi: 10.3390/life13020302.
    https://doi.org/10.3390/life13020302...

  • Exercise-induced ventricular arrhythmias with a RBBB and/or complex pattern are markers of risk in patients with suspected arrhythmogenic MVP.934934 Cavarretta E, Peruzzi M, Versaci F, Frati G, Sciarra L. How to Manage an Athlete with Mitral Valve Prolapse. Eur J Prev Cardiol. 2021;28(10):1110-7. doi: 10.1177/2047487320941646.
    https://doi.org/10.1177/2047487320941646...
    ,937937 Basso C, Iliceto S, Thiene G, Marra MP. Mitral Valve Prolapse, Ventricular Arrhythmias, and Sudden Death. Circulation. 2019;140(11):952-64. doi: 10.1161/CIRCULATIONAHA.118.034075.
    https://doi.org/10.1161/CIRCULATIONAHA.1...

  • During ET, around 38% of adolescent athletes with ventricular arrhythmias developed PVCs with RBBB morphology at rest or exertion.938938 Steriotis AK, Nava A, Rigato I, Mazzotti E, Daliento L, Thiene G, et al. Noninvasive Cardiac Screening in Young Athletes with Ventricular Arrhythmias. Am J Cardiol. 2013;111(4):557-62. doi: 10.1016/j.amjcard.2012.10.044.
    https://doi.org/10.1016/j.amjcard.2012.1...

  • If there is concomitant moderate/severe MR, there is an increased risk of morbidity and mortality when LV systolic function and CRF are compromised. In these patients, valve repair or replacement should be considered.370370 Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.

6. Dyspnea and Exercise Intolerance

6.1. Exercise-induced Dyspnea

Exercise-induced dyspnea (EID) is a very common clinical manifestation in children and adolescents, characterized by shortness of breath, increased work of breathing, increased respiratory frequency, and chest discomfort. EID is a subjective sensation that can have several underlying etiologies, and may occur even in the absence of any detectable disease. It is the cause of discontinuation or cessation of effort in ≈52% of children. More than 14% of apparently healthy adolescents experience an episode of EID every year.178178 Goddard T, Sonnappa S. The Role of Cardiopulmonary Exercise Testing in Evaluating Children with Exercise Induced Dyspnoea. Paediatr Respir Rev. 2021;38:24-32. doi: 10.1016/j.prrv.2020.08.002.
https://doi.org/10.1016/j.prrv.2020.08.0...
,939939 Bhatia R, Abu-Hasan M, Weinberger M. Exercise-Induced Dyspnea in Children and Adolescents: Differential Diagnosis. Pediatr Ann. 2019;48(3):e121-e127. doi: 10.3928/19382359-20190219-02.
https://doi.org/10.3928/19382359-2019021...
941941 Johansson H, Emtner M, Janson C, Nordang L, Malinovschi A. The Course of Specific Self-Reported Exercise-Induced Airway Symptoms in Adolescents with and Without Asthma. ERJ Open Res. 2020;6(4):00349-2020. doi: 10.1183/23120541.00349-2020.
https://doi.org/10.1183/23120541.00349-2...

The mechanisms and pathophysiology of dyspnea involve interactions between the cardiorespiratory system and neural responses. Dyspnea is believed to be caused by a mismatch between ventilation and the neural respiratory drive. Initially, respiratory changes resulting from effort occur predominantly through increases in tidal volume (TV) and after reaching approximately 50% of vital capacity through an increase in RR. Tachypnea develops once the VT plateau is reached. Ventilatory factors including chest discomfort, intense work of breathing, and ventilatory disturbances (with audible manifestations such as stridor and wheezing) can contribute to the sensation of dyspnea and its perceived severity.7878 Chlif M, Ammar MM, Said NB, Sergey L, Ahmaidi S, Alassery F, et al. Mechanism of Dyspnea during Exercise in Children with Corrected Congenital Heart Disease. Int J Environ Res Public Health. 2021;19(1):99. doi: 10.3390/ijerph19010099.
https://doi.org/10.3390/ijerph19010099...
,939939 Bhatia R, Abu-Hasan M, Weinberger M. Exercise-Induced Dyspnea in Children and Adolescents: Differential Diagnosis. Pediatr Ann. 2019;48(3):e121-e127. doi: 10.3928/19382359-20190219-02.
https://doi.org/10.3928/19382359-2019021...

The main causes of EID are: exercise-induced asthma; exercise-induced bronchospasm; exercise-induced laryngeal obstruction; exercise-induced vocal cord dysfunction; restrictive chest wall abnormalities; metabolic diseases (i.e. McArdle disease, hypothyroidism, etc.); myasthenia gravis; and cardiovascular diseases, including CHD, cardiomyopathies, HF, hypertension, VHD, and arrhythmias.7878 Chlif M, Ammar MM, Said NB, Sergey L, Ahmaidi S, Alassery F, et al. Mechanism of Dyspnea during Exercise in Children with Corrected Congenital Heart Disease. Int J Environ Res Public Health. 2021;19(1):99. doi: 10.3390/ijerph19010099.
https://doi.org/10.3390/ijerph19010099...
,939939 Bhatia R, Abu-Hasan M, Weinberger M. Exercise-Induced Dyspnea in Children and Adolescents: Differential Diagnosis. Pediatr Ann. 2019;48(3):e121-e127. doi: 10.3928/19382359-20190219-02.
https://doi.org/10.3928/19382359-2019021...
,942942 Hseu A, Sandler M, Ericson D, Ayele N, Kawai K, Nuss R. Paradoxical Vocal Fold Motion in Children Presenting with Exercise Induced Dyspnea. Int J Pediatr Otorhinolaryngol. 2016;90:165-9. doi: 10.1016/j.ijporl.2016.09.007.
https://doi.org/10.1016/j.ijporl.2016.09...

Particular features of ET/CPET in EID:

  • ET is indicated for elucidation of symptoms and mechanisms involved in dyspnea, assessment of cardiorespiratory fitness, to inform treatment decisions, and for medical clearance/prescription of physical exercise.

  • Use of the pictorial Dalhousie Dyspnea and Perceived Exertion Scales is recommended to quantify the degree of impairment and impact of dyspnea.178178 Goddard T, Sonnappa S. The Role of Cardiopulmonary Exercise Testing in Evaluating Children with Exercise Induced Dyspnoea. Paediatr Respir Rev. 2021;38:24-32. doi: 10.1016/j.prrv.2020.08.002.
    https://doi.org/10.1016/j.prrv.2020.08.0...
    ,943943 Pianosi PT, Huebner M, Zhang Z, McGrath PJ. Dalhousie Dyspnea and Perceived Exertion Scales: Psychophysical Properties in Children and Adolescents. Respir Physiol Neurobiol. 2014;199:34-40. doi: 10.1016/j.resp.2014.04.003.
    https://doi.org/10.1016/j.resp.2014.04.0...
    ,944944 Pianosi PT, Huebner M, Zhang Z, Turchetta A, McGrath PJ. Dalhousie Pictorial Scales Measuring Dyspnea and Perceived Exertion during Exercise for Children and Adolescents. Ann Am Thorac Soc. 2015;12(5):718-26. doi: 10.1513/AnnalsATS.201410-477OC.
    https://doi.org/10.1513/AnnalsATS.201410...

  • The perception of dyspnea must be correlated with the actual work load, VO2, and ventilation at which it developed and also at the moment of maximum intensity.945945 Stickland MK, Neder JA, Guenette JA, O‘Donnell DE, Jensen D. Using Cardiopulmonary Exercise Testing to Understand Dyspnea and Exercise Intolerance in Respiratory Disease. Chest. 2022;161(6):1505-16. doi: 10.1016/j.chest.2022.01.021.
    https://doi.org/10.1016/j.chest.2022.01....

  • In CPET, for diagnostic investigation, baseline spirometry must be performed followed by a maximum incremental effort protocol, with spirometry repeated during recovery.

  • Arterial oxygen saturation must be monitored continuously via pulse oximetry (SpO2); reductions >5% are indicative of exercise-induced hypoxemia.

  • If associated with wheezing or audible adventitious sounds, EID is often associated with exercise-induced asthma or bronchospasm.

  • EID with chest pain, marked reduction in ventilatory efficiency, and elevated VE/VO2 and VE/VCO2 ratios indicates abnormal gas exchange in the lungs, usually associated with PAH.631631 Cooper CB, Storer TW. Exercise Testing and Interpretation: A Practical Approach. Cambridge: Cambridge University Press; 2001. ISBN-13: 978-0521648424.

  • EID due to restrictive lung diseases is associated with reduced cardiorespiratory fitness (low VO2 at VT1 and at peak exertion), increased tidal volume (50% of vital capacity and/or 80% of inspiratory capacity), and relatively low VR.630630 Rowland TW, Rowland TW. Children's Exercise Physiology. 2nd ed. Champaign: Human Kinetics; 2005. ISBN-10: 0736051449; ISBN-13: 978-0736051446.

  • Unexplained dyspnea with a feeling of suffocation, hyperventilation, but no desaturation or changes in gas exchange is generally associated with psychogenic illness and/or panic disorder.629629 Toma N, Bicescu G, Enache R, Dragoi R, Cinteza M. Cardiopulmonary Exercise Testing in Differential Diagnosis of Dyspnea. Maedica. 2010;5(3):214-8. PMCID: PMC3177547; PMID: 21977155.,946946 Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J, et al. An Official American Thoracic Society statement: Update on the Mechanisms, Assessment, and Management of Dyspnea. Am J Respir Crit Care Med. 2012;185(4):435-52. doi: 10.1164/rccm.201111-2042ST.
    https://doi.org/10.1164/rccm.201111-2042...

6.2. Exercise-induced Bronchospasm

Exercise-induced bronchospasm (EIB) is an acute, transient airflow obstruction phenomenon. It generally occurs 5 to 15 minutes after cessation of exertion. Symptoms are nonspecific and mild to moderate in intensity: chest tightness, chest pain, abdominal pain, cough (sometimes as the only symptom), wheezing, and dyspnea. Very rarely, severe episodes with life-threatening respiratory failure may occur.947947 Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
https://doi.org/10.1016/j.jmii.2017.08.0...
,948948 Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Del Giudice MM. Exercise-Induced Bronchoconstriction in Children. Front Med. 2022;8:814976. doi: 10.3389/fmed.2021.814976.
https://doi.org/10.3389/fmed.2021.814976...

Although the term "exercise-induced asthma" (EIA) was previously used as a synonym for EIB, this practice is no longer recommended as they are distinct entities, including in terms of diagnosis and treatment criteria. EIA is characterized by chronic bronchial hyperactivity and inflammation, while EIB represents transient narrowing of the airways (always associated with physical exertion) which can occur even in non-asthmatic patients. EIA benefits from corticosteroid therapy to control underlying chronic inflammation, while EIB, in most cases, requires administration of a short-acting beta2-agonist prior to any physical exertion.948948 Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Del Giudice MM. Exercise-Induced Bronchoconstriction in Children. Front Med. 2022;8:814976. doi: 10.3389/fmed.2021.814976.
https://doi.org/10.3389/fmed.2021.814976...
,949949 Aggarwal B, Mulgirigama A, Berend N. Exercise-Induced Bronchoconstriction: Prevalence, Pathophysiology, Patient Impact, Diagnosis and Management. NPJ Prim Care Respir Med. 2018;28(1):31. doi: 10.1038/s41533-018-0098-2.
https://doi.org/10.1038/s41533-018-0098-...

In the pediatric population, risk factors for EIB include: atopic dermatitis; sensitization to indoor allergens; high IgE levels (seasonal and perennial); environmental factors (exposure to cold air, high atmospheric pressure, humidity, and pollutants); and, in asthmatic children, eosinophilic inflammation of the airways and fraction of exhaled nitric oxide (FeNO) >20 particles per billion (ppb) in patients not on corticosteroid therapy or >12ppb in those on corticosteroids.947947 Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
https://doi.org/10.1016/j.jmii.2017.08.0...
,948948 Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Del Giudice MM. Exercise-Induced Bronchoconstriction in Children. Front Med. 2022;8:814976. doi: 10.3389/fmed.2021.814976.
https://doi.org/10.3389/fmed.2021.814976...
,950950 Dreßler M, Friedrich T, Lasowski N, Herrmann E, Zielen S, Schulze J. Predictors and Reproducibility of Exercise-Induced Bronchoconstriction in Cold Air. BMC Pulm Med. 2019;19(1):94. doi: 10.1186/s12890-019-0845-3.
https://doi.org/10.1186/s12890-019-0845-...

EIB is observed in 40-90% of children with asthma, especially in those with severe, uncontrolled asthma. The prevalence ranges from 7% to 35% in the pediatric population and is ≈23.1% in adolescent athletes. The combination of EIB and EILO occurs in 4.8% of adolescents, being most prevalent in males (64.7%).164164 Johansson H, Norlander K, Berglund L, Janson C, Malinovschi A, Nordvall L, et al. Prevalence of Exercise-Induced Bronchoconstriction and Exercise-Induced Laryngeal Obstruction in a General Adolescent Population. Thorax. 2015;70(1):57-63. doi: 10.1136/thoraxjnl-2014-205738.
https://doi.org/10.1136/thoraxjnl-2014-2...
,951951 Ersson K, Mallmin E, Malinovschi A, Norlander K, Johansson H, Nordang L. Prevalence of Exercise-Induced Bronchoconstriction and Laryngeal Obstruction in Adolescent Athletes. Pediatr Pulmonol. 2020;55(12):3509-16. doi: 10.1002/ppul.25104.
https://doi.org/10.1002/ppul.25104...

Particular features of ET/CPET in EIB:

  • CPET is indicated for the diagnosis of EIB, assessment of cardiorespiratory fitness, determination of effort-limiting factors, assessment of the severity of dynamic hyperinflation, and assessment of the response to therapeutic interventions.952952 Boutou AK, Daniil Z, Pitsiou G, Papakosta D, Kioumis I, Stanopoulos I. Cardiopulmonary Exercise Testing in Patients with Asthma: What is its Clinical Value? Respir Med. 2020;167:105953. doi: 10.1016/j.rmed.2020.105953.
    https://doi.org/10.1016/j.rmed.2020.1059...

  • CPET performed for the specific purpose of diagnosing EIB is also known as an exercise bronchial challenge test or bronchial provocation test. It is generally performed on a treadmill, as these protocols are more prone to EIB.

  • Clinicians are advised to use a protocol with a fixed, high-intensity load to cause a rapid increase in ventilation and avoid refractoriness to the development of bronchospasm. The starting grade/incline should be 5.5% and the speed should increase quickly, with subjects reaching at least 80% of their predicted maximum capacity at 2 minutes, after which the work load must be maintained. Incremental protocols, whether on a treadmill (Bruce) or cycle ergometer (Godfrey), are less effective in triggering EIB.953953 Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, et al. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Eur Respir J. 2018;52(5):1801033. doi: 10.1183/13993003.01033-2018.
    https://doi.org/10.1183/13993003.01033-2...

  • Aim to reach the maximum work load and/or 80 to 90% of the estimated HRmax between 6 and 8 minutes of the test. The temperature of the room should be kept between 20-25°C, and relative humidity always <50% (dry air).952952 Boutou AK, Daniil Z, Pitsiou G, Papakosta D, Kioumis I, Stanopoulos I. Cardiopulmonary Exercise Testing in Patients with Asthma: What is its Clinical Value? Respir Med. 2020;167:105953. doi: 10.1016/j.rmed.2020.105953.
    https://doi.org/10.1016/j.rmed.2020.1059...
    ,954954 Randolph C. Diagnostic Exercise Challenge Testing. Curr Allergy Asthma Rep. 2011;11(6):482-90. doi: 10.1007/s11882-011-0225-4.
    https://doi.org/10.1007/s11882-011-0225-...

  • Around 50% of asthmatic patients without a history of EIB and ≈40% of atopic patients without asthma may develop EIB during ET.

  • Administration of bronchodilators before ET/CPET should be considered when the test is being performed to assess treatment response.

  • Diagnosis and quantification of the severity of EIB are established by changes in lung function caused by exertion, regardless of the occurrence of symptoms.

  • The forced expiratory volume in the 1st second (FEV1) must be measured at rest and recovery (at 5, 10, 15, and 30 minutes after exertion). A >10% difference between the resting FEV1 value and the lowest FEV1 reached in the first 30 minutes after exercise establishes the diagnosis of EIB.163163 Parsons JP, Hallstrand TS, Mastronarde JG, Kaminsky DA, Rundell KW, Hull JH, et al. An Official American Thoracic Society Clinical Practice Guideline: Exercise-Induced Bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016-27. doi: 10.1164/rccm.201303-0437ST.
    https://doi.org/10.1164/rccm.201303-0437...

  • The severity of EIB can be classified based on the percent drop in FEV1 in relation to baseline (resting level): ≥10% but <25%, mild; ≥25% but <50%, moderate; and ≥50%, severe.163163 Parsons JP, Hallstrand TS, Mastronarde JG, Kaminsky DA, Rundell KW, Hull JH, et al. An Official American Thoracic Society Clinical Practice Guideline: Exercise-Induced Bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016-27. doi: 10.1164/rccm.201303-0437ST.
    https://doi.org/10.1164/rccm.201303-0437...

  • Patients with mild EIB generally require more than one ET/CPET to confirm the diagnosis.950950 Dreßler M, Friedrich T, Lasowski N, Herrmann E, Zielen S, Schulze J. Predictors and Reproducibility of Exercise-Induced Bronchoconstriction in Cold Air. BMC Pulm Med. 2019;19(1):94. doi: 10.1186/s12890-019-0845-3.
    https://doi.org/10.1186/s12890-019-0845-...
    ,955955 Anderson SD, Pearlman DS, Rundell KW, Perry CP, Boushey H, Sorkness CA, et al. Reproducibility of the Airway Response to an Exercise Protocol Standardized for Intensity, Duration, and Inspired air Conditions, in Subjects with Symptoms Suggestive of Asthma. Respir Res. 2010;11(1):120. doi: 10.1186/1465-9921-11-120.
    https://doi.org/10.1186/1465-9921-11-120...

  • If moderate/severe symptoms occur during or after exercise, even in the absence of a significant drop in FEV1, administration of a bronchodilator is recommended. This may also be necessary at the end of the test if FEV1 does not return to a value no more than 10% below the resting FEV1.953953 Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, et al. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Eur Respir J. 2018;52(5):1801033. doi: 10.1183/13993003.01033-2018.
    https://doi.org/10.1183/13993003.01033-2...

6.3. Exercise-induced Laryngeal Obstruction

Exercise-induced laryngeal obstruction (EILO) is defined as a transient obstruction of the upper airways, typically occurring at the supraglottic level and often followed by glottic involvement, which causes reduced airflow and dyspnea on exertion. The cause of EILO is unknown. The most relevant risk factors are asthma; gastroesophageal reflux disease; diseases or anatomical variants of the upper airways (i.e. vocal cord dysfunction); heredity; environmental factors (worse in cold, humid air); psychological stress; and high-intensity physical activity/sports. It is a major cause of respiratory problems and upper airway dysfunction in adolescent athletes. Adequate management and treatment require ruling out any other possible causes of symptoms, such as asthma, EIB, and airway hyperreactivity.956956 Liyanagedera S, McLeod R, Elhassan HA. Exercise Induced Laryngeal Obstruction: A Review of Diagnosis and Management. Eur Arch Otorhinolaryngol. 2017;274(4):1781-9. doi: 10.1007/s00405-016-4338-1.
https://doi.org/10.1007/s00405-016-4338-...
958958 Clemm HH, Olin JT, McIntosh C, Schwellnus M, Sewry N, Hull JH, et al. Exercise-Induced Laryngeal Obstruction (EILO) in Athletes: A Narrative Review by a Subgroup of the IOC Consensus on ‘Acute Respiratory Illness in the Athlete’. Br J Sports Med. 2022;56(11):622-9. doi: 10.1136/bjsports-2021-104704.
https://doi.org/10.1136/bjsports-2021-10...

Overall, the prevalence of OLEI varies with age (more frequent between the ages of 11 and 18), sex (3:1 female-to-male ratio), and athletic level (more common in high-performance competitive athletes). Among adolescent athletes the prevalence is 8.1%, and an association with exercise-induced asthma is common (14 to 38% of affected athletes).164164 Johansson H, Norlander K, Berglund L, Janson C, Malinovschi A, Nordvall L, et al. Prevalence of Exercise-Induced Bronchoconstriction and Exercise-Induced Laryngeal Obstruction in a General Adolescent Population. Thorax. 2015;70(1):57-63. doi: 10.1136/thoraxjnl-2014-205738.
https://doi.org/10.1136/thoraxjnl-2014-2...
,951951 Ersson K, Mallmin E, Malinovschi A, Norlander K, Johansson H, Nordang L. Prevalence of Exercise-Induced Bronchoconstriction and Laryngeal Obstruction in Adolescent Athletes. Pediatr Pulmonol. 2020;55(12):3509-16. doi: 10.1002/ppul.25104.
https://doi.org/10.1002/ppul.25104...
,959959 Hull JH, Walsted ES, Pavitt MJ, Menzies-Gow A, Backer V, Sandhu G. High Prevalence of Laryngeal Obstruction During Exercise in Severe Asthma. Am J Respir Crit Care Med. 2019;199(4):538-42. doi: 10.1164/rccm.201809-1734LE.
https://doi.org/10.1164/rccm.201809-1734...

Patients generally present with exertional dyspnea; respiratory discomfort; tightness in the throat; feeling of suffocation; tightness in the upper chest; chest pain; noisy, stertorous breathing; changes in voice and hoarseness; cough; prolonged inspiration; hyperventilation episodes; and panic attacks. The only complaint may be a feeling of "labored breathing".960960 Walsted ES, Faisal A, Jolley CJ, Swanton LL, Pavitt MJ, Luo YM, et al. Increased Respiratory Neural Drive and Work of Breathing in Exercise-Induced Laryngeal Obstruction. J Appl Physiol (1985). 2018;124(2):356-63. doi: 10.1152/japplphysiol.00691.2017.
https://doi.org/10.1152/japplphysiol.006...
,961961 Hilland M, Røksund OD, Sandvik L, Haaland Ø, Aarstad HJ, Halvorsen T, et al. Congenital Laryngomalacia is Related to Exercise-Induced Laryngeal Obstruction in Adolescence. Arch Dis Child. 2016;101(5):443-8. doi: 10.1136/archdischild-2015-308450.
https://doi.org/10.1136/archdischild-201...

Particular features of ET/CPET in EILO:

  • Regarding tests to confirm the diagnosis of OLEI, it is recommended that they be carried out in a hospital environment with a multidisciplinary team (including an otorhinolaryngologist) and adequate conditions to deal with possible complications.

  • ET with continuous flexible nasal laryngoscopy during high-intensity exercise is recognized as the "gold standard" for the diagnosis of EILO. This involves advancing a flexible video laryngoscope (with continuous recording) through the nose to view the larynx in real time. In addition to diagnosis, this allows assessment of the severity of laryngeal obstruction at the moment of greatest symptom severity, as well as evaluation of treatment efficacy.962962 Olin JT, Clary MS, Fan EM, Johnston KL, State CM, Strand M, et al. Continuous Laryngoscopy Quantitates Laryngeal Behaviour in Exercise and Recovery. Eur Respir J. 2016;48(4):1192-200. doi: 10.1183/13993003.00160-2016.
    https://doi.org/10.1183/13993003.00160-2...
    ,963963 Giraud L, Wuyam B, Destors M, Atallah I. Exercise-Induced Laryngeal Obstruction: From Clinical Examination to Continuous Laryngoscopy During Exercise. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;138(6):479-82. doi: 10.1016/j.anorl.2021.02.005.
    https://doi.org/10.1016/j.anorl.2021.02....

  • In athletes, the ergometer and effort protocol should ideally be selected so as to mimic their sport or activity as closely as possible, in order to ensure achievement of maximum effort and the best possible ventilation.

  • The test is positive if it reproduces the patient's laryngeal symptoms (ideally with a concomitant plateau in VO2 and/or HR response in a maximal test) and video laryngoscopy records the presence, site, and severity of laryngeal obstruction. In the presence of concomitant supraglottic and glottic obstruction, the location where the obstruction first occurs must be determined and recorded.956956 Liyanagedera S, McLeod R, Elhassan HA. Exercise Induced Laryngeal Obstruction: A Review of Diagnosis and Management. Eur Arch Otorhinolaryngol. 2017;274(4):1781-9. doi: 10.1007/s00405-016-4338-1.
    https://doi.org/10.1007/s00405-016-4338-...
    ,964964 Tervonen H, Niskanen MM, Sovijärvi AR, Hakulinen AS, Vilkman EA, Aaltonen LM. Fiberoptic Videolaryngoscopy During Bicycle Ergometry: A Diagnostic Tool for Exercise-Induced Vocal Cord Dysfunction. Laryngoscope. 2009;119(9):1776-80. doi: 10.1002/lary.20558.
    https://doi.org/10.1002/lary.20558...

  • CPET combined with continuous laryngoscopy allows simultaneous assessment of respiratory and metabolic variables, contributing to the differential diagnosis of other causes of exertional dyspnea.958958 Clemm HH, Olin JT, McIntosh C, Schwellnus M, Sewry N, Hull JH, et al. Exercise-Induced Laryngeal Obstruction (EILO) in Athletes: A Narrative Review by a Subgroup of the IOC Consensus on ‘Acute Respiratory Illness in the Athlete’. Br J Sports Med. 2022;56(11):622-9. doi: 10.1136/bjsports-2021-104704.
    https://doi.org/10.1136/bjsports-2021-10...
    ,965965 Engan M, Hammer IJ, Bekken M, Halvorsen T, Fretheim-Kelly ZL, Vollsæter M, et al. Reliability of Maximum Oxygen Uptake in Cardiopulmonary Exercise Testing with Continuous Laryngoscopy. ERJ Open Res. 2021;7(1):00825-2020. doi: 10.1183/23120541.00825-2020.
    https://doi.org/10.1183/23120541.00825-2...

  • The main CPET variables to be recorded when EILO is suspected are pulmonary ventilation, VO2peak, RQ, and flow volume loops.956956 Liyanagedera S, McLeod R, Elhassan HA. Exercise Induced Laryngeal Obstruction: A Review of Diagnosis and Management. Eur Arch Otorhinolaryngol. 2017;274(4):1781-9. doi: 10.1007/s00405-016-4338-1.
    https://doi.org/10.1007/s00405-016-4338-...

  • Symptoms generally occur close to peak exertion, are more evident during the inspiratory phase, and may be associated with stridor (wheezing/whistling on inhalation). They generally resolve within 2 to 3 minutes after cessation of exertion, but may persist for longer in patients who continue to hyperventilate during recovery.956956 Liyanagedera S, McLeod R, Elhassan HA. Exercise Induced Laryngeal Obstruction: A Review of Diagnosis and Management. Eur Arch Otorhinolaryngol. 2017;274(4):1781-9. doi: 10.1007/s00405-016-4338-1.
    https://doi.org/10.1007/s00405-016-4338-...
    ,963963 Giraud L, Wuyam B, Destors M, Atallah I. Exercise-Induced Laryngeal Obstruction: From Clinical Examination to Continuous Laryngoscopy During Exercise. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;138(6):479-82. doi: 10.1016/j.anorl.2021.02.005.
    https://doi.org/10.1016/j.anorl.2021.02....

  • If the initial symptoms/signs go unrecognized or there is a delay in cessation of exertion, frank laryngospasm may occur due to exacerbated closure of the glottis, preventing ventilation altogether. This is an exceedingly rare situation occurring late in the course of an EILO episode, but will progress to desaturation, bradycardia, and central cyanosis and requires immediate emergency treatment.

6.4. Exercise-induced Asthma

Asthma is a heterogeneous, chronic inflammatory disease characterized by a reversible airway flow limitation, which resolves spontaneously or after treatment. Principal symptoms are wheezing, shortness of breath, chest tightness, and cough. Episodes are often triggered by emotions, dust, and/or exposure to allergens. Impaired cardiorespiratory fitness, exercise-induced dyspnea, fatigue, and a reduction in quality of life are common. The prevalence of asthma symptoms among adolescents in Brazil is ≈20-23%, one of the highest in the world, with only 12% having a known diagnosis of asthma.966966 Carvalho-Pinto RM, Cançado JED, Pizzichini MMM, Fiterman J, Rubin AS, Cerci A Neto, et al. 2021 Brazilian Thoracic Association Recommendations for the Management of Severe Asthma. J Bras Pneumol. 2021;47(6):e20210273. doi: 10.36416/1806-3756/e20210273.
https://doi.org/10.36416/1806-3756/e2021...
968968 de Jong CCM, Pedersen ESL, Mozun R, Goutaki M, Trachsel D, Barben J, et al. Diagnosis of Asthma in Children: The Contribution of a Detailed History and Test Results. Eur Respir J. 2019;54(6):1901326. doi: 10.1183/13993003.01326-2019.
https://doi.org/10.1183/13993003.01326-2...

Exercise-induced asthma (EIA) is a condition of airway restriction in patients who already have bronchial hyperactivity and persistent inflammation (i.e. established asthma), while in EIB, the airway restriction is temporary and occurs mainly in non-asthmatics. EIA is triggered by inhalation of cold, dry air during exercise, which causes dehydration of the airway mucosa with increased osmolarity, contraction of bronchial smooth muscles, an influx of eosinophils/mast cells, and subsequent release of proinflammatory mediators (leukotrienes, histamine, IL-8, tryptase, and prostaglandins). EIA is observed in ≈40-90% of children with asthma, especially in those with severe, uncontrolled disease. The main symptoms are coughing, wheezing, chest tightness, and unusual shortness of breath or excess mucus production after strenuous, continuous aerobic exercise. Symptoms generally begin to appear 5 to 8 minutes after the start of continuous exercise, or within 2 to 5 minutes in particularly high-intensity exercise. EIA is usually confirmed by spirometry before and after ET/CPET.948948 Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Del Giudice MM. Exercise-Induced Bronchoconstriction in Children. Front Med. 2022;8:814976. doi: 10.3389/fmed.2021.814976.
https://doi.org/10.3389/fmed.2021.814976...
,949949 Aggarwal B, Mulgirigama A, Berend N. Exercise-Induced Bronchoconstriction: Prevalence, Pathophysiology, Patient Impact, Diagnosis and Management. NPJ Prim Care Respir Med. 2018;28(1):31. doi: 10.1038/s41533-018-0098-2.
https://doi.org/10.1038/s41533-018-0098-...
,969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
https://doi.org/10.3402/ecrj.v2.27984...

EIA often leads to significant limitations in physical activities and hinders participation in sports; however, in patients with adequately controlled asthma, regular exercise is recommended, not least to avoid obesity and other factors that actually make asthma worse. In patients with EIA, administration a short-acting beta2-agonist 5 to 20 minutes before exercise is advised. Additionally, daily use of inhaled corticosteroids, leukotriene receptor antagonists, or mast-cell stabilizers may be necessary for treatment of asthma.947947 Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
https://doi.org/10.1016/j.jmii.2017.08.0...
,969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
https://doi.org/10.3402/ecrj.v2.27984...

Particular features of ET/CPET in EIA:

  • Asthmatic patients’ response to exertion depends on the degree of airway obstruction and its reversibility. During exertion, minute ventilation increases to meet muscular metabolic demands. An increase in tidal volume is the dominant mechanism in low to moderate ventilation. At high levels of exertion, additional increases in minute ventilation are primarily attributable to increases in RR.947947 Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
    https://doi.org/10.1016/j.jmii.2017.08.0...
    ,969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
    https://doi.org/10.3402/ecrj.v2.27984...

  • In controlled asthma, cessation of effort is generally due to peripheral fatigue, although a certain degree of expiratory flow limitation may also occur. The ventilatory reserve usually is not exhausted and maximal flow is not reached, even at maximal exertion.969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
    https://doi.org/10.3402/ecrj.v2.27984...
    ,970970 Carlsen KH, Hem E, Stensrud T. Asthma in Adolescent Athletes. Br J Sports Med 2011;45(16):1266-71. doi: 10.1136/bjsports-2011-090591.
    https://doi.org/10.1136/bjsports-2011-09...

  • In severe asthma, significant ventilatory restriction and impaired CRF occur in ≈30% of patients. Patients with FEV1 <80% have a lower ventilatory reserve. The percent drop in FEV1 correlates with increased VE/VO2 and VE/VCO2 values.967967 Hengeveld VS, Keijzer PB, Diamant Z, Thio BJ. An Algorithm for Strategic Continuation or Restriction of Asthma Medication Prior to Exercise Challenge Testing in Childhood Exercise Induced Bronchoconstriction. Front Pediatr. 2022;10:800193. doi: 10.3389/fped.2022.800193.
    https://doi.org/10.3389/fped.2022.800193...
    ,971971 Dajani AS, Taubert KA, Takahashi M, Bierman FZ, Freed MD, Ferrieri P, et al. Report from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 1994;89(2):916-22. doi: 10.1161/01.cir.89.2.916.
    https://doi.org/10.1161/01.cir.89.2.916...
    ,972972 Schindel CS, Schiwe D, Heinzmann-Filho JP, Gheller MF, Campos NE, Pitrez PM, et al. Determinants of Exercise Capacity in Children and Adolescents with Severe Therapy-Resistant Asthma. J Asthma. 2022;59(1):115-25. doi: 10.1080/02770903.2020.1833915.
    https://doi.org/10.1080/02770903.2020.18...

  • Most patients do not experience clinically significant hypoxemia or hypercapnia.

  • Increased ventilation/perfusion mismatch, alveolar-arterial oxygen tension, and physiological dead space appear to be associated with the presence of bronchospasm.947947 Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
    https://doi.org/10.1016/j.jmii.2017.08.0...
    ,969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
    https://doi.org/10.3402/ecrj.v2.27984...

  • Patients with severe and poorly reversible airway obstruction may present with mechanical restrictions to ventilation and exercise-induced symptoms that mimic those of COPD.954954 Randolph C. Diagnostic Exercise Challenge Testing. Curr Allergy Asthma Rep. 2011;11(6):482-90. doi: 10.1007/s11882-011-0225-4.
    https://doi.org/10.1007/s11882-011-0225-...
    ,969969 Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
    https://doi.org/10.3402/ecrj.v2.27984...

  • Patients with asthma and/or comorbid EIB generally exhibit expiratory stridor/wheezing, with dyspnea/other symptoms reaching their greatest intensity between 3 and 15 minutes after cessation of exertion. Therefore, abnormal changes in lung function are evaluated in spirometry in the post-exercise phase, mainly through FEV1.

  • CPET is performed as a so-called exercise bronchial challenge test. It is generally performed on a treadmill, as these protocols are more prone to EIA. In the pediatric population, the criterion of a ≥12% reduction in FEV1 (instead of ≥10%) has been preferred due to its greater specificity, with a PPV of 94% and test accuracy of 70%.966966 Carvalho-Pinto RM, Cançado JED, Pizzichini MMM, Fiterman J, Rubin AS, Cerci A Neto, et al. 2021 Brazilian Thoracic Association Recommendations for the Management of Severe Asthma. J Bras Pneumol. 2021;47(6):e20210273. doi: 10.36416/1806-3756/e20210273.
    https://doi.org/10.36416/1806-3756/e2021...
    ,968968 de Jong CCM, Pedersen ESL, Mozun R, Goutaki M, Trachsel D, Barben J, et al. Diagnosis of Asthma in Children: The Contribution of a Detailed History and Test Results. Eur Respir J. 2019;54(6):1901326. doi: 10.1183/13993003.01326-2019.
    https://doi.org/10.1183/13993003.01326-2...

7. Sickle Cell Anemia/Sickle Cell Disease

Sickle cell disease (SCD) is a genetic, autosomal recessive hemoglobinopathy resulting from structural defects in hemoglobin (Hb), with or without defects in Hb synthesis. Inherited mutations may be homozygous (SS, a genotype known as sickle cell anemia); simple heterozygous (sickle cell trait), with a normal Hb gene combined with a variant gene; or compound heterozygous, with a variant gene (SC, SD, SE, S beta-thalassemia, S alpha-thalassemia, or S mut) combined with a structural or Hb synthesis defect, generically known as thalassemia. It is estimated that 4% of the Brazilian population has the sickle cell trait and that 25,000-30,000 people have frank sickle cell anemia (SCA) or thalassemia.973973 Sudário LC, Kroger FL, Paula NCS, Santos OF, Cintra RB, Rodrigues DOW. Sickle Cell Disease and Social Security Aspects. Braz J Health Ver. 2020;3(6):18259-70. doi: 10.34119/bjhrv3n6-225.
https://doi.org/10.34119/bjhrv3n6-225...

In SCD, defective hemoglobin (HbS), when deoxygenated in capillary beds, leads to sickling of red blood cells, causing hemolysis, chronic normocytic anemia, and vaso-occlusive crises with associated ischemia. SCD carries a high morbidity and mortality rate, with potentially lethal acute events including vaso-occlusive crises (sickle cell crises) with severe pain; ischemic tissue injury and possible damage to all organs (stroke, nephropathy, retinopathy, leg ulcers, priapism, avascular necrosis, etc.); and acute chest syndrome (ACS), whose main causes in adults are fat embolism, pulmonary infection, asthmatic crisis, infarction of the thoracic bone structure and in situ thrombosis/pulmonary artery embolism and which usually precedes lethal outcomes.974974 Kavanagh PL, Fasipe TA, Wun T. Sickle Cell Disease: A Review. JAMA. 2022;328(1):57-68. doi: 10.1001/jama.2022.10233.
https://doi.org/10.1001/jama.2022.10233...

In children, persistent chronic hypoxemia with SpO2 <94% is commonly observed. When properly diagnosed and treated, nearly all children with SCA survive to adulthood, though with a reduced life expectancy (≈20 years).

SCD patients usually present with exercise intolerance and reduced cardiorespiratory fitness due to:168168 Connes P, Machado R, Hue O, Reid H. Exercise Limitation, Exercise Testing and Exercise Recommendations in Sickle Cell Anemia. Clin Hemorheol Microcirc. 2011;49(1):151-63. doi: 10.3233/CH-2011-1465.
https://doi.org/10.3233/CH-2011-1465...
,975975 van Beers EJ, van der Plas MN, Nur E, Bogaard HJ, van Steenwijk RP, Biemond BJ, et al. Exercise Tolerance, Lung Function Abnormalities, Anemia, and Cardiothoracic Ratio in Sickle Cell Patients. Am J Hematol. 2014;89(8):819-24. doi: 10.1002/ajh.23752.
https://doi.org/10.1002/ajh.23752...

  • Low levels of physical activity due to chronic joint pain.

  • Exacerbation of the proinflammatory response as a result of intense exercise.

  • Reduced oxygen transport capacity due to low Hb levels.

  • Cardiac dysfunction resulting from chronic anemia.

  • Pulmonary parenchymal dysfunction caused by repeated episodes of acute chest syndrome.

  • Pulmonary vascular disease and PAH.

  • Peripheral vascular disease/myopathy due to frequent, repeated microvascular occlusions.

SCD can lead to restrictive cardiomyopathy (RCM), characterized by LV diastolic dysfunction with normal systolic function and left atrial enlargement. This combination results in mild secondary PAH, increased velocity of the tricuspid valve regurgitant jet, and increased mortality. Ischemic lesions of the conduction system, fibrosis, and extensive enlargement of all chambers of the heart are potential etiologies of arrhythmia and SCD in CMR.976976 Colombatti R, Maschietto N, Varotto E, Grison A, Grazzina N, Meneghello L, et al. Pulmonary Hypertension in Sickle Cell Disease Children Under 10 Years of Age. Br J Haematol. 2010;150(5):601-9. doi: 10.1111/j.1365-2141.2010.08269.x.
https://doi.org/10.1111/j.1365-2141.2010...
,977977 Niss O, Quinn CT, Lane A, Daily J, Khoury PR, Bakeer N, et al. Cardiomyopathy with Restrictive Physiology in Sickle Cell Disease. JACC Cardiovasc Imaging. 2016;9(3):243-52. doi: 10.1016/j.jcmg.2015.05.013.
https://doi.org/10.1016/j.jcmg.2015.05.0...

Indications for ET/CPET in children and adolescents with SCD:

  • CPET allows assessment of CRF, possible limitations to exercise, and prescription of physical exercise, including cardiopulmonary rehabilitation.978978 Liem RI, Akinosun M, Muntz DS, Thompson AA. Feasibility and Safety of Home Exercise Training in Children with Sickle Cell Anemia. Pediatr Blood Cancer. 2017;64(12). doi: 10.1002/pbc.26671.
    https://doi.org/10.1002/pbc.26671...
    ,979979 Smith KN, Baynard T, Fischbach PS, Hankins JS, Hsu LL, Murphy PM, et al. Safety of Maximal Cardiopulmonary Exercise Testing in Individuals with Sickle Cell Disease: A Systematic Review. Br J Sports Med. 2022;56(13):764-9. doi: 10.1136/bjsports-2021-104450.
    https://doi.org/10.1136/bjsports-2021-10...

  • Lung function tests (including FEV1 and FEV1/FVC ratio) should be performed every 1 to 3 years due to the high prevalence of restrictive (≈26% of patients), obstructive (≈35-39%), pulmonary dysfunction and airway hyperreactivity (70%). Shorter intervals between tests should be adopted especially for patients with persistent dyspnea, history of asthma, and/or recurrent wheezing or marked elevations in hemolytic markers.980980 Arteta M, Campbell A, Nouraie M, Rana S, Onyekwere OC, Ensing G, et al. Abnormal Pulmonary Function and Associated Risk Factors in Children and Adolescents with Sickle Cell Anemia. J Pediatr Hematol Oncol. 2014;36(3):185-9. doi: 10.1097/MPH.0000000000000011.
    https://doi.org/10.1097/MPH.000000000000...
    ,981981 De A, Williams S, Yao Y, Jin Z, Brittenham GM, Kattan M, et al. Acute Chest Syndrome, Airway Inflammation and Lung Function in Sickle Cell Disease. PLoS One. 2023;18(3):e0283349. doi: 10.1371/journal.pone.0283349.
    https://doi.org/10.1371/journal.pone.028...

  • Acute painful episodes during ET/CPET are rare, occurring in 0.43 to 1% of patients.979979 Smith KN, Baynard T, Fischbach PS, Hankins JS, Hsu LL, Murphy PM, et al. Safety of Maximal Cardiopulmonary Exercise Testing in Individuals with Sickle Cell Disease: A Systematic Review. Br J Sports Med. 2022;56(13):764-9. doi: 10.1136/bjsports-2021-104450.
    https://doi.org/10.1136/bjsports-2021-10...

  • Transient ischemic changes and desaturations during ET/CPET are common, but do not result in arrhythmias or other complications.979979 Smith KN, Baynard T, Fischbach PS, Hankins JS, Hsu LL, Murphy PM, et al. Safety of Maximal Cardiopulmonary Exercise Testing in Individuals with Sickle Cell Disease: A Systematic Review. Br J Sports Med. 2022;56(13):764-9. doi: 10.1136/bjsports-2021-104450.
    https://doi.org/10.1136/bjsports-2021-10...
    Generally, half of patients present with exercise-induced ST-segment depression, of whom 31% have a definitive ischemic response (CAD).

  • Patients with anemia generally have elevated HR and VE/VCO2, abnormal oxygen pulse, and reductions in VO2 at VT1 and at peak effort.

  • ⅔ of patients who develop pulmonary vascular disease have exercise limitation with abnormalities in gas exchange: alveolar-arterial oxygen tension [PAO2] >30 mmHg, abnormal dead space to tidal volume ratio (VD/VT), and very high VE/VCO2.

  • A study showed a 0.3% decline in predicted FEV1 with each year, regardless of sex, presence of asthma, hemoglobin concentration, incidence of severe acute pain, episodes of acute chest syndrome, and hydroxyurea therapy.982982 Willen SM, Cohen R, Rodeghier M, Kirkham F, Redline SS, Rosen C, et al. Age is a Predictor of a Small Decrease in Lung Function in Children with Sickle Cell Anemia. Am J Hematol. 2018;93(3):408-15. doi: 10.1002/ajh.25003.
    https://doi.org/10.1002/ajh.25003...

  • Children with ACS generally have lower total lung capacity (TLC) and reduced FEV1. Age and male sex are associated with lower FEV1 values and a lower FEV1/FVC ratio.981981 De A, Williams S, Yao Y, Jin Z, Brittenham GM, Kattan M, et al. Acute Chest Syndrome, Airway Inflammation and Lung Function in Sickle Cell Disease. PLoS One. 2023;18(3):e0283349. doi: 10.1371/journal.pone.0283349.
    https://doi.org/10.1371/journal.pone.028...

  • HR recovery is generally slow and occurs in the 1st to 5th minutes post-exercise, regardless of ACR. This slow recovery of HR suggests impairment of vagal activity, which worsens with increasing age.983983 Alvarado AM, Ward KM, Muntz DS, Thompson AA, Rodeghier M, Fernhall B, et al. Heart Rate Recovery is Impaired After Maximal Exercise Testing in Children with Sickle Cell Anemia. J Pediatr. 2015;166(2):389-93.e1. doi: 10.1016/j.jpeds.2014.10.064.
    https://doi.org/10.1016/j.jpeds.2014.10....

  • Patients with Hb-SS have a lower mean oxygen saturation, FVC, and %FEV1. According to one study, these, as well as abnormal spirometry results (found in 70.4% of patients), are due to predominantly restrictive defects.984984 Dei-Adomakoh YA, Afriyie-Mensah JS, Forson A, Adadey M, Ndanu TA, Acquaye JK. Lung Function Abnormalities in Sickle Cell Anaemia. Adv Hematol. 2019;2019:1783240. doi: 10.1155/2019/1783240.
    https://doi.org/10.1155/2019/1783240...

  • Pulse oximetry generally underestimates arterial oxygen saturation, but the difference is clinically insignificant. This phenomenon occurs partly due to elevated carboxyhemoglobin (COHb) and methemoglobin (MetHb) levels in SCD. Non-invasive pulse co-oximetry can help measure COHb and MetHb levels and improve the accuracy of saturation determination.985985 Caboot JB, Jawad AF, McDonough JM, Bowdre CY, Arens R, Marcus CL, et al. Non-Invasive Measurements of Carboxyhemoglobin and Methemoglobin in Children with Sickle Cell Disease. Pediatr Pulmonol. 2012;47(8):808-15. doi: 10.1002/ppul.22504.
    https://doi.org/10.1002/ppul.22504...

  • Exercise-induced desaturation is observed in ≈18% of children with thalassemia and in ≈34% of children with sickle cell anemia.986986 Waltz X, Romana M, Lalanne-Mistrih ML, Machado RF, Lamarre Y, Tarer V, et al. Hematologic and Hemorheological Determinants of Resting and Exercise-Induced Hemoglobin Oxygen Desaturation in Children with Sickle Cell Disease. Haematologica. 2013;98(7):1039-44. doi: 10.3324/haematol.2013.083576.
    https://doi.org/10.3324/haematol.2013.08...

Part 4 – Exercise Testing Combined with Cardiac Imaging Methods

1. Cardiovascular Stress Combined with Cardiac Imaging Methods

1.1. Nuclear Imaging/Myocardial Perfusion Imaging

In the pediatric population, nuclear cardiology allows assessment of myocardial perfusion and viability, ventricular function, and pulmonary perfusion, as well as detection of inflammatory processes.214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
https://doi.org/10.3389/fped.2022.909994...
,987987 Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical Applications of Radionuclide Imaging in the Evaluation and Management of Patients with Congenital Heart Disease. J Nucl Cardiol. 2016;23(1):45-63. doi: 10.1007/s12350-015-0185-5.
https://doi.org/10.1007/s12350-015-0185-...

The utility of myocardial perfusion scans is limited due to ionizing radiation exposure and its potential lifelong impact, particularly in patients with CHD. Cancer risk is increased, due to the inherent radiosensitivity of children.988988 Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, et al. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of Cardiovascular Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. J Cardiovasc Magn Reson. 2022;24(1):37. doi: 10.1186/s12968-022-00843-7.
https://doi.org/10.1186/s12968-022-00843...

Technological progress in the last decade and the development of low-dose irradiation protocols specific for use in children open new perspectives for the use of nuclear imaging in pediatrics.214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
https://doi.org/10.3389/fped.2022.909994...

The use of cardiac magnetic resonance (CMR) with myocardial perfusion imaging in the pediatric population is increasingly popular. CMR is considered the method of choice for quantifying ventricular volumes and function, especially of the RV. Myocardial viability and ischemia can also be assessed by PET/CT.988988 Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, et al. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of Cardiovascular Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. J Cardiovasc Magn Reson. 2022;24(1):37. doi: 10.1186/s12968-022-00843-7.
https://doi.org/10.1186/s12968-022-00843...
,989989 Biko DM, Collins RT 2nd, Partington SL, Harris M, Whitehead KK, Keller MS, et al. Magnetic Resonance Myocardial Perfusion Imaging: Safety and Indications in Pediatrics and Young Adults. Pediatr Cardiol. 2018;39(2):275-82. doi: 10.1007/s00246-017-1752-0.
https://doi.org/10.1007/s00246-017-1752-...

The patient's history and image acquisition planning are essential to ensure that scans are feasible and hold diagnostic value. Details of cardiac anatomy and previous surgical and percutaneous procedures help distinguish normal from pathological findings. The radionuclide dose is based on the child's weight and the image acquisition protocol/methods. Preferably, stress imaging should be performed first. The use of state-of-the-art SPECT, PET, or hybrid imaging cameras is recommended.987987 Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical Applications of Radionuclide Imaging in the Evaluation and Management of Patients with Congenital Heart Disease. J Nucl Cardiol. 2016;23(1):45-63. doi: 10.1007/s12350-015-0185-5.
https://doi.org/10.1007/s12350-015-0185-...
,990990 Milanesi O, Stellin G, Zucchetta P. Nuclear Medicine in Pediatric Cardiology. Semin Nucl Med. 2017;47(2):158-69. doi: 10.1053/j.semnuclmed.2016.10.008.
https://doi.org/10.1053/j.semnuclmed.201...

In Brazil, physical or pharmacological stress modalities (dipyridamole, adenosine, or dobutamine) are commonly used; both have similar sensitivity and specificity for analysis of perfusion scans. The choice of stress modality depends mainly on the child's age and limitations or contraindications for physical exercise (Figure 7). The key contraindications for each stressor are given in Table 41. Additional pulse oximetry monitoring is recommended in patients with CHD, particularly in cases of right-to-left shunt and/or pulmonary arteriovenous malformations.214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
https://doi.org/10.3389/fped.2022.909994...
,243243 Moscatelli S, Bianco F, Cimini A, Panebianco M, Leo I, Bucciarelli-Ducci C, et al. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children. 2023;10(2):218. doi: 10.3390/children10020218.
https://doi.org/10.3390/children10020218...
,991991 Ermis P. Stress Echocardiography: An Overview for Use in Pediatric and Congenital Cardiology. Congenit Heart Dis. 2017;12(5):624-6. doi: 10.1111/chd.12495.
https://doi.org/10.1111/chd.12495...
,992992 Lai WW, Mertens L, Cohen M, Geva T, editors. Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. 2th ed. Chichester: John Wiley & Sons; 2015. ISBN-10: 0470674644; ISBN-13: 978-0470674642.

Figure 7
Selection of cardiovascular imaging method and stress protocol for pediatric patients with congenital heart disease and suspected ischemia.987987 Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical Applications of Radionuclide Imaging in the Evaluation and Management of Patients with Congenital Heart Disease. J Nucl Cardiol. 2016;23(1):45-63. doi: 10.1007/s12350-015-0185-5.
https://doi.org/10.1007/s12350-015-0185-...
Examples of causes of dynamic obstruction: anomalous coronary arteries, stent compression, myocardial bridging, vasospasm. Examples of causes of fixed obstruction: atherosclerotic coronary obstruction, surgical narrowing of the coronary ostia, thickening of the intima. Examples of causes of microvascular dysfunction: surgical manipulation of the coronary arteries in arterial switch surgery, familial hypercholesterolemia, systemic lupus erythematosus. Stress echo: stress echocardiography; CMR: cardiac magnetic resonance; PET: positron emission tomography; SPECT: single photon emission computed tomography; N-13: 1313 Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of Pediatric Chest Pain using a Standardized Assessment and Management Plan. Pediatrics. 2011;128(2):239-45. doi: 10.1542/peds.2011-0141.
https://doi.org/10.1542/peds.2011-0141...
N ammonia; Rb-82: 8282 Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
https://doi.org/10.5935/abc.20160103...
rubidium; Tc-99m: 99mtechnetium; Gd: gadolinium. *Cardiovascular imaging methods presented sequentially according to the choice of stressor. **Available in Brazil only for research purposes. ***Not currently available in Brazil.
Table 41
Contraindications for cardiovascular stress modalities in the pediatric population214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
https://doi.org/10.3389/fped.2022.909994...
,243243 Moscatelli S, Bianco F, Cimini A, Panebianco M, Leo I, Bucciarelli-Ducci C, et al. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children. 2023;10(2):218. doi: 10.3390/children10020218.
https://doi.org/10.3390/children10020218...
,991991 Ermis P. Stress Echocardiography: An Overview for Use in Pediatric and Congenital Cardiology. Congenit Heart Dis. 2017;12(5):624-6. doi: 10.1111/chd.12495.
https://doi.org/10.1111/chd.12495...
,992992 Lai WW, Mertens L, Cohen M, Geva T, editors. Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. 2th ed. Chichester: John Wiley & Sons; 2015. ISBN-10: 0470674644; ISBN-13: 978-0470674642.

Physical stress methods for MPI:993993 Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RSL, et al. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol. 2020;114(2):325-429. doi: 10.36660/abc.20200087.
https://doi.org/10.36660/abc.20200087...

  • Generally done as adjunct to ET/CPET, to increase the diagnostic and prognostic value of imaging methods by addressing clinical, hemodynamic, and ECG parameters.

  • The choice of ergometer and protocol should follow the same criteria used in ET/CPET for children and adolescents as listed elsewhere in this Guideline.

Pharmacological stress methods for MPI:

  • The doses of pharmacological stressors (dipyridamole, dobutamine, and adenosine) for children are the same as those used in adults. Stress imaging should follow the general guidelines for adults, adjusted as follows:11 Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
    https://doi.org/10.36660/abc.20240110...

  • Throughout the test, clinical signs and symptoms should be monitored and ECG, BP, and HR recorded continuously, regardless of the stressor employed.

  • Adenosine is a pharmacological stressor that causes coronary vasodilation when administered intravenously (continuous infusion, 140 μg.kg-1.min-1, over 4 to 6 min). Its side effects are generally mild and resolve quickly once the infusion is stopped or completed: bronchospasm, due to activation of A2B and A3 receptors; atrioventricular block, due to activation of A1 receptors; peripheral vasodilation, due to activation of A2B receptors; flushing, dyspnea, and nausea.990990 Milanesi O, Stellin G, Zucchetta P. Nuclear Medicine in Pediatric Cardiology. Semin Nucl Med. 2017;47(2):158-69. doi: 10.1053/j.semnuclmed.2016.10.008.
    https://doi.org/10.1053/j.semnuclmed.201...
    ,994994 Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol. 2021;11:627838. doi: 10.3389/fphar.2020.627838.
    https://doi.org/10.3389/fphar.2020.62783...
    ,995995 Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC Imaging Guidelines for SPECT Nuclear Cardiology Procedures: Stress, Protocols, and Tracers. J Nucl Cardiol. 2016;23(3):606-39. doi: 10.1007/s12350-015-0387-x.
    https://doi.org/10.1007/s12350-015-0387-...
    Caffeine (methylxanthine) contained in foods, beverages, and drugs interferes with adenosine (see Appendix 5 Appendix 5 Key caffeine-containing beverages, foods, and medications Coffees Coffee Espresso Mocha Decaffeinated coffee Teas, general Black tea Iced tea Green tea Lemon iced tea (bottled) Lipton Decaffeinated Tea (black or green) Soft drinks and juices Pepsi Coca-Cola, Coca Zero, Diet Pepsi Coca-Cola Plus Diet Coke Fanta, Sprite, 7-Up Guaraná Acerola juice Energy drinks Monster Energy Red Bull Fusion TNT Caffeinated snack foods Chocolate cookies Some potato chips Some candies and gums Ice cream Starbucks coffee ice cream Coffee ice cream Häagen-Dazs coffee ice cream Cocoa and other beverages Hot chocolate Candy bars Milk chocolate bars Drugs Tylenol DC Ormigrein Metamizole/caffeine Neosaldina Miorrelax Miosan Caf Dorflex Benegrip Caffeinated supplements/caffeine pills Note: The products and trademarks listed above are those most widely available in the Brazilian market. The same information applies to analogous products. Adapted from: Henzlova MJ et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers.995 ), and must be withheld for at least 12 hours before the scan.995995 Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC Imaging Guidelines for SPECT Nuclear Cardiology Procedures: Stress, Protocols, and Tracers. J Nucl Cardiol. 2016;23(3):606-39. doi: 10.1007/s12350-015-0387-x.
    https://doi.org/10.1007/s12350-015-0387-...

  • Dipyridamole is a coronary vasodilator that acts by inhibiting the enzyme adenosine deaminase, which degrades endogenous adenosine, in addition to blocking adenosine reuptake by the cell membrane and consequently increasing the extracellular adenosine concentration, which leads to coronary and systemic vasodilation. The recommended dose for MPI is 0.56 mg.kg-1, up to a maximum dose of 60 mg, administered intravenously over the course of 4 minutes, diluted in 50 mL of saline solution. Dipyridamole can be injected manually, without an infusion pump. Its biological half-life is ≈45 minutes. The main side effects are chest pain, headache, and dizziness, which can be reversed by administration of intravenous aminophylline, given just 2 minutes after injection of the radiotracer.993993 Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RSL, et al. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol. 2020;114(2):325-429. doi: 10.36660/abc.20200087.
    https://doi.org/10.36660/abc.20200087...
    ,995995 Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC Imaging Guidelines for SPECT Nuclear Cardiology Procedures: Stress, Protocols, and Tracers. J Nucl Cardiol. 2016;23(3):606-39. doi: 10.1007/s12350-015-0387-x.
    https://doi.org/10.1007/s12350-015-0387-...
    998998 Fukuda T, Ishibashi M, Shinohara T, Miyake T, Kudoh T, Saga T. Follow-Up Assessment of the Collateral Circulation in Patients with Kawasaki Disease Who Underwent Dipyridamole Stress Technetium-99m Tetrofosmin Scintigraphy. Pediatr Cardiol. 2005;26(5):558-64. doi: 10.1007/s00246-004-0726-1.
    https://doi.org/10.1007/s00246-004-0726-...
    Methylxanthines (see Appendix 5 Appendix 5 Key caffeine-containing beverages, foods, and medications Coffees Coffee Espresso Mocha Decaffeinated coffee Teas, general Black tea Iced tea Green tea Lemon iced tea (bottled) Lipton Decaffeinated Tea (black or green) Soft drinks and juices Pepsi Coca-Cola, Coca Zero, Diet Pepsi Coca-Cola Plus Diet Coke Fanta, Sprite, 7-Up Guaraná Acerola juice Energy drinks Monster Energy Red Bull Fusion TNT Caffeinated snack foods Chocolate cookies Some potato chips Some candies and gums Ice cream Starbucks coffee ice cream Coffee ice cream Häagen-Dazs coffee ice cream Cocoa and other beverages Hot chocolate Candy bars Milk chocolate bars Drugs Tylenol DC Ormigrein Metamizole/caffeine Neosaldina Miorrelax Miosan Caf Dorflex Benegrip Caffeinated supplements/caffeine pills Note: The products and trademarks listed above are those most widely available in the Brazilian market. The same information applies to analogous products. Adapted from: Henzlova MJ et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers.995 ) must be withheld at least 24 hours before the scan.995995 Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC Imaging Guidelines for SPECT Nuclear Cardiology Procedures: Stress, Protocols, and Tracers. J Nucl Cardiol. 2016;23(3):606-39. doi: 10.1007/s12350-015-0387-x.
    https://doi.org/10.1007/s12350-015-0387-...

  • Dobutamine promotes increased myocardial oxygen consumption. It is administered intravenously via an infusion pump at an initial dose of 5-10 μg.kg-1.min-1 over 3 minutes, followed by incremental doses of 20 μg.kg-1.min-1 and 30 μg.kg-1.min-1 up to a maximum of 40 μg.kg-1.min-1.999999 Geleijnse ML, Elhendy A, Fioretti PM, Roelandt JR. Dobutamine Stress Myocardial Perfusion Imaging. J Am Coll Cardiol. 2000;36(7):2017-27. doi: 10.1016/s0735-1097(00)01012-3.
    https://doi.org/10.1016/s0735-1097(00)01...
    .10001000 Dilsizian V; Narula J, editors. Atlas of Nuclear Cardiology. 4th ed. New York: Springer; 2013. ISBN-13: 978-3030498849. In patients who do not reach submaximal HR and have no evidence of ischemia, intravenous atropine can be added at a dose of 0.01 mg.kg-1 (maximum dose 0.25 mg).996996 Chalela WA, Moffa PJ, Meneghetti JC. Estresse Cardiovascular: Princípios e Aplicações Clínicas. São Paulo: Roca; 2004. ISBN-10: 8572415130; ISBN-13: 978-8572415132. The radiotracer should be injected at Target HR (generally defined as 85% of HRmax for age), and dobutamine infusion continued for 1 minute thereafter. For reversal of adverse effects, short-acting beta-blockers (i.e. metoprolol or esmolol) can be injected intravenously after the first minute of radiotracer administration.10011001 Pahl E, Duffy CE, Chaudhry FA. The Role of Stress Echocardiography in Children. Echocardiography. 2000;17(5):507-12. doi: 10.1111/j.1540-8175.2000.tb01171.x.
    https://doi.org/10.1111/j.1540-8175.2000...

  • Consider the need for restriction of the volume to be infused in patients with HF, cardiomyopathies, complex CHDs, and renal failure.

  • In addition to the qualified doctor responsible for the examination, it is suggested to be monitored by a pediatrician.

Particular aspects of myocardial perfusion imaging:

  1. Transposition of the great arteries: early and late mortality are associated with coronary complications.10021002 Fricke TA, Bell D, Daley M, d‘Udekem Y, Brizard CP, Alphonso N, et al. The Influence of Coronary Artery Anatomy on Mortality After the Arterial Switch Operation. J Thorac Cardiovasc Surg. 2020;160(1):191-9.e1. doi: 10.1016/j.jtcvs.2019.11.146.
    https://doi.org/10.1016/j.jtcvs.2019.11....
    ,10031003 van Wijk SWH, van der Stelt F, Ter Heide H, Schoof PH, Doevendans PAFM, Meijboom FJ, et al. Sudden Death Due to Coronary Artery Lesions Long-term After the Arterial Switch Operation: A Systematic Review. Can J Cardiol. 2017;33(9):1180-7. doi: 10.1016/j.cjca.2017.02.017.
    https://doi.org/10.1016/j.cjca.2017.02.0...
    At postoperative follow-up, the indication for reintervention is based more on the presence of ischemia on myocardial perfusion scans than on angiographic findings.220220 Sugiyama H, Tsuda E, Ohuchi H, Yamada O, Shiraishi I. Chronological Changes in Stenosis of Translocated Coronary Arteries on Angiography after the Arterial Switch Operation in Children with Transposition of the Great Arteries: Comparison of Myocardial Scintigraphy and Angiographic Findings. Cardiol Young. 2016;26(4):638-43. doi: 10.1017/S104795111500075X.
    https://doi.org/10.1017/S104795111500075...
    ,10041004 Noel CV, Krishnamurthy R, Masand P, Moffett B, Schlingmann T, Cheong BY, et al. Myocardial Stress Perfusion MRI: Experience in Pediatric and Young-Adult Patients Following Arterial Switch Operation Utilizing Regadenoson. Pediatr Cardiol. 2018;39(6):1249-57. doi: 10.1007/s00246-018-1890-z.
    https://doi.org/10.1007/s00246-018-1890-...

    Perfusion defects diagnosed by MPI occur in 5 to 24% of patients after surgical correction, and may persist for more than 10 years (Figure 7). After correction, angiographic lesions are not always associated with a progressive stenotic process.10051005 Sterrett LE, Schamberger MS, Ebenroth ES, Siddiqui AR, Hurwitz RA. Myocardial Perfusion and Exercise Capacity 12 Years After Arterial Switch Surgery for D-Transposition of the Great Arteries. Pediatr Cardiol. 2011;32(6):785-91. doi: 10.1007/s00246-011-9975-y.
    https://doi.org/10.1007/s00246-011-9975-...
    ,10061006 Hauser M, Bengel FM, Kühn A, Sauer U, Zylla S, Braun SL, et al. Myocardial Blood Flow and Flow Reserve After Coronary Reimplantation in Patients After Arterial Switch and Ross Operation. Circulation. 2001;103(14):1875-80. doi: 10.1161/01.cir.103.14.1875.
    https://doi.org/10.1161/01.cir.103.14.18...

    Initial SPECT allows patients to be screened for progression: if normal, ischemia will usually stabilize or resolve over time; if abnormal, it generally portends worsening ischemia.2222 Tsuda T, Baffa JM, Octavio J, Robinson BW, Radtke W, Mody T, et al. Identifying Subclinical Coronary Abnormalities and Silent Myocardial Ischemia after Arterial Switch Operation. Pediatr Cardiol. 2019;40(5):901-8. doi: 10.1007/s00246-019-02085-4.
    https://doi.org/10.1007/s00246-019-02085...
    ,10071007 Pizzi MN, Franquet E, Aguadé-Bruix S, Manso B, Casaldáliga J, Cuberas-Borrós G, et al. Long-Term Follow-Up Assessment After the Arterial Switch Operation for Correction of Dextro-Transposition of the Great Arteries by Means of Exercise Myocardial Perfusion-Gated SPECT. Pediatr Cardiol. 2014;35(2):197-207. doi: 10.1007/s00246-013-0759-4.
    https://doi.org/10.1007/s00246-013-0759-...
    ,10081008 Rickers C, Sasse K, Buchert R, Stern H, van den Hoff J, Lübeck M, et al. Myocardial Viability Assessed by Positron Emission Tomography in Infants and Children After the Arterial Switch Operation and Suspected Infarction. J Am Coll Cardiol. 2000;36(5):1676-83. doi: 10.1016/s0735-1097(00)00891-3.
    https://doi.org/10.1016/s0735-1097(00)00...

  2. Kawasaki disease (KD): MPI is useful and safe in monitoring the progression of coronary stenosis. SPECT has 90% sensitivity and 85-100% specificity for detecting ischemia.218218 Mostafa MS, Sayed AO, Al Said YM. Assessment of Coronary Ischaemia by Myocardial Perfusion Dipyridamole Stress Technetium-99 m Tetrofosmin, Single-Photon Emission Computed Tomography, and Coronary Angiography in Children with Kawasaki Disease: Pre- and Post-Coronary Bypass Grafting. Cardiol Young. 2015;25(5):927-34. doi: 10.1017/S1047951114001292.
    https://doi.org/10.1017/S104795111400129...
    ,998998 Fukuda T, Ishibashi M, Shinohara T, Miyake T, Kudoh T, Saga T. Follow-Up Assessment of the Collateral Circulation in Patients with Kawasaki Disease Who Underwent Dipyridamole Stress Technetium-99m Tetrofosmin Scintigraphy. Pediatr Cardiol. 2005;26(5):558-64. doi: 10.1007/s00246-004-0726-1.
    https://doi.org/10.1007/s00246-004-0726-...
    About 12 to 19% of children with coronary aneurysms have an abnormal perfusion pattern (fibrosis and/or ischemia).216216 Kashyap R, Mittal BR, Bhattacharya A, Manojkumar R, Singh S. Exercise Myocardial Perfusion Imaging to Evaluate Inducible Ischaemia in Children with Kawasaki Disease. Nucl Med Commun. 2011;32(2):137-41. doi: 10.1097/MNM.0b013e3283411c67.
    https://doi.org/10.1097/MNM.0b013e328341...
    ,219219 Zanon G, Zucchetta P, Varnier M, Vittadello F, Milanesi O, Zulian F. Do Kawasaki Disease Patients Without Coronary Artery Abnormalities Need a Long-Term Follow-Up? A Myocardial Single-Photon Emission Computed Tomography Pilot Study. J Paediatr Child Health. 2009;45(7):419-24. doi: 10.1111/j.1440-1754.2009.01531.x.
    https://doi.org/10.1111/j.1440-1754.2009...
    ,398398 Gravel H, Curnier D, Dallaire F, Fournier A, Portman M, Dahdah N. Cardiovascular Response to Exercise Testing in Children and Adolescents Late after Kawasaki Disease According to Coronary Condition Upon Onset. Pediatr Cardiol. 2015;36(7):1458-64. doi: 10.1007/s00246-015-1186-5.
    https://doi.org/10.1007/s00246-015-1186-...

    MPI is indicated for late follow-up (every 1 to 5 years) of children with coronary aneurysms (including small and/or resolved aneurysms) and/or ventricular symptoms/dysfunction (Figure 7).1818 Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-407. doi: 10.1253/circj.CJ-19-1094.
    https://doi.org/10.1253/circj.CJ-19-1094...
    ,3737 McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
    https://doi.org/10.1161/CIR.000000000000...
    ,214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
    https://doi.org/10.3389/fped.2022.909994...

    In adolescents with a history of KD in childhood, positron emission tomography (PET) with (1313 Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of Pediatric Chest Pain using a Standardized Assessment and Management Plan. Pediatrics. 2011;128(2):239-45. doi: 10.1542/peds.2011-0141.
    https://doi.org/10.1542/peds.2011-0141...
    N)-ammonia demonstrated a decrease in coronary reserve due to long-term endothelial dysfunction.10091009 Tsuno K, Fukazawa R, Kiriyama T, Imai S, Watanabe M, Kumita S, et al. Peripheral Coronary Artery Circulatory Dysfunction in Remote Stage Kawasaki Disease Patients Detected by Adenosine Stress 13N-Ammonia Myocardial Perfusion Positron Emission Tomography. J Clin Med. 2022;11(4):1134. doi: 10.3390/jcm11041134.
    https://doi.org/10.3390/jcm11041134...
    ,10101010 Hauser M, Bengel F, Kuehn A, Nekolla S, Kaemmerer H, Schwaiger M, et al. Myocardial Blood Flow and Coronary Flow Reserve in Children with „Normal" Epicardial Coronary Arteries After the Onset of Kawasaki Disease Assessed by Positron Emission Tomography. Pediatr Cardiol. 2004;25(2):108-12. doi: 10.1007/s00246-003-0472-9.
    https://doi.org/10.1007/s00246-003-0472-...

  3. Cardiomyopathies:

    • In HCM, SPECT is useful for investigation of ischemia, risk stratification, and optimization of therapy.223223 Ziolkowska L, Boruc A, Sobielarska-Lysiak D, Grzyb A, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, et al. Prognostic Significance of Myocardial Ischemia Detected by Single-Photon Emission Computed Tomography in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol. 2021;42(4):960-8. doi: 10.1007/s00246-021-02570-9.
      https://doi.org/10.1007/s00246-021-02570...
      Myocardial ischemia may be related to reduced subendocardial perfusion in hypertrophied segments, compression of small intramural vessels, and myocardial bridging.214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
      https://doi.org/10.3389/fped.2022.909994...
      ,10111011 Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The Case for Myocardial Ischemia in Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2009;54(9):866-75. doi: 10.1016/j.jacc.2009.04.072.
      https://doi.org/10.1016/j.jacc.2009.04.0...
      Microvascular ischemia is believed to be implicated in systolic and diastolic dysfunction.223223 Ziolkowska L, Boruc A, Sobielarska-Lysiak D, Grzyb A, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, et al. Prognostic Significance of Myocardial Ischemia Detected by Single-Photon Emission Computed Tomography in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol. 2021;42(4):960-8. doi: 10.1007/s00246-021-02570-9.
      https://doi.org/10.1007/s00246-021-02570...
      ,10121012 Rosa SA, Lopes LR, Fiarresga A, Ferreira RC, Mota Carmo M. Coronary Microvascular Dysfunction in Hypertrophic Cardiomyopathy: Pathophysiology, Assessment, and Clinical Impact. Microcirculation. 2021;28(1):e12656. doi: 10.1111/micc.12656.
      https://doi.org/10.1111/micc.12656...
      Myocardial perfusion defects on 99mTc-MIBI SPECT may reflect an ischemic process, and are an important predictor of adverse clinical events and death.223223 Ziolkowska L, Boruc A, Sobielarska-Lysiak D, Grzyb A, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, et al. Prognostic Significance of Myocardial Ischemia Detected by Single-Photon Emission Computed Tomography in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol. 2021;42(4):960-8. doi: 10.1007/s00246-021-02570-9.
      https://doi.org/10.1007/s00246-021-02570...

    • In dilated cardiomyopathy, SPECT is rarely used, as ischemic etiology is rare in children. In exceptional circumstances, such as sickle cell anemia, assessment of microvascular function can help identify the potential mechanism of ventricular damage (LV enlargement and/or dysfunction).214214 Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
      https://doi.org/10.3389/fped.2022.909994...
      ,10131013 Hallioglu O, Gunay EC, Unal S, Erdogan A, Balci S, Citirik D. Gated Myocardial Perfusion Scintigraphy in Children with Sickle Cell Anemia: Correlation with Echocardiography. Rev Esp Med Nucl. 2011;30(6):354-9. doi: 10.1016/j.remn.2011.02.003.
      https://doi.org/10.1016/j.remn.2011.02.0...

  4. Heart transplantation: the main long-term complication of heart transplantation is graft vascular disease (GVD), a relevant cause of death and retransplantation. In GVD, MPI allows assessment of coronary artery involvement (distal and proximal) in systolic dysfunction and increased LV filling pressures.224224 Maiers J, Hurwitz R. Identification of Coronary Artery Disease in the Pediatric Cardiac Transplant Patient. Pediatr Cardiol. 2008;29(1):19-23. doi: 10.1007/s00246-007-9038-6.
    https://doi.org/10.1007/s00246-007-9038-...
    ,10141014 Kindel SJ, Law YM, Chin C, Burch M, Kirklin JK, Naftel DC, et al. Improved Detection of Cardiac Allograft Vasculopathy: A Multi-Institutional Analysis of Functional Parameters in Pediatric Heart Transplant Recipients. J Am Coll Cardiol. 2015;66(5):547-57. doi: 10.1016/j.jacc.2015.05.063.
    https://doi.org/10.1016/j.jacc.2015.05.0...

1.2. Stress Echocardiography

Stress echocardiography is a cardiovascular imaging technique that provides real-time images of the heart, allowing assessment of cardiac anatomy, systolic and diastolic function, regional myocardial ischemia, and coronary reserve, as well as risk stratification in valvular heart disease, HF, and CHD (repaired or unrepaired). Key indications for stress echo in pediatric cardiology are given in Table 12.

Main advantages: available in Brazil; can be performed without sedation in most patients; does not expose the patient to ionizing radiation (a relevant concern in periodic follow-up of patients with CHD). Main limitations: inadequate acoustic windows in children with failure to thrive secondary to CHD or post-surgical changes in chest anatomy; complex cardiac arrhythmias (i.e. VT, complete heart block, etc.); patient may need medications that can affect scan parameters (beta-blockers, diuretics, antiarrhythmics, etc.). Table 41 describes the main contraindications for the various cardiovascular stressors used in stress echocardiography.

Proper acquisition and interpretation of echocardiographic images requires evaluation of the patient for existing heart disease (especially CHD), clinical condition at the time of the scan, past surgical history, and pacemaker/ICD placement.

The main stressors used in the pediatric population are physical (ET) and pharmacological. Pharmacological stress with dobutamine is more commonly used in younger children, while physical exercise is preferred in children over age 8 years who are cooperative and capable of exercising on a treadmill or stationary bicycle (Table 42). Throughout the test, clinical signs and symptoms should be monitored and ECG, BP, and HR recorded continuously, regardless of the stressor employed.234234 Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
https://doi.org/10.1016/j.echo.2019.07.0...
,235235 Morhy SS, Barberato SH, Lianza AC, Soares AM, Leal GN, Rivera IR, et al. Position Statement on Indications for Echocardiography in Fetal and Pediatric Cardiology and Congenital Heart Disease of the Adult - 2020. Arq Bras Cardiol. 2020;115(5):987-1005. doi: 10.36660/abc.20201122.
https://doi.org/10.36660/abc.20201122...

Table 42
Advantages and disadvantages of different cardiovascular stress modalities in the pediatric population234234 Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
https://doi.org/10.1016/j.echo.2019.07.0...
,235235 Morhy SS, Barberato SH, Lianza AC, Soares AM, Leal GN, Rivera IR, et al. Position Statement on Indications for Echocardiography in Fetal and Pediatric Cardiology and Congenital Heart Disease of the Adult - 2020. Arq Bras Cardiol. 2020;115(5):987-1005. doi: 10.36660/abc.20201122.
https://doi.org/10.36660/abc.20201122...

Findings which indicate test cessation: onset of symptoms (i.e. limiting angina); emergence or worsening of regional wall motion abnormalities; ST segment depression ≥2mm; drop in SBP >15mmHg; complex arrhythmia and/or any arrhythmia with hemodynamic instability; target HR achieved; maximum dose of pharmacologic stressor reached; adverse events.

1.2.1. Pharmacologic Stress Methods

1.2.1.1. Dobutamine229229 Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
https://doi.org/10.1093/ehjci/jev159...
,234234 Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
https://doi.org/10.1016/j.echo.2019.07.0...
,10151015 Neskovic AN. Stress Echocardiography Essential Guide and DVD. New York: Healthcare; 2010. ISBN-10: 0367384094; ISBN-13: 978-0367384098.,10161016 Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(2):101-38. doi: 10.1016/j.echo.2016.10.016.
https://doi.org/10.1016/j.echo.2016.10.0...

Dobutamine is the most widely used pharmacologic stressor in the pediatric population. It has a positive inotropic and chronotropic effect, increasing myocardial O2 demand. When this demand is not met, myocardial ischemia and regional wall motion abnormalities arise. In contrast to physical stress, dobutamine does not lead to increases in venous return and preload, generating greater changes in LV end-diastolic dimensions. This allows slower HR recovery and a longer image acquisition time.243243 Moscatelli S, Bianco F, Cimini A, Panebianco M, Leo I, Bucciarelli-Ducci C, et al. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children. 2023;10(2):218. doi: 10.3390/children10020218.
https://doi.org/10.3390/children10020218...

In children aged <8 years, a dobutamine stress echo may require general anesthesia or deep sedation. Images are acquired at rest and after each increase in stressor dose.

Dobutamine stress echo protocols for children are similar to those used in adults. Generally, the dobutamine infusion starts at 5 μg.kg-1.min-1 and is increased at 3-5 minute intervals to 10, 20, 30, 40, and 50 μg.kg-1.min-1. The target HR is generally defined as 85% of HRmax for age. If the target HR is not achieved with the maximum dose of dobutamine, atropine 0.01 mg.kg-1 can be administered simultaneously every 1-2 minutes (limits: 0.25 mg per dose; maximum cumulative dose 1-2 mg).243243 Moscatelli S, Bianco F, Cimini A, Panebianco M, Leo I, Bucciarelli-Ducci C, et al. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children. 2023;10(2):218. doi: 10.3390/children10020218.
https://doi.org/10.3390/children10020218...
When evaluating cardiac contractile reserve, dobutamine can be administered in low to moderate doses (5-20 μg.kg-1.min-1) as a continuous infusion.229229 Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
https://doi.org/10.1093/ehjci/jev159...

Side effects include palpitations, nausea, headache, chills, urinary urgency, anxiety, angina, hypotension, hypertension, and arrhythmia. As dobutamine has a short half-life, these generally resolve upon termination/suspension of the infusion. Esmolol (0.5 mg.kg-1) should be available to reverse more severe adverse reactions and/or ischemia.249249 Kimball TR. Pediatric Stress Echocardiography. Pediatr Cardiol. 2002;23(3):347-57. doi: 10.1007/s00246-001-0198-5.
https://doi.org/10.1007/s00246-001-0198-...

1.2.1.2. Vasodilators229229 Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
https://doi.org/10.1093/ehjci/jev159...
,234234 Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
https://doi.org/10.1016/j.echo.2019.07.0...
,10161016 Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(2):101-38. doi: 10.1016/j.echo.2016.10.016.
https://doi.org/10.1016/j.echo.2016.10.0...

Stress echo with a vasodilator (adenosine or dipyridamole) induces an increase in coronary flow and is used to evaluate myocardial motility, ischemia, and myocardial viability. Adenosine is infused at a maximum dose of 140 μg.kg-1.min-1 with simultaneous imaging over 4 minutes.

Dipyridamole is administered in two stages, also with continuous imaging: the first stage at a dose of 0.56 mg.kg-1 over 4 min; the second stage, carried out only if there are no adverse effects, at a dose of 0.28 mg.kg-1 over 2 minutes. Aminophylline must be available to reverse adverse reactions to dipyridamole.

1.2.2. Exercise Stress Methods10151015 Neskovic AN. Stress Echocardiography Essential Guide and DVD. New York: Healthcare; 2010. ISBN-10: 0367384094; ISBN-13: 978-0367384098.,10171017 Barberato SH, Romano MMD, Beck ALS, Rodrigues ACT, Almeida ALC, Assunção BMBL, et al. Position Statement on Indications of Echocardiography in Adults - 2019. Arq Bras Cardiol. 2019;113(1):135-81. doi: 10.5935/abc.20190129.
https://doi.org/10.5935/abc.20190129...

Physical stress echocardiography can be done in children ≥8 years old who are capable of completing an ET. Physical exertion is a physiological stressor, and should be the preferred method whenever possible.229229 Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
https://doi.org/10.1093/ehjci/jev159...
Physical stress increases HR, contractile function, BP, and venous return to the heart, and determines VO2 and cardiac output.

The most commonly used ergometers for stress echo are the treadmill and cycle ergometer (vertical, supine, and semi-supine), with specific protocols. Baseline echocardiography should be obtained in the supine position and in the position in which physical stress will be performed. When using a treadmill, echocardiographic image acquisition is performed before the start of exercise and immediately (within 60-90 s) after the end of the test. When using a cycle ergometer, images are acquired before and during all phases of exercise (including peak exertion). Imaging during exertion is more challenging, due to movement and breathing artifacts.

Furthermore, as HR in children can drop very rapidly during recovery, interpretation of results may be compromised. The cycle ergometer is a more suitable method to obtain information during exercise.

In addition to the findings indicating test cessation listed at the beginning of this section, clinicians are advised to adhere to the test cessation criteria contained in Table 32 as well.

Appendix 1 Core legal and regulatory framework applicable to ET and CPET in children and adolescents in Brazil

Legal aspects – translation realized from original in Brazilian portuguese. Reference









§ 1 In the event that the research participant is a child, adolescent, person with a mental disorder or illness, or otherwise in a situation of diminished capacity, in addition to the consent of their legal guardian, the participant's free and informed assent to the fullest extent of their understanding is required. Brazilian Code of Medical Ethics (Código de Ética Médica), CFM Resolutions No. 2217/2018, 2222/2018, and 2226/2019.1018–1020 Sets forth the requirements for Focused Practice Designation in Exercise Testing: 1 (one) year of training; having completed Medical Residency in Cardiology before such training; after training, take the Brazilian Medical Association/Brazilian Society of Cardiology board exam to obtain certification; as a prerequisite for sitting the aforementioned exam, in addition to training, holding a current Board Certification in Cardiology from the Brazilian Medical Association. CFM Resolution No. 2,380/2024; Ordinance No. 1/2024.1021 Whereas, it is advisable that written informed consent be obtained from the patient or his/her legal guardian (for patients under 18 years of age); Whereas, in the case of underage patients, a legal guardian must remain in the examination room; The ET must be individualized and carried out, at all stages, by a qualified physician who has been trained to respond to cardiovascular emergencies, and must thus be physically present in the room at all times. As ET is a medical procedure under the sole responsibility of the performing physician, delegating its performance to other providers is considered a violation of medical ethics. The necessary and appropriate conditions for carrying out ET are listed in the CFM Inspection Manual. CFM Resolution No. 2021/13.1022 Guiding criteria for advertising in medicine, conceptualizing advertisements, dissemination of medical matters, sensationalism, self-promotion, and prohibitions related thereto. CFM Resolution No. 2,336/2023.1023 Ensuring the privacy and confidentiality of patients’ data and digitally stored information; organizing secure and reliable databases; ensuring the secure transmission of data and information; maintaining backup copies to the fullest possible extent. CFM Resolution No. 1821/2007.272 Art. 226. The family, which is the foundation of society, shall enjoy special protection from the State. Paragraph 4. The community formed by either parent and their descendants is also considered as a family entity. Art. 229. Parents have the responsibility to assist, up bring and educate their underage children, and adult children have the responsibility to help and assist their parents in old age, need, or sickness. Constitution of the Federative Republic of Brazil.1024 Art. 5. A Legal minority ends at the age of eighteen, at which point a person is entitled to perform all acts of civil life. Sole paragraph. Before said age, legal incapacity can end: upon emancipation granted by the minor's parents, or by one parent in the absence of the other, by means of a public instrument, regardless of judicial approval, or by a sentence of emancipation issued by a judge, having heard the legal guardian, provided the minor is sixteen years of age;through marriage;through the discharge of one's duties as a public servant;upon graduation from an institution of higher learning;upon incorporation of a civil or commercial enterprise, or through the establishment of an employment relationship, provided that the minor is sixteen years of age and, as a result of either, achieves financial independence." Art. 186. Anyone who, by willful action or inaction, negligence, or recklessness, violates a right and causes damage to others, even if exclusively moral, commits a wrongful act. Brazilian Civil Code (Law No. 10,406/2002).1025 Chapter III, Art. 6 – The following are basic consumer rights: the protection of the consumer's life, health, and safety against any risks arising from any practices in the supply of products and services considered harmful or dangerous;education and information about the adequate consumption of products and services, ensuring freedom of choice and equality in transactions;adequate and clear information about different products and services, with correct specification of quantity, characteristics, composition, quality, price, and taxes, as well as the risks presented. Brazilian Consumer Protection Code. Basic Consumer Rights (Law No. 8,078 of September 11, 1990).1026,1027 CFM: Brazilian Federal Medical Council (CFM from portuguese: Conselho Federal de Medicina).

Appendix 2 Resting BP values in males by age and height percentile

Appendix 3 Resting BP values in females by age and height percentile

Appendix 4 Markers of cardiorespiratory fitness (predicted VO2max) and OUES in an apparently healthy pediatric population with heart disease

Material Age Location DOI Available at Apparently healthy: VO2max percentiles for sex and age.176 8-18 Figure 2 10.1513/AnnalsATS.201611-912FR https://www.atsjournals.org/doi/10.1513/AnnalsATS.201611-912FR VO2max percentiles for sex and age.1030 12-18 Figure 2 and Figure 3 10.1016/j.amepre.2011.07.005 https://linkinghub.elsevier.com/retrieve/pii/S0749-3797(11)00491-0 VO2max values for sex and age group in the Brazilian population.1031 7-12 and 13-19 Table 6 10.5935/2359-4802.20190057 https://www.scielo.br/j/ijcs/a/x8bB3qQHQKCXHRbZRbpXMrm/?lang=en DP at rest and DPpeak at moderately high altitude.1030 4-18 Table 3 10.1016/j.acmx.2013.04.003 https://www.elsevier.es/es-revista-archivos-cardiologia-mexico-293-articulo-cardiopulmonary-exercise-testing-in-healthy-S1405994013000621 OUES percentile chart (for sex and age) and OUES prediction equations.622 8-19 Figure 2 and Table 2 10.1177/2047487315611769 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487315611769 Graph of average OUES behavior by sex and age.614 7-18 Figure 1 10.1123/pes.22.3.431 https://journals.humankinetics.com/doi/10.1123/pes.22.3.431 In heart disease: Charts and tables, stratified by sex, of VO2max/VO2peak and %VO2 predicted in patients with univentricular hearts, tetralogy of Fallot, transposition of the great arteries, and other heart diseases.1032 6-18 Table 1, Table 2, Figure 2. 10.1007/s00431-022-04648-9 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829639/ Charts and tables of association between VO2max and HRmax in children and adolescents with CHD.80 6-18 Table 1, Figure 2, Figure 4. 10.5935/abc.20170125 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28876372/ Charts and tables of VO2peak for healthy children and adolescents and those with CHD.1033 8-16 Table 7, Figure 3, Figure 4. 10.1007/s004210050612 https://link.springer.com/article/10.1007/s004210050612 Graph and equation predicting DP values in the first two decades of life and in comparison with patients with repaired aortic coarctation.428 12.6±2.96 and 13.0±3.2 years Table 2 and Figure 3 10.1080/14779072.2017.1385392 https://www.tandfonline.com/doi/epdf/10.1080/14779072.2017.1385392?needAccess=true Table with DP behavior (rest and peak effort) in relation to the survival of children with heart failure secondary to idiopathic dilated cardiomyopathy.1033 8.6±1.9 years Table 2 and Table 3 10.1016/j.ejheart.2008.04.009 https://onlinelibrary.wiley.com/doi/epdf/10.1016/j.ejheart.2008.04.009 Charts and tables of OUES behavior by sex and corrected for weight in the apparently healthy pediatric population and in 10 congenital heart diseases.624 5-18 Table 2, Figure 2, Figure 3. 10.1136/archdischild-2019-317724 https://adc.bmj.com/lookup/pmidlookup?view=long&pmid=32732318 Reference values for OUES/kg by age, stratified by normal vs. abnormal functional capacity, in children and adolescents with and without CHD.623 4-21 Table 5 and Table 6. 10.1177/2047487318807977 https://academic.oup.com/eurjpc/article-lookup/doi/10.1177/2047487318807977 VO2max: maximum oxygen consumption; DP: double-product; DPpeak: double-product at peak effort; OUES: oxygen uptake efficiency slope; HRmax: maximum heart rate; CHD: congenital heart disease.

Appendix 5 Key caffeine-containing beverages, foods, and medications

Coffees Coffee Espresso Mocha Decaffeinated coffee Teas, general Black tea Iced tea Green tea Lemon iced tea (bottled) Lipton Decaffeinated Tea (black or green) Soft drinks and juices Pepsi Coca-Cola, Coca Zero, Diet Pepsi Coca-Cola Plus Diet Coke Fanta, Sprite, 7-Up Guaraná Acerola juice Energy drinks Monster Energy Red Bull Fusion TNT Caffeinated snack foods Chocolate cookies Some potato chips Some candies and gums Ice cream Starbucks coffee ice cream Coffee ice cream Häagen-Dazs coffee ice cream Cocoa and other beverages Hot chocolate Candy bars Milk chocolate bars Drugs Tylenol DC Ormigrein Metamizole/caffeine Neosaldina Miorrelax Miosan Caf Dorflex Benegrip Caffeinated supplements/caffeine pills Note: The products and trademarks listed above are those most widely available in the Brazilian market. The same information applies to analogous products. Adapted from: Henzlova MJ et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers.995

Referências

  • 1
    Carvalho T, Freitas OGA, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, et al. Diretriz Brasileira de Ergometria em População Adulta – 2024. Arq. Bras. Cardiol. 2024;121(3):e20240110. doi: 10.36660/abc.20240110.
    » https://doi.org/10.36660/abc.20240110
  • 2
    Brasil. Ministério da Saúde. Diretrizes nacionais para a atenção integral à saúde de adolescentes e jovens na promoção, proteção e recuperação da saúde. Brasília (DF): Ministério da Saúde; 2010. ISBN: 978-85-334-1680-2.
  • 3
    Brasil. Lei no 8.069, de 13 de julho de 1990. Dispõe sobre o Estatuto da Criança e do Adolescente e dá outras providências. Diário Oficial da União; Brasília (DF), 16 jul 1990.
  • 4
    Bouhanick B, Sosner P, Brochard K, Mounier-Véhier C, Plu-Bureau G, Hascoet S, et al. Hypertension in Children and Adolescents: A Position Statement from a Panel of Multidisciplinary Experts Coordinated by the French Society of Hypertension. Front Pediatr. 2021;9:680803. doi: 10.3389/fped.2021.680803.
    » https://doi.org/10.3389/fped.2021.680803
  • 5
    Macêdo VC. Atenção integral à saúde da criança: políticas e indicadores de saúde. Recife: Ed. Universitária da UFPE; 2016. ISBN: 978-85-415-0853-7.
  • 6
    Massin MM. The Role of Exercise Testing in Pediatric Cardiology. Arch Cardiovasc Dis. 2014;107(5):319-27. doi: 10.1016/j.acvd.2014.04.004.
    » https://doi.org/10.1016/j.acvd.2014.04.004
  • 7
    Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for Exercise Testing in the Pediatric Age Group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):2166-79. doi: 10.1161/01.cir.90.4.2166.
    » https://doi.org/10.1161/01.cir.90.4.2166
  • 8
    Connuck DM. The Role of Exercise Stress Testing in Pediatric Patients with Heart Disease. Prog Pediatr Cardiol. 2005;20(1):45-52. doi: 10.1016/j.ppedcard.2004.12.004.
    » https://doi.org/10.1016/j.ppedcard.2004.12.004
  • 9
    ten Harkel AD, Takken T. Exercise Testing and Prescription in Patients with Congenital Heart Disease. Int J Pediatr. 2010;2010:791980. doi: 10.1155/2010/791980.
    » https://doi.org/10.1155/2010/791980
  • 10
    Edelson JB, Burstein DS, Paridon S, Stephens P. Exercise Stress Testing: A Valuable Tool to Predict Risk and Prognosis. Prog Pediatr Cardiol. 2019;54:101130. doi: 10.1016/j.ppedcard.2019.101130.
    » https://doi.org/10.1016/j.ppedcard.2019.101130
  • 11
    Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, et al. Clinical Stress Testing in the Pediatric Age Group: A Statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20. doi: 10.1161/CIRCULATIONAHA.106.174375.
    » https://doi.org/10.1161/CIRCULATIONAHA.106.174375
  • 12
    Valderrama P, Carugati R, Sardella A, Flórez S, De Carlos Back I, Fernández C, et al. Guía SIAC 2024 sobre rehabilitación cardiorrespiratoria en pacientes pediátricos con cardiopatías congénitas. Rev Esp Cardiol 2024:S0300893224000770. doi: 10.1016/j.recesp.2024.02.017.
    » https://doi.org/10.1016/j.recesp.2024.02.017
  • 13
    Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, et al. Management of Pediatric Chest Pain using a Standardized Assessment and Management Plan. Pediatrics. 2011;128(2):239-45. doi: 10.1542/peds.2011-0141.
    » https://doi.org/10.1542/peds.2011-0141
  • 14
    Borns J, Gräni C, Kadner A, Gloeckler M, Pfammatter JP. Symptomatic Coronary Anomalies and Ischemia in Teenagers - Rare but Real. Front Cardiovasc Med. 2020;7:559794. doi: 10.3389/fcvm.2020.559794.
    » https://doi.org/10.3389/fcvm.2020.559794
  • 15
    Tuan SH, Li MH, Hsu MJ, Tsai YJ, Chen YH, Liao TY, et al. Cardiopulmonary Function, Exercise Capacity, and Echocardiography Finding of Pediatric Patients with Kawasaki Disease: An Observational Study. Medicine. 2016;95(2):e2444. doi: 10.1097/MD.0000000000002444.
    » https://doi.org/10.1097/MD.0000000000002444
  • 16
    Lin KL, Liou IH, Chen GB, Sun SF, Weng KP, Li CH, et al. Serial Exercise Testing and Echocardiography Findings of Patients with Kawasaki Disease. Front Pediatr. 2022;10:847343. doi: 10.3389/fped.2022.847343.
    » https://doi.org/10.3389/fped.2022.847343
  • 17
    Yang TH, Lee YY, Wang LY, Chang TC, Chang LS, Kuo HC. Patients with Kawasaki Disease have Significantly Low Aerobic Metabolism Capacity and Peak Exercise Load Capacity during Adolescence. Int J Environ Res Public Health. 2020;17(22):8352. doi: 10.3390/ijerph17228352.
    » https://doi.org/10.3390/ijerph17228352
  • 18
    Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-407. doi: 10.1253/circj.CJ-19-1094.
    » https://doi.org/10.1253/circj.CJ-19-1094
  • 19
    Cava JR, Sayger PL. Chest Pain in Children and Adolescents. Pediatr Clin North Am. 2004;51(6):1553-68. doi: 10.1016/j.pcl.2004.07.002.
    » https://doi.org/10.1016/j.pcl.2004.07.002
  • 20
    Reddy SR, Singh HR. Chest Pain in Children and Adolescents. Pediatr Rev. 2010;31(1):e1-9. doi: 10.1542/pir.31-1-e1.
    » https://doi.org/10.1542/pir.31-1-e1
  • 21
    van Wijk SW, Driessen MM, Meijboom FJ, Doevendans PA, Schoof PH, Breur HM, et al. Left Ventricular Function and Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries: A Systematic Review and Meta-Analysis. Cardiol Young. 2018;28(7):895-902. doi: 10.1017/S1047951117001032.
    » https://doi.org/10.1017/S1047951117001032
  • 22
    Tsuda T, Baffa JM, Octavio J, Robinson BW, Radtke W, Mody T, et al. Identifying Subclinical Coronary Abnormalities and Silent Myocardial Ischemia after Arterial Switch Operation. Pediatr Cardiol. 2019;40(5):901-8. doi: 10.1007/s00246-019-02085-4.
    » https://doi.org/10.1007/s00246-019-02085-4
  • 23
    Kuebler JD, Chen MH, Alexander ME, Rhodes J. Exercise Performance in Patients with D-Loop Transposition of the Great Arteries after Arterial Switch Operation: Long-Term Outcomes and Longitudinal Assessment. Pediatr Cardiol. 2016;37(2):283-9. doi: 10.1007/s00246-015-1275-5.
    » https://doi.org/10.1007/s00246-015-1275-5
  • 24
    Brothers JA. Introduction to Anomalous Aortic Origin of a Coronary Artery. Congenit Heart Dis. 2017;12(5):600-2. doi: 10.1111/chd.12497.
    » https://doi.org/10.1111/chd.12497
  • 25
    Raisky O, Bergoend E, Agnoletti G, Ou P, Bonnet D, Sidi D, et al. Late Coronary Artery Lesions after Neonatal Arterial Switch Operation: Results of Surgical Coronary Revascularization. Eur J Cardiothorac Surg. 2007;31(5):894-8. doi: 10.1016/j.ejcts.2007.02.003.
    » https://doi.org/10.1016/j.ejcts.2007.02.003
  • 26
    Brothers JA, McBride MG, Marino BS, Tomlinson RS, Seliem MA, Pampaloni MH, et al. Exercise Performance and Quality of Life Following Surgical Repair of Anomalous Aortic Origin of a Coronary Artery in the Pediatric Population. J Thorac Cardiovasc Surg. 2009;137(2):380-4. doi: 10.1016/j.jtcvs.2008.08.008.
    » https://doi.org/10.1016/j.jtcvs.2008.08.008
  • 27
    Samos F, Fuenmayor G, Hossri C, Elias P, Ponce L, Souza R, et al. Exercise Capacity Long-Term after Arterial Switch Operation for Transposition of the Great Arteries. Congenit Heart Dis. 2016;11(2):155-9. doi: 10.1111/chd.12303.
    » https://doi.org/10.1111/chd.12303
  • 28
    Cheitlin MD, MacGregor J. Congenital Anomalies of Coronary Arteries: Role in the Pathogenesis of Sudden Cardiac Death. Herz. 2009;34(4):268-79. doi: 10.1007/s00059-009-3239-0.
    » https://doi.org/10.1007/s00059-009-3239-0
  • 29
    Meijer FMM, Egorova AD, Jongbloed MRM, Koppel C, Habib G, Hazekamp MG, et al. The Significance of Symptoms before and after Surgery for Anomalous Aortic Origin of Coronary Arteries in Adolescents and Adults. Interact Cardiovasc Thorac Surg. 2021;32(1):122-9. doi: 10.1093/icvts/ivaa234.
    » https://doi.org/10.1093/icvts/ivaa234
  • 30
    Lim CW, Ho KT, Quek SC. Exercise Myocardial Perfusion Stress Testing in Children with Kawasaki Disease. J Paediatr Child Health. 2006;42(7):419-22. doi: 10.1111/j.1440-1754.2006.00891.x.
    » https://doi.org/10.1111/j.1440-1754.2006.00891.x
  • 31
    Feld H, Guadanino V, Hollander G, Greengart A, Lichstein E, Shani J. Exercise-Induced Ventricular Tachycardia in Association with a Myocardial Bridge. Chest. 1991;99(5):1295-6. doi: 10.1378/chest.99.5.1295.
    » https://doi.org/10.1378/chest.99.5.1295
  • 32
    Corban MT, Hung OY, Eshtehardi P, Rasoul-Arzrumly E, McDaniel M, Mekonnen G, et al. Myocardial Bridging: Contemporary Understanding of Pathophysiology with Implications for Diagnostic and Therapeutic Strategies. J Am Coll Cardiol. 2014;63(22):2346-55. doi: 10.1016/j.jacc.2014.01.049.
    » https://doi.org/10.1016/j.jacc.2014.01.049
  • 33
    Mohan S, Poff S, Torok KS. Coronary Artery Involvement in Pediatric Takayasu's Arteritis: Case Report and Literature Review. Pediatr Rheumatol Online J. 2013;11(1):4. doi: 10.1186/1546-0096-11-4.
    » https://doi.org/10.1186/1546-0096-11-4
  • 34
    Saling LJ, Raptis DA, Parekh K, Rockefeller TA, Sheybani EF, Bhalla S. Abnormalities of the Coronary Arteries in Children: Looking beyond the Origins. Radiographics. 2017;37(6):1665-78. doi: 10.1148/rg.2017170018.
    » https://doi.org/10.1148/rg.2017170018
  • 35
    Sumski CA, Goot BH. Evaluating Chest Pain and Heart Murmurs in Pediatric and Adolescent Patients. Pediatr Clin North Am. 2020;67(5):783-99. doi: 10.1016/j.pcl.2020.05.003.
    » https://doi.org/10.1016/j.pcl.2020.05.003
  • 36
    Saleeb SF, Li WY, Warren SZ, Lock JE. Effectiveness of Screening for Life-Threatening Chest Pain in Children. Pediatrics. 2011;128(5):e1062-8. doi: 10.1542/peds.2011-0408.
    » https://doi.org/10.1542/peds.2011-0408
  • 37
    McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation. 2017;135(17):e927-99. doi: 10.1161/CIR.0000000000000484.
    » https://doi.org/10.1161/CIR.0000000000000484
  • 38
    Hacke C, Weisser B. Reference Values for Exercise Systolic Blood Pressure in 12- to 17-Year-Old Adolescents. Am J Hypertens. 2016;29(6):747-53. doi: 10.1093/ajh/hpv178.
    » https://doi.org/10.1093/ajh/hpv178
  • 39
    Pool LR, Aguayo L, Brzezinski M, Perak AM, Davis MM, Greenland P, et al. Childhood Risk Factors and Adulthood Cardiovascular Disease: A Systematic Review. J Pediatr. 2021;232:118-26.e23. doi: 10.1016/j.jpeds.2021.01.053.
    » https://doi.org/10.1016/j.jpeds.2021.01.053
  • 40
    Celermajer DS, Ayer JG. Childhood Risk Factors for Adult Cardiovascular Disease and Primary Prevention in Childhood. Heart. 2006;92(11):1701-6. doi: 10.1136/hrt.2005.081760.
    » https://doi.org/10.1136/hrt.2005.081760
  • 41
    Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension Guidelines for the Management of High Blood Pressure in Children and Adolescents. J Hypertens. 2016;34(10):1887-920. doi: 10.1097/HJH.0000000000001039.
    » https://doi.org/10.1097/HJH.0000000000001039
  • 42
    Özdemir G, Köşger P, Uçar B. Evaluation of Blood Pressure Responses to Treadmill Exercise Test in Normotensive Children of Hypertensive Parents. Turk J Pediatr. 2020;62(6):1035-48. doi: 10.24953/turkjped.2020.06.016.
    » https://doi.org/10.24953/turkjped.2020.06.016
  • 43
    Rhodes J, Tikkanen AU, Jenkins KJ. Exercise Testing and Training in Children with Congenital Heart Disease. Circulation. 2010;122(19):1957-67. doi: 10.1161/CIRCULATIONAHA.110.958025.
    » https://doi.org/10.1161/CIRCULATIONAHA.110.958025
  • 44
    Baker-Smith CM, Pietris N, Jinadu L. Recommendations for Exercise and Screening for Safe Athletic Participation in Hypertensive Youth. Pediatr Nephrol. 2020;35(5):743-52. doi: 10.1007/s00467-019-04258-y.
    » https://doi.org/10.1007/s00467-019-04258-y
  • 45
    Wuestenfeld JC, Baersch F, Ruedrich P, Paech C, Wolfarth B. Blood Pressure Response to Dynamic Exercise Testing in Adolescent Elite Athletes, What is Normal?. Front Pediatr. 2022;10:974926. doi: 10.3389/fped.2022.974926.
    » https://doi.org/10.3389/fped.2022.974926
  • 46
    Kavey RE, Kveselis DA, Atallah N, Smith FC. White Coat Hypertension in Childhood: Evidence for End-Organ Effect. J Pediatr. 2007;150(5):491-7. doi: 10.1016/j.jpeds.2007.01.033.
    » https://doi.org/10.1016/j.jpeds.2007.01.033
  • 47
    Schultz MG, Park C, Fraser A, Howe LD, Jones S, Rapala A, et al. Submaximal Exercise Blood Pressure and Cardiovascular Structure in Adolescence. Int J Cardiol. 2019;275:152-7. doi: 10.1016/j.ijcard.2018.10.060.
    » https://doi.org/10.1016/j.ijcard.2018.10.060
  • 48
    Huang Z, Fonseca R, Sharman JE, Park C, Chaturvedi N, Howe LD, et al. The Influence of Fitness on Exercise Blood Pressure and its Association with Cardiac Structure in Adolescence. Scand J Med Sci Sports. 2020;30(6):1033-9. doi: 10.1111/sms.13645.
    » https://doi.org/10.1111/sms.13645
  • 49
    Luitingh TL, Lee MGY, Jones B, Kowalski R, Aguero SW, Koleff J, et al. A Cross-Sectional Study of the Prevalence of Exercise-Induced Hypertension in Childhood Following Repair of Coarctation of the Aorta. Heart Lung Circ. 2019;28(5):792-9. doi: 10.1016/j.hlc.2018.03.015.
    » https://doi.org/10.1016/j.hlc.2018.03.015
  • 50
    Foulds HJA, Giacomantonio NB, Bredin SSD, Warburton DER. A Systematic Review and Meta-Analysis of Exercise and Exercise Hypertension in Patients with Aortic Coarctation. J Hum Hypertens. 2017;31(12):768-75. doi: 10.1038/jhh.2017.55.
    » https://doi.org/10.1038/jhh.2017.55
  • 51
    Panzer J, Bové T, Vandekerckhove K, De Wolf D. Hypertension after Coarctation Repair - A Systematic Review. Transl Pediatr. 2022;11(2):270-9. doi: 10.21037/tp-21-418.
    » https://doi.org/10.21037/tp-21-418
  • 52
    Huang Z, Sharman JE, Fonseca R, Park C, Chaturvedi N, Smith GD, et al. Masked Hypertension and Submaximal Exercise Blood Pressure among Adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC). Scand J Med Sci Sports. 2020;30(1):25-30. doi: 10.1111/sms.13525.
    » https://doi.org/10.1111/sms.13525
  • 53
    Alvarez-Pitti J, Herceg-Čavrak V, Wójcik M, Radovanović D, Brzeziński M, Grabitz C, et al. Blood Pressure Response to Exercise in Children and Adolescents. Front Cardiovasc Med. 2022;9:1004508. doi: 10.3389/fcvm.2022.1004508.
    » https://doi.org/10.3389/fcvm.2022.1004508
  • 54
    Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous Familial Hypercholesterolaemia: New Insights and Guidance for Clinicians to Improve Detection and Clinical Management. A Position Paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146-57. doi: 10.1093/eurheartj/ehu274.
    » https://doi.org/10.1093/eurheartj/ehu274
  • 55
    Farnier M, Civeira F, Descamps O; FH Expert Working Group. How to Implement Clinical Guidelines to Optimise Familial Hypercholesterolaemia Diagnosis and Treatment. Atheroscler Suppl. 2017;26:25-35. doi: 10.1016/S1567-5688(17)30022-3.
    » https://doi.org/10.1016/S1567-5688(17)30022-3
  • 56
    Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M, et al. Familial Hypercholesterolaemia in Children and Adolescents: Gaining Decades of Life by Optimizing Detection and Treatment. Eur Heart J. 2015;36(1):2425-37. doi: 10.1093/eurheartj/ehv157.
    » https://doi.org/10.1093/eurheartj/ehv157
  • 57
    Patel TM, Kamande SM, Jarosz E, Bost JE, Hanumanthaiah S, Berul CI, et al. Treadmill Exercise Testing Improves Diagnostic Accuracy in Children with Concealed Congenital Long QT Syndrome. Pacing Clin Electrophysiol. 2020;43(12):1521-8. doi: 10.1111/pace.14085.
    » https://doi.org/10.1111/pace.14085
  • 58
    Zeppenfeld K, Tfelt-Hansen J, Riva M, Winkel BG, Behr ER, Blom NA, et al. 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Eur Heart J. 2022;43(40):3997-4126. doi: 10.1093/eurheartj/ehac262.
    » https://doi.org/10.1093/eurheartj/ehac262
  • 59
    Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation. 2019;139(13):e603-34. doi: 10.1161/CIR.0000000000000618.
    » https://doi.org/10.1161/CIR.0000000000000618
  • 60
    Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference Values for Cardiometabolic Risk Scores in Children and Adolescents: Suggesting a Common Standard. Atherosclerosis. 2018;278:299-306. doi: 10.1016/j.atherosclerosis.2018.10.003.
    » https://doi.org/10.1016/j.atherosclerosis.2018.10.003
  • 61
    de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, Mietus-Snyder M, Mitsnefes MM, Peterson AL, St-Pierre J, Urbina EM, Zachariah JP, Zaidi AN. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. Circulation. 2019 Mar 26;139(13):e603-e634. doi: 10.1161/CIR.0000000000000618.
    » https://doi.org/10.1161/CIR.0000000000000618
  • 62
    Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Eur Heart J. 2021;42(1):17-96. doi: 10.1093/eurheartj/ehaa605.
    » https://doi.org/10.1093/eurheartj/ehaa605
  • 63
    Ghorayeb N, Stein R, Daher DJ, Silveira ADD, Ritt LEF, Santos DFPD, et al. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019. Arq Bras Cardiol. 2019;112(3):326-68. doi: 10.5935/abc.20190048.
    » https://doi.org/10.5935/abc.20190048
  • 64
    Corrado D, Pelliccia A, Bjørnstad HH, Vanhees L, Biffi A, Borjesson M, et al. Cardiovascular Pre-Participation Screening of Young Competitive Athletes for Prevention of Sudden Death: Proposal for a Common European Protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(5):516-24. doi: 10.1093/eurheartj/ehi108.
    » https://doi.org/10.1093/eurheartj/ehi108
  • 65
    Zorzi A, Vessella T, De Lazzari M, Cipriani A, Menegon V, Sarto G, et al. Screening Young Athletes for Diseases at Risk of Sudden Cardiac Death: Role of Stress Testing for Ventricular Arrhythmias. Eur J Prev Cardiol. 2020;27(3):311-20. doi: 10.1177/2047487319890973.
    » https://doi.org/10.1177/2047487319890973
  • 66
    Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden Deaths in Young Competitive Athletes: Analysis of 1866 Deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085-92. doi: 10.1161/CIRCULATIONAHA.108.804617.
    » https://doi.org/10.1161/CIRCULATIONAHA.108.804617
  • 67
    Teoh OH, Trachsel D, Mei-Zahav M, Selvadurai H. Exercise Testing in Children with Lung Diseases. Paediatr Respir Rev. 2009;10(3):99-104. doi: 10.1016/j.prrv.2009.06.004.
    » https://doi.org/10.1016/j.prrv.2009.06.004
  • 68
    Welsh L, Roberts RG, Kemp JG. Fitness and Physical Activity in Children with Asthma. Sports Med. 2004;34(13):861-70. doi: 10.2165/00007256-200434130-00001.
    » https://doi.org/10.2165/00007256-200434130-00001
  • 69
    McCambridge TM, Benjamin HJ, Brenner JS, Cappetta CT, Demorest RA, Gregory AJ, et al. Athletic Participation by Children and Adolescents who have Systemic Hypertension. Pediatrics. 2010;125(6):1287-94. doi: 10.1542/peds.2010-0658.
    » https://doi.org/10.1542/peds.2010-0658
  • 70
    Faulkner MS, Michaliszyn SF, Hepworth JT. A Personalized Approach to Exercise Promotion in Adolescents with Type 1 Diabetes. Pediatr Diabetes. 2010;11(3):166-74. doi: 10.1111/j.1399-5448.2009.00550.x.
    » https://doi.org/10.1111/j.1399-5448.2009.00550.x
  • 71
    Kosinski C, Besson C, Amati F. Exercise Testing in Individuals with Diabetes, Practical Considerations for Exercise Physiologists. Front Physiol. 2019;10:1257. doi: 10.3389/fphys.2019.01257.
    » https://doi.org/10.3389/fphys.2019.01257
  • 72
    King KM, McKay T, Thrasher BJ, Wintergerst KA. Maximal Oxygen Uptake, VO2 Max, Testing Effect on Blood Glucose Level in Adolescents with Type 1 Diabetes Mellitus. Int J Environ Res Public Health. 2022;19(9):5543. doi: 10.3390/ijerph19095543.
    » https://doi.org/10.3390/ijerph19095543
  • 73
    Pieles GE, Oberhoffer R. The Assessment of the Paediatric Athlete. J Cardiovasc Transl Res. 2020;13(3):306-12. doi: 10.1007/s12265-020-10005-8.
    » https://doi.org/10.1007/s12265-020-10005-8
  • 74
    Sarto P, Zorzi A, Merlo L, Vessella T, Pegoraro C, Giorgiano F, et al. Serial versus Single Cardiovascular Screening of Adolescent Athletes. Circulation. 2021;143(17):1729-31. doi: 10.1161/CIRCULATIONAHA.120.053168.
    » https://doi.org/10.1161/CIRCULATIONAHA.120.053168
  • 75
    Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation. 2021;143(8):e254-743. doi: 10.1161/CIR.0000000000000950.
    » https://doi.org/10.1161/CIR.0000000000000950
  • 76
    Liu Y, Chen S, Zühlke L, Black GC, Choy MK, Li N, et al. Global Birth Prevalence of Congenital Heart Defects 1970-2017: Updated Systematic Review and Meta-Analysis of 260 Studies. Int J Epidemiol. 2019;48(2):455-63. doi: 10.1093/ije/dyz009.
    » https://doi.org/10.1093/ije/dyz009
  • 77
    Zaqout M, Vandekerckhove K, De Wolf D, Panzer J, Bové T, François K, et al. Determinants of Physical Fitness in Children with Repaired Congenital Heart Disease. Pediatr Cardiol. 2021;42(4):857-65. doi: 10.1007/s00246-021-02551-y.
    » https://doi.org/10.1007/s00246-021-02551-y
  • 78
    Chlif M, Ammar MM, Said NB, Sergey L, Ahmaidi S, Alassery F, et al. Mechanism of Dyspnea during Exercise in Children with Corrected Congenital Heart Disease. Int J Environ Res Public Health. 2021;19(1):99. doi: 10.3390/ijerph19010099.
    » https://doi.org/10.3390/ijerph19010099
  • 79
    Abassi H, Gavotto A, Picot MC, Bertet H, Matecki S, Guillaumont S, et al. Impaired Pulmonary Function and its Association with Clinical Outcomes, Exercise Capacity and Quality of Life in Children with Congenital Heart Disease. Int J Cardiol. 2019;285:86-92. doi: 10.1016/j.ijcard.2019.02.069.
    » https://doi.org/10.1016/j.ijcard.2019.02.069
  • 80
    Schaan CW, Macedo ACP, Sbruzzi G, Umpierre D, Schaan BD, Pellanda LC. Functional Capacity in Congenital Heart Disease: A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2017;109(4):357-67. doi: 10.5935/abc.20170125.
    » https://doi.org/10.5935/abc.20170125
  • 81
    Baumgartner H, Bonhoeffer P, De Groot NM, Haan F, Deanfield JE, Galie N, et al. ESC Guidelines for the Management of Grown-Up Congenital Heart Disease (New Version 2010). Eur Heart J. 2010;31(23):2915-57. doi: 10.1093/eurheartj/ehq249.
    » https://doi.org/10.1093/eurheartj/ehq249
  • 82
    Magalhães LP, Guimarães I, Melo SL, Mateo E, Andalaft RB, Xavier L, et al. Diretriz de Arritmias Cardíacas em Crianças e Cardiopatias Congênitas Sobrac e DCC - CP. Arq Bras Cardiol. 2016;107(1 Suppl 3):1-58. doi: 10.5935/abc.20160103.
    » https://doi.org/10.5935/abc.20160103
  • 83
    Khairy P, van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: Developed in Partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the Governing Bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm. 2014;11(10):e102-65. doi: 10.1016/j.hrthm.2014.05.009.
    » https://doi.org/10.1016/j.hrthm.2014.05.009
  • 84
    Ohuchi H, Negishi J, Miike H, Toyoshima Y, Morimoto H, Fukuyama M, et al. Positive Pediatric Exercise Capacity Trajectory Predicts Better Adult Fontan Physiology Rationale for Early Establishment of Exercise Habits. Int J Cardiol. 2019;274:80-7. doi: 10.1016/j.ijcard.2018.06.067.
    » https://doi.org/10.1016/j.ijcard.2018.06.067
  • 85
    Holst KA, Said SM, Nelson TJ, Cannon BC, Dearani JA. Current Interventional and Surgical Management of Congenital Heart Disease: Specific Focus on Valvular Disease and Cardiac Arrhythmias. Circ Res. 2017;120(6):1027-44. doi: 10.1161/CIRCRESAHA.117.309186.
    » https://doi.org/10.1161/CIRCRESAHA.117.309186
  • 86
    Diller GP, Dimopoulos K, Okonko D, Li W, Babu-Narayan SV, Broberg CS, et al. Exercise Intolerance in Adult Congenital Heart Disease: Comparative Severity, Correlates, and Prognostic Implication. Circulation. 2005;112(6):828-35. doi: 10.1161/CIRCULATIONAHA.104.529800.
    » https://doi.org/10.1161/CIRCULATIONAHA.104.529800
  • 87
    Steinberger J, Moller JH. Exercise Testing in Children with Pulmonary Valvar Stenosis. Pediatr Cardiol. 1999;20(1):27-31. doi: 10.1007/s002469900389.
    » https://doi.org/10.1007/s002469900389
  • 88
    Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91-220. doi: 10.1016/j.jacc.2017.10.054.
    » https://doi.org/10.1016/j.jacc.2017.10.054
  • 89
    Callaghan S, Morrison ML, McKeown PP, Tennyson C, Sands AJ, McCrossan B, et al. Exercise Prescription Improves Exercise Tolerance in Young Children with CHD: A Randomised Clinical Trial. Open Heart. 2021;8(1):e001599. doi: 10.1136/openhrt-2021-001599.
    » https://doi.org/10.1136/openhrt-2021-001599
  • 90
    Gauthier N, Reynolds L, Curran T, O’Neill J, Gauvreau K, Alexander ME. FORCE Risk Stratification Tool for Pediatric Cardiac Rehabilitation and Fitness Programs. Pediatr Cardiol. 2023;44(6):1302-10. doi: 10.1007/s00246-022-03010-y.
    » https://doi.org/10.1007/s00246-022-03010-y
  • 91
    Fernandes SM, Alexander ME, Graham DA, Khairy P, Clair M, Rodriguez E, et al. Exercise Testing Identifies Patients at Increased Risk for Morbidity and Mortality Following Fontan Surgery. Congenit Heart Dis. 2011;6(4):294-303. doi: 10.1111/j.1747-0803.2011.00500.x.
    » https://doi.org/10.1111/j.1747-0803.2011.00500.x
  • 92
    Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, et al. A Cross-Sectional Study of Exercise Performance During the First 2 Decades of Life after the Fontan Operation. J Am Coll Cardiol. 2008;52(2):99-107. doi: 10.1016/j.jacc.2008.02.081.
    » https://doi.org/10.1016/j.jacc.2008.02.081
  • 93
    Kantor PF, Redington AN. Pathophysiology and Management of Heart Failure in Repaired Congenital Heart Disease. Heart Fail Clin. 2010;6(4):497-506. doi: 10.1016/j.hfc.2010.06.002.
    » https://doi.org/10.1016/j.hfc.2010.06.002
  • 94
    Moffett BS, Chang AC. Future Pharmacologic Agents for Treatment of Heart Failure in Children. Pediatr Cardiol. 2006;27(5):533-51. doi: 10.1007/s00246-006-1289-0.
    » https://doi.org/10.1007/s00246-006-1289-0
  • 95
    Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 2): Indications for Exercise Tests in Cardiac Diseases. Arch Cardiovasc Dis. 2019;112(1):56-66. doi: 10.1016/j.acvd.2018.07.001.
    » https://doi.org/10.1016/j.acvd.2018.07.001
  • 96
    Barry OM, Gauvreau K, Rhodes J, Reichman JR, Bourette L, Curran T, et al. Incidence and Predictors of Clinically Important and Dangerous Arrhythmias During Exercise Tests in Pediatric and Congenital Heart Disease Patients. JACC Clin Electrophysiol. 2018;4(10):1319-27. doi: 10.1016/j.jacep.2018.05.018.
    » https://doi.org/10.1016/j.jacep.2018.05.018
  • 97
    Ammash NM, Dearani JA, Burkhart HM, Connolly HM. Pulmonary Regurgitation after Tetralogy of Fallot Repair: Clinical Features, Sequelae, and Timing of Pulmonary Valve Replacement. Congenit Heart Dis. 2007;2(6):386-403. doi: 10.1111/j.1747-0803.2007.00131.x.
    » https://doi.org/10.1111/j.1747-0803.2007.00131.x
  • 98
    Geva T. Repaired Tetralogy of Fallot: the Roles of Cardiovascular Magnetic Resonance in Evaluating Pathophysiology and for Pulmonary Valve Replacement Decision Support. J Cardiovasc Magn Reson. 2011;13(1):9. doi: 10.1186/1532-429X-13-9.
    » https://doi.org/10.1186/1532-429X-13-9
  • 99
    Müller J, Hager A, Diller GP, Derrick G, Buys R, Dubowy KO, et al. Peak Oxygen Uptake, Ventilatory Efficiency and QRS-Duration Predict Event Free Survival in Patients Late after Surgical Repair of Tetralogy of Fallot. Int J Cardiol. 2015;196:158-64. doi: 10.1016/j.ijcard.2015.05.174.
    » https://doi.org/10.1016/j.ijcard.2015.05.174
  • 100
    Dallaire F, Wald RM, Marelli A. The Role of Cardiopulmonary Exercise Testing for Decision Making in Patients with Repaired Tetralogy of Fallot. Pediatr Cardiol. 2017;38(6):1097-105. doi: 10.1007/s00246-017-1656-z.
    » https://doi.org/10.1007/s00246-017-1656-z
  • 101
    Mahle WT, McBride MG, Paridon SM. Exercise Performance after the Arterial Switch Operation for D-Transposition of the Great Arteries. Am J Cardiol. 2001;87(6):753-8. doi: 10.1016/s0002-9149(00)01496-x.
    » https://doi.org/10.1016/s0002-9149(00)01496-x
  • 102
    Giardini A, Hager A, Lammers AE, Derrick G, Müller J, Diller GP, et al. Ventilatory Efficiency and Aerobic Capacity Predict Event-Free Survival in Adults with Atrial Repair for Complete Transposition of the Great Arteries. J Am Coll Cardiol. 2009;53(17):1548-55. doi: 10.1016/j.jacc.2009.02.005.
    » https://doi.org/10.1016/j.jacc.2009.02.005
  • 103
    Tuan SH, Chiu PC, Liou IH, Lu WH, Huang HY, Wu SY, et al. Serial Analysis of Cardiopulmonary Fitness and Echocardiography in Patients with Fabry Disease Undergoing Enzyme Replacement Therapy. J Rehabil Med Clin Commun. 2020;3:1000028. doi: 10.2340/20030711-1000028.
    » https://doi.org/10.2340/20030711-1000028
  • 104
    Powell AW, Nagarajan R, Mays WA, Chin C, Knilans TK, Knecht SK, et al. Cardiopulmonary Aerobic Fitness Assessment During Maximal and Submaximal Exercise Testing in Pediatric Oncology Patients after Chemotherapy. Am J Clin Oncol. 2018;41(11):1058-61. doi: 10.1097/COC.0000000000000422.
    » https://doi.org/10.1097/COC.0000000000000422
  • 105
    Ghosh RM, Gates GJ, Walsh CA, Schiller MS, Pass RH, Ceresnak SR. The Prevalence of Arrhythmias, Predictors for Arrhythmias, and Safety of Exercise Stress Testing in Children. Pediatr Cardiol. 2015;36(3):584-90. doi: 10.1007/s00246-014-1053-9.
    » https://doi.org/10.1007/s00246-014-1053-9
  • 106
    Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Indian Pacing Electrophysiol J. 2021;21(6):367-93. doi: 10.1016/j.ipej.2021.07.005.
    » https://doi.org/10.1016/j.ipej.2021.07.005
  • 107
    Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, et al. Congenital and Childhood Atrioventricular Blocks: Pathophysiology and Contemporary Management. Eur J Pediatr. 2016;175(9):1235-48. doi: 10.1007/s00431-016-2748-0.
    » https://doi.org/10.1007/s00431-016-2748-0
  • 108
    Blank AC, Hakim S, Strengers JL, Tanke RB, van Veen TA, Vos MA, et al. Exercise Capacity in Children with Isolated Congenital Complete Atrioventricular Block: Does Pacing Make a Difference? Pediatr Cardiol. 2012;33(4):576-85. doi: 10.1007/s00246-012-0176-0.
    » https://doi.org/10.1007/s00246-012-0176-0
  • 109
    Takahashi K, Nabeshima T, Nakayashiro M, Ganaha H. QT Dynamics During Exercise in Asymptomatic Children with Long QT Syndrome Type 3. Pediatr Cardiol. 2016;37(5):860-7. doi: 10.1007/s00246-016-1360-4.
    » https://doi.org/10.1007/s00246-016-1360-4
  • 110
    Winder MM, Marietta J, Kerr LM, Puchalski MD, Zhang C, Ware AL, et al. Reducing Unnecessary Diagnostic Testing in Pediatric Syncope: A Quality Improvement Initiative. Pediatr Cardiol. 2021;42(4):942-50. doi: 10.1007/s00246-021-02567-4.
    » https://doi.org/10.1007/s00246-021-02567-4
  • 111
    Massin MM, Malekzadeh-Milani S, Benatar A. Cardiac Syncope in Pediatric Patients. Clin Cardiol. 2007;30(2):81-5. doi: 10.1002/clc.28.
    » https://doi.org/10.1002/clc.28
  • 112
    Giudicessi JR, Ackerman MJ. Exercise Testing Oversights Underlie Missed and Delayed Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia in Young Sudden Cardiac Arrest Survivors. Heart Rhythm. 2019;16(8):1232-9. doi: 10.1016/j.hrthm.2019.02.012.
    » https://doi.org/10.1016/j.hrthm.2019.02.012
  • 113
    Roston TM, Kallas D, Davies B, Franciosi S, Souza AM, Laksman ZW, et al. Burst Exercise Testing Can Unmask Arrhythmias in Patients with Incompletely Penetrant Catecholaminergic Polymorphic Ventricular Tachycardia. JACC Clin Electrophysiol. 2021;7(4):437-41. doi: 10.1016/j.jacep.2021.02.013.
    » https://doi.org/10.1016/j.jacep.2021.02.013
  • 114
    Teixeira RA, Fagundes AA, Baggio JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, et al. Diretriz Brasileira de Dispositivos Cardíacos Eletrônicos Implantáveis – 2023. Arq Bras Cardiol 2023;120:e20220892. doi: 10.36660/abc.20220892.
    » https://doi.org/10.36660/abc.20220892
  • 115
    Bordachar P, Zachary W, Ploux S, Labrousse L, Haissaguerre M, Thambo JB. Pathophysiology, Clinical Course, and Management of Congenital Complete Atrioventricular Block. Heart Rhythm. 2013;10(5):760-6. doi: 10.1016/j.hrthm.2012.12.030.
    » https://doi.org/10.1016/j.hrthm.2012.12.030
  • 116
    Silka MJ, Shah MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Executive Summary. Heart Rhythm. 2021;18(11):1925-50. doi: 10.1016/j.hrthm.2021.07.051.
    » https://doi.org/10.1016/j.hrthm.2021.07.051
  • 117
    Beaufort-Krol GC, Stienstra Y, Bink-Boelkens MT. Sinus Node Function in Children with Congenital Complete Atrioventricular Block. Europace. 2007;9(9):844-7. doi: 10.1093/europace/eum116.
    » https://doi.org/10.1093/europace/eum116
  • 118
    European Society of Cardiology (ESC); European Heart Rhythm Association (EHRA); Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, et al. 2013 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy: The Task Force on Cardiac Pacing and Resynchronization Therapy of the European Society of Cardiology (ESC). Developed in Collaboration with the European Heart Rhythm Association (EHRA). Europace. 2013;15(8):1070-118. doi: 10.1093/europace/eut206.
    » https://doi.org/10.1093/europace/eut206
  • 119
    Hernández-Madrid A, Paul T, Abrams D, Aziz PF, Blom NA, Chen J, et al. Arrhythmias in Congenital Heart Disease: A Position Paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital Heart Disease, Endorsed by HRS, PACES, APHRS, and SOLAECE. Europace. 2018;20(11):1719-53. doi: 10.1093/europace/eux380.
    » https://doi.org/10.1093/europace/eux380
  • 120
    Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Duvernoy WF, Froelicher VF, et al. ACC/AHA Guidelines for Exercise Testing: Executive Summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Circulation. 1997;96(1):345-54. doi: 10.1161/01.cir.96.1.345.
    » https://doi.org/10.1161/01.cir.96.1.345
  • 121
    Silva OB, Saraiva LCR, Sobral DC Filho. Teste Ergométrico em Crianças e Adolescentes: Maior Tolerância ao Esforço com o Protocolo em Rampa. Arq Bras Cardiol. 2007;89(6):355-360. doi: 10.1590/S0066-782X2007001800007.
    » https://doi.org/10.1590/S0066-782X2007001800007
  • 122
    Tikkanen AU, Oyaga AR, Riaño OA, Álvaro EM, Rhodes J. Paediatric Cardiac Rehabilitation in Congenital Heart Disease: A Systematic Review. Cardiol Young. 2012;22(3):241-50. doi: 10.1017/S1047951111002010.
    » https://doi.org/10.1017/S1047951111002010
  • 123
    Rhodes J, Curran TJ, Camil L, Rabideau N, Fulton DR, Gauthier NS, et al. Impact of Cardiac Rehabilitation on the Exercise Function of Children with Serious Congenital Heart Disease. Pediatrics. 2005;116(6):1339-45. doi: 10.1542/peds.2004-2697.
    » https://doi.org/10.1542/peds.2004-2697
  • 124
    Ogawa Y, Tanaka T, Kido S. Reproducibility of Corrected QT Interval in Pediatric Genotyped Long QT Syndrome. Pediatr Int. 2016;58(11):1246-8. doi: 10.1111/ped.13120.
    » https://doi.org/10.1111/ped.13120
  • 125
    Corcia MCG. Brugada Syndrome - Minimizing Overdiagnosis and Over Treatment in Children. Curr Opin Cardiol. 2022;37(1):80-5. doi: 10.1097/HCO.0000000000000941.
    » https://doi.org/10.1097/HCO.0000000000000941
  • 126
    Masrur S, Memon S, Thompson PD. Brugada Syndrome, Exercise, and Exercise Testing. Clin Cardiol. 2015;38(5):323-6. doi: 10.1002/clc.22386.
    » https://doi.org/10.1002/clc.22386
  • 127
    Subramanian M, Prabhu MA, Harikrishnan MS, Shekhar SS, Pai PG, Natarajan K. The Utility of Exercise Testing in Risk Stratification of Asymptomatic Patients with Type 1 Brugada Pattern. J Cardiovasc Electrophysiol. 2017;28(6):677-83. doi: 10.1111/jce.13205.
    » https://doi.org/10.1111/jce.13205
  • 128
    Crosson JE, Callans DJ, Bradley DJ, Dubin A, Epstein M, Etheridge S, et al. PACES/HRS Expert Consensus Statement on the Evaluation and Management of Ventricular Arrhythmias in the Child with a Structurally Normal Heart. Heart Rhythm. 2014;11(9):e55-78. doi: 10.1016/j.hrthm.2014.05.010.
    » https://doi.org/10.1016/j.hrthm.2014.05.010
  • 129
    Porcedda G, Brambilla A, Favilli S, Spaziani G, Mascia G, Giaccardi M. Frequent Ventricular Premature Beats in Children and Adolescents: Natural History and Relationship with Sport Activity in a Long-Term Follow-Up. Pediatr Cardiol. 2020;41(1):123-8. doi: 10.1007/s00246-019-02233-w.
    » https://doi.org/10.1007/s00246-019-02233-w
  • 130
    Craik N, Hla T, Cannon J, Moore H, Carapetis JR, Sanyahumbi A. Global Disease Burden of Streptococcus pyogenes. 2022 Aug 21 [updated 2022 Oct 4]. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. 2nd ed. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2022 Oct 8. Chapter 21. PMID: 36479763.
  • 131
    Nascimento BR, Beaton AZ, Nunes MC, Diamantino AC, Carmo GA, Oliveira KK, et al. Echocardiographic Prevalence of Rheumatic Heart Disease in Brazilian Schoolchildren: Data from the PROVAR Study. Int J Cardiol. 2016;219:439-45. doi: 10.1016/j.ijcard.2016.06.088.
    » https://doi.org/10.1016/j.ijcard.2016.06.088
  • 132
    Iddawela S, Joseph PJS, Ganeshan R, Shah HI, Olatigbe TAT, Anyu AT, et al. Paediatric Mitral Valve Disease - From Presentation to Management. Eur J Pediatr. 2022;181(1):35-44. doi: 10.1007/s00431-021-04208-7.
    » https://doi.org/10.1007/s00431-021-04208-7
  • 133
    Saxena A. Evaluation of Acquired Valvular Heart Disease by the Pediatrician: When to Follow, When to Refer for Intervention? Part I. Indian J Pediatr. 2015;82(11):1033-41. doi: 10.1007/s12098-015-1796-1.
    » https://doi.org/10.1007/s12098-015-1796-1
  • 134
    Santana S, Gidding SS, Xie S, Jiang T, Kharouf R, Robinson BW. Correlation of Echocardiogram and Exercise Test Data in Children with Aortic Stenosis. Pediatr Cardiol. 2019;40(7):1516-22. doi: 10.1007/s00246-019-02177-1.
    » https://doi.org/10.1007/s00246-019-02177-1
  • 135
    Decker JA. Arrhythmias in Paediatric Valvar Disease. Cardiol Young. 2014;24(6):1064-70. doi: 10.1017/S1047951114001978.
    » https://doi.org/10.1017/S1047951114001978
  • 136
    Singh GK. Aortic Stenosis. Indian J Pediatr. 2002;69(4):351-8. doi: 10.1007/BF02723222.
    » https://doi.org/10.1007/BF02723222
  • 137
    Rhodes J, Fischbach PS, Patel H, Hijazi ZM. Factors Affecting the Exercise Capacity of Pediatric Patients with Aortic Regurgitation. Pediatr Cardiol. 2000;21(4):328-33. doi: 10.1007/s002460010074.
    » https://doi.org/10.1007/s002460010074
  • 138
    Tretter JT, Langsner A. Timing of Aortic Valve Intervention in Pediatric Chronic Aortic Insufficiency. Pediatr Cardiol. 2014;35(8):1321-6. doi: 10.1007/s00246-014-1019-y.
    » https://doi.org/10.1007/s00246-014-1019-y
  • 139
    D’Ascenzi F, Valentini F, Anselmi F, Cavigli L, Bandera F, Benfari G, et al. Bicuspid Aortic Valve and Sports: From the Echocardiographic Evaluation to the Eligibility for Sports Competition. Scand J Med Sci Sports. 2021;31(3):510-20. doi: 10.1111/sms.13895.
    » https://doi.org/10.1111/sms.13895
  • 140
    Mitchell BM, Strasburger JF, Hubbard JE, Wessel HU. Serial Exercise Performance in Children with Surgically Corrected Congenital Aortic Stenosis. Pediatr Cardiol. 2003;24(4):319-24. doi: 10.1007/s00246-002-0281-6.
    » https://doi.org/10.1007/s00246-002-0281-6
  • 141
    Carvalho T, Milani M, Ferraz AS, Silveira ADD, Herdy AH, Hossri CAC, et al. Brazilian Cardiovascular Rehabilitation Guideline - 2020. Arq Bras Cardiol. 2020;114(5):943-87. doi: 10.36660/abc.20200407.
    » https://doi.org/10.36660/abc.20200407
  • 142
    Kantor PF, Kleinman JA, Ryan TD, Wilmot I, Zuckerman WA, Addonizio LJ, et al. Preventing Pediatric Cardiomyopathy: A 2015 Outlook. Expert Rev Cardiovasc Ther. 2016;14(3):321-39. doi: 10.1586/14779072.2016.1129899.
    » https://doi.org/10.1586/14779072.2016.1129899
  • 143
    Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, et al. Cardiomyopathies in Children and Systemic Disorders when is it Useful to Look beyond the Heart? J Cardiovasc Dev Dis. 2022;9(2):47. doi: 10.3390/jcdd9020047.
    » https://doi.org/10.3390/jcdd9020047
  • 144
    Choudhry S, Puri K, Denfield SW. An Update on Pediatric Cardiomyopathy. Curr Treat Options Cardiovasc Med. 2019;21(8):36. doi: 10.1007/s11936-019-0739-y.
    » https://doi.org/10.1007/s11936-019-0739-y
  • 145
    Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, et al. Pediatric Cardiomyopathies. Circ Res. 2017;121(7):855-73. doi: 10.1161/CIRCRESAHA.116.309386.
    » https://doi.org/10.1161/CIRCRESAHA.116.309386
  • 146
    Watanabe K, Shih R. Update of Pediatric Heart Failure. Pediatr Clin North Am. 2020;67(5):889-901. doi: 10.1016/j.pcl.2020.06.004.
    » https://doi.org/10.1016/j.pcl.2020.06.004
  • 147
    Putschoegl A, Auerbach S. Diagnosis, Evaluation, and Treatment of Myocarditis in Children. Pediatr Clin North Am. 2020;67(5):855-874. doi: 10.1016/j.pcl.2020.06.013.
    » https://doi.org/10.1016/j.pcl.2020.06.013
  • 148
    Ditaranto R, Caponetti AG, Ferrara V, Parisi V, Minnucci M, Chiti C, et al. Pediatric Restrictive Cardiomyopathies. Front Pediatr. 2022;9:745365. doi: 10.3389/fped.2021.745365.
    » https://doi.org/10.3389/fped.2021.745365
  • 149
    American College of Sports Medicine, Liguori G, Feito Y, Fountaine C, Roy B, editors. ACSM's Guidelines for Exercise Testing and Prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021. ISBN-13: 9781975150181.
  • 150
    Jone PN, John A, Oster ME, Allen K, Tremoulet AH, Saarel EV, et al. SARS-CoV-2 Infection and Associated Cardiovascular Manifestations and Complications in Children and Young Adults: A Scientific Statement from the American Heart Association. Circulation. 2022;145(19):e1037-52. doi: 10.1161/CIR.0000000000001064.
    » https://doi.org/10.1161/CIR.0000000000001064
  • 151
    Masood IR, Detterich J, Cerrone D, Lewinter K, Shah P, Kato R, et al. Reduced Forced Vital Capacity and the Number of Chest Wall Surgeries are Associated with Decreased Exercise Capacity in Children with Congenital Heart Disease. Pediatr Cardiol. 2022;43(1):54-61. doi: 10.1007/s00246-021-02692-0.
    » https://doi.org/10.1007/s00246-021-02692-0
  • 152
    Buys R, Cornelissen V, van de Bruaene A, Stevens A, Coeckelberghs E, Onkelinx S, et al. Measures of Exercise Capacity in Adults with Congenital Heart Disease. Int J Cardiol. 2011;153(1):26-30. doi: 10.1016/j.ijcard.2010.08.030.
    » https://doi.org/10.1016/j.ijcard.2010.08.030
  • 153
    van der Bom T, Winter MM, Groenink M, Vliegen HW, Pieper PG, van Dijk AP, et al. Right Ventricular End-Diastolic Volume Combined with Peak Systolic Blood Pressure During Exercise Identifies Patients at Risk for Complications in Adults with a Systemic Right Ventricle. J Am Coll Cardiol. 2013;62(10):926-36. doi: 10.1016/j.jacc.2013.06.026.
    » https://doi.org/10.1016/j.jacc.2013.06.026
  • 154
    Decker JA, Rossano JW, Smith EO, Cannon B, Clunie SK, Gates C, et al. Risk Factors and Mode of Death in Isolated Hypertrophic Cardiomyopathy in Children. J Am Coll Cardiol. 2009;54(3):250-4. doi: 10.1016/j.jacc.2009.03.051.
    » https://doi.org/10.1016/j.jacc.2009.03.051
  • 155
    Sadoul N, Prasad K, Elliott PM, Bannerjee S, Frenneaux MP, McKenna WJ. Prospective Prognostic Assessment of Blood Pressure Response During Exercise in Patients with Hypertrophic Cardiomyopathy. Circulation. 1997;96(9):2987-91. doi: 10.1161/01.cir.96.9.2987.
    » https://doi.org/10.1161/01.cir.96.9.2987
  • 156
    Rowin EJ, Maron BJ, Olivotto I, Maron MS. Role of Exercise Testing in Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging. 2017;10(11):1374-86. doi: 10.1016/j.jcmg.2017.07.016.
    » https://doi.org/10.1016/j.jcmg.2017.07.016
  • 157
    Conway J, Min S, Villa C, Weintraub RG, Nakano S, Godown J, et al. The Prevalence and Association of Exercise Test Abnormalities with Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation. 2023;147(9):718-27. doi: 10.1161/CIRCULATIONAHA.122.062699.
    » https://doi.org/10.1161/CIRCULATIONAHA.122.062699
  • 158
    Santens B, van de Bruaene A, de Meester P, D’Alto M, Reddy S, Bernstein D, et al. Diagnosis and Treatment of Right Ventricular Dysfunction in Congenital Heart Disease. Cardiovasc Diagn Ther. 2020;10(5):1625-45. doi: 10.21037/cdt-20-370.
    » https://doi.org/10.21037/cdt-20-370
  • 159
    Roche SL, Redington AN. The Failing Right Ventricle in Congenital Heart Disease. Can J Cardiol. 2013;29(7):768-78. doi: 10.1016/j.cjca.2013.04.018.
    » https://doi.org/10.1016/j.cjca.2013.04.018
  • 160
    Bovard JM, Souza AM, Harris KC, Human DG, Hosking MCK, Potts JE, et al. Physiological Responses to Exercise in Pediatric Heart Transplant Recipients. Med Sci Sports Exerc. 2019;51(5):850-7. doi: 10.1249/MSS.0000000000001889.
    » https://doi.org/10.1249/MSS.0000000000001889
  • 161
    Chen AC, Rosenthal DN, Couch SC, Berry S, Stauffer KJ, Brabender J, et al. Healthy Hearts in Pediatric Heart Transplant Patients with an Exercise and Diet Intervention via Live Video Conferencing-Design and Rationale. Pediatr Transplant. 2019;23(1):e13316. doi: 10.1111/petr.13316.
    » https://doi.org/10.1111/petr.13316
  • 162
    Pichara NL, Sacilotto L, Scanavacca MI, Cardoso AF, Soares BMAF, Falcochio PPPF, et al. Evaluation of a New treadmill Exercise Protocol To Unmask Type 1 Brugada Electrocardiographic Pattern: Can We Improve Diagnostic Yield? Europace. 2023;25(7):euad157. doi: 10.1093/europace/euad157.
    » https://doi.org/10.1093/europace/euad157
  • 163
    Parsons JP, Hallstrand TS, Mastronarde JG, Kaminsky DA, Rundell KW, Hull JH, et al. An Official American Thoracic Society Clinical Practice Guideline: Exercise-Induced Bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016-27. doi: 10.1164/rccm.201303-0437ST.
    » https://doi.org/10.1164/rccm.201303-0437ST
  • 164
    Johansson H, Norlander K, Berglund L, Janson C, Malinovschi A, Nordvall L, et al. Prevalence of Exercise-Induced Bronchoconstriction and Exercise-Induced Laryngeal Obstruction in a General Adolescent Population. Thorax. 2015;70(1):57-63. doi: 10.1136/thoraxjnl-2014-205738.
    » https://doi.org/10.1136/thoraxjnl-2014-205738
  • 165
    Sperotto F, Friedman KG, Son MBF, van der Pluym CJ, Newburger JW, Dionne A. Cardiac Manifestations in SARS-CoV-2-Associated Multisystem Inflammatory Syndrome in Children: A Comprehensive Review and Proposed Clinical Approach. Eur J Pediatr. 2021;180(2):307-22. doi: 10.1007/s00431-020-03766-6.
    » https://doi.org/10.1007/s00431-020-03766-6
  • 166
    Powell AW, Urbina EM, Orr WB, Hansen JE, Baskar S. EKG Abnormalities in a Youth Athlete Following COVID-19: It's Not Always Myocarditis! Pediatr Cardiol. 2022;43(8):1922-5. doi: 10.1007/s00246-022-02935-8.
    » https://doi.org/10.1007/s00246-022-02935-8
  • 167
    Olorunyomi OO, Liem RI, Hsu LL. Motivators and Barriers to Physical Activity Among Youth with Sickle Cell Disease: Brief Review. Children. 2022;9(4):572. doi: 10.3390/children9040572.
    » https://doi.org/10.3390/children9040572
  • 168
    Connes P, Machado R, Hue O, Reid H. Exercise Limitation, Exercise Testing and Exercise Recommendations in Sickle Cell Anemia. Clin Hemorheol Microcirc. 2011;49(1):151-63. doi: 10.3233/CH-2011-1465.
    » https://doi.org/10.3233/CH-2011-1465
  • 169
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46(4):903-75. doi: 10.1183/13993003.01032-2015.
    » https://doi.org/10.1183/13993003.01032-2015
  • 170
    Chen YJ, Tu HP, Lee CL, Huang WC, Yang JS, Li CF, et al. Comprehensive Exercise Capacity and Quality of Life Assessments Predict Mortality in Patients with Pulmonary Arterial Hypertension. Acta Cardiol Sin. 2019;35(1):55-64. doi: 10.6515/ACS.201901_35(1).20180608A.
    » https://doi.org/10.6515/ACS.201901_35(1).20180608A
  • 171
    Derakhshan A, Derakhshan D, Amoozgar H, Shakiba MA, Basiratnia M, Fallahzadeh MH. Exercise Test in Pediatric Renal Transplant Recipients and its Relationship with their Cardiac Function. Pediatr Transplant. 2014;18(3):246-53. doi: 10.1111/petr.12229.
    » https://doi.org/10.1111/petr.12229
  • 172
    Clark CG, Cantell M, Crawford S, Hamiwka LA. Accelerometry-Based Physical Activity and Exercise Capacity in Pediatric Kidney Transplant Patients. Pediatr Nephrol. 2012;27(4):659-65. doi: 10.1007/s00467-011-2054-z.
    » https://doi.org/10.1007/s00467-011-2054-z
  • 173
    Painter P, Krasnoff J, Mathias R. Exercise Capacity and Physical Fitness in Pediatric Dialysis and Kidney Transplant Patients. Pediatr Nephrol. 2007;22(7):1030-9. doi: 10.1007/s00467-007-0458-6.
    » https://doi.org/10.1007/s00467-007-0458-6
  • 174
    Powell AW, Urbina EM, Madueme P, Rotz S, Chin C, Taylor MD, et al. Abnormal Maximal and Submaximal Cardiopulmonary Exercise Capacity in Pediatric Stem Cell Transplant Recipients Despite Normal Standard Echocardiographic Parameters: A Pilot Study. Transplant Cell Ther. 2022;28(5):263.e1-263.e5. doi: 10.1016/j.jtct.2022.02.019.
    » https://doi.org/10.1016/j.jtct.2022.02.019
  • 175
    Caru M, Laverdière C, Lemay V, Drouin S, Bertout L, Krajinovic M, et al. Maximal Cardiopulmonary Exercise Testing in Childhood Acute Lymphoblastic Leukemia Survivors Exposed to Chemotherapy. Support Care Cancer. 2021;29(2):987-96. doi: 10.1007/s00520-020-05582-y.
    » https://doi.org/10.1007/s00520-020-05582-y
  • 176
    Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc. 2017;14(Suppl 1):S123-8. doi: 10.1513/AnnalsATS.201611-912FR.
    » https://doi.org/10.1513/AnnalsATS.201611-912FR
  • 177
    Rowland TW, American College of Sports Medicine, North American Society for Pediatric Exercise Medicine, editors. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign: Human Kinetics; 2018. ISBN: 9781492544487.
  • 178
    Goddard T, Sonnappa S. The Role of Cardiopulmonary Exercise Testing in Evaluating Children with Exercise Induced Dyspnoea. Paediatr Respir Rev. 2021;38:24-32. doi: 10.1016/j.prrv.2020.08.002.
    » https://doi.org/10.1016/j.prrv.2020.08.002
  • 179
    van Brussel M, Bongers BC, Hulzebos EHJ, Burghard M, Takken T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr Exerc Sci. 2019;31(2):194-203. doi: 10.1123/pes.2018-0235.
    » https://doi.org/10.1123/pes.2018-0235
  • 180
    Barker AR, Armstrong N. Exercise Testing Elite Young Athletes. Med Sport Sci. 2011;56:106-25. doi: 10.1159/000320642.
    » https://doi.org/10.1159/000320642
  • 181
    Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich HH, Longmuir PE, et al. Recommendations for Physical Activity, Recreation Sport, and Exercise Training in Paediatric Patients with Congenital Heart Disease: A Report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034-65. doi: 10.1177/1741826711420000.
    » https://doi.org/10.1177/1741826711420000
  • 182
    Tikkanen AU, Berry E, Le Count E, Engstler K, Sager M, Esteso P. Rehabilitation in Pediatric Heart Failure and Heart Transplant. Front Pediatr. 2021;9:674156. doi: 10.3389/fped.2021.674156.
    » https://doi.org/10.3389/fped.2021.674156
  • 183
    Amedro P, Picot MC, Moniotte S, Dorka R, Bertet H, Guillaumont S, et al. Correlation Between Cardio-Pulmonary Exercise Test Variables and Health-Related Quality of Life Among Children with Congenital Heart Diseases. Int J Cardiol. 2016;203:1052-60. doi: 10.1016/j.ijcard.2015.11.028.
    » https://doi.org/10.1016/j.ijcard.2015.11.028
  • 184
    Villaseca-Rojas Y, Varela-Melo J, Torres-Castro R, Vasconcello-Castillo L, Mazzucco G, Vilaró J, et al. Exercise Capacity in Children and Adolescents with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2022;9:874700. doi: 10.3389/fcvm.2022.874700.
    » https://doi.org/10.3389/fcvm.2022.874700
  • 185
    Corrà U, Piepoli MF. Summary Statement on Cardiopulmonary Exercise Testing in Chronic Heart Failure due to Left Ventricular Dysfunction Recommendations for Performance and Interpretation. Monaldi Arch Chest Dis. 2007;68(1):1-7. doi: 10.4081/monaldi.2007.464.
    » https://doi.org/10.4081/monaldi.2007.464
  • 186
    Bacal F, Marcondes-Braga FG, Rohde LEP, Xavier JL Jr, Brito FS, Moura LAZ, et al. 3ª Diretriz Brasileira de Transplante Cardíaco. Arq Bras Cardiol. 2018;111(2):230-89. doi: 10.5935/abc.20180153.
    » https://doi.org/10.5935/abc.20180153
  • 187
    Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Scientific Statement. Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation. 2012;126(18):2261-74. doi: 10.1161/CIR.0b013e31826fb946.
    » https://doi.org/10.1161/CIR.0b013e31826fb946
  • 188
    Takken T, Ulu HS, Hulzebos EHJ. Clinical Recommendations for Cardiopulmonary Exercise Testing in Children with Respiratory Diseases. Expert Rev Respir Med. 2020;14(7):691-701. doi: 10.1080/17476348.2020.1752195.
    » https://doi.org/10.1080/17476348.2020.1752195
  • 189
    Miliaresis C, Beker S, Gewitz M. Cardiopulmonary Stress Testing in Children and Adults with Congenital Heart Disease. Cardiol Rev. 2014;22(6):275-8. doi: 10.1097/CRD.0000000000000039.
    » https://doi.org/10.1097/CRD.0000000000000039
  • 190
    Giardini A, Fenton M, Derrick G, Burch M. Impairment of Heart Rate Recovery after Peak Exercise Predicts Poor Outcome after Pediatric Heart Transplantation. Circulation. 2013;128(11 Suppl 1):S199-204. doi: 10.1161/CIRCULATIONAHA.112.000369.
    » https://doi.org/10.1161/CIRCULATIONAHA.112.000369
  • 191
    Peterson S, Su JA, Szmuszkovicz JR, Johnson R, Sargent B. Exercise Capacity Following Pediatric Heart Transplantation: A Systematic Review. Pediatr Transplant. 2017;21(5). doi: 10.1111/petr.12922.
    » https://doi.org/10.1111/petr.12922
  • 192
    Chiu HH, Wu MH, Wang SS, Lan C, Chou NK, Chen SY, et al. Cardiorespiratory Function of Pediatric Heart Transplant Recipients in the Early Postoperative Period. Am J Phys Med Rehabil. 2012;91(2):156-61. doi: 10.1097/PHM.0b013e318238a0b1.
    » https://doi.org/10.1097/PHM.0b013e318238a0b1
  • 193
    Astley C, Gil S, Clemente G, Terreri MT, Silva CA, Campos LMA, et al. Poor Physical Activity Levels and Cardiorespiratory Fitness Among Patients with Childhood-Onset Takayasu Arteritis in Remission: A Cross-Sectional, Multicenter Study. Pediatr Rheumatol Online J. 2021;19(1):39. doi: 10.1186/s12969-021-00519-z.
    » https://doi.org/10.1186/s12969-021-00519-z
  • 194
    Schaar B, Feldkötter M, Nonn JM, Hoppe B. Cardiorespiratory Capacity in Children and Adolescents on Maintenance Haemodialysis. Nephrol Dial Transplant. 2011;26(11):3701-8. doi: 10.1093/ndt/gfr014.
    » https://doi.org/10.1093/ndt/gfr014
  • 195
    Wadey CA, Weston ME, Dorobantu DM, Pieles GE, Stuart G, Barker AR, et al. The Role of Cardiopulmonary Exercise Testing in Predicting Mortality and Morbidity in People with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Eur J Prev Cardiol. 2022;29(3):513-33. doi: 10.1093/eurjpc/zwab125.
    » https://doi.org/10.1093/eurjpc/zwab125
  • 196
    Weatherald J, Farina S, Bruno N, Laveneziana P. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Ann Am Thorac Soc. 2017;14(Suppl 1):S84-92. doi: 10.1513/AnnalsATS.201610-788FR.
    » https://doi.org/10.1513/AnnalsATS.201610-788FR
  • 197
    Abumehdi MR, Wardle AJ, Nazzal R, Charalampopoulos A, Schulze-Neick I, Derrick G, et al. Feasibility and Safety of Cardiopulmonary Exercise Testing in Children with Pulmonary Hypertension. Cardiol Young. 2016;26(6):1144-50. doi: 10.1017/S1047951115001961.
    » https://doi.org/10.1017/S1047951115001961
  • 198
    Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur Heart J. 2022;43(38):3618-731. doi: 10.1093/eurheartj/ehac237.
    » https://doi.org/10.1093/eurheartj/ehac237
  • 199
    Reybrouck T, Mertens L. Physical Performance and Physical Activity in Grown-Up Congenital Heart Disease. Eur J Cardiovasc Prev Rehabil. 2005;12(5):498-502. doi: 10.1097/01.hjr.0000176510.84165.eb.
    » https://doi.org/10.1097/01.hjr.0000176510.84165.eb
  • 200
    Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ. Cardiopulmonary Exercise Testing in Congenital Heart Disease: Equipment and Test Protocols. Neth Heart J. 2009;17(9):339-44. doi: 10.1007/BF03086280.
    » https://doi.org/10.1007/BF03086280
  • 201
    Lang RL, Stockton K, Wilson C, Russell TG, Johnston LM. Exercise Testing for Children with Cystic Fibrosis: A Systematic Review. Pediatr Pulmonol. 2020;55(8):1996-2010. doi: 10.1002/ppul.24794.
    » https://doi.org/10.1002/ppul.24794
  • 202
    Urquhart DS, Saynor ZL. Exercise Testing in Cystic Fibrosis: Who and Why? Paediatr Respir Rev. 2018;27:28-32. doi: 10.1016/j.prrv.2018.01.004.
    » https://doi.org/10.1016/j.prrv.2018.01.004
  • 203
    van den Akker LE, Heine M, van der Veldt N, Dekker J, de Groot V, Beckerman H. Feasibility and Safety of Cardiopulmonary Exercise Testing in Multiple Sclerosis: A Systematic Review. Arch Phys Med Rehabil. 2015;96(11):2055-66. doi: 10.1016/j.apmr.2015.04.021.
    » https://doi.org/10.1016/j.apmr.2015.04.021
  • 204
    Klaren RE, Sandroff BM, Fernhall B, Motl RW. Comprehensive Profile of Cardiopulmonary Exercise Testing in Ambulatory Persons with Multiple Sclerosis. Sports Med. 2016;46(9):1365-79. doi: 10.1007/s40279-016-0472-6.
    » https://doi.org/10.1007/s40279-016-0472-6
  • 205
    Bartels B, Takken T, Blank AC, van Moorsel H, van der Pol WL, de Groot JF. Cardiopulmonary Exercise Testing in Children and Adolescents with Dystrophinopathies: A Pilot Study. Pediatr Phys Ther. 2015;27(3):227-34. doi: 10.1097/PEP.0000000000000159.
    » https://doi.org/10.1097/PEP.0000000000000159
  • 206
    Abresch RT, Han JJ, Carter GT. Rehabilitation Management of Neuromuscular Disease: The Role of Exercise Training. J Clin Neuromuscul Dis. 2009;11(1):7-21. doi: 10.1097/CND.0b013e3181a8d36b.
    » https://doi.org/10.1097/CND.0b013e3181a8d36b
  • 207
    Przybylski R, Fischer IR, Gauvreau K, Alexander ME, Shafer KM, Colan SD, et al. Assessment of Exercise Function in Children and Young Adults with Hypertrophic Cardiomyopathy and Correlation with Transthoracic Echocardiographic Parameters. Pediatr Cardiol. 2022;43(5):1037-45. doi: 10.1007/s00246-022-02822-2.
    » https://doi.org/10.1007/s00246-022-02822-2
  • 208
    Bayonas-Ruiz A, Muñoz-Franco FM, Ferrer V, Pérez-Caballero C, Sabater-Molina M, Tomé-Esteban MT, et al. Cardiopulmonary Exercise Test in Patients with Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. J Clin Med. 2021;10(11):2312. doi: 10.3390/jcm10112312.
    » https://doi.org/10.3390/jcm10112312
  • 209
    Magrì D, Mastromarino V, Gallo G, Zachara E, Re F, Agostoni P, et al. Risk Stratification in Hypertrophic Cardiomyopathy. Insights from Genetic Analysis and Cardiopulmonary Exercise Testing. J Clin Med. 2020;9(6):1636. doi: 10.3390/jcm9061636.
    » https://doi.org/10.3390/jcm9061636
  • 210
    Tsuda T, Kernizan D, Glass A, D’Aloisio G, Hossain J, Quillen J. Cardiopulmonary Exercise Testing Characterizes Silent Cardiovascular Abnormalities in Asymptomatic Pediatric Cancer Survivors. Pediatr Cardiol. 2023;44(2):344-53. doi: 10.1007/s00246-022-02995-w.
    » https://doi.org/10.1007/s00246-022-02995-w
  • 211
    Herdy AH, Ritt LE, Stein R, Araújo CG, Milani M, Meneghelo RS, et al. Cardiopulmonary Exercise Test: Background, Applicability and Interpretation. Arq Bras Cardiol. 2016;107(5):467-81. doi: 10.5935/abc.20160171.
    » https://doi.org/10.5935/abc.20160171
  • 212
    Takajo D, Kota V, Balakrishnan PPL, Gayanilo M, Sriram C, Aggarwal S. Longitudinal Changes in Exercise Capacity in Patients Who Underwent Ross Procedure and Mechanical Aortic Valve Replacement: Does the Type of Surgery Matter? Pediatr Cardiol. 2021;42(5):1018-25. doi: 10.1007/s00246-021-02575-4.
    » https://doi.org/10.1007/s00246-021-02575-4
  • 213
    Egbe A, Miranda W, Connolly H, Dearani J. Haemodynamic Determinants of Improved Aerobic Capacity after Tricuspid Valve Surgery in Ebstein Anomaly. Heart. 2021;107(14):1138-44. doi: 10.1136/heartjnl-2020-317756.
    » https://doi.org/10.1136/heartjnl-2020-317756
  • 214
    Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, et al. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr. 2022;10:909994. doi: 10.3389/fped.2022.909994.
    » https://doi.org/10.3389/fped.2022.909994
  • 215
    Abe T, Tsuda E, Sugiyama H, Kiso K, Yamada O. Risk Factors of Non-Sustained Ventricular Tachycardia by Technetium-Perfusion Imaging in Patients with Coronary Artery Lesions Caused by Kawasaki Disease. J Cardiol. 2019;73(5):358-62. doi: 10.1016/j.jjcc.2018.12.007.
    » https://doi.org/10.1016/j.jjcc.2018.12.007
  • 216
    Kashyap R, Mittal BR, Bhattacharya A, Manojkumar R, Singh S. Exercise Myocardial Perfusion Imaging to Evaluate Inducible Ischaemia in Children with Kawasaki Disease. Nucl Med Commun. 2011;32(2):137-41. doi: 10.1097/MNM.0b013e3283411c67.
    » https://doi.org/10.1097/MNM.0b013e3283411c67
  • 217
    Abe M, Fukazawa R, Ogawa S, Watanabe M, Fukushima Y, Kiriyama T, et al. Usefulness of Single Photon Emission Computed Tomography/Computed Tomography Fusion-Hybrid Imaging to Evaluate Coronary Artery Disorders in Patients with a History of Kawasaki Disease. J Nippon Med Sch. 2016;83(2):71-80. doi: 10.1272/jnms.83.71.
    » https://doi.org/10.1272/jnms.83.71
  • 218
    Mostafa MS, Sayed AO, Al Said YM. Assessment of Coronary Ischaemia by Myocardial Perfusion Dipyridamole Stress Technetium-99 m Tetrofosmin, Single-Photon Emission Computed Tomography, and Coronary Angiography in Children with Kawasaki Disease: Pre- and Post-Coronary Bypass Grafting. Cardiol Young. 2015;25(5):927-34. doi: 10.1017/S1047951114001292.
    » https://doi.org/10.1017/S1047951114001292
  • 219
    Zanon G, Zucchetta P, Varnier M, Vittadello F, Milanesi O, Zulian F. Do Kawasaki Disease Patients Without Coronary Artery Abnormalities Need a Long-Term Follow-Up? A Myocardial Single-Photon Emission Computed Tomography Pilot Study. J Paediatr Child Health. 2009;45(7):419-24. doi: 10.1111/j.1440-1754.2009.01531.x.
    » https://doi.org/10.1111/j.1440-1754.2009.01531.x
  • 220
    Sugiyama H, Tsuda E, Ohuchi H, Yamada O, Shiraishi I. Chronological Changes in Stenosis of Translocated Coronary Arteries on Angiography after the Arterial Switch Operation in Children with Transposition of the Great Arteries: Comparison of Myocardial Scintigraphy and Angiographic Findings. Cardiol Young. 2016;26(4):638-43. doi: 10.1017/S104795111500075X.
    » https://doi.org/10.1017/S104795111500075X
  • 221
    Bernsen MLE, Koppes JCC, Straver B, Verberne HJ. Left Ventricular Ischemia after Arterial Switch Procedure: Role of Myocardial Perfusion Scintigraphy and Cardiac CT. J Nucl Cardiol. 2020;27(2):651-8. doi: 10.1007/s12350-019-01738-4.
    » https://doi.org/10.1007/s12350-019-01738-4
  • 222
    Kumar K, Sharma A, Patel C, Ramakrsihnan S, Das S, Sangdup T, et al. Feasibility and Utility of Adenosine Stress Echocardiography in Children Following Post-Arterial Switch Operation: A Comparison with Technetium 99m-Sestamibi Myocardial Perfusion SPECT (MPS). Pediatr Cardiol. 2021;42(4):891-7. doi: 10.1007/s00246-021-02557-6.
    » https://doi.org/10.1007/s00246-021-02557-6
  • 223
    Ziolkowska L, Boruc A, Sobielarska-Lysiak D, Grzyb A, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, et al. Prognostic Significance of Myocardial Ischemia Detected by Single-Photon Emission Computed Tomography in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol. 2021;42(4):960-8. doi: 10.1007/s00246-021-02570-9.
    » https://doi.org/10.1007/s00246-021-02570-9
  • 224
    Maiers J, Hurwitz R. Identification of Coronary Artery Disease in the Pediatric Cardiac Transplant Patient. Pediatr Cardiol. 2008;29(1):19-23. doi: 10.1007/s00246-007-9038-6.
    » https://doi.org/10.1007/s00246-007-9038-6
  • 225
    Sundaram PS, Padma S. Role of Myocardial Perfusion Single Photon Emission Computed Tomography in Pediatric Cardiology Practice. Ann Pediatr Cardiol. 2009;2(2):127-39. doi: 10.4103/0974-2069.58314.
    » https://doi.org/10.4103/0974-2069.58314
  • 226
    Priyadarshini A, Saxena A, Patel C, Paul VK, Lodha R, Airan B. Myocardial Perfusion Abnormalities in Patients Occurring More than 1 Year After Successful Univentricular (Fontan Surgery) and Biventricular Repair (Complete Repair of Tetralogy of Fallot). Pediatr Cardiol. 2013;34(4):786-94. doi: 10.1007/s00246-012-0531-1.
    » https://doi.org/10.1007/s00246-012-0531-1
  • 227
    Goo HW. Anomalous Origin of the Coronary Artery from the Pulmonary Artery in Children and Adults: A Pictorial Review of Cardiac Imaging Findings. Korean J Radiol. 2021;22(9):1441-50. doi: 10.3348/kjr.2021.0034.
    » https://doi.org/10.3348/kjr.2021.0034
  • 228
    Chen ML, Lo HS, Chao IM, Su HY. Dipyridamole Tl-201 Myocardial Single Photon Emission Computed Tomography in the Functional Assessment of Anomalous Left Coronary Artery from the Pulmonary Artery. Clin Nucl Med. 2007;32(12):940-3. doi: 10.1097/RLU.0b013e3181597668.
    » https://doi.org/10.1097/RLU.0b013e3181597668
  • 229
    Cifra B, Dragulescu A, Border WL, Mertens L. Stress Echocardiography in Paediatric Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051-9. doi: 10.1093/ehjci/jev159.
    » https://doi.org/10.1093/ehjci/jev159
  • 230
    Araujo JJ. Stress Echocardiography in Pediatric and Adult Congenital Heart Disease: A Complement in Anatomical and Functional Assessment. Curr Probl Cardiol. 2021;46(3):100762. doi: 10.1016/j.cpcardiol.2020.100762.
    » https://doi.org/10.1016/j.cpcardiol.2020.100762
  • 231
    Dasgupta S, Friedman H, Allen N, Stark M, Ferguson E, Sachdeva R, et al. Exercise stress Echocardiography: Impact on Clinical Decision-Making in Pediatric Patients. Echocardiography. 2019;36(5):938-43. doi: 10.1111/echo.14326.
    » https://doi.org/10.1111/echo.14326
  • 232
    Mcleod G, Shum K, Gupta T, Chakravorty S, Kachur S, Bienvenu L, et al. Echocardiography in Congenital Heart Disease. Prog Cardiovasc Dis. 2018;61(5):468-75. doi: 10.1016/j.pcad.2018.11.004.
    » https://doi.org/10.1016/j.pcad.2018.11.004
  • 233
    Li VW, So EK, Wong WH, Cheung YF. Myocardial Deformation Imaging by Speckle-Tracking Echocardiography for Assessment of Cardiotoxicity in Children During and after Chemotherapy: A Systematic Review and Meta-Analysis. J Am Soc Echocardiogr. 2022;35(6):629-56. doi: 10.1016/j.echo.2022.01.017.
    » https://doi.org/10.1016/j.echo.2022.01.017
  • 234
    Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1-41.e8. doi: 10.1016/j.echo.2019.07.001.
    » https://doi.org/10.1016/j.echo.2019.07.001
  • 235
    Morhy SS, Barberato SH, Lianza AC, Soares AM, Leal GN, Rivera IR, et al. Position Statement on Indications for Echocardiography in Fetal and Pediatric Cardiology and Congenital Heart Disease of the Adult - 2020. Arq Bras Cardiol. 2020;115(5):987-1005. doi: 10.36660/abc.20201122.
    » https://doi.org/10.36660/abc.20201122
  • 236
    Dedieu N, Greil G, Wong J, Fenton M, Burch M, Hussain T. Diagnosis and Management of Coronary Allograft Vasculopathy in Children and Adolescents. World J Transplant. 2014;4(4):276-93. doi: 10.5500/wjt.v4.i4.276.
    » https://doi.org/10.5500/wjt.v4.i4.276
  • 237
    Yeung JP, Human DG, Sandor GG, de Souza AM, Potts JE. Serial Measurements of Exercise Performance in Pediatric Heart Transplant Patients Using Stress Echocardiography. Pediatr Transplant. 2011;15(3):265-71. doi: 10.1111/j.1399-3046.2010.01467.x.
    » https://doi.org/10.1111/j.1399-3046.2010.01467.x
  • 238
    Cifra B, Dragulescu A, Brun H, Slorach C, Friedberg MK, Manlhiot C, et al. Left Ventricular Myocardial Response to Exercise in Children After Heart Transplant. J Heart Lung Transplant. 2014;33(12):1241-7. doi: 10.1016/j.healun.2014.07.011.
    » https://doi.org/10.1016/j.healun.2014.07.011
  • 239
    Noto N, Kamiyama H, Karasawa K, Ayusawa M, Sumitomo N, Okada T, et al. Long-Term Prognostic Impact of Dobutamine Stress Echocardiography in Patients with Kawasaki Disease and Coronary Artery Lesions: A 15-Year Follow-Up Study. J Am Coll Cardiol. 2014;63(4):337-44. doi: 10.1016/j.jacc.2013.09.021.
    » https://doi.org/10.1016/j.jacc.2013.09.021
  • 240
    Tedla BA, Burns JC, Tremoulet AH, Shimizu C, Gordon JB, El-Said H, et al. Exercise Stress Echocardiography in Kawasaki Disease Patients with Coronary Aneurysms. Pediatr Cardiol. 2023;44(2):381-7. doi: 10.1007/s00246-022-03037-1.
    » https://doi.org/10.1007/s00246-022-03037-1
  • 241
    Thompson WR. Stress Echocardiography in Paediatrics: Implications for the Evaluation of Anomalous Aortic Origin of the Coronary Arteries. Cardiol Young. 2015;25(8):1524-30. doi: 10.1017/S1047951115002012.
    » https://doi.org/10.1017/S1047951115002012
  • 242
    Binka E, Zhao N, Wood S, Zimmerman SL, Thompson WR. Exercise-Induced Abnormalities of Regional Myocardial Deformation in Anomalous Aortic Origin of the Right Coronary Artery. World J Pediatr Congenit Heart Surg. 2020;11(6):712-9. doi: 10.1177/2150135120947689.
    » https://doi.org/10.1177/2150135120947689
  • 243
    Moscatelli S, Bianco F, Cimini A, Panebianco M, Leo I, Bucciarelli-Ducci C, et al. The Use of Stress Cardiovascular Imaging in Pediatric Population. Children. 2023;10(2):218. doi: 10.3390/children10020218.
    » https://doi.org/10.3390/children10020218
  • 244
    von Scheidt F, Pleyer C, Kiesler V, Bride P, Bartholomae S, Krämer J, et al. Left Ventricular Strain Analysis During Submaximal Semisupine Bicycle Exercise Stress Echocardiography in Childhood Cancer Survivors. J Am Heart Assoc. 2022;11(14):e025324. doi: 10.1161/JAHA.122.025324.
    » https://doi.org/10.1161/JAHA.122.025324
  • 245
    Novo G, Santoro C, Manno G, Di Lisi D, Esposito R, Mandoli GE, et al. Usefulness of Stress Echocardiography in the Management of Patients Treated with Anticancer Drugs. J Am Soc Echocardiogr. 2021;34(2):107-16. doi: 10.1016/j.echo.2020.10.002.
    » https://doi.org/10.1016/j.echo.2020.10.002
  • 246
    Perez MT, Rizwan R, Gauvreau K, Daly KP, Deng ES, Blume ED, et al. Prognostic Value of Exercise Stress Echocardiography in Pediatric Cardiac Transplant Recipients. J Am Soc Echocardiogr. 2022;35(11):1133-38.e2. doi: 10.1016/j.echo.2022.07.006.
    » https://doi.org/10.1016/j.echo.2022.07.006
  • 247
    Wang Z, Yang Y, Li Z, Zhang X, Lin J, Wang L. Analysis of Coronary Flow Haemodynamics in Homozygous Familial Hypercholesterolaemic Adolescents with aortic Supravalvular Stenosis. Cardiol Young. 2013;23(2):219-24. doi: 10.1017/S1047951112000704.
    » https://doi.org/10.1017/S1047951112000704
  • 248
    Hensel KO, Grimmer F, Roskopf M, Jenke AC, Wirth S, Heusch A. Subclinical Alterations of Cardiac Mechanics Present Early in the Course of Pediatric Type 1 Diabetes Mellitus: A Prospective Blinded Speckle Tracking Stress Echocardiography Study. J Diabetes Res. 2016;2016:2583747. doi: 10.1155/2016/2583747.
    » https://doi.org/10.1155/2016/2583747
  • 249
    Kimball TR. Pediatric Stress Echocardiography. Pediatr Cardiol. 2002;23(3):347-57. doi: 10.1007/s00246-001-0198-5.
    » https://doi.org/10.1007/s00246-001-0198-5
  • 250
    Gaitonde M, Jones S, McCracken C, Ferguson ME, Michelfelder E, Sachdeva R, et al. Evaluation of Left Ventricular Outflow Gradients During Staged Exercise Stress Echocardiography Helps Differentiate Pediatric Patients with Hypertrophic Cardiomyopathy from Athletes and Normal Subjects. Pediatr Exerc Sci. 2021;33(4):196-202. doi: 10.1123/pes.2020-0217.
    » https://doi.org/10.1123/pes.2020-0217
  • 251
    El Assaad I, Gauvreau K, Rizwan R, Margossian R, Colan S, Chen MH. Value of Exercise Stress Echocardiography in Children with Hypertrophic Cardiomyopathy. J Am Soc Echocardiogr. 2020;33(7):888-94. doi: 10.1016/j.echo.2020.01.020.
    » https://doi.org/10.1016/j.echo.2020.01.020
  • 252
    Bhatt SM, Wang Y, Elci OU, Goldmuntz E, McBride M, Paridon S, et al. Right Ventricular Contractile Reserve Is Impaired in Children and Adolescents with Repaired Tetralogy of Fallot: An Exercise Strain Imaging Study. J Am Soc Echocardiogr. 2019;32(1):135-44. doi: 10.1016/j.echo.2018.08.008.
    » https://doi.org/10.1016/j.echo.2018.08.008
  • 253
    Roche SL, Grosse-Wortmann L, Friedberg MK, Redington AN, Stephens D, Kantor PF. Exercise Echocardiography Demonstrates Biventricular Systolic Dysfunction and Reveals Decreased Left Ventricular Contractile Reserve in Children after Tetralogy of Fallot Repair. J Am Soc Echocardiogr. 2015;28(3):294-301. doi: 10.1016/j.echo.2014.10.008.
    » https://doi.org/10.1016/j.echo.2014.10.008
  • 254
    Alpert BS, Verrill DE, Flood NL, Boineau JP, Strong WB. Complications of Ergometer Exercise in Children. Pediatr Cardiol. 1983;4(2):91-6. doi: 10.1007/BF02076332.
    » https://doi.org/10.1007/BF02076332
  • 255
    Bricker JT, Traweek MS, Smith RT, Moak JP, Vargo TA, Garson A Jr. Exercise-Related Ventricular Tachycardia in Children. Am Heart J. 1986;112(1):186-8. doi: 10.1016/0002-8703(86)90704-0.
    » https://doi.org/10.1016/0002-8703(86)90704-0
  • 256
    Nagashima M, Baba R, Goto M, Nishabata K, Nagano Y. Exercise-Induced Ventricular Tachycardia without Demonstrable Heart Disease in Childhood. Acta Paediatr Jpn. 1996;38(5):495-9. doi: 10.1111/j.1442-200x.1996.tb03533.x.
    » https://doi.org/10.1111/j.1442-200x.1996.tb03533.x
  • 257
    Garson A Jr, Gillette PC, Gutgesell HP, McNamara DG. Stress-Induced Ventricular Arrhythmia after Repair of Tetralogy of Fallot. Am J Cardiol. 1980;46(6):1006-12. doi: 10.1016/0002-9149(80)90359-8.
    » https://doi.org/10.1016/0002-9149(80)90359-8
  • 258
    Sequeira IB, Kirsh JA, Hamilton RM, Russell JL, Gross GJ. Utility of Exercise Testing in Children and Teenagers with Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol. 2009;104(3):411-3. doi: 10.1016/j.amjcard.2009.03.056.
    » https://doi.org/10.1016/j.amjcard.2009.03.056
  • 259
    Fujino M, Miyazaki A, Furukawa O, Somura J, Yoshida Y, Hayama Y, et al. Electrocardiographic Features of Arrhythmogenic Right Ventricular Cardiomyopathy in School-Aged Children. Heart Vessels. 2021;36(6):863-73. doi: 10.1007/s00380-020-01754-2.
    » https://doi.org/10.1007/s00380-020-01754-2
  • 260
    Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases. Eur Respir Rev. 2019;28(154):180101. doi: 10.1183/16000617.0101-2018.
    » https://doi.org/10.1183/16000617.0101-2018
  • 261
    Min JK, Gilmore A, Jones EC, Berman DS, Stuijfzand WJ, Shaw LJ, et al. Cost-Effectiveness of Diagnostic Evaluation Strategies for Individuals with Stable Chest Pain Syndrome and Suspected Coronary Artery Disease. Clin Imaging. 2017;43:97-105. doi: 10.1016/j.clinimag.2017.01.015.
    » https://doi.org/10.1016/j.clinimag.2017.01.015
  • 262
    Carmo PBD, Magliano CADS, Rey HCV, Camargo GC, Trocado LFL, Gottlieb I. Cost-Effectiveness Analysis of CCTA in SUS, as Compared to Other Non-Invasive Imaging Modalities in Suspected Obstructive CAD. Arq Bras Cardiol. 2022;118(3):578-85. doi: 10.36660/abc.20201050.
    » https://doi.org/10.36660/abc.20201050
  • 263
    Banerjee A, Newman DR, van den Bruel A, Heneghan C. Diagnostic Accuracy of Exercise Stress Testing for Coronary Artery Disease: A Systematic Review and Meta-Analysis of Prospective Studies. Int J Clin Pract. 2012;66(5):477-92. doi: 10.1111/j.1742-1241.2012.02900.x.
    » https://doi.org/10.1111/j.1742-1241.2012.02900.x
  • 264
    Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise Standards for Testing and Training: A Scientific Statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.
    » https://doi.org/10.1161/CIR.0b013e31829b5b44
  • 265
    Conselho Federal de Medicina. Resolução CFM no 2.153/2016. Altera o anexo da resolução CFM n.2056/2013 e dispõe a nova redação do manual de vistoria de fiscalização da medicina no Brasil. Diário Oficial da União, Brasília, 18 sep. 2017.
  • 266
    Bernoche C, Timerman S, Polastri TF, Giannetti NS, Siqueira AWDS, Piscopo A, et al. Atualização da Diretriz de Ressuscitação Cardiopulmonar e Cuidados Cardiovasculares de Emergência da Sociedade Brasileira de Cardiologia - 2019. Arq Bras Cardiol. 2019;113(3):449-663. doi: 10.5935/abc.20190203.
    » https://doi.org/10.5935/abc.20190203
  • 267
    Merchant RM, Topjian AA, Panchal AR, Cheng A, Aziz K, Berg KM, et al. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16 suppl 2):S337-57. doi: 10.1161/CIR.0000000000000918.
    » https://doi.org/10.1161/CIR.0000000000000918
  • 268
    Guimarães HP, Timerman S, Rodrigues RDR, Corrêa TD, Schubert DUC, Freitas AP, et al. Position Statement: Cardiopulmonary Resuscitation of Patients with Confirmed or Suspected COVID-19 - 2020. Arq Bras Cardiol. 2020;114(6):1078-87. doi: 10.36660/abc.20200548.
    » https://doi.org/10.36660/abc.20200548
  • 269
    Brasil. Lei no 8.080, de 19 de setembro de 1990. Dispõe sobre as condições para a promoção, proteção e recuperação da saúde, a organização e o funcionamento dos serviços correspondentes e dá outras providências. Diário Oficial da União, Brasília, 20 sep. 1990.
  • 270
    Grossman GB, Sellera CAC, Hossri CAC, Carreira LTF, Avanza AC Jr, Albuquerque PF, et al. Position Statement of the Brazilian Society of Cardiology Department of Exercise Testing, Sports Exercise, Nuclear Cardiology, and Cardiovascular Rehabilitation (DERC/SBC) on Activities Within its Scope of Practice During the COVID-19 Pandemic. Arq Bras Cardiol. 2020;115(2):284-91. doi: 10.36660/abc.20200797.
    » https://doi.org/10.36660/abc.20200797
  • 271
    Bittencourt MS, Generoso G, Melo PHMC, Peixoto D, Miranda ÉJFP, Mesquita ET, et al. Statement - Protocol for the Reconnection of Cardiology Services with Patients During the COVID-19 Pandemic - 2020. Arq Bras Cardiol. 2020;115(4):776-99. doi: 10.36660/abc.20201004.
    » https://doi.org/10.36660/abc.20201004
  • 272
    Conselho Federal de Medicina. Resolução CFM no 1.821/2007. Aprova as normas técnicas concernentes à digitalização e uso dos sistemas informatizados para a guarda e manuseio dos documentos dos prontuários dos pacientes, autorizando a eliminação do papel e a troca de informação identificada em saúde. Diário Oficial da União, Brasília, 23 nov. 2007.
  • 273
    Brasil. Lei n° 13.787, de 27 de dezembro de 2018. Dispõe sobre a digitalização e a utilização de sistemas informatizados para a guarda, o armazenamento e o manuseio de prontuário de paciente. Diário Oficial da União, Brasília, 28 dez. 2018.
  • 274
    Brasil. Lei n° 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Diário Oficial da União, Brasília, 15 aug. 2018.
  • 275
    Conselho Federal de Medicina. Recomendação CFM No 1/2016. Dispõe sobre o processo de obtenção de consentimento livre e esclarecido na assistência médica. Brasília: Conselho Federal de Medicina; 21 jan. 2016.
  • 276
    Sousa MR, Mourilhe-Rocha R, Paola AA, Köhler I, Feitosa GS, Schneider JC, et al. 1st Guidelines of the Brazilian Society of Cardiology on Processes and Skills for Education in Cardiology in Brazil--Executive Summary. Arq Bras Cardiol. 2012;98(2):98-103. doi: 10.1590/S0066-782X2012000200001.
    » https://doi.org/10.1590/S0066-782X2012000200001
  • 277
    Rodgers GP, Ayanian JZ, Balady G, Beasley JW, Brown KA, Gervino EV, et al. American College of Cardiology/American Heart Association Clinical Competence Statement on Stress Testing: A Report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. J Am Coll Cardiol. 2000;36(4):1441-53. doi: 10.1016/s0735-1097(00)01029-9.
    » https://doi.org/10.1016/s0735-1097(00)01029-9
  • 278
    Serra S, Leão R. Teste Ergométrico, Teste Cardiopulmonar de Exercício, Cardiologia Nuclear, Reabilitação Cardiopulmonar e Metabólica e Cardiologia do Esporte e do Exercício. Rio de Janeiro: Guanabara Koogan; 2019. ISBN-10: 8535293493; ISBN-13: 978-8535293494.
  • 279
    Thomas GS, Wann LS, Ellestad MH, editors. Ellestad's Stress Testing: Principles and Practice. 6th ed. New York: Oxford University Press; 2018. ISBN-13: 9780190225483.
  • 280
    Froelicher VF, Myers J. Manual of Exercise Testing. Philadelphia: Mosby; 2007. ISBN-10: 0815133642; ISBN-13: 9780815133643.
  • 281
    Ikäheimo TM. Cardiovascular Diseases, Cold Exposure and Exercise. Temperature. 2018;5(2):123-46. doi: 10.1080/23328940.2017.1414014.
    » https://doi.org/10.1080/23328940.2017.1414014
  • 282
    No M, Kwak HB. Effects of Environmental Temperature on Physiological Responses During Submaximal and Maximal Exercises in Soccer Players. Integr Med Res. 2016;5(3):216-22. doi: 10.1016/j.imr.2016.06.002.
    » https://doi.org/10.1016/j.imr.2016.06.002
  • 283
    Valtonen RIP, Kiviniemi A, Hintsala HE, Ryti NRI, Kenttä T, Huikuri HV, et al. Cardiovascular Responses to Cold and Submaximal Exercise in Patients with Coronary Artery Disease. Am J Physiol Regul Integr Comp Physiol. 2018;315(4):R768-76. doi: 10.1152/ajpregu.00069.2018.
    » https://doi.org/10.1152/ajpregu.00069.2018
  • 284
    Zhao J, Lorenzo S, An N, Feng W, Lai L, Cui S. Effects of Heat and Different Humidity Levels on Aerobic and Anaerobic Exercise Performance in Athletes. J Exerc Sci Fit. 2013;11(1):35-41. doi: 10.1016/j.jesf.2013.04.002.
    » https://doi.org/10.1016/j.jesf.2013.04.002
  • 285
    Marcadet DM, Pavy B, Bosser G, Claudot F, Corone S, Douard H, et al. French Society of Cardiology Guidelines on Exercise Tests (Part 1): Methods and Interpretation. Arch Cardiovasc Dis. 2018;111(12):782-90. doi: 10.1016/j.acvd.2018.05.005.
    » https://doi.org/10.1016/j.acvd.2018.05.005
  • 286
    Wasserman K, editor. Principles of Exercise Testing and Interpretation: Including PATHOPHYSIOLOGY and Clinical Applications. 5th ed. Philadelphia: Wolters Kluwer; 2012. ISBN-10: 1609138996; ISBN-13: 9781609138998.
  • 287
    Sociedade Brasileira de Pediatria. Departamento Científico de Nefrologia. Manual de Orientação. Hipertensão arterial na infância e adolescência. São Paulo: Sociedade Brasileira de Pediatria; N° 2. Abril, 2019. Disponível em: https://www.sbp.com.br/fileadmin/user_upload/21635c-MO_-_Hipertensao_Arterial_Infanc_e_Adolesc.pdf
    » https://www.sbp.com.br/fileadmin/user_upload/21635c-MO_-_Hipertensao_Arterial_Infanc_e_Adolesc.pdf
  • 288
    Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, et al. Guidelines for Methacholine and Exercise Challenge Testing-1999. This Official Statement of the American Thoracic Society was Adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309-29. doi: 10.1164/ajrccm.161.1.ats11-99.
    » https://doi.org/10.1164/ajrccm.161.1.ats11-99
  • 289
    Hebestreit H. Exercise Testing in Children - What Works, what doesn‘t, and Where to Go? Paediatr Respir Rev. 2004;(5 Suppl A):S11-4. doi: 10.1016/s1526-0542(04)90002-4.
    » https://doi.org/10.1016/s1526-0542(04)90002-4
  • 290
    Chang RR, Gurvitz M, Rodriguez S, Hong E, Klitzner TS. Current Practice of Exercise Stress Testing among Pediatric Cardiology and Pulmonology Centers in the United States. Pediatr Cardiol. 2006;27(1):110-6. doi: 10.1007/s00246-005-1046-9.
    » https://doi.org/10.1007/s00246-005-1046-9
  • 291
    Turley KR, Wilmore JH. Cardiovascular Responses to Treadmill and Cycle Ergometer Exercise in Children and Adults. J Appl Physiol. 1997;83(3):948-57. doi: 10.1152/jappl.1997.83.3.948.
    » https://doi.org/10.1152/jappl.1997.83.3.948
  • 292
    Forbregd TR, Aloyseus MA, Berg A, Greve G. Cardiopulmonary Capacity in Children During Exercise Testing: The Differences Between Treadmill and Upright and Supine Cycle Ergometry. Front Physiol. 2019;10:1440. doi: 10.3389/fphys.2019.01440.
    » https://doi.org/10.3389/fphys.2019.01440
  • 293
    Bar-Yoseph R, Porszasz J, Radom-Aizik S, Stehli A, Law P, Cooper DM. The Effect of Test Modality on Dynamic Exercise Biomarkers in Children, Adolescents, and Young Adults. Physiol Rep. 2019;7(14):e14178. doi: 10.14814/phy2.14178.
    » https://doi.org/10.14814/phy2.14178
  • 294
    Oliveira A, Jácome C, Marques A. Physical Fitness and Exercise Training on Individuals with Spina Bifida: A Systematic Review. Res Dev Disabil. 2014;35(5):1119-36. doi: 10.1016/j.ridd.2014.02.002.
    » https://doi.org/10.1016/j.ridd.2014.02.002
  • 295
    Widman LM, Abresch RT, Styne DM, McDonald CM. Aerobic Fitness and Upper Extremity Strength in Patients Aged 11 to 21 Years with Spinal Cord Dysfunction as Compared to Ideal Weight and Overweight Controls. J Spinal Cord Med. 2007;(Suppl 1):S88-96. doi: 10.1080/10790268.2007.11754611.
    » https://doi.org/10.1080/10790268.2007.11754611
  • 296
    Kouwijzer I, Valize M, Valent LJM, Comtesse PGP, van der Woude LHV, Groot S. The Influence of Protocol Design on the Identification of Ventilatory Thresholds and the Attainment of Peak Physiological Responses During Synchronous Arm Crank Ergometry in Able-Bodied Participants. Eur J Appl Physiol. 2019;119(10):2275-86. doi: 10.1007/s00421-019-04211-9.
    » https://doi.org/10.1007/s00421-019-04211-9
  • 297
    Tanner CS, Heise CT, Barber G. Correlation of the Physiologic Parameters of a Continuous Ramp versus an Incremental James Exercise Protocol in Normal Children. Am J Cardiol. 1991;67(4):309-12. doi: 10.1016/0002-9149(91)90566-4.
    » https://doi.org/10.1016/0002-9149(91)90566-4
  • 298
    Octavio JM, Folk AL, Falini L, Xie S, Goudie BW, Gidding SS, et al. Standardization of a Continuous Ramp Ergometer Protocol for Clinical Exercise Testing in Children. Pediatr Cardiol. 2019;40(4):834-40. doi: 10.1007/s00246-019-02079-2.
    » https://doi.org/10.1007/s00246-019-02079-2
  • 299
    Kalski L, Wannack M, Wiegand S, Wolfarth B. Comparison of Two Methods of Cardiopulmonary Exercise Testing for Assessing Physical Fitness in Children and Adolescents with Extreme Obesity. Eur J Pediatr. 2022;181(6):2389-97. doi: 10.1007/s00431-022-04434-7.
    » https://doi.org/10.1007/s00431-022-04434-7
  • 300
    Rowland TW, Tighe DA. Pediatric Exercise Testing. In: Tighe DA, Gentile BA, Chung EK, editors. Pocket Guide Stress Test. Second edition. Hoboken, New York: Wiley; 2020, p. 281-99. ISBN: 9781119481751.
  • 301
    James FW, Kaplan S, Glueck CJ, Tsay JY, Knight MJ, Sarwar CJ. Responses of Normal Children and Young Adults to Controlled Bicycle Exercise. Circulation. 1980;61(5):902-12. doi: 10.1161/01.cir.61.5.902.
    » https://doi.org/10.1161/01.cir.61.5.902
  • 302
    Washington RL, van Gundy JC, Cohen C, Sondheimer HM, Wolfe RR. Normal Aerobic and Anaerobic Exercise Data for North American School-Age Children. J Pediatr. 1988;112(2):223-33. doi: 10.1016/s0022-3476(88)80059-3.
    » https://doi.org/10.1016/s0022-3476(88)80059-3
  • 303
    Godfrey S. Exercise Testing in Children: Applications in Health and Disease. Philadelphia: Saunders; 1974. ISBN-10: 0721641423; ISBN-13: 9780721641423.
  • 304
    Godfrey S, Davies CT, Wozniak E, Barnes CA. Cardio-Respiratory Response to Exercise in Normal Children. Clin Sci. 1971;40(5):419-31. doi: 10.1042/cs0400419.
    » https://doi.org/10.1042/cs0400419
  • 305
    Burstein DS, McBride MG, Min J, Paridon AA, Perelman S, Huffman EM, et al. Normative Values for Cardiopulmonary Exercise Stress Testing Using Ramp Cycle Ergometry in Children and Adolescents. J Pediatr. 2021;229:61-9. doi: 10.1016/j.jpeds.2020.09.018.
    » https://doi.org/10.1016/j.jpeds.2020.09.018
  • 306
    Marinov B, Kostianev S, Turnovska T. Modified Treadmill Protocol for Evaluation of Physical Fitness in Pediatric Age Group-Comparison with Bruce and Balke Protocols. Acta Physiol Pharmacol Bulg. 2003;27(2-3): 47-51. PMID: 14570147.
  • 307
    Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill Exercise in Assessment of the Functional Capacity of Patients with Cardiac Disease. Am J Cardiol. 1972;30(7):757-62. doi: 10.1016/0002-9149(72)90151-8.
    » https://doi.org/10.1016/0002-9149(72)90151-8
  • 308
    Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFAC, et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol. 2022;119(4):638-80. doi: 10.36660/abc.20220623.
    » https://doi.org/10.36660/abc.20220623
  • 309
    Pedroni AS, Schiavo A, Macedo E, Campos NE, Winck AD, Heinzmann-Filho JP. Predictive Maximal Heart Rate Equations in Child and Adolescent Athletes: A Systematic Review. Fisioter Em Mov. 2018;31(1):1-9. doi: 10.1590/1980-5918.031.ao31.
    » https://doi.org/10.1590/1980-5918.031.ao31
  • 310
    Gelbart M, Ziv-Baran T, Williams CA, Yarom Y, Dubnov-Raz G. Prediction of Maximal Heart Rate in Children and Adolescents. Clin J Sport Med. 2017;27(2):139-44. doi: 10.1097/JSM.0000000000000315.
    » https://doi.org/10.1097/JSM.0000000000000315
  • 311
    Cicone ZS, Holmes CJ, Fedewa MV, MacDonald HV, Esco MR. Age-Based Prediction of Maximal Heart Rate in Children and Adolescents: A Systematic Review and Meta-Analysis. Res Q Exerc Sport. 2019;90(3):417-28. doi: 10.1080/02701367.2019.1615605.
    » https://doi.org/10.1080/02701367.2019.1615605
  • 312
    Mahon AD, Marjerrison AD, Lee JD, Woodruff ME, Hanna LE. Evaluating the Prediction of Maximal Heart Rate in Children and Adolescents. Res Q Exerc Sport. 2010;81(4):466-71. doi: 10.1080/02701367.2010.10599707.
    » https://doi.org/10.1080/02701367.2010.10599707
  • 313
    Machado FA, Denadai BS. Validity of Maximum Heart Rate Prediction Equations for Children and Adolescents. Arq Bras Cardiol. 2011;97(2):136-40. doi: 10.1590/s0066-782x2011005000078.
    » https://doi.org/10.1590/s0066-782x2011005000078
  • 314
    Caputo EL, Silva MC, Rombaldi A. Comparação da Frequência Cardíaca Máxima Obtida por Diferentes Métodos. Rev Educ FísicaUEM. 2012;23(2):277-84. doi: 10.4025/reveducfis.v23i2.12311.
    » https://doi.org/10.4025/reveducfis.v23i2.12311
  • 315
    Nikolaidis PT. Maximal Heart Rate in Soccer Players: Measured versus Age-Predicted. Biomed J. 2015;38(1):84-9. doi: 10.4103/2319-4170.131397.
    » https://doi.org/10.4103/2319-4170.131397
  • 316
    Nikolaidis PT. Age-Predicted vs. Measured Maximal Heart Rate in Young Team Sport Athletes. Niger Med J. 2014;55(4):314-20. doi: 10.4103/0300-1652.137192.
    » https://doi.org/10.4103/0300-1652.137192
  • 317
    Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension. 2019;73(5):e35-e66. doi: 10.1161/HYP.0000000000000087.
    » https://doi.org/10.1161/HYP.0000000000000087
  • 318
    Flynn JT, Urbina EM, Brady TM, Baker-Smith C, Daniels SR, Hayman LL, Mitsnefes M, Tran A, Zachariah JP; Atherosclerosis, Hypertension, and Obesity in the Young Committee of the American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Radiology and Intervention; Council on Epidemiology and Prevention; Council on Hypertension; and Council on Lifestyle and Cardiometabolic Health. Ambulatory Blood Pressure Monitoring in Children and Adolescents: 2022 Update: A Scientific Statement From the American Heart Association. Hypertension. 2022 Jul;79(7):e114-e124. doi: 10.1161/HYP.0000000000000215.
    » https://doi.org/10.1161/HYP.0000000000000215
  • 319
    Feitosa ADM, Barroso WKS, Mion Junior D, Nobre F, Mota-Gomes MA, Jardim PCB, et al. Brazilian Guidelines for In-Office and Out-of-Office Blood Pressure Measurement – 2023. Arq Bras Cardiol. 2024;121(4):e20240113. doi: 10.36660/abc.20240113i.
    » https://doi.org/10.36660/abc.20240113i
  • 320
    Gersak G, Zemva A, Drnovsek J. A Procedure For Evaluation of Non-Invasive Blood Pressure Simulators. Med Biol Eng Comput. 2009;47(12):1221-8. doi: 10.1007/s11517-009-0532-2.
    » https://doi.org/10.1007/s11517-009-0532-2
  • 321
    Nerenberg KA, Zarnke KB, Leung AA, Dasgupta K, Butalia S, McBrien K, et al. Hypertension Canada‘s 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children. Can J Cardiol. 2018;34(5):506-25. doi: 10.1016/j.cjca.2018.02.022.
    » https://doi.org/10.1016/j.cjca.2018.02.022
  • 322
    Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol. 2021;116(3):516-658. doi: 10.36660/abc.20201238.
    » https://doi.org/10.36660/abc.20201238
  • 323
    Mion D, Pierin AM. How Accurate are Sphygmomanometers? J Hum Hypertens. 1998;12(4):245-8. doi: 10.1038/sj.jhh.1000589.
    » https://doi.org/10.1038/sj.jhh.1000589
  • 324
    Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular Disease Risk in Healthy Children and Its Association with Body Mass Index: Systematic Review and Meta-Analysis. BMJ. 2012;345:e4759. doi: 10.1136/bmj.e4759.
    » https://doi.org/10.1136/bmj.e4759
  • 325
    Medeiros PBS, Salomão RG, Teixeira SR, Rassi DM, Rodrigues L, Aragon DC, et al. Disease Activity Index is Associated with Subclinical Atherosclerosis in Childhood-Onset Systemic Lupus Erythematosus. Pediatr Rheumatol Online J. 2021;19(1):35. doi: 10.1186/s12969-021-00513-5.
    » https://doi.org/10.1186/s12969-021-00513-5
  • 326
    Berger JH, Faerber JA, Chen F, Lin KY, Brothers JA, O‘Byrne ML. Adherence with Lipid Screening Guidelines in Children with Acquired and Congenital Heart Disease: An Observational Study Using Data from the MarketScan Commercial and Medicaid Databases. J Am Heart Assoc. 2022;11(7):e024197. doi: 10.1161/JAHA.121.024197.
    » https://doi.org/10.1161/JAHA.121.024197
  • 327
    Stavnsbo M, Skrede T, Aadland E, Aadland KN, Chinapaw M, Anderssen SA, et al. Cardiometabolic Risk Factor Levels in Norwegian Children Compared to International Reference Values: The ASK Study. PLoS One. 2019;14(8):e0220239. doi: 10.1371/journal.pone.0220239.
    » https://doi.org/10.1371/journal.pone.0220239
  • 328
    Welser L, Lima RA, Silveira JF, Andersen LB, Pfeiffer KA, Renner JDP, et al. Cardiometabolic Risk Factors in Children and Adolescents from Southern Brazil: Comparison to International Reference Values. J Pediatr Endocrinol Metab. 2021;34(10):1237-46. doi: 10.1515/jpem-2021-0023.
    » https://doi.org/10.1515/jpem-2021-0023
  • 329
    Reuter CP, Renner JDP, Silveira JFC, Silva PT, Lima RA, Pfeiffer KA, et al. Clustering of Cardiometabolic Risk Factors and the Continuous Cardiometabolic Risk Score in Children from Southern Brazil: A Cross-Sectional Study. J Diabetes Metab Disord. 2021;20(2):1221-8. doi: 10.1007/s40200-021-00845-9.
    » https://doi.org/10.1007/s40200-021-00845-9
  • 330
    Kumar S, Stevenson WG, Tedrow UB. Bicuspid Aortic Valve Supporting Supravalvular "Substrate" for Multiple Ventricular Tachycardias. HeartRhythm Case Rep. 2017;3(3):155-8. doi: 10.1016/j.hrcr.2016.09.006.
    » https://doi.org/10.1016/j.hrcr.2016.09.006
  • 331
    Videbæk J, Laursen HB, Olsen M, Høfsten DE, Johnsen SP. Long-Term Nationwide Follow-Up Study of Simple Congenital Heart Disease Diagnosed in Otherwise Healthy Children. Circulation. 2016;133(5):474-83. doi: 10.1161/CIRCULATIONAHA.115.017226.
    » https://doi.org/10.1161/CIRCULATIONAHA.115.017226
  • 332
    van der Ven JPG, van den Bosch E, Bogers AJCC, Helbing WA. Current Outcomes and Treatment of Tetralogy of Fallot. F1000Res. 2019;8:F1000 Faculty Rev-1530. doi: 10.12688/f1000research.17174.1.
    » https://doi.org/10.12688/f1000research.17174.1
  • 333
    Lotfy WN, Samra NM, Al Ghwass ME, Amin SA, AboElnour SI. Repolarization Patterns in Congenital Heart Disease. Pediatr Cardiol. 2016;37(7):1235-40. doi: 10.1007/s00246-016-1422-7.
    » https://doi.org/10.1007/s00246-016-1422-7
  • 334
    Souron R, Carayol M, Martin V, Piponnier E, Duché P, Gruet M. Differences in Time to Task Failure and Fatigability Between Children and Young Adults: A Systematic Review and Meta-Analysis. Front Physiol. 2022;13:1026012. doi: 10.3389/fphys.2022.1026012.
    » https://doi.org/10.3389/fphys.2022.1026012
  • 335
    Tolusso DV, Dobbs WC, Esco MR. The Predictability of Peak Oxygen Consumption Using Submaximal Ratings of Perceived Exertion in Adolescents. Int J Exerc Sci. 2018;11(4):1173-83. PMCID: PMC6179431. PMID: 30338020.
  • 336
    Martins R, Assumpção MS, Schivinski CIS. Percepção de Esforço e Dispneia em Pediatria: Revisão das Escalas de Avaliação. Med Ribeirão Preto. 2014;47(1):25-35. doi: 10.11606/issn.2176-7262.v47i1p25-35.
    » https://doi.org/10.11606/issn.2176-7262.v47i1p25-35
  • 337
    Groslambert A, Mahon AD. Perceived Exertion: Influence of Age and Cognitive Development. Sports Med. 2006;36(11):911-28. doi: 10.2165/00007256-200636110-00001.
    » https://doi.org/10.2165/00007256-200636110-00001
  • 338
    Kasai D, Parfitt G, Tarca B, Eston R, Tsiros MD. The Use of Ratings of Perceived Exertion in Children and Adolescents: A Scoping Review. Sports Med. 2021;51(1):33-50. doi: 10.1007/s40279-020-01374-w.
    » https://doi.org/10.1007/s40279-020-01374-w
  • 339
    Gammon C, Pfeiffer KA, Pivarnik JM, Moore RW, Rice KR, Trost SG. Age-Related Differences in OMNI-RPE Scale Validity in Youth: A Longitudinal Analysis. Med Sci Sports Exerc. 2016;48(8):1590-4. doi: 10.1249/MSS.0000000000000918.
    » https://doi.org/10.1249/MSS.0000000000000918
  • 340
    Robertson RJ, Goss FL, Boer N, Gallagher JD, Thompkins T, Bufalino K, et al. OMNI Scale Perceived Exertion at Ventilatory Breakpoint in Children: Response Normalized. Med Sci Sports Exerc. 2001;33(11):1946-52. doi: 10.1097/00005768-200111000-00022.
    » https://doi.org/10.1097/00005768-200111000-00022
  • 341
    Robertson RJ, Goss FL, Aaron DJ, Utter AC, Nagle E. Omni Scale Rating of Perceived Exertion at Ventilatory Breakpoint by Direct Observation of Children‘s Kinematics. Percept Mot Skills. 2007;104(3 Pt 1):975-84. doi: 10.2466/pms.104.3.975-984.
    » https://doi.org/10.2466/pms.104.3.975-984
  • 342
    Robertson RJ, Goss FL, Aaron DJ, Tessmer KA, Gairola A, Ghigiarelli JJ, et al. Observation of Perceived Exertion in Children Using the OMNI Pictorial Scale. Med Sci Sports Exerc. 2006;38(1):158-66. doi: 10.1249/01.mss.0000190595.03402.66.
    » https://doi.org/10.1249/01.mss.0000190595.03402.66
  • 343
    Pfeiffer KA, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Reliability and Validity of the Borg and OMNI Rating of Perceived Exertion Scales in Adolescent Girls. Med Sci Sports Exerc. 2002;34(12):2057-61. doi: 10.1097/00005768-200212000-00029.
    » https://doi.org/10.1097/00005768-200212000-00029
  • 344
    Schmitz G. Moderators of Perceived Effort in Adolescent Rowers During a Graded Exercise Test. Int J Environ Res Public Health. 2020;17(21):8063. doi: 10.3390/ijerph17218063.
    » https://doi.org/10.3390/ijerph17218063
  • 345
    Groslambert A, Hintzy F, Hoffman MD, Dugué B, Rouillon JD. Validation of a Rating Scale of Perceived Exertion in Young Children. Int J Sports Med. 2001;22(2):116-9. doi: 10.1055/s-2001-11340.
    » https://doi.org/10.1055/s-2001-11340
  • 346
    Williams JG, Eston R, Furlong B. CERT: A Perceived Exertion Scale for Young Children. Percept Mot Skills. 1994;79(3 Pt 2):1451-8. doi: 10.2466/pms.1994.79.3f.1451.
    » https://doi.org/10.2466/pms.1994.79.3f.1451
  • 347
    Roemmich JN, Barkley JE, Epstein LH, Lobarinas CL, White TM, Foster JH. Validity of PCERT and OMNI Walk/Run Ratings of Perceived Exertion. Med Sci Sports Exerc. 2006;38(5):1014-9. doi: 10.1249/01.mss.0000218123.81079.49.
    » https://doi.org/10.1249/01.mss.0000218123.81079.49
  • 348
    Robertson RJ, Goss FL, Boer NF, Peoples JA, Foreman AJ, Dabayebeh IM, et al. Children‘s OMNI Scale of Perceived Exertion: Mixed Gender and Race Validation. Med Sci Sports Exerc. 2000;32(2):452-8. doi: 10.1097/00005768-200002000-00029.
    » https://doi.org/10.1097/00005768-200002000-00029
  • 349
    Utter AC, Robertson RJ, Nieman DC, Kang J. Children‘s OMNI Scale of Perceived Exertion: Walking/Running Evaluation. Med Sci Sports Exerc. 2002;34(1):139-44. doi: 10.1097/00005768-200201000-00021.
    » https://doi.org/10.1097/00005768-200201000-00021
  • 350
    Muyor JM. Exercise Intensity and Validity of the Ratings of Perceived Exertion (Borg and OMNI Scales) in an Indoor Cycling Session. J Hum Kinet. 2013;39:93-101. doi: 10.2478/hukin-2013-0072.
    » https://doi.org/10.2478/hukin-2013-0072
  • 351
    Haapala EA, Gao Y, Hartikainen J, Rantalainen T, Finni T. Associations of Fitness, Motor Competence, and Adiposity with the Indicators of Physical Activity Intensity During Different Physical Activities in Children. Sci Rep. 2021;11(1):12521. doi: 10.1038/s41598-021-92040-2.
    » https://doi.org/10.1038/s41598-021-92040-2
  • 352
    Prado DM, Braga AM, Rondon MU, Azevedo LF, Matos LD, Negrão CE, et al. Cardiorespiratory Responses During Progressive Maximal Exercise Test in Healthy Children. Arq Bras Cardiol. 2010;94(4):493-9. doi: 10.1590/s0066-782x2010005000007.
    » https://doi.org/10.1590/s0066-782x2010005000007
  • 353
    Lintu N, Tompuri T, Viitasalo A, Soininen S, Laitinen T, Savonen K, et al. Cardiovascular Fitness and Haemodynamic Responses to Maximal Cycle Ergometer Exercise Test in Children 6-8 Years of Age. J Sports Sci. 2014;32(7):652-9. doi: 10.1080/02640414.2013.845681.
    » https://doi.org/10.1080/02640414.2013.845681
  • 354
    Lintu N, Viitasalo A, Tompuri T, Veijalainen A, Hakulinen M, Laitinen T, et al. Cardiorespiratory Fitness, Respiratory Function and Hemodynamic Responses to Maximal Cycle Ergometer Exercise Test in Girls and Boys Aged 9-11 Years: The PANIC Study. Eur J Appl Physiol. 2015;115(2):235-43. doi: 10.1007/s00421-014-3013-8.
    » https://doi.org/10.1007/s00421-014-3013-8
  • 355
    Bar-Or O. Pathophysiological Factors Which Limit the Exercise Capacity of the Sick Child. Med Sci Sports Exerc. 1986;18(3):276-82. doi: 10.1249/00005768-198606000-00004.
    » https://doi.org/10.1249/00005768-198606000-00004
  • 356
    Lunt D, Briffa T, Briffa NK, Ramsay J. Physical Activity Levels of Adolescents with Congenital Heart Disease. Aust J Physiother. 2003;49(1):43-50. doi: 10.1016/s0004-9514(14)60187-2.
    » https://doi.org/10.1016/s0004-9514(14)60187-2
  • 357
    van Deutekom AW, Lewandowski AJ. Physical Activity Modification in Youth with Congenital Heart Disease: A Comprehensive Narrative Review. Pediatr Res. 2021;89(7):1650-8. doi: 10.1038/s41390-020-01194-8.
    » https://doi.org/10.1038/s41390-020-01194-8
  • 358
    Robertson RJ, Goss FL, Andreacci JL, Dubé JJ, Rutkowski JJ, Snee BM, et al. Validation of the Children's OMNI RPE Scale for Stepping Exercise. Med Sci Sports Exerc. 2005;37(2):290-8. doi: 10.1249/01.mss.0000149888.39928.9f.
    » https://doi.org/10.1249/01.mss.0000149888.39928.9f
  • 359
    Hanson CL, Hokanson JS. Etiology of Chest Pain in Children and Adolescents Referred to Cardiology Clinic. WMJ. 2011;110(2):58-62. PMID: 21560558.
  • 360
    Loiselle KA, Lee JL, Gilleland J, Campbell R, Simpson P, Johnson G, et al. Factors Associated with Healthcare Utilization Among Children with Noncardiac Chest Pain and Innocent Heart Murmurs. J Pediatr Psychol. 2012;37(7):817-25. doi: 10.1093/jpepsy/jss055.
    » https://doi.org/10.1093/jpepsy/jss055
  • 361
    Otto CM, Bonow RO, editors. Valvular Heart Disease: A Companion to Braunwald's Heart Disease. 5th ed. Philadelphia: Elsevier; 2021. ISBN-10: 0323546331; ISBN-13: 978-0323546331.
  • 362
    Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. ISBN-10: 3030622924; ISBN-13: 978-3030622923.
  • 363
    Tavel ME. The Appearance of Gallop Rhythm after Exercise Stress Testing. Clin Cardiol. 1996;19(11):887-91. doi: 10.1002/clc.4960191109.
    » https://doi.org/10.1002/clc.4960191109
  • 364
    Cumming GR, Everatt D, Hastman L. Bruce Treadmill Test in Children: Normal Values in a Clinic Population. Am J Cardiol. 1978;41(1):69-75. doi: 10.1016/0002-9149(78)90134-0.
    » https://doi.org/10.1016/0002-9149(78)90134-0
  • 365
    Zhong LS, Guo XM, Xiao SZ, Wang D, Wu WZ. The Third Heart Sound After Exercise in Athletes: An Exploratory Study. Chin J Physiol. 2011;54(4):219-24. doi: 10.4077/CJP.2011.AMM049.
    » https://doi.org/10.4077/CJP.2011.AMM049
  • 366
    Etoom Y, Ratnapalan S. Evaluation of Children with Heart Murmurs. Clin Pediatr. 2014;53(2):111-7. doi: 10.1177/0009922813488653.
    » https://doi.org/10.1177/0009922813488653
  • 367
    Nudel DB, Diamant S, Brady T, Jarenwattananon M, Buckley BJ, Gootman N. Chest Pain, Dyspnea on Exertion, and Exercise Induced Asthma in Children and Adolescents. Clin Pediatr. 1987;26(8):388-92. doi: 10.1177/000992288702600802.
    » https://doi.org/10.1177/000992288702600802
  • 368
    Balkissoon R, Kenn K. Asthma: Vocal Cord Dysfunction (VCD) and Other Dysfunctional Breathing Disorders. Semin Respir Crit Care Med. 2012;33(6):595-605. doi: 10.1055/s-0032-1326959.
    » https://doi.org/10.1055/s-0032-1326959
  • 369
    Dunn NM, Katial RK, Hoyte FCL. Vocal Cord Dysfunction: A Review. Asthma Res Pract. 2015;1:9. doi: 10.1186/s40733-015-0009-z.
    » https://doi.org/10.1186/s40733-015-0009-z
  • 370
    Shaddy RE, Penny DJ, Feltes TF, Cetta F, Mital S, Moss FH, editors. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2022. ISBN-10: 1975116607; ISBN-13: 978-1975116606.
  • 371
    Marinov B, Kostianev S, Turnovska T. Ventilatory Efficiency and Rate of Perceived Exertion in Obese and Non-Obese Children Performing Standardized Exercise. Clin Physiol Funct Imaging. 2002;22(4):254-60. doi: 10.1046/j.1475-097x.2002.00427.x.
    » https://doi.org/10.1046/j.1475-097x.2002.00427.x
  • 372
    Jaroszewski DE, Farina JM, Gotway MB, Stearns JD, Peterson MA, Pulivarthi VSKK, et al. Cardiopulmonary Outcomes after the Nuss Procedure in Pectus Excavatum. J Am Heart Assoc. 2022;11(7):e022149. doi: 10.1161/JAHA.121.022149.
    » https://doi.org/10.1161/JAHA.121.022149
  • 373
    Del Frari B, Sigl S, Schwabegger AH, Blank C, Morawetz D, Gassner E, et al. Impact of Surgical Treatment of Pectus Carinatum on Cardiopulmonary Function: A Prospective Study. Eur J Cardiothorac Surg. 2021;59(2):382-8. doi: 10.1093/ejcts/ezaa335.
    » https://doi.org/10.1093/ejcts/ezaa335
  • 374
    Malek MH, Coburn JW. Strategies for Cardiopulmonary Exercise Testing of Pectus Excavatum Patients. Clinics. 2008;63(2):245-54. doi: 10.1590/s1807-59322008000200014.
    » https://doi.org/10.1590/s1807-59322008000200014
  • 375
    Martínez-Llorens J, Ramírez M, Colomina MJ, Bagó J, Molina A, Cáceres E, et al. Muscle Dysfunction and Exercise Limitation in Adolescent Idiopathic Scoliosis. Eur Respir J. 2010;36(2):393-400. doi: 10.1183/09031936.00025509.
    » https://doi.org/10.1183/09031936.00025509
  • 376
    Müller J, Heck PB, Ewert P, Hager A. Noninvasive Screening for Pulmonary Hypertension by Exercise Testing in Congenital Heart Disease. Ann Thorac Surg. 2017;103(5):1544-9. doi: 10.1016/j.athoracsur.2016.09.038.
    » https://doi.org/10.1016/j.athoracsur.2016.09.038
  • 377
    Yetman AT, Taylor AL, Doran A, Ivy DD. Utility of Cardiopulmonary Stress Testing in Assessing Disease Severity in Children with Pulmonary Arterial Hypertension. Am J Cardiol. 2005;95(5):697-9. doi: 10.1016/j.amjcard.2004.10.056.
    » https://doi.org/10.1016/j.amjcard.2004.10.056
  • 378
    Hsu DT, Canter CE. Dilated Cardiomyopathy and Heart Failure in Children. Heart Fail Clin. 2010;6(4):415-32, vii. doi: 10.1016/j.hfc.2010.05.003.
    » https://doi.org/10.1016/j.hfc.2010.05.003
  • 379
    Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535-52. doi: 10.1016/j.cjca.2013.08.008.
    » https://doi.org/10.1016/j.cjca.2013.08.008
  • 380
    Teng LY, Tsai SW, Hsiao CY, Sung WH, Lin KL. Cardiopulmonary Function Assessment in Children with Pulmonary Valve Stenosis. Front Pediatr. 2022;9:802645. doi: 10.3389/fped.2021.802645.
    » https://doi.org/10.3389/fped.2021.802645
  • 381
    Linglart L, Gelb BD. Congenital Heart Defects in Noonan Syndrome: Diagnosis, Management, and Treatment. Am J Med Genet C Semin Med Genet. 2020;184(1):73-80. doi: 10.1002/ajmg.c.31765.
    » https://doi.org/10.1002/ajmg.c.31765
  • 382
    Kipps AK, McElhinney DB, Kane J, Rhodes J. Exercise Function of Children with Congenital Aortic Stenosis Following Aortic Valvuloplasty During Early Infancy. Congenit Heart Dis. 2009;4(4):258-64. doi: 10.1111/j.1747-0803.2009.00304.x.
    » https://doi.org/10.1111/j.1747-0803.2009.00304.x
  • 383
    Yilmaz G, Ozme S, Ozer S, Tokel K, Celiker A. Evaluation by Exercise Testing of Children with Mild and Moderate Valvular Aortic Stenosis. Pediatr Int. 2000;42(1):48-52. doi: 10.1046/j.1442-200x.2000.01179.x.
    » https://doi.org/10.1046/j.1442-200x.2000.01179.x
  • 384
    Issa ZF. Clinical Arrhythmology and Electrophysiology: A Companion to Baunwald's Heart Disease. 3rd ed. Philadelphia: Elsevier; 2018. ISBN-10: 0323523560; ISBN-13: 978-0323523561.
  • 385
    Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, et al. Normal Ranges of Heart Rate and Respiratory Rate in Children from Birth to 18 Years of Age: A Systematic Review of Observational Studies. Lancet. 2011;377(9770):1011-8. doi: 10.1016/S0140-6736(10)62226-X.
    » https://doi.org/10.1016/S0140-6736(10)62226-X
  • 386
    Hao G, Halbert J, Su S, Bagi Z, Robinson V, Thayer J, et al. Rapid Decline of Resting Heart Rate Trajectories from Childhood to Young Adulthood is Paradoxically Associated with Increased Cardiac Mass. Acta Cardiol. 2021;76(10):1117-23. doi: 10.1080/00015385.2020.1871262.
    » https://doi.org/10.1080/00015385.2020.1871262
  • 387
    Sarganas G, Rosario AS, Neuhauser HK. Resting Heart Rate Percentiles and Associated Factors in Children and Adolescents. J Pediatr. 2017;187:174-81. doi: 10.1016/j.jpeds.2017.05.021.
    » https://doi.org/10.1016/j.jpeds.2017.05.021
  • 388
    Surawicz B, Knilans TK, Chou T-C. Chou's Electrocardiography in Clinical Practice: Adult and Pediatric. 6th ed. Philadelphia: Elsevier; 2008. ISBN-10: 1416037748; ISBN-13: 978-1416037743.
  • 389
    Park MK. Park's Pediatric Cardiology for Practitioners. 6th ed. Philadelphia: Elsevier; 2014. ISBN-10: 0323169511; ISBN-13: 978-0323169516.
  • 390
    Zipes DP, Jalife J, Stevenson WG, editors. Cardiac Electrophysiology: From Cell to Bedside. 7th edn. Philadelphia: Elsevier; 2018. ISBN-10: 0323447333; ISBN-13: 978-0323447331.
  • 391
    Yusuf S, Camm AJ. Deciphering the Sinus Tachycardias. Clin Cardiol. 2005;28(6):267-76. doi: 10.1002/clc.4960280603.
    » https://doi.org/10.1002/clc.4960280603
  • 392
    Kwok SY, So HK, Choi KC, Lo AF, Li AM, Sung RY, et al. Resting Heart Rate in Children and Adolescents: Association with Blood Pressure, Exercise and Obesity. Arch Dis Child. 2013;98(4):287-91. doi: 10.1136/archdischild-2012-302794.
    » https://doi.org/10.1136/archdischild-2012-302794
  • 393
    Farah BQ, Christofaro DG, Balagopal PB, Cavalcante BR, Barros MV, Ritti-Dias RM. Association between Resting Heart Rate and Cardiovascular Risk Factors in Adolescents. Eur J Pediatr. 2015;174(12):1621-8. doi: 10.1007/s00431-015-2580-y.
    » https://doi.org/10.1007/s00431-015-2580-y
  • 394
    Rossano JW, Kantor PF, Shaddy RE, Shi L, Wilkinson JD, Jefferies JL, et al. Elevated Heart Rate and Survival in Children with Dilated Cardiomyopathy: A Multicenter Study from the Pediatric Cardiomyopathy Registry. J Am Heart Assoc. 2020;9(15):e015916. doi: 10.1161/JAHA.119.015916.
    » https://doi.org/10.1161/JAHA.119.015916
  • 395
    Bonnet D, Berger F, Jokinen E, Kantor PF, Daubeney PEF. Ivabradine in Children with Dilated Cardiomyopathy and Symptomatic Chronic Heart Failure. J Am Coll Cardiol. 2017;70(10):1262-72. doi: 10.1016/j.jacc.2017.07.725.
    » https://doi.org/10.1016/j.jacc.2017.07.725
  • 396
    Adorisio R, Cantarutti N, Ciabattini M, Amodeo A, Drago F. Real-World Use of Carvedilol in Children with Dilated Cardiomyopathy: Long-Term Effect on Survival and Ventricular Function. Front Pediatr. 2022;10:845406. doi: 10.3389/fped.2022.845406.
    » https://doi.org/10.3389/fped.2022.845406
  • 397
    Bourque JM, Beller GA. Value of Exercise ECG for Risk Stratification in Suspected or Known CAD in the Era of Advanced Imaging Technologies. JACC Cardiovasc Imaging. 2015;8(11):1309-21. doi: 10.1016/j.jcmg.2015.09.006.
    » https://doi.org/10.1016/j.jcmg.2015.09.006
  • 398
    Gravel H, Curnier D, Dallaire F, Fournier A, Portman M, Dahdah N. Cardiovascular Response to Exercise Testing in Children and Adolescents Late after Kawasaki Disease According to Coronary Condition Upon Onset. Pediatr Cardiol. 2015;36(7):1458-64. doi: 10.1007/s00246-015-1186-5.
    » https://doi.org/10.1007/s00246-015-1186-5
  • 399
    Mahon AD, Anderson CS, Hipp MJ, Hunt KA. Heart Rate Recovery from Submaximal Exercise in Boys and Girls. Med Sci Sports Exerc. 2003;35(12):2093-7. doi: 10.1249/01.MSS.0000099180.80952.83.
    » https://doi.org/10.1249/01.MSS.0000099180.80952.83
  • 400
    Ellestad MH. Stress Testing: Principles and Practice. 5th ed. Oxford: Oxford University Press; 2003. ISBN-10: 0195159284; ISBN-13: 978-0195159288.
  • 401
    Claessen G, La Gerche A, Van De Bruaene A, Claeys M, Willems R, Dymarkowski S, et al. Heart Rate Reserve in Fontan Patients: Chronotropic Incompetence or Hemodynamic Limitation? J Am Heart Assoc. 2019;8(9):e012008. doi: 10.1161/JAHA.119.012008.
    » https://doi.org/10.1161/JAHA.119.012008
  • 402
    Braden DS, Carroll JF. Normative Cardiovascular Responses to Exercise in Children. Pediatr Cardiol. 1999;20(1):4-10. doi: 10.1007/s002469900380.
    » https://doi.org/10.1007/s002469900380
  • 403
    Riopel DA, Taylor AB, Hohn AR. Blood Pressure, Heart Rate, Pressure-Rate Product and Electrocardiographic Changes in Healthy Children During Treadmill Exercise. Am J Cardiol. 1979;44(4):697-704. doi: 10.1016/0002-9149(79)90290-x.
    » https://doi.org/10.1016/0002-9149(79)90290-x
  • 404
    Norozi K, Wessel A, Alpers V, Arnhold JO, Binder L, Geyer S, et al. Chronotropic Incompetence in Adolescents and Adults with Congenital Heart Disease After Cardiac Surgery. J Card Fail. 2007;13(4):263-8. doi: 10.1016/j.cardfail.2006.12.002.
    » https://doi.org/10.1016/j.cardfail.2006.12.002
  • 405
    von Scheidt F, Meier S, Krämer J, Apitz A, Siaplaouras J, Bride P, et al. Heart Rate Response During Treadmill Exercise Test in Children and Adolescents with Congenital Heart Disease. Front Pediatr. 2019;7:65. doi: 10.3389/fped.2019.00065.
    » https://doi.org/10.3389/fped.2019.00065
  • 406
    Yoshida Y, Maeda J, Fukushima H, Tokita N, Yamagishi H, Tokumura M. Chronotropic Incompetence to Exercise in Anorexia Nervosa Patients During the Body-Weight Recovery Phase as an Index of Insufficient Treatment. Heart Vessels. 2019;34(4):711-5. doi: 10.1007/s00380-018-1282-6.
    » https://doi.org/10.1007/s00380-018-1282-6
  • 407
    Heiberg J, Nyboe C, Hjortdal VE. Permanent Chronotropic Impairment after Closure of Atrial or Ventricular Septal Defect. Scand Cardiovasc J. 2017;51(5):271-6. doi: 10.1080/14017431.2017.1337216.
    » https://doi.org/10.1080/14017431.2017.1337216
  • 408
    Franciosi S, Roston TM, Perry FKG, Knollmann BC, Kannankeril PJ, Sanatani S. Chronotropic Incompetence as a Risk Predictor in Children and Young Adults with Catecholaminergic Polymorphic Ventricular Tachycardia. J Cardiovasc Electrophysiol. 2019;30(10):1923-9. doi: 10.1111/jce.14043.
    » https://doi.org/10.1111/jce.14043
  • 409
    Singh NM, Loomba RS, Kovach JR, Kindel SJ. Chronotropic Incompetence in Paediatric Heart Transplant Recipients with Prior Congenital Heart Disease. Cardiol Young. 2019;29(5):667-71. doi: 10.1017/S1047951119000714.
    » https://doi.org/10.1017/S1047951119000714
  • 410
    Ohuchi H, Hamamichi Y, Hayashi T, Watanabe T, Yamada O, Yagihara T, et al. Post-Exercise Heart Rate, Blood Pressure and Oxygen Uptake Dynamics in Pediatric Patients with Fontan Circulation Comparison with Patients after Right Ventricular Outflow Tract Reconstruction. Int J Cardiol. 2005;101(1):129-36. doi: 10.1016/j.ijcard.2004.11.008.
    » https://doi.org/10.1016/j.ijcard.2004.11.008
  • 411
    Ohuchi H, Hasegawa S, Yasuda K, Yamada O, Ono Y, Echigo S. Severely Impaired Cardiac Autonomic Nervous Activity after the Fontan Operation. Circulation. 2001;104(13):1513-8. doi: 10.1161/hc3801.096326.
    » https://doi.org/10.1161/hc3801.096326
  • 412
    Ohuchi H, Watanabe K, Kishiki K, Wakisaka Y, Echigo S. Heart Rate Dynamics During and After Exercise in Postoperative Congenital Heart Disease Patients. Their Relation to Cardiac Autonomic Nervous Activity and Intrinsic Sinus Node Dysfunction. Am Heart J. 2007;154(1):165-71. doi: 10.1016/j.ahj.2007.03.031.
    » https://doi.org/10.1016/j.ahj.2007.03.031
  • 413
    Singh TP, Curran TJ, Rhodes J. Cardiac Rehabilitation Improves Heart Rate Recovery Following Peak Exercise in Children with Repaired Congenital Heart Disease. Pediatr Cardiol. 2007;28(4):276-9. doi: 10.1007/s00246-006-0114-0.
    » https://doi.org/10.1007/s00246-006-0114-0
  • 414
    Ohuchi H, Suzuki H, Yasuda K, Arakaki Y, Echigo S, Kamiya T. Heart Rate Recovery After Exercise and Cardiac Autonomic Nervous Activity in Children. Pediatr Res. 2000;47(3):329-35. doi: 10.1203/00006450-200003000-00008.
    » https://doi.org/10.1203/00006450-200003000-00008
  • 415
    Shwaish NS, Malloy-Walton L, Feldman K, Teson KM, Watson JS, Yeh HW, et al. Heart Rate Recovery Following Exercise Testing in Pediatric Patients with Acyanotic Repaired Congenital Heart Disease. Pediatr Cardiol. 2022;43(4):790-5. doi: 10.1007/s00246-021-02788-7.
    » https://doi.org/10.1007/s00246-021-02788-7
  • 416
    Buchheit M, Duché P, Laursen PB, Ratel S. Postexercise Heart Rate Recovery in Children: Relationship with Power Output, Blood pH, and Lactate. Appl Physiol Nutr Metab. 2010;35(2):142-50. doi: 10.1139/H09-140.
    » https://doi.org/10.1139/H09-140
  • 417
    Lazic JS, Dekleva M, Soldatovic I, Leischik R, Suzic S, Radovanovic D, et al. Heart Rate Recovery in Elite Athletes: The Impact of Age and Exercise Capacity. Clin Physiol Funct Imaging. 2017;37(2):117-23. doi: 10.1111/cpf.12271.
    » https://doi.org/10.1111/cpf.12271
  • 418
    Wanne OP, Haapoja E. Blood Pressure During Exercise in Healthy Children. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):62-7. doi: 10.1007/BF00636604.
    » https://doi.org/10.1007/BF00636604
  • 419
    Clarke MM, Zannino D, Stewart NP, Glenning JP, Pineda-Guevara S, Kik J, et al. Normative Blood Pressure Response to Exercise Stress Testing in Children and Adolescents. Open Heart. 2021;8(2):e001807. doi: 10.1136/openhrt-2021-001807.
    » https://doi.org/10.1136/openhrt-2021-001807
  • 420
    Klasson-Heggebø L, Andersen LB, Wennlöf AH, Sardinha LB, Harro M, Froberg K, et al. Graded Associations Between Cardiorespiratory Fitness, Fatness, and Blood Pressure in Children and Adolescents. Br J Sports Med. 2006;40(1):25-9; discussion 25-9. doi: 10.1136/bjsm.2004.016113.
    » https://doi.org/10.1136/bjsm.2004.016113
  • 421
    Takken T, Blank AC, Hulzebos EH, van Brussel M, Groen WG, Helders PJ. Cardiopulmonary Exercise Testing in Congenital Heart Disease: (Contra)Indications and Interpretation. Neth Heart J. 2009;17(10):385-92. doi: 10.1007/BF03086289.
    » https://doi.org/10.1007/BF03086289
  • 422
    Alpert BS, Flood NL, Strong WB, Dover EV, DuRant RH, Martin AM, et al. Responses to Ergometer Exercise in a Healthy Biracial Population of Children. J Pediatr. 1982;101(4):538-45. doi: 10.1016/s0022-3476(82)80696-3.
    » https://doi.org/10.1016/s0022-3476(82)80696-3
  • 423
    Havasi K, Maróti Z, Jakab A, Raskó I, Kalmár T, Bereczki C. Reference Values for Resting and Post Exercise Hemodynamic Parameters in a 6-18 Year Old Population. Sci Data. 2020;7(1):26. doi: 10.1038/s41597-020-0368-z.
    » https://doi.org/10.1038/s41597-020-0368-z
  • 424
    Sasaki T, Kawasaki Y, Takajo D, Sriram C, Ross RD, Kobayashi D. Blood Pressure Response to Treadmill Cardiopulmonary Exercise Test in Children with Normal Cardiac Anatomy and Function. J Pediatr. 2021;233:169-74. doi: 10.1016/j.jpeds.2021.02.043.
    » https://doi.org/10.1016/j.jpeds.2021.02.043
  • 425
    Becker MMC, Silva OB, Moreira IEG, Victor EG. Arterial Blood Pressure in Adolescents During Exercise Stress Testing. Arq Bras Cardiol. 2007;88(3):329-33. doi: 10.1590/s0066-782x2007000300012.
    » https://doi.org/10.1590/s0066-782x2007000300012
  • 426
    Sumitomo N, Ito S, Harada K, Kobayashi H, Okuni M. Treadmill Exercise Test in Children with Cardiomyopathy and Postmyocarditic Myocardial Hypertrophy. Heart Vessels. 1986;2(1):47-50. doi: 10.1007/BF02060245.
    » https://doi.org/10.1007/BF02060245
  • 427
    Alpert BS, Dover EV, Booker DL, Martin AM, Strong WB. Blood Pressure Response to Dynamic Exercise in Healthy Children--Black vs White. J Pediatr. 1981;99(4):556-60. doi: 10.1016/s0022-3476(81)80253-3.
    » https://doi.org/10.1016/s0022-3476(81)80253-3
  • 428
    Kaafarani M, Schroer C, Takken T. Reference Values for Blood Pressure Response to Cycle Ergometry in the First Two Decades of Life: Comparison with Patients with a Repaired Coarctation of the Aorta. Expert Rev Cardiovasc Ther. 2017;15(12):945-51. doi: 10.1080/14779072.2017.1385392.
    » https://doi.org/10.1080/14779072.2017.1385392
  • 429
    Hansen HS, Hyldebrandt N, Nielsen JR, Froberg K. Exercise Testing in Children as a Diagnostic tool of Future Hypertension: The Odense Schoolchild Study. J Hypertens Suppl. 1989;7(1):S41-2. doi: 10.1097/00004872-198902001-00012.
    » https://doi.org/10.1097/00004872-198902001-00012
  • 430
    Lauer RM, Burns TL, Clarke WR, Mahoney LT. Childhood Predictors of Future Blood Pressure. Hypertension. 1991;18(3 Suppl):I74-81. doi: 10.1161/01.hyp.18.3_suppl.i74.
    » https://doi.org/10.1161/01.hyp.18.3_suppl.i74
  • 431
    Muñoz S, Soltero I, Onorato E, Pietri C, Zambrano F. Morphological and Functional Parameters of the Left Ventricle (Mass, Wall Thickness and End-Systolic Stress) in School Children with Different Levels of Blood Pressure, at Rest and During Maximal Exercise. Acta Cient Venez. 1990;41(2):106-13. PMID: 2135560.
  • 432
    Goble MM, Schieken RM. Blood Pressure Response to Exercise. A Marker for Future Hypertension? Am J Hypertens. 1991;4(11):617S-620S. doi: 10.1093/ajh/4.11s.617s.
    » https://doi.org/10.1093/ajh/4.11s.617s
  • 433
    Schultz M, Park C, Sharman J, Fraser A, Howe L, Lawlor D, et al. Exaggerated Exercise Blood Pressure is Associated with Higher Left Ventricular Mass in Adolescence. The Avon Longitudinal Study of Parents and Children. J Hypertens. 2016;34(Suppl 1):e55. doi: 10.1097/01.hjh.0000499992.80444.b7.
    » https://doi.org/10.1097/01.hjh.0000499992.80444.b7
  • 434
    Cyran SE, James FW, Daniels S, Mays W, Shukla R, Kaplan S. Comparison of the Cardiac Output and Stroke Volume Response to Upright Exercise in Children with Valvular and Subvalvular Aortic Stenosis. J Am Coll Cardiol. 1988;11(3):651-8. doi: 10.1016/0735-1097(88)91545-8.
    » https://doi.org/10.1016/0735-1097(88)91545-8
  • 435
    Atwood JE, Kawanishi S, Myers J, Froelicher VF. Exercise Testing in Patients with Aortic Stenosis. Chest. 1988;93(5):1083-7. doi: 10.1378/chest.93.5.1083.
    » https://doi.org/10.1378/chest.93.5.1083
  • 436
    James FW, Schwartz DC, Kaplan S, Spilkin SP. Exercise Electrocardiogram, Blood Pressure, and Working Capacity in Young Patients with Valvular or Discrete Subvalvular Aortic Stenosis. Am J Cardiol. 1982;50(4):769-75. doi: 10.1016/0002-9149(82)91232-2.
    » https://doi.org/10.1016/0002-9149(82)91232-2
  • 437
    Alpert BS, Kartodihardjo W, Harp R, Izukawa T, Strong WB. Exercise Blood Pressure Response--a Predictor of Severity of Aortic Stenosis in Children. J Pediatr. 1981;98(5):763-5. doi: 10.1016/s0022-3476(81)80839-6.
    » https://doi.org/10.1016/s0022-3476(81)80839-6
  • 438
    Norrish G, Cantarutti N, Pissaridou E, Ridout DA, Limongelli G, Elliott PM, et al. Risk Factors for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. Eur J Prev Cardiol. 2017;24(11):1220-30. doi: 10.1177/2047487317702519.
    » https://doi.org/10.1177/2047487317702519
  • 439
    Donazzan L, Crepaz R, Stuefer J, Stellin G. Abnormalities of Aortic Arch Shape, Central Aortic Flow Dynamics, and Distensibility Predispose to Hypertension after Successful Repair of Aortic Coarctation. World J Pediatr Congenit Heart Surg. 2014;5(4):546-53. doi: 10.1177/2150135114551028.
    » https://doi.org/10.1177/2150135114551028
  • 440
    Madueme PC, Khoury PR, Urbina EM, Kimball TR. Predictors of Exaggerated Exercise-Induced Systolic Blood Pressures in Young Patients After Coarctation Repair. Cardiol Young. 2013;23(3):416-22. doi: 10.1017/S1047951112001114.
    » https://doi.org/10.1017/S1047951112001114
  • 441
    Huang Z, Park C, Chaturvedi N, Howe LD, Sharman JE, Hughes AD, et al. Cardiorespiratory Fitness, Fatness, and the Acute Blood Pressure Response to Exercise in Adolescence. Scand J Med Sci Sports. 2021;31(8):1693-8. doi: 10.1111/sms.13976.
    » https://doi.org/10.1111/sms.13976
  • 442
    Szmigielska K, Szmigielska-Kapłon A, Jegier A. Blood Pressure Response to Exercise in Young Athletes Aged 10 to 18 Years. Appl Physiol Nutr Metab. 2016;41(1):41-8. doi: 10.1139/apnm-2015-0101.
    » https://doi.org/10.1139/apnm-2015-0101
  • 443
    Katamba G, Musasizi A, Kinene MA, Namaganda A, Muzaale F. Relationship of Anthropometric Indices with Rate Pressure Product, Pulse Pressure and Mean Arterial Pressure Among Secondary Adolescents of 12-17 Years. BMC Res Notes. 2021;14(1):101. doi: 10.1186/s13104-021-05515-w.
    » https://doi.org/10.1186/s13104-021-05515-w
  • 444
    Mota J, Soares-Miranda L, Silva JM, Dos Santos SS, Vale S. Influence of Body Fat and Level of Physical Activity on Rate-Pressure Product at Rest in Preschool Children. Am J Hum Biol. 2012;24(5):661-5. doi: 10.1002/ajhb.22294.
    » https://doi.org/10.1002/ajhb.22294
  • 445
    Grøntved A, Brage S, Møller NC, Kristensen PL, Wedderkopp N, Froberg K, et al. Hemodynamic Variables During Exercise in Childhood and Resting Systolic Blood Pressure Levels 6 Years Later in Adolescence: The European Youth Heart Study. J Hum Hypertens. 2011;25(10):608-14. doi: 10.1038/jhh.2010.103.
    » https://doi.org/10.1038/jhh.2010.103
  • 446
    García-Niebla J, Llontop-García P, Valle-Racero JI, Serra-Autonell G, Batchvarov VN, de Luna AB. Technical Mistakes During the Acquisition of the Electrocardiogram. Ann Noninvasive Electrocardiol. 2009;14(4):389-403. doi: 10.1111/j.1542-474X.2009.00328.x.
    » https://doi.org/10.1111/j.1542-474X.2009.00328.x
  • 447
    Pérez-Riera AR, Barbosa-Barros R, Daminello-Raimundo R, de Abreu LC. Main Artifacts in Electrocardiography. Ann Noninvasive Electrocardiol. 2018;23(2):e12494. doi: 10.1111/anec.12494.
    » https://doi.org/10.1111/anec.12494
  • 448
    Luo S, Johnston P. A Review of Electrocardiogram Filtering. J Electrocardiol. 2010;43(6):486-96. doi: 10.1016/j.jelectrocard.2010.07.007.
    » https://doi.org/10.1016/j.jelectrocard.2010.07.007
  • 449
    Buendía-Fuentes F, Arnau-Vives MA, Arnau-Vives A, Jiménez-Jiménez Y, Rueda-Soriano J, Zorio-Grima E, et al. High-Bandpass Filters in Electrocardiography: Source of Error in the Interpretation of the ST Segment. ISRN Cardiol. 2012;2012:706217. doi: 10.5402/2012/706217.
    » https://doi.org/10.5402/2012/706217
  • 450
    Dickinson DF. The Normal ECG in Childhood and Adolescence. Heart. 2005;91(12):1626-30. doi: 10.1136/hrt.2004.057307.
    » https://doi.org/10.1136/hrt.2004.057307
  • 451
    Pastore CA, Pinho JA, Pinho C, Samesima N, Pereira Filho HG, Kruse JC, et al. III Diretrizes da Sociedade Brasileira de Cardiologia Sobre Análise e Emissão de Laudos Eletrocardiográficos. Arq Bras Cardiol. 2016;106(4 Suppl 1):1-23. doi: 10.5935/abc.20160054.
    » https://doi.org/10.5935/abc.20160054
  • 452
    Kligfield P, Badilini F, Denjoy I, Babaeizadeh S, Clark E, De Bie J, et al. Comparison of Automated Interval Measurements by Widely Used Algorithms in Digital Electrocardiographs. Am Heart J. 2018;200:1-10. doi: 10.1016/j.ahj.2018.02.014.
    » https://doi.org/10.1016/j.ahj.2018.02.014
  • 453
    Lux RL. Basis and ECG Measurement of Global Ventricular Repolarization. J Electrocardiol. 2017;50(6):792-7. doi: 10.1016/j.jelectrocard.2017.07.008.
    » https://doi.org/10.1016/j.jelectrocard.2017.07.008
  • 454
    Ahmed H, Czosek RJ, Spar DS, Knilans TK, Anderson JB. Early Repolarization in Normal Adolescents is Common. Pediatr Cardiol. 2017;38(4):864-72. doi: 10.1007/s00246-017-1594-9.
    » https://doi.org/10.1007/s00246-017-1594-9
  • 455
    Surawicz B, Parikh SR. Prevalence of Male and Female Patterns of Early Ventricular Repolarization in the Normal ECG of Males and Females from Childhood to Old Age. J Am Coll Cardiol. 2002;40(10):1870-6. doi: 10.1016/s0735-1097(02)02492-0.
    » https://doi.org/10.1016/s0735-1097(02)02492-0
  • 456
    Safa R, Thomas R, Karpawich PP. Electrocardiographic Early Repolarization Characteristics and Clinical Presentations in the Young: A Benign Finding or Worrisome Marker for Arrhythmias. Congenit Heart Dis. 2017;12(1):99-104. doi: 10.1111/chd.12410.
    » https://doi.org/10.1111/chd.12410
  • 457
    Halasz G, Cattaneo M, Piepoli M, Biagi A, Romano S, Biasini V, et al. Early Repolarization in Pediatric Athletes: A Dynamic Electrocardiographic Pattern with Benign Prognosis. J Am Heart Assoc. 2021;10(16):e020776. doi: 10.1161/JAHA.121.020776.
    » https://doi.org/10.1161/JAHA.121.020776
  • 458
    Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher V. Comparison of Three ECG Criteria for Athlete Pre-Participation Screening. J Electrocardiol. 2014;47(6):769-74. doi: 10.1016/j.jelectrocard.2014.07.019.
    » https://doi.org/10.1016/j.jelectrocard.2014.07.019
  • 459
    Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69(8):1057-75. doi: 10.1016/j.jacc.2017.01.015.
    » https://doi.org/10.1016/j.jacc.2017.01.015
  • 460
    Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic Interpretation in Athletes: The ‘Seattle Criteria’. Br J Sports Med. 2013;47(3):122-4. doi: 10.1136/bjsports-2012-092067.
    » https://doi.org/10.1136/bjsports-2012-092067
  • 461
    Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, et al. J-Wave Syndromes Expert Consensus Conference Report: Emerging Concepts and Gaps in Knowledge. Europace. 2017;19(4):665-94. doi: 10.1093/europace/euw235.
    » https://doi.org/10.1093/europace/euw235
  • 462
    Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. Eur Heart J. 2018;39(16):1466-80. doi: 10.1093/eurheartj/ehw631.
    » https://doi.org/10.1093/eurheartj/ehw631
  • 463
    Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New Normal Limits for the Paediatric Electrocardiogram. Eur Heart J. 2001;22(8):702-11. doi: 10.1053/euhj.2000.2399.
    » https://doi.org/10.1053/euhj.2000.2399
  • 464
    Cismaru G, Lazea C, Mureşan L, Gusetu G, Rosu R, Pop D, et al. Validation of Normal P-Wave Parameters in a Large Unselected Pediatric Population of North-Western Romania: Results of the CARDIOPED Project. Dis Markers. 2021;2021:6657982. doi: 10.1155/2021/6657982.
    » https://doi.org/10.1155/2021/6657982
  • 465
    Dilaveris P, Raftopoulos L, Giannopoulos G, Katinakis S, Maragiannis D, Roussos D, et al. Prevalence of Interatrial Block in Healthy School-Aged Children: Definition by P-Wave Duration or Morphological Analysis. Ann Noninvasive Electrocardiol. 2010;15(1):17-25. doi: 10.1111/j.1542-474X.2009.00335.x.
    » https://doi.org/10.1111/j.1542-474X.2009.00335.x
  • 466
    Ng C, Ahmad A, Budhram DR, He M, Balakrishnan N, Mondal T. Accuracy of Electrocardiography and Agreement with Echocardiography in the Diagnosis of Pediatric Left Atrial Enlargement. Sci Rep. 2020;10(1):10027. doi: 10.1038/s41598-020-66987-7.
    » https://doi.org/10.1038/s41598-020-66987-7
  • 467
    Yoshinaga M, Iwamoto M, Horigome H, Sumitomo N, Ushinohama H, Izumida N, et al. Standard Values and Characteristics of Electrocardiographic Findings in Children and Adolescents. Circ J. 2018;82(3):831-9. doi: 10.1253/circj.CJ-17-0735.
    » https://doi.org/10.1253/circj.CJ-17-0735
  • 468
    Hallioglu O, Aytemir K, Celiker A. The Significance of P Wave Duration and P Wave Dispersion for Risk Assessment of Atrial Tachyarrhythmias in Patients with Corrected Tetralogy of Fallot. Ann Noninvasive Electrocardiol. 2004;9(4):339-44. doi: 10.1111/j.1542-474X.2004.94569.x.
    » https://doi.org/10.1111/j.1542-474X.2004.94569.x
  • 469
    Saleh A, Shabana A, El Amrousy D, Zoair A. Predictive Value of P-Wave and QT Interval Dispersion in Children with Congenital Heart Disease and Pulmonary Arterial Hypertension for the Occurrence of Arrhythmias. J Saudi Heart Assoc. 2019;31(2):57-63. doi: 10.1016/j.jsha.2018.11.006.
    » https://doi.org/10.1016/j.jsha.2018.11.006
  • 470
    Malakan Rad E, Karimi M, Momtazmanesh S, Shabanian R, Saatchi M, Asbagh PA, et al. Exercise-Induced Electrocardiographic Changes After Treadmill Exercise Testing in Healthy Children: A Comprehensive Study. Ann Pediatr Cardiol. 2021;14(4):449-58. doi: 10.4103/apc.apc_254_20.
    » https://doi.org/10.4103/apc.apc_254_20
  • 471
    Ho TF, Chia EL, Yip WC, Chan KY. Analysis of P Wave and P Dispersion in Children with Secundum Atrial Septal Defect. Ann Noninvasive Electrocardiol. 2001;6(4):305-9. doi: 10.1111/j.1542-474x.2001.tb00123.x.
    » https://doi.org/10.1111/j.1542-474x.2001.tb00123.x
  • 472
    Bornaun HA, Yılmaz N, Kutluk G, Dedeoğlu R, Öztarhan K, Keskindemirci G, et al. Prolonged P-Wave and QT Dispersion in Children with Inflammatory Bowel Disease in Remission. Biomed Res Int. 2017;2017:6960810. doi: 10.1155/2017/6960810.
    » https://doi.org/10.1155/2017/6960810
  • 473
    Ece I, Üner A, Ballı Ş, Oflaz MB, Kibar AE, Sal E. P-Wave and QT Interval Dispersion Analysis in Children with Eisenmenger Syndrome. Turk Kardiyol Dern Ars. 2014;42(2):154-60. doi: 10.5543/tkda.2014.68704.
    » https://doi.org/10.5543/tkda.2014.68704
  • 474
    Arslan D, Cimen D, Guvenc O, Oran B, Yilmaz FH. Assessment of P-Wave Dispersion in Children with Atrial Septal Aneurysm. Cardiol Young. 2014;24(5):918-22. doi: 10.1017/S1047951113001431.
    » https://doi.org/10.1017/S1047951113001431
  • 475
    Kocaoglu C, Sert A, Aypar E, Oran B, Odabas D, Arslan D, et al. P-Wave Dispersion in Children with Acute Rheumatic Fever. Pediatr Cardiol. 2012;33(1):90-4. doi: 10.1007/s00246-011-0096-4.
    » https://doi.org/10.1007/s00246-011-0096-4
  • 476
    Goodacre S, McLeod K. ABC of Clinical Electrocardiography: Paediatric Electrocardiography. BMJ. 2002;324(7350):1382-5. doi: 10.1136/bmj.324.7350.1382.
    » https://doi.org/10.1136/bmj.324.7350.1382
  • 477
    Blaufox AD, Sleeper LA, Bradley DJ, Breitbart RE, Hordof A, Kanter RJ, et al. Functional Status, Heart Rate, and Rhythm Abnormalities in 521 Fontan Patients 6 to 18 Years of Age. J Thorac Cardiovasc Surg. 2008;136(1):100-7. doi: 10.1016/j.jtcvs.2007.12.024.
    » https://doi.org/10.1016/j.jtcvs.2007.12.024
  • 478
    Ogunlade O, Akintomide AO, Ajayi OE, Eluwole OA. Marked First Degree Atrioventricular Block: An Extremely Prolonged PR Interval Associated with Atrioventricular Dissociation in a Young Nigerian Man with Pseudo-Pacemaker Syndrome: A Case Report. BMC Res Notes. 2014;7:781. doi: 10.1186/1756-0500-7-781.
    » https://doi.org/10.1186/1756-0500-7-781
  • 479
    Barold SS, Ilercil A, Leonelli F, Herweg B. First-Degree Atrioventricular Block. Clinical Manifestations, Indications for Pacing, Pacemaker Management & Consequences During Cardiac Resynchronization. J Interv Card Electrophysiol. 2006;17(2):139-52. doi: 10.1007/s10840-006-9065-x.
    » https://doi.org/10.1007/s10840-006-9065-x
  • 480
    Davignon A, Rautaharju P, Boisselle E, Soumis F, Mégélas M, Choquette A. Normal ECG Standards for Infants and Children. Pediatr Cardiol. 1980;1:123-31. doi: 10.1007/BF02083144.
    » https://doi.org/10.1007/BF02083144
  • 481
    Semizel E, Oztürk B, Bostan OM, Cil E, Ediz B. The Effect of Age and Gender on the Electrocardiogram in Children. Cardiol Young. 2008;18(1):26-40. doi: 10.1017/S1047951107001722.
    » https://doi.org/10.1017/S1047951107001722
  • 482
    Hyde N, Prutkin JM, Drezner JA. Electrocardiogram Interpretation in NCAA Athletes: Comparison of the ‘Seattle’ and ‘International’ Criteria. J Electrocardiol. 2019;56:81-4. doi: 10.1016/j.jelectrocard.2019.07.001.
    » https://doi.org/10.1016/j.jelectrocard.2019.07.001
  • 483
    Weiss M, Rao P, Johnson D, Billups T, Taing C, LaNoue M, et al. Physician Adherence to ‚Seattle‘ and ‚International‘ ECG Criteria in Adolescent Athletes: An Analysis of Compliance by Specialty, Experience, and Practice Environment. J Electrocardiol. 2020;60:98-101. doi: 10.1016/j.jelectrocard.2020.04.005.
    » https://doi.org/10.1016/j.jelectrocard.2020.04.005
  • 484
    Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Criteria for Electrocardiographic Interpretation in Athletes: Consensus Statement. Br J Sports Med. 2017;51(9):704-31. doi: 10.1136/bjsports-2016-097331.
    » https://doi.org/10.1136/bjsports-2016-097331
  • 485
    Drezner JA, Owens DS, Prutkin JM, Salerno JC, Harmon KG, Prosise S, et al. Electrocardiographic Screening in National Collegiate Athletic Association Athletes. Am J Cardiol. 2016;118(5):754-9. doi: 10.1016/j.amjcard.2016.06.004.
    » https://doi.org/10.1016/j.amjcard.2016.06.004
  • 486
    Riding NR, Salah O, Sharma S, Carré F, George KP, Farooq A, et al. ECG and Morphologic Adaptations in Arabic Athletes: Are the European Society of Cardiology's Recommendations for the Interpretation of the 12-Lead ECG Appropriate for this Ethnicity? Br J Sports Med. 2014;48(15):1138-43. doi: 10.1136/bjsports-2012-091871.
    » https://doi.org/10.1136/bjsports-2012-091871
  • 487
    Nakanishi T, Takao A, Kondoh C, Nakazawa M, Hiroe M, Matsumoto Y. ECG Findings after Myocardial Infarction in Children After Kawasaki Disease. Am Heart J. 1988;116(4):1028-33. doi: 10.1016/0002-8703(88)90155-x.
    » https://doi.org/10.1016/0002-8703(88)90155-x
  • 488
    Campbell MJ, Zhou X, Han C, Abrishami H, Webster G, Miyake CY, et al. Electrocardiography Screening for Hypertrophic Cardiomyopathy. Pacing Clin Electrophysiol. 2016;39(9):944-50. doi: 10.1111/pace.12913.
    » https://doi.org/10.1111/pace.12913
  • 489
    Fukuda T. Myocardial Ischemia in Kawasaki Disease; Evaluation by Dipyridamole Stress Thallium-201 (Tl-201) Myocardial Imaging and Exercise Stress Test. Kurume Med J. 1992;39(4):245-55. doi: 10.2739/kurumemedj.39.245.
    » https://doi.org/10.2739/kurumemedj.39.245
  • 490
    Mikrou P, Shivaram P, Kanaris C. How to Interpret the Paediatric 12-Lead ECG. Arch Dis Child Educ Pract Ed. 2022;107(4):279-87. doi: 10.1136/archdischild-2021-322428.
    » https://doi.org/10.1136/archdischild-2021-322428
  • 491
    Thapar MK, Strong WB, Miller MD, Leatherbury L, Salehbhai M. Exercise Electrocardiography of Health Black Children. Am J Dis Child. 1978;132(6):592-5. doi: 10.1001/archpedi.1978.02120310056011.
    » https://doi.org/10.1001/archpedi.1978.02120310056011
  • 492
    Falkner B, Lowenthal DT, Affrime MB, Hamstra B. Changes in R Wave Amplitude During Aerobic Exercise Stress Testing in Hypertensive Adolescents. Am J Cardiol. 1982;50(1):152-6. doi: 10.1016/0002-9149(82)90022-4.
    » https://doi.org/10.1016/0002-9149(82)90022-4
  • 493
    Falkner B, Lowenthal DT, Affrime MB, Hamstra B. R-Wave Amplitude Change During Aerobic Exercise in Hypertensive Adolescents after Treatment. Am J Cardiol. 1983;51(3):459-63. doi: 10.1016/s0002-9149(83)80080-0.
    » https://doi.org/10.1016/s0002-9149(83)80080-0
  • 494
    Lambrechts L, Fourie B. How to Interpret an Electrocardiogram in Children. BJA Educ. 2020;20(8):266-77. doi: 10.1016/j.bjae.2020.03.009.
    » https://doi.org/10.1016/j.bjae.2020.03.009
  • 495
    Garson A. The Electrocardiogram in Infants and Children: A Systematic Approach. Philadelphia: Lea & Febiger; 1983. ISBN: 9780812108729.
  • 496
    Malhotra A, Dhutia H, Gati S, Yeo TJ, Dores H, Bastiaenen R, et al. Anterior T-Wave Inversion in Young White Athletes and Nonathletes: Prevalence and Significance. J Am Coll Cardiol. 2017;69(1):1-9. doi: 10.1016/j.jacc.2016.10.044.
    » https://doi.org/10.1016/j.jacc.2016.10.044
  • 497
    Kirchhof P, Fabritz L. Anterior T-Wave Inversion Does Not Convey Short-Term Sudden Death Risk: Inverted Is the New Normal. J Am Coll Cardiol. 2017;69(1):10-2. doi: 10.1016/j.jacc.2016.11.011.
    » https://doi.org/10.1016/j.jacc.2016.11.011
  • 498
    Anselmi F, Cangiano N, Fusi C, Berti B, Franchini A, Focardi M, et al. The Determinants of Positivization of Anterior T-Wave Inversion in Children. J Sports Med Phys Fitness. 2021;61(11):1548-54. doi: 10.23736/S0022-4707.20.11874-7.
    » https://doi.org/10.23736/S0022-4707.20.11874-7
  • 499
    D’Ascenzi F, Anselmi F, Berti B, Capitani E, Chiti C, Franchini A, et al. Prevalence and Significance of T-Wave Inversion in Children Practicing Sport: A Prospective, 4-Year Follow-Up Study. Int J Cardiol. 2019;279:100-4. doi: 10.1016/j.ijcard.2018.09.069.
    » https://doi.org/10.1016/j.ijcard.2018.09.069
  • 500
    Tipple M. Interpretation of Electrocardiograms in Infants and Children. Images Paediatr Cardiol. 1999;1(1):3-13. PMCID: PMC3232475. PMID: 22368537.
  • 501
    Migliore F, Zorzi A, Michieli P, Perazzolo Marra M, Siciliano M, et al. Prevalence of Cardiomyopathy in Italian Asymptomatic Children with Electrocardiographic T-Wave Inversion at Preparticipation Screening. Circulation. 2012;125(3):529-38. doi: 10.1161/CIRCULATIONAHA.111.055673.
    » https://doi.org/10.1161/CIRCULATIONAHA.111.055673
  • 502
    Stein R, Malhotra A. T Wave Inversions in Athletes: A Variety of Scenarios. J Electrocardiol. 2015;48(3):415-9. doi: 10.1016/j.jelectrocard.2015.01.011.
    » https://doi.org/10.1016/j.jelectrocard.2015.01.011
  • 503
    Calò L, Sperandii F, Martino A, Guerra E, Cavarretta E, Quaranta F, et al. Echocardiographic Findings in 2261 Peri-Pubertal Athletes with or without Inverted T Waves at Electrocardiogram. Heart. 2015;101(3):193-200. doi: 10.1136/heartjnl-2014-306110.
    » https://doi.org/10.1136/heartjnl-2014-306110
  • 504
    Abela M, Sharma S. Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations. Curr Treat Options Cardiovasc Med. 2019;21(12):95. doi: 10.1007/s11936-019-0794-4.
    » https://doi.org/10.1007/s11936-019-0794-4
  • 505
    De Lazzari M, Zorzi A, Bettella N, Cipriani A, Pilichou K, Cason M, et al. Papillary Muscles Abnormalities in Athletes with Otherwise Unexplained T-Wave Inversion in the ECG Lateral Leads. J Am Heart Assoc. 2021;10(3):e019239. doi: 10.1161/JAHA.120.019239.
    » https://doi.org/10.1161/JAHA.120.019239
  • 506
    Papadakis M, Basavarajaiah S, Rawlins J, Edwards C, Makan J, Firoozi S, et al. Prevalence and Significance of T-Wave Inversions in Predominantly Caucasian Adolescent Athletes. Eur Heart J. 2009;30(14):1728-35. doi: 10.1093/eurheartj/ehp164.
    » https://doi.org/10.1093/eurheartj/ehp164
  • 507
    Abela M, Yamagata K, Buttigieg L, Xuereb S, Bonello J, Soler JF, et al. The Juvenile ECG Pattern in Adolescent Athletes and Non-Athletes in a National Cardiac Screening Program (BEAT-IT). Int J Cardiol. 2023;371:508-15. doi: 10.1016/j.ijcard.2022.09.005.
    » https://doi.org/10.1016/j.ijcard.2022.09.005
  • 508
    Calore C, Zorzi A, Sheikh N, Nese A, Facci M, Malhotra A, et al. Electrocardiographic Anterior T-Wave Inversion in Athletes of Different Ethnicities: Differential Diagnosis between Athlete's Heart and Cardiomyopathy. Eur Heart J. 2016;37(32):2515-27. doi: 10.1093/eurheartj/ehv591.
    » https://doi.org/10.1093/eurheartj/ehv591
  • 509
    McClean G, Riding NR, Pieles G, Sharma S, Watt V, Adamuz C, et al. Prevalence and Significance of T-Wave Inversion in Arab and Black Paediatric Athletes: Should Anterior T-Wave Inversion Interpretation be Governed by Biological or Chronological Age?. Eur J Prev Cardiol. 2019;26(6):641-52. doi: 10.1177/2047487318811956.
    » https://doi.org/10.1177/2047487318811956
  • 510
    D’Ascenzi F, Anselmi F, Adami PE, Pelliccia A. Interpretation of T-Wave Inversion in Physiological and Pathological Conditions: Current State and Future Perspectives. Clin Cardiol. 2020;43(8):827-33. doi: 10.1002/clc.23365.
    » https://doi.org/10.1002/clc.23365
  • 511
    Sato A, Saiki H, Kudo M, Takizawa Y, Kuwata S, Nakano S, et al. Chronological T-Wave Alternation before and after the Onset of Arrhythmogenic Right Ventricular Cardiomyopathy. Ann Noninvasive Electrocardiol. 2022;27(6):e12965. doi: 10.1111/anec.12965.
    » https://doi.org/10.1111/anec.12965
  • 512
    Imamura T, Sumitomo N, Muraji S, Yasuda K, Nishihara E, Iwamoto M, et al. Impact of the T-Wave Characteristics on Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy from Healthy Children. Int J Cardiol. 2021;323:168-74. doi: 10.1016/j.ijcard.2020.08.088.
    » https://doi.org/10.1016/j.ijcard.2020.08.088
  • 513
    Şengül FS, Şahin GT, Özgür S, Kafalı HC, Akıncı O, Güzeltaş A, et al. Clinical Features and Arrhythmic Complications of Patients with Pediatric-Onset Arrhythmogenic Right Ventricular Dysplasia. Anatol J Cardiol. 2019;22(2):60-7. doi: 10.14744/AnatolJCardiol.2019.56985.
    » https://doi.org/10.14744/AnatolJCardiol.2019.56985
  • 514
    Hoyt WJ Jr, Ardoin KB, Cannon BC, Snyder CS. T-Wave Reversion in Pediatric Patients During Exercise Stress Testing. Congenit Heart Dis. 2015;10(2):E68-72. doi: 10.1111/chd.12216.
    » https://doi.org/10.1111/chd.12216
  • 515
    Gupta A, Bansal N, Jour LS, Clark BC. Utility of Exercise Stress Testing in Pediatric Patients with T-Wave Inversions. Pediatr Cardiol. 2022;43(4):713-8. doi: 10.1007/s00246-021-02776-x.
    » https://doi.org/10.1007/s00246-021-02776-x
  • 516
    Zaidi A, Sheikh N, Jongman JK, Gati S, Panoulas VF, Carr-White G, et al. Clinical Differentiation between Physiological Remodeling and Arrhythmogenic Right Ventricular Cardiomyopathy in Athletes with Marked Electrocardiographic Repolarization Anomalies. J Am Coll Cardiol. 2015;65(25):2702-11. doi: 10.1016/j.jacc.2015.04.035.
    » https://doi.org/10.1016/j.jacc.2015.04.035
  • 517
    Finocchiaro G, Papadakis M, Dhutia H, Zaidi A, Malhotra A, Fabi E, et al. Electrocardiographic Differentiation between ‘Benign T-Wave Inversion’ and Arrhythmogenic Right Ventricular Cardiomyopathy. Europace. 2019;21(2):332-8. doi: 10.1093/europace/euy179.
    » https://doi.org/10.1093/europace/euy179
  • 518
    Kveselis DA, Rocchini AP, Rosenthal A, Crowley DC, Dick M, Snider AR, et al. Hemodynamic Determinants of Exercise-Induced ST-Segment Depression in Children with Valvar Aortic Stenosis. Am J Cardiol. 1985;55(9):1133-9. doi: 10.1016/0002-9149(85)90650-2.
    » https://doi.org/10.1016/0002-9149(85)90650-2
  • 519
    Whitmer JT, James FW, Kaplan S, Schwartz DC, Knight MJ. Exercise Testing in Children before and after Surgical Treatment of Aortic Stenosis. Circulation. 1981;63(2):254-63. doi: 10.1161/01.cir.63.2.254.
    » https://doi.org/10.1161/01.cir.63.2.254
  • 520
    Kyle WB, Denfield SW, Valdes SO, Penny DJ, Bolin EH, Lopez KN. Assessing ST Segment Changes and Ischemia During Exercise Stress Testing in Patients with Hypoplastic Left Heart Syndrome and Fontan Palliation. Pediatr Cardiol. 2016;37(3):545-51. doi: 10.1007/s00246-015-1312-4.
    » https://doi.org/10.1007/s00246-015-1312-4
  • 521
    Katircibaşi MT, Koçum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-Induced ST-Segment Elevation in Leads Avr and V1 for the Prediction of Left Main Disease. Int J Cardiol. 2008;128(2):240-3. doi: 10.1016/j.ijcard.2007.05.022.
    » https://doi.org/10.1016/j.ijcard.2007.05.022
  • 522
    Hirai K, Ousaka D, Kuroko Y, Kasahara S. Exercise-Induced Ischemic ST-Segment Elevation in Anomalous Origin of the Right Coronary Artery from the Left Sinus of Valsalva with an Intramural Course and Blocked Coronary Bypass. Cureus. 2022;14(12):e32418. doi: 10.7759/cureus.32418.
    » https://doi.org/10.7759/cureus.32418
  • 523
    Sueda S. Young Vasospastic Angina Patients Less than 20 Years Old. Circ J. 2019;83(9):1925-8. doi: 10.1253/circj.CJ-19-0433.
    » https://doi.org/10.1253/circj.CJ-19-0433
  • 524
    Sucato V, Novo G, Saladino A, Rubino M, Caronna N, Luparelli M, et al. Ischemia in Patients with no Obstructive Coronary Artery Disease: Classification, Diagnosis and Treatment of Coronary Microvascular Dysfunction. Coron Artery Dis. 2020;31(5):472-6. doi: 10.1097/MCA.0000000000000855.
    » https://doi.org/10.1097/MCA.0000000000000855
  • 525
    Amin AS, Groot EA, Ruijter JM, Wilde AA, Tan HL. Exercise-Induced ECG Changes in Brugada Syndrome. Circ Arrhythm Electrophysiol. 2009;2(5):531-9. doi: 10.1161/CIRCEP.109.862441.
    » https://doi.org/10.1161/CIRCEP.109.862441
  • 526
    Makimoto H, Nakagawa E, Takaki H, Yamada Y, Okamura H, Noda T, et al. Augmented ST-Segment Elevation During Recovery from Exercise Predicts Cardiac Events in Patients with Brugada Syndrome. J Am Coll Cardiol. 2010;56(19):1576-84. doi: 10.1016/j.jacc.2010.06.033.
    » https://doi.org/10.1016/j.jacc.2010.06.033
  • 527
    Bourier F, Denis A, Cheniti G, Lam A, Vlachos K, Takigawa M, et al. Early Repolarization Syndrome: Diagnostic and Therapeutic Approach. Front Cardiovasc Med. 2018;5:169. doi: 10.3389/fcvm.2018.00169.
    » https://doi.org/10.3389/fcvm.2018.00169
  • 528
    Ji HY, Hu N, Liu R, Zhou HR, Gao WL, Quan XQ. Worldwide Prevalence of Early Repolarization Pattern in General Population and Physically Active Individuals: A Meta-Analysis. Medicine. 2021;100(22):e25978. doi: 10.1097/MD.0000000000025978.
    » https://doi.org/10.1097/MD.0000000000025978
  • 529
    Patton KK, Ellinor PT, Ezekowitz M, Kowey P, Lubitz SA, Perez Met, al. Electrocardiographic Early Repolarization: A Scientific Statement from the American Heart Association. Circulation. 2016;133(15):1520-9. doi: 10.1161/CIR.0000000000000388.
    » https://doi.org/10.1161/CIR.0000000000000388
  • 530
    Macfarlane PW, Antzelevitch C, Haissaguerre M, Huikuri HV, Potse M, Rosso R, et al. The Early Repolarization Pattern: A Consensus Paper. J Am Coll Cardiol. 2015;66(4):470-7. doi: 10.1016/j.jacc.2015.05.033.
    » https://doi.org/10.1016/j.jacc.2015.05.033
  • 531
    Junttila MJ, Sager SJ, Tikkanen JT, Anttonen O, Huikuri HV, Myerburg RJ. Clinical Significance of Variants of J-Points and J-Waves: Early Repolarization Patterns and Risk. Eur Heart J. 2012;33(21):2639-43. doi: 10.1093/eurheartj/ehs110.
    » https://doi.org/10.1093/eurheartj/ehs110
  • 532
    Koch S, Cassel M, Linné K, Mayer F, Scharhag J. ECG and Echocardiographic Findings in 10-15-Year-Old Elite Athletes. Eur J Prev Cardiol. 2014;21(6):774-81. doi: 10.1177/2047487312462147.
    » https://doi.org/10.1177/2047487312462147
  • 533
    Spratt KA, Borans SM, Michelson EL. Early Repolarization: Normalization of the Electrocardiogram with Exercise as a Clinically useful Diagnostic Feature. J Invasive Cardiol. 1995;7(8):238-42. PMID: 10158115.
  • 534
    Bastiaenen R, Raju H, Sharma S, Papadakis M, Chandra N, Muggenthaler M, et al. Characterization of Early Repolarization During Ajmaline Provocation and Exercise Tolerance Testing. Heart Rhythm. 2013;10(2):247-54. doi: 10.1016/j.hrthm.2012.10.032.
    » https://doi.org/10.1016/j.hrthm.2012.10.032
  • 535
    Refaat MM, Hotait M, Tseng ZH. Utility of the Exercise Electrocardiogram Testing in Sudden Cardiac Death Risk Stratification. Ann Noninvasive Electrocardiol. 2014;19(4):311-8. doi: 10.1111/anec.12191.
    » https://doi.org/10.1111/anec.12191
  • 536
    Nouraei H, Rabkin SW. The Effect of Exercise on the ECG Criteria for Early Repolarization Pattern. J Electrocardiol. 2019;55:59-64. doi: 10.1016/j.jelectrocard.2019.03.005.
    » https://doi.org/10.1016/j.jelectrocard.2019.03.005
  • 537
    Barbosa EC, Bomfim AS, Barbosa PRB, Ginefra P. Ionic Mechanisms and Vectorial Model of Early Repolarization Pattern in the Surface Electrocardiogram of the Athlete. Ann Noninvasive Electrocardiol. 2008;13(3):301-7. doi: 10.1111/j.1542-474X.2008.00235.x.
    » https://doi.org/10.1111/j.1542-474X.2008.00235.x
  • 538
    Rabkin SW, Cheng XB. Nomenclature, Categorization and Usage of Formulae to Adjust QT Interval for Heart Rate. World J Cardiol. 2015;7(6):315-25. doi: 10.4330/wjc.v7.i6.315.
    » https://doi.org/10.4330/wjc.v7.i6.315
  • 539
    Sundaram S, Carnethon M, Polito K, Kadish AH, Goldberger JJ. Autonomic Effects on QT-RR Interval Dynamics after Exercise. Am J Physiol Heart Circ Physiol. 2008;294(1):H490-7. doi: 10.1152/ajpheart.00046.2007.
    » https://doi.org/10.1152/ajpheart.00046.2007
  • 540
    Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM. Autonomic Nervous System Influences on QT Interval in Normal Subjects. J Am Coll Cardiol. 2002;39(11):1820-6. doi: 10.1016/s0735-1097(02)01852-1.
    » https://doi.org/10.1016/s0735-1097(02)01852-1
  • 541
    Viitasalo M, Rovamo L, Toivonen L, Pesonen E, Heikkilä J. Dynamics of the QT Interval During and After Exercise in Healthy Children. Eur Heart J. 1996;17(11):1723-8. doi: 10.1093/oxfordjournals.eurheartj.a014757.
    » https://doi.org/10.1093/oxfordjournals.eurheartj.a014757
  • 542
    Horner JM, Horner MM, Ackerman MJ. The Diagnostic Utility of Recovery Phase Qtc During Treadmill Exercise Stress Testing in the Evaluation of Long QT Syndrome. Heart Rhythm. 2011;8(11):1698-704. doi: 10.1016/j.hrthm.2011.05.018.
    » https://doi.org/10.1016/j.hrthm.2011.05.018
  • 543
    Gervasi SF, Bianco M, Palmieri V, Cuccaro F, Zeppilli P. QTc Interval in Adolescents and Young Athletes: Influence of Correction Formulas. Int J Sports Med. 2017;38(10):729-34. doi: 10.1055/s-0043-108997.
    » https://doi.org/10.1055/s-0043-108997
  • 544
    Andršová I, Hnatkova K, Helánová K, Šišáková M, Novotný T, Kala P, et al. Problems with Bazett Qtc Correction in Paediatric Screening of Prolonged Qtc Interval. BMC Pediatr. 2020;20(1):558. doi: 10.1186/s12887-020-02460-8.
    » https://doi.org/10.1186/s12887-020-02460-8
  • 545
    de Veld L, van der Lely N, Hermans BJM, van Hoof JJ, Wong L, Vink AS. Qtc Prolongation in Adolescents with Acute Alcohol Intoxication. Eur J Pediatr. 2022;181(7):2757-70. doi: 10.1007/s00431-022-04471-2.
    » https://doi.org/10.1007/s00431-022-04471-2
  • 546
    Benatar A, Decraene T. Comparison of Formulae for Heart Rate Correction of QT Interval in Exercise Ecgs from Healthy Children. Heart. 2001;86(2):199-202. doi: 10.1136/heart.86.2.199.
    » https://doi.org/10.1136/heart.86.2.199
  • 547
    Berger WR, Gow RM, Kamberi S, Cheung M, Smith KR, Davis AM. The QT and Corrected QT Interval in Recovery after Exercise in Children. Circ Arrhythm Electrophysiol. 2011;4(4):448-55. doi: 10.1161/CIRCEP.110.961094.
    » https://doi.org/10.1161/CIRCEP.110.961094
  • 548
    Aziz PF, Wieand TS, Ganley J, Henderson J, Patel AR, Iyer VR, et al. Genotype- and Mutation Site-Specific QT Adaptation During Exercise, Recovery, and Postural Changes in Children with Long-QT Syndrome. Circ Arrhythm Electrophysiol. 2011;4(6):867-73. doi: 10.1161/CIRCEP.111.963330.
    » https://doi.org/10.1161/CIRCEP.111.963330
  • 549
    Miyazaki A, Sakaguchi H, Matsumura Y, Hayama Y, Noritake K, Negishi J, et al. Mid-Term Follow-Up of School-Aged Children with Borderline Long QT Interval. Circ J. 2017;81(5):726-32. doi: 10.1253/circj.CJ-16-0991.
    » https://doi.org/10.1253/circj.CJ-16-0991
  • 550
    Dickinson DF, Scott O. Ambulatory Electrocardiographic Monitoring in 100 Healthy Teenage Boys. Br Heart J. 1984;51(2):179-83. doi: 10.1136/hrt.51.2.179.
    » https://doi.org/10.1136/hrt.51.2.179
  • 551
    Bexton RS, Camm AJ. First Degree Atrioventricular Block. Eur Heart J. 1984;5(Suppl A):107-9. doi: 10.1093/eurheartj/5.suppl_a.107.
    » https://doi.org/10.1093/eurheartj/5.suppl_a.107
  • 552
    Viitasalo MT, Kala R, Eisalo A. Ambulatory Electrocardiographic Findings in Young Athletes between 14 and 16 Years of Age. Eur Heart J. 1984;5(1):2-6. doi: 10.1093/oxfordjournals.eurheartj.a061546.
    » https://doi.org/10.1093/oxfordjournals.eurheartj.a061546
  • 553
    Cruz EM, Ivy D, Jaggers J, editors. Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. London: Springer; 2020. ISBN-10: 3030622940; ISBN-13: 978-3030622947.
  • 554
    Karpawich PP, Gillette PC, Garson A Jr, Hesslein PS, Porter CB, McNamara DG. Congenital Complete Atrioventricular Block: Clinical and Electrophysiologic Predictors of Need for Pacemaker Insertion. Am J Cardiol. 1981;48(6):1098-102. doi: 10.1016/0002-9149(81)90326-x.
    » https://doi.org/10.1016/0002-9149(81)90326-x
  • 555
    Reybrouck T, Eynde BV, Dumoulin M, Van der Hauwaert LG. Cardiorespiratory Response to Exercise in Congenital Complete Atrioventricular Block. Am J Cardiol. 1989;64(14):896-9. doi: 10.1016/0002-9149(89)90838-2.
    » https://doi.org/10.1016/0002-9149(89)90838-2
  • 556
    Michaëlsson M, Jonzon A, Riesenfeld T. Isolated Congenital Complete Atrioventricular Block in Adult Life. A Prospective Study. Circulation. 1995;92(3):442-9. doi: 10.1161/01.cir.92.3.442.
    » https://doi.org/10.1161/01.cir.92.3.442
  • 557
    Winkler RB, Freed MD, Nadas AS. Exercise-Induced Ventricular Ectopy in Children and Young Adults with Complete Heart Block. Am Heart J. 1980;99(1):87-92. doi: 10.1016/0002-8703(80)90317-8.
    » https://doi.org/10.1016/0002-8703(80)90317-8
  • 558
    Kertesz NJ, Fenrich AL, Friedman RA. Congenital Complete Atrioventricular Block. Tex Heart Inst J. 1997;24(4):301-7. PMCID: PMC325472. PMID: 9456483.
  • 559
    O’Connor M, McDaniel N, Brady WJ. The Pediatric Electrocardiogram Part III: Congenital Heart Disease and Other Cardiac Syndromes. Am J Emerg Med. 2008;26(4):497-503. doi: 10.1016/j.ajem.2007.08.004.
    » https://doi.org/10.1016/j.ajem.2007.08.004
  • 560
    Aggarwal V, Sexson-Tejtal K, Lam W, Valdes SO, De la Uz CM, Kim JJ, et al. The Incidence of Arrhythmias During Exercise Stress Tests among Children with Kawasaki Disease: A Single-Center Case Series. Congenit Heart Dis. 2019;14(6):1032-6. doi: 10.1111/chd.12864.
    » https://doi.org/10.1111/chd.12864
  • 561
    Priromprintr B, Rhodes J, Silka MJ, Batra AS. Prevalence of Arrhythmias During Exercise Stress Testing in Patients with Congenital Heart Disease and Severe Right Ventricular Conduit Dysfunction. Am J Cardiol. 2014;114(3):468-72. doi: 10.1016/j.amjcard.2014.05.019.
    » https://doi.org/10.1016/j.amjcard.2014.05.019
  • 562
    Beaufort-Krol GC, Dijkstra SS, Bink-Boelkens MT. Natural History of Ventricular Premature Contractions in Children with a Structurally Normal Heart: Does Origin Matter?. Europace. 2008;10(8):998-1003. doi: 10.1093/europace/eun121.
    » https://doi.org/10.1093/europace/eun121
  • 563
    Sharma N, Cortez D, Imundo JR. High Burden of Premature Ventricular Contractions in Structurally Normal Hearts: to Worry or Not in Pediatric Patients?. Ann Noninvasive Electrocardiol. 2019;24(6):e12663. doi: 10.1111/anec.12663.
    » https://doi.org/10.1111/anec.12663
  • 564
    Abadir S, Blanchet C, Fournier A, Mawad W, Shohoudi A, Dahdah N, et al. Characteristics of Premature Ventricular Contractions in Healthy Children and their Impact on Left Ventricular Function. Heart Rhythm. 2016;13(11):2144-8. doi: 10.1016/j.hrthm.2016.07.002.
    » https://doi.org/10.1016/j.hrthm.2016.07.002
  • 565
    Drago F, Leoni L, Bronzetti G, Sarubbi B, Porcedda G. Premature Ventricular Complexes in Children with Structurally Normal Hearts: Clinical Review and Recommendations for Diagnosis and Treatment. Minerva Pediatr. 2017;69(5):427-33. doi: 10.23736/S0026-4946.17.05031-9.
    » https://doi.org/10.23736/S0026-4946.17.05031-9
  • 566
    Wiles HB. Exercise Testing for Arrhythmia: Children and Adolescents. Prog Pediatr Cardiol. 1993;2(2):51-60. doi: 10.1016/1058-9813(93)90018-U.
    » https://doi.org/10.1016/1058-9813(93)90018-U
  • 567
    Rozanski JJ, Dimich I, Steinfeld L, Kupersmith J. Maximal Exercise Stress Testing in Evaluation of Arrhythmias in Children: Results and Reproducibility. Am J Cardiol. 1979;43(5):951-6. doi: 10.1016/0002-9149(79)90358-8.
    » https://doi.org/10.1016/0002-9149(79)90358-8
  • 568
    Biondi EA. Focus on Diagnosis: Cardiac Arrhythmias in Children. Pediatr Rev. 2010;31(9):375-9. doi: 10.1542/pir.31-9-375.
    » https://doi.org/10.1542/pir.31-9-375
  • 569
    Draper DE, Giddins NG, McCort J, Gross GJ. Diagnostic Usefulness of Graded Exercise Testing in Pediatric Supraventricular Tachycardia. Can J Cardiol. 2009;25(7):407-10. doi: 10.1016/s0828-282x(09)70503-3.
    » https://doi.org/10.1016/s0828-282x(09)70503-3
  • 570
    Vignati G, Annoni G. Characterization of Supraventricular Tachycardia in Infants: Clinical and Instrumental Diagnosis. Curr Pharm Des. 2008;14(8):729-35. doi: 10.2174/138161208784007752.
    » https://doi.org/10.2174/138161208784007752
  • 571
    Manole MD, Saladino RA. Emergency Department Management of the Pediatric Patient with Supraventricular Tachycardia. Pediatr Emerg Care. 2007;23(3):176-85. doi: 10.1097/PEC.0b013e318032904c.
    » https://doi.org/10.1097/PEC.0b013e318032904c
  • 572
    Kang KT, Etheridge SP, Kantoch MJ, Tisma-Dupanovic S, Bradley DJ, Balaji S, et al. Current Management of Focal Atrial Tachycardia in Children: A Multicenter Experience. Circ Arrhythm Electrophysiol. 2014;7(4):664-70. doi: 10.1161/CIRCEP.113.001423.
    » https://doi.org/10.1161/CIRCEP.113.001423
  • 573
    Dohain AM, Lotfy W, Abdelmohsen G, Sobhy R, Abdelaziz O, Elsaadany M, et al. Functional Recovery of Cardiomyopathy Induced by Atrial Tachycardia in Children: Insight from Cardiac Strain Imaging. Pacing Clin Electrophysiol. 2021;44(3):442-50. doi: 10.1111/pace.14186.
    » https://doi.org/10.1111/pace.14186
  • 574
    Kylat RI, Samson RA. Junctional Ectopic Tachycardia in Infants and Children. J Arrhythm. 2019;36(1):59-66. doi: 10.1002/joa3.12282.
    » https://doi.org/10.1002/joa3.12282
  • 575
    Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet. 2021;12:654925. doi: 10.3389/fgene.2021.654925.
    » https://doi.org/10.3389/fgene.2021.654925
  • 576
    Semelka M, Gera J, Usman S. Sick Sinus Syndrome: A Review. Am Fam Physician. 2013;87(10):691-6. PMID: 23939447.
  • 577
    Hawks MK, Paul MLB, Malu OO. Sinus Node Dysfunction. Am Fam Physician. 2021;104(2):179-85. PMID: 34383451.
  • 578
    Baruteau AE, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and Management of Bradycardia in Neonates and Children. Eur J Pediatr. 2016;175(2):151-61. doi: 10.1007/s00431-015-2689-z.
    » https://doi.org/10.1007/s00431-015-2689-z
  • 579
    Drago F, Battipaglia I, Di Mambro C. Neonatal and Pediatric Arrhythmias: Clinical and Electrocardiographic Aspects. Card Electrophysiol Clin. 2018;10(2):397-412. doi: 10.1016/j.ccep.2018.02.008.
    » https://doi.org/10.1016/j.ccep.2018.02.008
  • 580
    Joung B, Chen PS. Function and Dysfunction of Human Sinoatrial Node. Korean Circ J. 2015;45(3):184-91. doi: 10.4070/kcj.2015.45.3.184.
    » https://doi.org/10.4070/kcj.2015.45.3.184
  • 581
    Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, et al. Sinus Node Dysfunction: Current Understanding and Future Directions. Am J Physiol Heart Circ Physiol. 2023;324(3):H259-78. doi: 10.1152/ajpheart.00618.2022.
    » https://doi.org/10.1152/ajpheart.00618.2022
  • 582
    Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Cardiol Young. 2021;31(11):1738-69. doi: 10.1017/S1047951121003413.
    » https://doi.org/10.1017/S1047951121003413
  • 583
    Baruteau AE, Probst V, Abriel H. Inherited Progressive Cardiac Conduction Disorders. Curr Opin Cardiol. 2015;30(1):33-9. doi: 10.1097/HCO.0000000000000134.
    » https://doi.org/10.1097/HCO.0000000000000134
  • 584
    Villarreal-Molina T, García-Ordóñez GP, Reyes-Quintero ÁE, Domínguez-Pérez M, Jacobo-Albavera L, Nava S, et al. Clinical Spectrum of SCN5A Channelopathy in Children with Primary Electrical Disease and Structurally Normal Hearts. Genes. 2021;13(1):16. doi: 10.3390/genes13010016.
    » https://doi.org/10.3390/genes13010016
  • 585
    Mangrum JM, DiMarco JP. The Evaluation and Management of Bradycardia. N Engl J Med. 2000;342(10):703-9. doi: 10.1056/NEJM200003093421006.
    » https://doi.org/10.1056/NEJM200003093421006
  • 586
    Norozi K, Wessel A, Alpers V, Arnhold JO, Geyer S, Zoege M, et al. Incidence and Risk Distribution of Heart Failure in Adolescents and Adults with Congenital Heart Disease after Cardiac Surgery. Am J Cardiol. 2006;97(8):1238-43. doi: 10.1016/j.amjcard.2005.10.065.
    » https://doi.org/10.1016/j.amjcard.2005.10.065
  • 587
    Reybrouck T, Weymans M, Stijns H, van der Hauwaert LG. Exercise Testing after Correction of Tetralogy of Fallot: The Fallacy of a Reduced Heart Rate Response. Am Heart J. 1986;112(5):998-1003. doi: 10.1016/0002-8703(86)90312-1.
    » https://doi.org/10.1016/0002-8703(86)90312-1
  • 588
    Takken T, Tacken MH, Blank AC, Hulzebos EH, Strengers JL, Helders PJ. Exercise Limitation in Patients with Fontan Circulation: A Review. J Cardiovasc Med. 2007;8(10):775-81. doi: 10.2459/JCM.0b013e328011c999.
    » https://doi.org/10.2459/JCM.0b013e328011c999
  • 589
    Massin MM, Dessy H, Malekzadeh-Milani SG, Khaldi K, Topac B, Edelman R. Chronotropic Impairment after Surgical or Percutaneous Closure of Atrial Septal Defect. Catheter Cardiovasc Interv. 2009;73(4):564-7. doi: 10.1002/ccd.21857.
    » https://doi.org/10.1002/ccd.21857
  • 590
    Pfammatter JP, Zanolari M, Schibler A. Cardiopulmonary Exercise Parameters in Children with Atrial Septal Defect and Increased Pulmonary Blood Flow: Short-Term Effects of Defect Closure. Acta Paediatr. 2002;91(1):65-70. doi: 10.1080/080352502753457987.
    » https://doi.org/10.1080/080352502753457987
  • 591
    Hock J, Häcker AL, Reiner B, Oberhoffer R, Hager A, Ewert P, et al. Functional Outcome in Contemporary Children and Young Adults with Tetralogy of Fallot after Repair. Arch Dis Child. 2019;104(2):129-33. doi: 10.1136/archdischild-2017-314733.
    » https://doi.org/10.1136/archdischild-2017-314733
  • 592
    Zajac A, Tomkiewicz L, Podolec P, Tracz W, Malec E. Cardiorespiratory Response to Exercise in Children after Modified Fontan Operation. Scand Cardiovasc J. 2002;36(2):80-5. doi: 10.1080/140174302753675348.
    » https://doi.org/10.1080/140174302753675348
  • 593
    Talavera MM, Manso B, Ramos PC, Puras MJR, Rodriguez AJW, Vinuesa PGG. Determinants of Oxygen Uptake and Prognostic Factors in Cardiopulmonary Exercise Test in Patients with Fontan Surgery. Cardiol Young. 2022;32(8):1285-8. doi: 10.1017/S1047951121004054.
    » https://doi.org/10.1017/S1047951121004054
  • 594
    American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211.
    » https://doi.org/10.1164/rccm.167.2.211
  • 595
    Takken T, Mylius CF, Paap D, Broeders W, Hulzebos HJ, Van Brussel M, et al. Reference Values for Cardiopulmonary Exercise Testing in Healthy Subjects - an Updated Systematic Review. Expert Rev Cardiovasc Ther. 2019;17(6):413-26. doi: 10.1080/14779072.2019.1627874.
    » https://doi.org/10.1080/14779072.2019.1627874
  • 596
    Blanchard J, Blais S, Chetaille P, Bisson M, Counil FP, Huard-Girard T, et al. New Reference Values for Cardiopulmonary Exercise Testing in Children. Med Sci Sports Exerc. 2018;50(6):1125-33. doi: 10.1249/MSS.0000000000001559.
    » https://doi.org/10.1249/MSS.0000000000001559
  • 597
    Rodrigues AN, Perez AJ, Carletti L, Bissoli NS, Abreu GR. Maximum Oxygen Uptake in Adolescents as Measured by Cardiopulmonary Exercise Testing: A Classification Proposal. J Pediatr. 2006;82(6):426-30. doi: 10.2223/JPED.1533.
    » https://doi.org/10.2223/JPED.1533
  • 598
    Boisseau N, Delamarche P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000;30(6):405-22. doi: 10.2165/00007256-200030060-00003.
    » https://doi.org/10.2165/00007256-200030060-00003
  • 599
    Prado DM, Dias RG, Trombetta IC. Cardiovascular, Ventilatory, and Metabolic Parameters During Exercise: Differences between Children and Adults. Arq Bras Cardiol. 2006;87(4):e149-55. doi: 10.1590/s0066-782x2006001700035.
    » https://doi.org/10.1590/s0066-782x2006001700035
  • 600
    Almeida PF Neto, Silva LFD, Miarka B, Medeiros JA, Medeiros RCDSC, Teixeira RPA, et al. Influence of Advancing Biological Maturation on Aerobic and Anaerobic Power and on Sport Performance of Junior Rowers: A Longitudinal Study. Front Physiol. 2022;13:892966. doi: 10.3389/fphys.2022.892966.
    » https://doi.org/10.3389/fphys.2022.892966
  • 601
    Mero A, Jaakkola L, Komi PV. Relationships between Muscle Fibre Characteristics and Physical Performance Capacity in Trained Athletic Boys. J Sports Sci. 1991;9(2):161-71. doi: 10.1080/02640419108729877.
    » https://doi.org/10.1080/02640419108729877
  • 602
    Fellmann N, Coudert J. Physiology of Muscular Exercise in Children. Arch Pediatr. 1994;1(9):827-40. PMID: 7842128.
  • 603
    Rowland TW, Auchinachie JA, Keenan TJ, Green GM. Physiologic Responses to Treadmill Running in Adult and Prepubertal Males. Int J Sports Med. 1987;8(4):292-7. doi: 10.1055/s-2008-1025672.
    » https://doi.org/10.1055/s-2008-1025672
  • 604
    Bessa AL, Oliveira VN, Agostini GG, Oliveira RJ, Oliveira AC, White GE, et al. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res. 2016;30(2):311-9. doi: 10.1519/JSC.0b013e31828f1ee9.
    » https://doi.org/10.1519/JSC.0b013e31828f1ee9
  • 605
    Guth LM, Rogowski MP, Guilkey JP, Mahon AD. Carbohydrate Consumption and Variable-Intensity Exercise Responses in Boys and Men. Eur J Appl Physiol. 2019;119(4):1019-27. doi: 10.1007/s00421-019-04091-z.
    » https://doi.org/10.1007/s00421-019-04091-z
  • 606
    Montfort-Steiger V, Williams CA. Carbohydrate Intake Considerations for Young Athletes. J Sports Sci Med. 2007;6(3):343-52. PMCID: PMC3787285; PMID: 24149421.
  • 607
    Isacco L, Duché P, Boisseau N. Influence of Hormonal Status on Substrate Utilization at Rest and During Exercise in the Female Population. Sports Med. 2012;42(4):327-42. doi: 10.2165/11598900-000000000-00000.
    » https://doi.org/10.2165/11598900-000000000-00000
  • 608
    Xu Y, Wen Z, Deng K, Li R, Yu Q, Xiao SM. Relationships of Sex Hormones with Muscle Mass and Muscle Strength in Male Adolescents at Different Stages of Puberty. PLoS One. 2021;16(12):e0260521. doi: 10.1371/journal.pone.0260521.
    » https://doi.org/10.1371/journal.pone.0260521
  • 609
    Almeida PF Neto, Dantas PMS, Pinto VCM, Cesário TM, Campos NMR, Santana EE, et al. Biological Maturation and Hormonal Markers, Relationship to Neuromotor Performance in Female Children. Int J Environ Res Public Health. 2020;17(9):3277. doi: 10.3390/ijerph17093277.
    » https://doi.org/10.3390/ijerph17093277
  • 610
    Amedro P, Guillaumont S, Bredy C, Matecki S, Gavotto A. Atrial Septal Defect and Exercise Capacity: Value of Cardio-Pulmonary Exercise Test in Assessment and Follow-Up. J Thorac Dis. 2018;10(Suppl 24):S2864-S2873. doi: 10.21037/jtd.2017.11.30.
    » https://doi.org/10.21037/jtd.2017.11.30
  • 611
    Das BB. A Systematic Approach for the Interpretation of Cardiopulmonary Exercise Testing in Children with Focus on Cardiovascular Diseases. J Cardiovasc Dev Dis. 2023;10(4):178. doi: 10.3390/jcdd10040178.
    » https://doi.org/10.3390/jcdd10040178
  • 612
    Tang Y, Luo Q, Liu Z, Ma X, Zhao Z, Huang Z, et al. Oxygen Uptake Efficiency Slope Predicts Poor Outcome in Patients with Idiopathic Pulmonary Arterial Hypertension. J Am Heart Assoc. 2017;6(7):e005037. doi: 10.1161/JAHA.116.005037.
    » https://doi.org/10.1161/JAHA.116.005037
  • 613
    Bongers BC, Hulzebos HJ, Blank AC, van Brussel M, Takken T. The Oxygen Uptake Efficiency Slope in Children with Congenital Heart Disease: Construct and Group Validity. Eur J Cardiovasc Prev Rehabil. 2011;18(3):384-92. doi: 10.1177/1741826710389390.
    » https://doi.org/10.1177/1741826710389390
  • 614
    Akkerman M, van Brussel M, Bongers BC, Hulzebos EH, Helders PJ, Takken T. Oxygen Uptake Efficiency Slope in Healthy Children. Pediatr Exerc Sci. 2010;22(3):431-41. doi: 10.1123/pes.22.3.431.
    » https://doi.org/10.1123/pes.22.3.431
  • 615
    Davies LC, Wensel R, Georgiadou P, Cicoira M, Coats AJ, Piepoli MF, et al. Enhanced Prognostic Value from Cardiopulmonary Exercise Testing in Chronic Heart Failure by Non-Linear Analysis: Oxygen Uptake Efficiency Slope. Eur Heart J. 2006;27(6):684-90. doi: 10.1093/eurheartj/ehi672.
    » https://doi.org/10.1093/eurheartj/ehi672
  • 616
    Baba R, Kubo N, Morotome Y, Iwagaki S. Reproducibility of the Oxygen Uptake Efficiency Slope in Normal Healthy Subjects. J Sports Med Phys Fitness. 1999;39(3):202-6. PMID: 10573661.
  • 617
    van Laethem C, Bartunek J, Goethals M, Nellens P, Andries E, Vanderheyden M. Oxygen Uptake Efficiency Slope, a New Submaximal Parameter in Evaluating Exercise Capacity in Chronic Heart Failure Patients. Am Heart J. 2005;149(1):175-80. doi: 10.1016/j.ahj.2004.07.004.
    » https://doi.org/10.1016/j.ahj.2004.07.004
  • 618
    van Laethem C, De Sutter J, Peersman W, Calders P. Intratest Reliability and Test-Retest Reproducibility of the Oxygen Uptake Efficiency Slope in Healthy Participants. Eur J Cardiovasc Prev Rehabil. 2009;16(4):493-8. doi: 10.1097/HJR.0b013e32832c88a8.
    » https://doi.org/10.1097/HJR.0b013e32832c88a8
  • 619
    Hollenberg M, Tager IB. Oxygen Uptake Efficiency Slope: An Index of Exercise Performance and Cardiopulmonary Reserve Requiring Only Submaximal Exercise. J Am Coll Cardiol. 2000;36(1):194-201. doi: 10.1016/s0735-1097(00)00691-4.
    » https://doi.org/10.1016/s0735-1097(00)00691-4
  • 620
    Sun XG, Hansen JE, Stringer WW. Oxygen Uptake Efficiency Plateau Best Predicts Early Death in Heart Failure. Chest. 2012;141(5):1284-94. doi: 10.1378/chest.11-1270.
    » https://doi.org/10.1378/chest.11-1270
  • 621
    Sun XG, Hansen JE, Stringer WW. Oxygen Uptake Efficiency Plateau: Physiology and Reference Values. Eur J Appl Physiol. 2012;112(3):919-28. doi: 10.1007/s00421-011-2030-0.
    » https://doi.org/10.1007/s00421-011-2030-0
  • 622
    Bongers BC, Hulzebos EH, Helbing WA, Harkel ADT, van Brussel M, Takken T. Response Profiles of Oxygen Uptake Efficiency During Exercise in Healthy Children. Eur J Prev Cardiol. 2016;23(8):865-73. doi: 10.1177/2047487315611769.
    » https://doi.org/10.1177/2047487315611769
  • 623
    Hossri CA, Souza IPA, Oliveira JS, Mastrocola LE. Assessment of Oxygen-Uptake Efficiency Slope in Healthy Children and Children with Heart Disease: Generation of Appropriate Reference Values for the OUES Variable. Eur J Prev Cardiol. 2019;26(2):177-84. doi: 10.1177/2047487318807977.
    » https://doi.org/10.1177/2047487318807977
  • 624
    Gavotto A, Vandenberghe D, Abassi H, Huguet H, Macioce V, Picot MC, et al. Oxygen Uptake Efficiency Slope: A Reliable Surrogate Parameter for Exercise Capacity in Healthy and Cardiac Children?. Arch Dis Child. 2020;105(12):1167-74. doi: 10.1136/archdischild-2019-317724.
    » https://doi.org/10.1136/archdischild-2019-317724
  • 625
    Tsai YJ, Li MH, Tsai WJ, Tuan SH, Liao TY, Lin KL. Oxygen Uptake Efficiency Slope and Peak Oxygen Consumption Predict Prognosis in Children with Tetralogy of Fallot. Eur J Prev Cardiol. 2016;23(10):1045-50. doi: 10.1177/2047487315623405.
    » https://doi.org/10.1177/2047487315623405
  • 626
    Los Monteros CTE, Van der Palen RLF, Hazekamp MG, Rammeloo L, Jongbloed MRM, Blom NA, ET AL. Oxygen Uptake Efficiency Slope is Strongly Correlated to VO2peak Long-Term after Arterial Switch Operation. Pediatr Cardiol. 2021;42(4):866-74. doi: 10.1007/s00246-021-02554-9.
    » https://doi.org/10.1007/s00246-021-02554-9
  • 627
    Gavotto A, Huguet H, Picot MC, Guillaumont S, Matecki S, Amedro P. The VE/VCo2 Slope: A Useful Tool to Evaluate the Physiological Status of Children with Congenital Heart Disease. J Appl Physiol. 2020;129(5):1102-10. doi: 10.1152/japplphysiol.00520.2020.
    » https://doi.org/10.1152/japplphysiol.00520.2020
  • 628
    Borel B, Leclair E, Thevenet D, Beghin L, Gottrand F, Fabre C. Mechanical Ventilatory Constraints During Incremental Exercise in Healthy and Cystic Fibrosis Children. Pediatr Pulmonol. 2014;49(3):221-9. doi: 10.1002/ppul.22804.
    » https://doi.org/10.1002/ppul.22804
  • 629
    Toma N, Bicescu G, Enache R, Dragoi R, Cinteza M. Cardiopulmonary Exercise Testing in Differential Diagnosis of Dyspnea. Maedica. 2010;5(3):214-8. PMCID: PMC3177547; PMID: 21977155.
  • 630
    Rowland TW, Rowland TW. Children's Exercise Physiology. 2nd ed. Champaign: Human Kinetics; 2005. ISBN-10: 0736051449; ISBN-13: 978-0736051446.
  • 631
    Cooper CB, Storer TW. Exercise Testing and Interpretation: A Practical Approach. Cambridge: Cambridge University Press; 2001. ISBN-13: 978-0521648424.
  • 632
    Guirgis L, Khraiche D, Ladouceur M, Iserin L, Bonnet D, Legendre A. Cardiac Performance Assessment During Cardiopulmonary Exercise Test can Improve the Management of Children with Repaired Congenital Heart Disease. Int J Cardiol. 2020;300:121-6. doi: 10.1016/j.ijcard.2019.10.032.
    » https://doi.org/10.1016/j.ijcard.2019.10.032
  • 633
    Mestre NM, Reychler G, Goubau C, Moniotte S. Correlation between Cardiopulmonary Exercise Test, Spirometry, and Congenital Heart Disease Severity in Pediatric Population. Pediatr Cardiol. 2019;40(4):871-7. doi: 10.1007/s00246-019-02084-5.
    » https://doi.org/10.1007/s00246-019-02084-5
  • 634
    Geva T, Martins JD, Wald RM. Atrial Septal Defects. Lancet. 2014;383(9932):1921-32. doi: 10.1016/S0140-6736(13)62145-5.
    » https://doi.org/10.1016/S0140-6736(13)62145-5
  • 635
    Alkashkari W, Albugami S, Hijazi ZM. Current Practice in Atrial Septal Defect Occlusion in Children and Adults. Expert Rev Cardiovasc Ther. 2020;18(6):315-29. doi: 10.1080/14779072.2020.1767595.
    » https://doi.org/10.1080/14779072.2020.1767595
  • 636
    Anbarasan S, Swaminathan N, Shankar GR, Majella J CM. Electrocardiographic Changes in Ostium Secundum Atrial Septal Defect- before and after Shunt Closure- A Retrospective Cohort Analysis. J Assoc Physicians India. 2022;70(1):11-12. PMID: 35062807.
  • 637
    Kharouf R, Luxenberg DM, Khalid O, Abdulla R. Atrial Septal Defect: Spectrum of Care. Pediatr Cardiol. 2008;29(2):271-80. doi: 10.1007/s00246-007-9052-8.
    » https://doi.org/10.1007/s00246-007-9052-8
  • 638
    Schenck MH, Sterba R, Foreman CK, Latson LA. Improvement in Noninvasive Electrophysiologic Findings in Children after Transcatheter Atrial Septal Defect Closure. Am J Cardiol. 1995;76(10):695-8. doi: 10.1016/s0002-9149(99)80199-4.
    » https://doi.org/10.1016/s0002-9149(99)80199-4
  • 639
    Di Bernardo S, Berger F, Fasnacht M, Bauersfeld U. Impact of Right Ventricular Size on ECG after Percutaneous Closure of Atrial Septal Defect with Amplatzer Septal Occluder. Swiss Med Wkly. 2005;135(43-44):647-51. doi: 10.4414/smw.2005.11067.
    » https://doi.org/10.4414/smw.2005.11067
  • 640
    Jost CHA, Connolly HM, Danielson GK, Bailey KR, Schaff HV, Shen WK, et al. Sinus Venosus Atrial Septal Defect: Long-Term Postoperative Outcome for 115 Patients. Circulation. 2005;112(13):1953-8. doi: 10.1161/CIRCULATIONAHA.104.493775.
    » https://doi.org/10.1161/CIRCULATIONAHA.104.493775
  • 641
    Rhodes J, Patel H, Hijazi ZM. Effect of Transcatheter Closure of Atrial Septal Defect on the Cardiopulmonary Response to Exercise. Am J Cardiol. 2002;90(7):803-6. doi: 10.1016/s0002-9149(02)02620-6.
    » https://doi.org/10.1016/s0002-9149(02)02620-6
  • 642
    van de Bruaene A, de Meester P, Buys R, Vanhees L, Delcroix M, Voigt JU, et al. Right Ventricular Load and Function During Exercise in Patients with Open and Closed Atrial Septal Defect Type Secundum. Eur J Prev Cardiol. 2013;20(4):597-604. doi: 10.1177/2047487312444372.
    » https://doi.org/10.1177/2047487312444372
  • 643
    Matthys D. Pre- and Postoperative Exercise Testing of the Child with Atrial Septal Defect. Pediatr Cardiol. 1999;20(1):22-5. doi: 10.1007/s002469900387.
    » https://doi.org/10.1007/s002469900387
  • 644
    Cuypers JA, Opić P, Menting ME, Utens EM, Witsenburg M, Helbing WA, et al. The Unnatural History of an Atrial Septal Defect: Longitudinal 35 Year Follow Up after Surgical Closure at Young Age. Heart. 2013;99(18):1346-52. doi: 10.1136/heartjnl-2013-304225.
    » https://doi.org/10.1136/heartjnl-2013-304225
  • 645
    Roos-Hesselink JW, Meijboom FJ, Spitaels SE, van Domburg R, van Rijen EH, Utens EM, et al. Excellent Survival and Low Incidence of Arrhythmias, Stroke and Heart Failure Long-Term after Surgical ASD Closure at Young Age. A Prospective Follow-Up Study of 21-33 Years. Eur Heart J. 2003;24(2):190-7. doi: 10.1016/s0195-668x(02)00383-4.
    » https://doi.org/10.1016/s0195-668x(02)00383-4
  • 646
    Hirth A, Reybrouck T, Bjarnason-Wehrens B, Lawrenz W, Hoffmann A. Recommendations for Participation in Competitive and Leisure Sports in Patients with Congenital Heart Disease: A Consensus Document. Eur J Cardiovasc Prev Rehabil. 2006;13(3):293-9. doi: 10.1097/01.hjr.0000220574.22195.d6.
    » https://doi.org/10.1097/01.hjr.0000220574.22195.d6
  • 647
    Jategaonkar S, Scholtz W, Schmidt H, Fassbender D, Horstkotte D. Cardiac Remodeling and Effects on Exercise Capacity after Interventional Closure of Atrial Septal Defects in Different Adult Age Groups. Clin Res Cardiol. 2010;99(3):183-91. doi: 10.1007/s00392-009-0105-2.
    » https://doi.org/10.1007/s00392-009-0105-2
  • 648
    Möller T, Brun H, Fredriksen PM, Holmstrøm H, Peersen K, Pettersen E, et al. Right Ventricular Systolic Pressure Response During Exercise in Adolescents Born with Atrial or Ventricular Septal Defect. Am J Cardiol. 2010;105(11):1610-6. doi: 10.1016/j.amjcard.2010.01.024.
    » https://doi.org/10.1016/j.amjcard.2010.01.024
  • 649
    Huysmans HA, Vrakking M, van Boven WJ. Late Follow-Up after Surgical Correction of Atrial Septal Defect of the Secundum Type. Z Kardiol. 1989;78 (Suppl 7):43-5. PMID: 2623927.
  • 650
    Mandelik J, Moodie DS, Sterba R, Murphy D, Rosenkranz E, Medendorp S, et al. Long-Term Follow-Up of Children after Repair of Atrial Septal Defects. Cleve Clin J Med. 1994;61(1):29-33. doi: 10.3949/ccjm.61.1.29.
    » https://doi.org/10.3949/ccjm.61.1.29
  • 651
    Xu YJ, Qiu XB, Yuan F, Shi HY, Xu L, Hou XM, et al. Prevalence and Spectrum of NKX2.5 Mutations in Patients with Congenital Atrial Septal Defect and Atrioventricular Block. Mol Med Rep. 2017;15(4):2247-54. doi: 10.3892/mmr.2017.6249.
    » https://doi.org/10.3892/mmr.2017.6249
  • 652
    Komar M, Przewłocki T, Olszowska M, Sobień B, Stępniewski J, Podolec J, et al. Conduction Abnormality and Arrhythmia after Transcatheter Closure of Atrial Septal Defect. Circ J. 2014;78(10):2415-21. doi: 10.1253/circj.CJ-14-0456.
    » https://doi.org/10.1253/circj.CJ-14-0456
  • 653
    Al-Anani SJ, Weber H, Hijazi ZM. Atrioventricular Block after Transcatheter ASD Closure using the Amplatzer Septal Occluder: Risk Factors and Recommendations. Catheter Cardiovasc Interv. 2010;75(5):767-72. doi: 10.1002/ccd.22359.
    » https://doi.org/10.1002/ccd.22359
  • 654
    Jin M, Ding WH, Wang XF, Guo BJ, Liang YM, Xiao YY, et al. Value of the Ratio of Occluder Versus Atrial Septal Length for Predicting Arrhythmia Occurrence after Transcatheter Closure in Children with Ostium Secundum Atrial Septal Defect. Chin Med J. 2015;128(12):1574-8. doi: 10.4103/0366-6999.158291.
    » https://doi.org/10.4103/0366-6999.158291
  • 655
    Cenk M, Akalın F, Şaylan BÇ, Ak K. P Wave Dispersion in Assessment of Dysrhythmia Risk in Patients with Secundum Type Atrial Septal Defect and the Effect of Transcatheter or Surgical Closure. Cardiol Young. 2020;30(2):263-70. doi: 10.1017/S1047951119002828.
    » https://doi.org/10.1017/S1047951119002828
  • 656
    Kamphuis VP, Nassif M, Man SC, Swenne CA, Kors JA, Vink AS, et al. Electrical Remodeling after Percutaneous Atrial Septal Defect Closure in Pediatric and Adult Patients. Int J Cardiol. 2019;285:32-39. doi: 10.1016/j.ijcard.2019.02.020.
    » https://doi.org/10.1016/j.ijcard.2019.02.020
  • 657
    Javadzadegan H, Toufan M, Sadighi AR, Chang JM, Nader ND. Comparative Effects of Surgical and Percutaneous Repair on P-Wave and Atrioventricular Conduction in Patients with Atrial Septal Defect--Ostium Secundum Type. Cardiol Young. 2013;23(1):132-7. doi: 10.1017/S1047951112000418.
    » https://doi.org/10.1017/S1047951112000418
  • 658
    Grignani RT, Tolentino KM, Rajgor DD, Quek SC. Longitudinal Evaluation of P-Wave Dispersion and P-Wave Maximum in Children after Transcatheter Device Closure of Secundum Atrial Septal Defect. Pediatr Cardiol. 2015;36(5):1050-6. doi: 10.1007/s00246-015-1119-3.
    » https://doi.org/10.1007/s00246-015-1119-3
  • 659
    Roushdy AM, Attia H, Nossir H. Immediate and Short Term Effects of Percutaneous Atrial Septal Defect Device Closure on Cardiac Electrical Remodeling in Children. Egypt Heart J. 2018;70(4):243-7. doi: 10.1016/j.ehj.2018.02.005.
    » https://doi.org/10.1016/j.ehj.2018.02.005
  • 660
    Kaya MG, Baykan A, Dogan A, Inanc T, Gunebakmaz O, Dogdu O, et al. Intermediate-Term Effects of Transcatheter Secundum Atrial Septal Defect Closure on Cardiac Remodeling in Children and Adults. Pediatr Cardiol. 2010;31(4):474-82. doi: 10.1007/s00246-009-9623-y.
    » https://doi.org/10.1007/s00246-009-9623-y
  • 661
    Baspinar O, Sucu M, Koruk S, Kervancioglu M, Ustunsoy H, Deniz H, et al. P-Wave Dispersion between Transcatheter and Surgical Closure of Secundum-Type Atrial Septal Defect in Childhood. Cardiol Young. 2011;21(1):15-8. doi: 10.1017/S1047951110001307.
    » https://doi.org/10.1017/S1047951110001307
  • 662
    Asakai H, Weskamp S, Eastaugh L, d’Udekem Y, Pflaumer A. Atrioventricular Block after ASD Closure. Heart Asia. 2016;8(2):26-31. doi: 10.1136/heartasia-2016-010745.
    » https://doi.org/10.1136/heartasia-2016-010745
  • 663
    Karwot B, Białkowski J, Szkutnik M, Zyła-Frycz M, Skiba A, Kusa J, et al. Iatrogenic Cardiac Arrhythmias Following Transcatheter or Surgical Closure of Atrial Septal Defect in Children. Kardiol Pol. 2005;62(1):35-43. PMID: 15815777.
  • 664
    Norozi K, Gravenhorst V, Hobbiebrunken E, Wessel A. Normality of Cardiopulmonary Capacity in Children Operated on to Correct Congenital Heart Defects. Arch Pediatr Adolesc Med. 2005;159(11):1063-8. doi: 10.1001/archpedi.159.11.1063.
    » https://doi.org/10.1001/archpedi.159.11.1063
  • 665
    Fredriksen PM, Veldtman G, Hechter S, Therrien J, Chen A, Warsi MA, et al. Aerobic Capacity in Adults with Various Congenital Heart Diseases. Am J Cardiol. 2001;87(3):310-4. doi: 10.1016/s0002-9149(00)01364-3.
    » https://doi.org/10.1016/s0002-9149(00)01364-3
  • 666
    Kobayashi Y, Nakanishi N, Kosakai Y. Pre- and Postoperative Exercise Capacity Associated with Hemodynamics in Adult Patients with Atrial Septal Defect: A Retrospective Study. Eur J Cardiothorac Surg. 1997;11(6):1062-6. doi: 10.1016/s1010-7940(96)01131-1.
    » https://doi.org/10.1016/s1010-7940(96)01131-1
  • 667
    Menting ME, van den Bosch AE, McGhie JS, Cuypers JA, Witsenburg M, Geleijnse ML, et al. Ventricular Myocardial Deformation in Adults after Early Surgical Repair of Atrial Septal Defect. Eur Heart J Cardiovasc Imaging. 2015;16(5):549-57. doi: 10.1093/ehjci/jeu273.
    » https://doi.org/10.1093/ehjci/jeu273
  • 668
    Rozqie R, Satwiko MG, Anggrahini DW, Sadewa AH, Gunadi, Hartopo AB, et al. NKX2-5 Variants Screening in Patients with Atrial Septal Defect in Indonesia. BMC Med Genomics. 2022;15(1):91. doi: 10.1186/s12920-022-01242-8.
    » https://doi.org/10.1186/s12920-022-01242-8
  • 669
    Doğan E, Gerçeker E, Vuran G, Murat M, Karahan C, Zihni C, et al. Evaluation of Arrhythmia Prevalence, Management, and Risk Factors in Patients with Transcatheter and Surgically Closed Secundum Atrial Septal Defects. Turk Kardiyol Dern Ars. 2023;51(1):50-5. doi: 10.5543/tkda.2022.98384.
    » https://doi.org/10.5543/tkda.2022.98384
  • 670
    Vecht JA, Saso S, Rao C, Dimopoulos K, Grapsa J, Terracciano CM, et al. Atrial Septal Defect Closure is Associated with a Reduced Prevalence of Atrial Tachyarrhythmia in the Short to Medium Term: A Systematic Review and Meta-Analysis. Heart. 2010;96(22):1789-97. doi: 10.1136/hrt.2010.204933.
    » https://doi.org/10.1136/hrt.2010.204933
  • 671
    Penny DJ, Vick GW 3rd. Ventricular Septal Defect. Lancet. 2011;377(9771):1103-12. doi: 10.1016/S0140-6736(10)61339-6.
    » https://doi.org/10.1016/S0140-6736(10)61339-6
  • 672
    Doshi U, Wang-Giuffre E. Ventricular Septal Defects: A Review. In: Congenital Heart Defects - Recent Advances. London: IntechOpen; 2022. doi: 10.5772/intechopen.104809.
    » https://doi.org/10.5772/intechopen.104809
  • 673
    Spicer DE, Hsu HH, Co-Vu J, Anderson RH, Fricker FJ. Ventricular Septal Defect. Orphanet J Rare Dis. 2014;9:144. doi: 10.1186/s13023-014-0144-2.
    » https://doi.org/10.1186/s13023-014-0144-2
  • 674
    Binkhorst M, van de Belt T, Hoog M, van Dijk A, Schokking M, Hopman M. Exercise Capacity and Participation of Children with a Ventricular Septal Defect. Am J Cardiol. 2008;102(8):1079-84. doi: 10.1016/j.amjcard.2008.05.063.
    » https://doi.org/10.1016/j.amjcard.2008.05.063
  • 675
    Gabriel HM, Heger M, Innerhofer P, Zehetgruber M, Mundigler G, Wimmer M, et al. Long-Term Outcome of Patients with Ventricular Septal Defect Considered not to Require Surgical Closure During Childhood. J Am Coll Cardiol. 2002;39(6):1066-71. doi: 10.1016/s0735-1097(02)01706-0.
    » https://doi.org/10.1016/s0735-1097(02)01706-0
  • 676
    Eckerström F, Rex CE, Maagaard M, Heiberg J, Rubak S, Redington A, et al. Cardiopulmonary Dysfunction in Adults with a Small, Unrepaired Ventricular Septal Defect: A Long-Term Follow-Up. Int J Cardiol. 2020;306:168-74. doi: 10.1016/j.ijcard.2020.02.069.
    » https://doi.org/10.1016/j.ijcard.2020.02.069
  • 677
    Maagaard M, Heiberg J, Asschenfeldt B, Ringgaard S, Hjortdal VE. Does Functional Capacity Depend on the Size of the Shunt?. A Prospective, Cohort Study of Adults with Small, Unrepaired Ventricular Septal Defects. Eur J Cardiothorac Surg. 2017;51(4):722-7. doi: 10.1093/ejcts/ezw420.
    » https://doi.org/10.1093/ejcts/ezw420
  • 678
    Wolfe RR, Bartle L, Daberkow E, Harrigan L. Exercise Responses in Ventricular Septal Defect. Prog Pediatr Cardiol. 1993;2(3):24-9. doi: 10.1016/1058-9813(93)90052-2.
    » https://doi.org/10.1016/1058-9813(93)90052-2
  • 679
    Latus H, Wagner I, Ostermayer S, Kerst G, Kreuder J, Schranz D, et al. Hemodynamic Evaluation of Children with Persistent or Recurrent Pulmonary Arterial Hypertension Following Complete Repair of Congenital Heart Disease. Pediatr Cardiol. 2017;38(7):1342-9. doi: 10.1007/s00246-017-1667-9.
    » https://doi.org/10.1007/s00246-017-1667-9
  • 680
    Johnson BN, Fierro JL, Panitch HB. Pulmonary Manifestations of Congenital Heart Disease in Children. Pediatr Clin North Am. 2021;68(1):25-40. doi: 10.1016/j.pcl.2020.09.001.
    » https://doi.org/10.1016/j.pcl.2020.09.001
  • 681
    Shah SS, Mohanty S, Karande T, Maheshwari S, Kulkarni S, Saxena A. Guidelines for Physical Activity in Children with Heart Disease. Ann Pediatr Cardiol. 2022;15(5-6):467-88. doi: 10.4103/apc.apc_73_22.
    » https://doi.org/10.4103/apc.apc_73_22
  • 682
    Frank DB, Hanna BD. Pulmonary Arterial Hypertension Associated with Congenital Heart Disease and Eisenmenger Syndrome: Current Practice in Pediatrics. Minerva Pediatr. 2015;67(2):169-85. PMCID: PMC4382100; PMID: 25604592.
  • 683
    Lei YQ, Lin WH, Lin SH, Xie WP, Liu JF, Chen Q, et al. Influence of Percutaneous Catheter Intervention for Congenital Perimembranous Ventricular Septal Defects in Children on the Cardiac Conduction System and Associated Risk Factors: a Meta-Analysis. J Cardiothorac Surg. 2022;17(1):19. doi: 10.1186/s13019-022-01751-8.
    » https://doi.org/10.1186/s13019-022-01751-8
  • 684
    Wu Z, Yang P, Xiang P, Ji X, Tian J, Li M. Left Anterior Fascicular Block after Transcatheter Closure of Ventricular Septal Defect in Children. Front Cardiovasc Med. 2021;8:609531. doi: 10.3389/fcvm.2021.609531.
    » https://doi.org/10.3389/fcvm.2021.609531
  • 685
    Karadeniz C, Atalay S, Demir F, Tutar E, Ciftci O, Ucar T, et al. Does Surgically Induced Right Bundle Branch Block Really Effect Ventricular Function in Children after Ventricular Septal Defect Closure?. Pediatr Cardiol. 2015;36(3):481-8. doi: 10.1007/s00246-014-1037-9.
    » https://doi.org/10.1007/s00246-014-1037-9
  • 686
    van Lier TA, Harinck E, Hitchcock JF, Moulaert AJ, van Mill GJ. Complete Right Bundle Branch Block after Surgical Closure of Perimembranous Ventricular Septal Defect. Relation to Type of Ventriculotomy. Eur Heart J. 1985;6(11):959-62. doi: 10.1093/oxfordjournals.eurheartj.a061794.
    » https://doi.org/10.1093/oxfordjournals.eurheartj.a061794
  • 687
    Pedersen TA, Andersen NH, Knudsen MR, Christensen TD, Sørensen KE, Hjortdal VE. The Effects of Surgically Induced Right Bundle Branch Block on Left Ventricular Function after Closure of the Ventricular Septal Defect. Cardiol Young. 2008;18(4):430-6. doi: 10.1017/S1047951108002357.
    » https://doi.org/10.1017/S1047951108002357
  • 688
    Houyel L, Vaksmann G, Fournier A, Davignon A. Ventricular Arrhythmias after Correction of Ventricular Septal Defects: Importance of Surgical Approach. J Am Coll Cardiol. 1990;16(5):1224-8. doi: 10.1016/0735-1097(90)90557-6.
    » https://doi.org/10.1016/0735-1097(90)90557-6
  • 689
    Chen CA, Wang JK, Lin MT, Chiu HH, Hsu JY, Lin SM, et al. Exercise Capacity and Ventricular Remodeling after Transcatheter Ventricular Septal Defect Closure in Asymptomatic or Minimally Symptomatic Adolescents and Adults. Circ Cardiovasc Interv. 2020;13(6):e008813. doi: 10.1161/CIRCINTERVENTIONS.119.008813.
    » https://doi.org/10.1161/CIRCINTERVENTIONS.119.008813
  • 690
    Bergmann M, Germann CP, Nordmeyer J, Peters B, Berger F, Schubert S. Short- and Long-term Outcome after Interventional VSD Closure: A Single-Center Experience in Pediatric and Adult Patients. Pediatr Cardiol. 2021;42(1):78-88. doi: 10.1007/s00246-020-02456-2.
    » https://doi.org/10.1007/s00246-020-02456-2
  • 691
    Lu YS, Chou CC, Tseng YH, Lin KL, Chen CH, Chen YJ. Cardiopulmonary Functional Capacity in Taiwanese Children with Ventricular Septal Defects. Pediatr Neonatol. 2023;64(5):554-61. doi: 10.1016/j.pedneo.2023.02.003.
    » https://doi.org/10.1016/j.pedneo.2023.02.003
  • 692
    Heuchan AM, Clyman RI. Managing the Patent Ductus Arteriosus: Current Treatment Options. Arch Dis Child Fetal Neonatal Ed. 2014;99(5):F431-6. doi: 10.1136/archdischild-2014-306176.
    » https://doi.org/10.1136/archdischild-2014-306176
  • 693
    Backes CH, Hill KD, Shelton EL, Slaughter JL, Lewis TR, Weisz DE, et al. Patent Ductus Arteriosus: A Contemporary Perspective for the Pediatric and Adult Cardiac Care Provider. J Am Heart Assoc. 2022;11(17):e025784. doi: 10.1161/JAHA.122.025784.
    » https://doi.org/10.1161/JAHA.122.025784
  • 694
    Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(12):1494-563. doi: 10.1016/j.jacc.2018.08.1028.
    » https://doi.org/10.1016/j.jacc.2018.08.1028
  • 695
    Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur Heart J. 2021;42(6):563-645. doi: 10.1093/eurheartj/ehaa554.
    » https://doi.org/10.1093/eurheartj/ehaa554
  • 696
    Sharma A, Parasa SK, Gudivada KK, Gopinath R. Differential Cyanosis and Undiagnosed Eisenmenger's Syndrome: The Importance of Pulse Oximetry. Anesth Essays Res. 2014;8(2):233-5. doi: 10.4103/0259-1162.134518.
    » https://doi.org/10.4103/0259-1162.134518
  • 697
    Bhalgat PS, Pinto R, Dalvi BV. Transcatheter Closure of Large Patent Ductus Arteriosus with Severe Pulmonary Arterial Hypertension: Short and Intermediate Term Results. Ann Pediatr Cardiol. 2012;5(2):135-40. doi: 10.4103/0974-2069.99614.
    » https://doi.org/10.4103/0974-2069.99614
  • 698
    Brandão LES, Silva RMFL, Lopes RM, Martins CN. Patent Ductus Arteriosus: Update Review. CA. 2020. 2017;9(4):5-14. doi: 10.9734/ca/2020/v9i430140.
    » https://doi.org/10.9734/ca/2020/v9i430140
  • 699
    Rausch CM, Taylor AL, Ross H, Sillau S, Ivy DD. Ventilatory Efficiency Slope Correlates with Functional Capacity, Outcomes, and Disease Severity in Pediatric Patients with Pulmonary Hypertension. Int J Cardiol. 2013;169(6):445-8. doi: 10.1016/j.ijcard.2013.10.012.
    » https://doi.org/10.1016/j.ijcard.2013.10.012
  • 700
    Huang HY, Wang SP, Tuan SH, Li MH, Lin KL. Cardiopulmonary Function Findings of Pediatric Patients with Patent Ductus Arteriosus. Medicine. 2021;100(35):e27099. doi: 10.1097/MD.0000000000027099.
    » https://doi.org/10.1097/MD.0000000000027099
  • 701
    Engan M, Engeset MS, Sandvik L, Gamlemshaug OCO, Engesæter IØ, Øymar K, et al. Left Vocal Cord Paralysis, Lung Function and Exercise Capacity in Young Adults Born Extremely Preterm with a History of Neonatal Patent Ductus Arteriosus Surgery - a National Cohort Study. Front Pediatr. 2022;9:780045. doi: 10.3389/fped.2021.780045.
    » https://doi.org/10.3389/fped.2021.780045
  • 702
    Røksund OD, Clemm H, Heimdal JH, Aukland SM, Sandvik L, Markestad T, et al. Left Vocal Cord Paralysis after Extreme Preterm Birth, a New Clinical Scenario in Adults. Pediatrics. 2010;126(6):e1569-77. doi: 10.1542/peds.2010-1129.
    » https://doi.org/10.1542/peds.2010-1129
  • 703
    Karl TR, Stocker C. Tetralogy of Fallot and Its Variants. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S330-6. doi: 10.1097/PCC.0000000000000831.
    » https://doi.org/10.1097/PCC.0000000000000831
  • 704
    Wilson R, Ross O, Griksaitis MJ. Tetralogy of Fallot. BJA Educ. 2019;19(11):362-9. doi: 10.1016/j.bjae.2019.07.003.
    » https://doi.org/10.1016/j.bjae.2019.07.003
  • 705
    Gupta U, Polimenakos AC, El-Zein C, Ilbawi MN. Tetralogy of Fallot with Atrioventricular Septal Defect: Surgical Strategies for Repair and Midterm Outcome of Pulmonary Valve-Sparing Approach. Pediatr Cardiol. 2013;34(4):861-71. doi: 10.1007/s00246-012-0558-3.
    » https://doi.org/10.1007/s00246-012-0558-3
  • 706
    Cohen MI, Khairy P, Zeppenfeld K, Van Hare GF, Lakkireddy DR, Triedman JK. Preventing Arrhythmic Death in Patients with Tetralogy of Fallot: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(6):761-71. doi: 10.1016/j.jacc.2020.12.021.
    » https://doi.org/10.1016/j.jacc.2020.12.021
  • 707
    Possner M, Tseng SY, Alahdab F, Bokma JP, Lubert AM, Khairy P, et al. Risk Factors for Mortality and Ventricular Tachycardia in Patients with Repaired Tetralogy of Fallot: a Systematic Review and Meta-analysis. Can J Cardiol. 2020;36(11):1815-25. doi: 10.1016/j.cjca.2020.01.023.
    » https://doi.org/10.1016/j.cjca.2020.01.023
  • 708
    Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald RM, Hickey K, et al. Preoperative Predictors of Death and Sustained Ventricular Tachycardia after Pulmonary Valve Replacement in Patients with Repaired Tetralogy of Fallot Enrolled in the INDICATOR Cohort. Circulation. 2018;138(19):2106-15. doi: 10.1161/CIRCULATIONAHA.118.034740.
    » https://doi.org/10.1161/CIRCULATIONAHA.118.034740
  • 709
    Śpiewak M, Petryka-Mazurkiewicz J, Mazurkiewicz Ł, Miłosz-Wieczorek B, Kowalski M, Biernacka EK, et al. The Impact of Pulmonary Regurgitation on Right Ventricular Size and Function in Patients with Repaired Tetralogy of Fallot and Additional Haemodynamic Abnormalities. Pol J Radiol. 2020;85:e607-12. doi: 10.5114/pjr.2020.101058.
    » https://doi.org/10.5114/pjr.2020.101058
  • 710
    Villafañe J, Feinstein JA, Jenkins KJ, Vincent RN, Walsh EP, Dubin AM, et al. Hot Topics in Tetralogy of Fallot. J Am Coll Cardiol. 2013;62(23):2155-66. doi: 10.1016/j.jacc.2013.07.100.
    » https://doi.org/10.1016/j.jacc.2013.07.100
  • 711
    Udink ten Cate FE, Sreeram N, Brockmeier K. The Pathophysiologic Aspects and Clinical Implications of Electrocardiographic Parameters of Ventricular Conduction Delay in Repaired Tetralogy of Fallot. J Electrocardiol. 2014;47(5):618-24. doi: 10.1016/j.jelectrocard.2014.07.005.
    » https://doi.org/10.1016/j.jelectrocard.2014.07.005
  • 712
    Lumens J, Fan CS, Walmsley J, Yim D, Manlhiot C, Dragulescu A, et al. Relative Impact of Right Ventricular Electromechanical Dyssynchrony Versus Pulmonary Regurgitation on Right Ventricular Dysfunction and Exercise Intolerance in Patients after Repair of Tetralogy of Fallot. J Am Heart Assoc. 2019;8(2):e010903. doi: 10.1161/JAHA.118.010903.
    » https://doi.org/10.1161/JAHA.118.010903
  • 713
    Kotby AA, Elnabawy HM, El-Guindy WM, Abd Elaziz RF. Assessment of Exercise Testing after Repair of Tetralogy of Fallot. ISRN Pediatr. 2012;2012:324306. doi: 10.5402/2012/324306.
    » https://doi.org/10.5402/2012/324306
  • 714
    Bhatt SM, Elci OU, Wang Y, Goldmuntz E, McBride M, Paridon S, et al. Determinants of Exercise Performance in Children and Adolescents with Repaired Tetralogy of Fallot using Stress Echocardiography. Pediatr Cardiol. 2019;40(1):71-8. doi: 10.1007/s00246-018-1962-0.
    » https://doi.org/10.1007/s00246-018-1962-0
  • 715
    Leonardi B, Gentili F, Perrone MA, Sollazzo F, Cocomello L, Kikina SS, et al. Cardiopulmonary Exercise Testing in Repaired Tetralogy of Fallot: Multiparametric Overview and Correlation with Cardiac Magnetic Resonance and Physical Activity Level. J Cardiovasc Dev Dis. 2022;9(1):26. doi: 10.3390/jcdd9010026.
    » https://doi.org/10.3390/jcdd9010026
  • 716
    Alborikan S, Pandya B, Von Klemperer K, Walker F, Cullen S, Badiani S, et al. Cardiopulmonary Exercise Test (CPET) in Patients with Repaired Tetralogy of Fallot (Rtof); A Systematic Review. Int J Cardiol Congenit Heart Dis. 2020;1:100050. doi: 10.1016/j.ijcchd.2020.100050.
    » https://doi.org/10.1016/j.ijcchd.2020.100050
  • 717
    Leonardi B, Calvieri C, Perrone MA, Di Rocco A, Carotti A, Caputo M, et al. Risk Factors of Right Ventricular Dysfunction and Adverse Cardiac Events in Patients with Repaired Tetralogy of Fallot. Int J Environ Res Public Health. 2021;18(19):10549. doi: 10.3390/ijerph181910549.
    » https://doi.org/10.3390/ijerph181910549
  • 718
    Carvalho JS, Shinebourne EA, Busst C, Rigby ML, Redington AN. Exercise Capacity after Complete Repair of Tetralogy of Fallot: Deleterious Effects of Residual Pulmonary Regurgitation. Br Heart J. 1992;67(6):470-3. doi: 10.1136/hrt.67.6.470.
    » https://doi.org/10.1136/hrt.67.6.470
  • 719
    Ercisli M, Vural KM, Gokkaya KN, Koseoglu F, Tufekcioglu O, Sener E, et al. Does Delayed Correction Interfere with Pulmonary Functions and Exercise Tolerance in Patients with Tetralogy of Fallot?. Chest. 2005;128(2):1010-7. doi: 10.1378/chest.128.2.1010.
    » https://doi.org/10.1378/chest.128.2.1010
  • 720
    Chang YL, Kuan TH, Chen CH, Tsai YJ, Chen GB, Lin KL, et al. Differences in Cardiopulmonary Fitness between Boy and Girls with Repaired Tetralogy of Fallot. Front Pediatr. 2022;10:911825. doi: 10.3389/fped.2022.911825.
    » https://doi.org/10.3389/fped.2022.911825
  • 721
    Samman A, Schwerzmann M, Balint OH, Tanous D, Redington A, Granton J, et al. Exercise Capacity and Biventricular Function in Adult Patients with Repaired Tetralogy of Fallot. Am Heart J. 2008;156(1):100-5. doi: 10.1016/j.ahj.2008.02.005.
    » https://doi.org/10.1016/j.ahj.2008.02.005
  • 722
    Meadows J, Powell AJ, Geva T, Dorfman A, Gauvreau K, Rhodes J. Cardiac Magnetic Resonance Imaging Correlates of Exercise Capacity in Patients with Surgically Repaired Tetralogy of Fallot. Am J Cardiol. 2007;100(9):1446-50. doi: 10.1016/j.amjcard.2007.06.038.
    » https://doi.org/10.1016/j.amjcard.2007.06.038
  • 723
    Haeffele C, Lui GK. Dextro-Transposition of the Great Arteries: Long-Term Sequelae of Atrial and Arterial Switch. Cardiol Clin. 2015;33(4):543-58. doi: 10.1016/j.ccl.2015.07.012.
    » https://doi.org/10.1016/j.ccl.2015.07.012
  • 724
    Warnes CA. Transposition of the Great Arteries. Circulation. 2006;114(24):2699-709. doi: 10.1161/CIRCULATIONAHA.105.592352.
    » https://doi.org/10.1161/CIRCULATIONAHA.105.592352
  • 725
    Kutty S, Danford DA, Diller GP, Tutarel O. Contemporary Management and Outcomes in Congenitally Corrected Transposition of the Great Arteries. Heart. 2018;104(14):1148-55. doi: 10.1136/heartjnl-2016-311032.
    » https://doi.org/10.1136/heartjnl-2016-311032
  • 726
    Kirzner J, Pirmohamed A, Ginns J, Singh HS. Long-Term Management of the Arterial Switch Patient. Curr Cardiol Rep. 2018;20(8):68. doi: 10.1007/s11886-018-1012-9.
    » https://doi.org/10.1007/s11886-018-1012-9
  • 727
    Spigel Z, Binsalamah ZM, Caldarone C. Congenitally Corrected Transposition of the Great Arteries: Anatomic, Physiologic Repair, and Palliation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019;22:32-42. doi: 10.1053/j.pcsu.2019.02.008.
    » https://doi.org/10.1053/j.pcsu.2019.02.008
  • 728
    Khairy P, Clair M, Fernandes SM, Blume ED, Powell AJ, Newburger JW, et al. Cardiovascular Outcomes after the Arterial Switch Operation for D-Transposition of the Great Arteries. Circulation. 2013;127(3):331-9. doi: 10.1161/CIRCULATIONAHA.112.135046.
    » https://doi.org/10.1161/CIRCULATIONAHA.112.135046
  • 729
    Baysa SJ, Olen M, Kanter RJ. Arrhythmias Following the Mustard and Senning Operations for Dextro-Transposition of the Great Arteries: Clinical Aspects and Catheter Ablation. Card Electrophysiol Clin. 2017;9(2):255-71. doi: 10.1016/j.ccep.2017.02.008.
    » https://doi.org/10.1016/j.ccep.2017.02.008
  • 730
    Tsuda T, Bhat AM, Robinson BW, Baffa JM, Radtke W. Coronary Artery Problems Late after Arterial Switch Operation for Transposition of the Great Arteries. Circ J. 2015;79(11):2372-9. doi: 10.1253/circj.CJ-15-0485.
    » https://doi.org/10.1253/circj.CJ-15-0485
  • 731
    Hövels-Gürich HH, Kunz D, Seghaye M, Miskova M, Messmer BJ, von Bernuth G. Results of Exercise Testing at a Mean Age of 10 Years after Neonatal Arterial Switch Operation. Acta Paediatr. 2003;92(2):190-6. doi: 10.1111/j.1651-2227.2003.tb00525.x.
    » https://doi.org/10.1111/j.1651-2227.2003.tb00525.x
  • 732
    Fredriksen PM, Pettersen E, Thaulow E. Declining Aerobic Capacity of Patients with Arterial and Atrial Switch Procedures. Pediatr Cardiol. 2009;30(2):166-71. doi: 10.1007/s00246-008-9291-3.
    » https://doi.org/10.1007/s00246-008-9291-3
  • 733
    Giardini A, Khambadkone S, Rizzo N, Riley G, Napoleone CP, Muthialu N, et al. Determinants of Exercise Capacity after Arterial Switch Operation for Transposition of the Great Arteries. Am J Cardiol. 2009;104(7):1007-12. doi: 10.1016/j.amjcard.2009.05.046.
    » https://doi.org/10.1016/j.amjcard.2009.05.046
  • 734
    Takajo D, Sriram CS, Mahadin D, Aggarwal S. Exercise Capacity after Arterial Switch Operation in Patients with D-Transposition of Great Arteries: Does the Coronary Artery Anatomy Matter?. Pediatr Cardiol. 2022;43(8):1752-60. doi: 10.1007/s00246-022-02912-1.
    » https://doi.org/10.1007/s00246-022-02912-1
  • 735
    Paul MH, Wessel HU. Exercise Studies in Patients with Transposition of the Great Arteries after Atrial Repair Operations (Mustard/Senning): A Review. Pediatr Cardiol. 1999;20(1):49-55. doi: 10.1007/s002469900395.
    » https://doi.org/10.1007/s002469900395
  • 736
    Giardini A, Specchia S, Coutsoumbas G, Donti A, Gargiulo G, Bonvicini M, et al. Recovery Kinetics of Oxygen Uptake is Abnormally Prolonged in Patients with Mustard/Senning Repair for Transposition of the Great Arteries. Pediatr Cardiol. 2005;26(6):821-6. doi: 10.1007/s00246-005-0884-9.
    » https://doi.org/10.1007/s00246-005-0884-9
  • 737
    Buys R, Budts W, Reybrouck T, Gewillig M, Vanhees L. Serial Exercise Testing in Children, Adolescents and Young Adults with Senning Repair for Transposition of the Great Arteries. BMC Cardiovasc Disord. 2012;12:88. doi: 10.1186/1471-2261-12-88.
    » https://doi.org/10.1186/1471-2261-12-88
  • 738
    Sabbah BN, Arabi TZ, Shafqat A, Abdul Rab S, Razak A, Albert-Brotons DC. Heart Failure in Systemic Right Ventricle: Mechanisms and Therapeutic Options. Front Cardiovasc Med. 2023;9:1064196. doi: 10.3389/fcvm.2022.1064196.
    » https://doi.org/10.3389/fcvm.2022.1064196
  • 739
    Cuypers JA, Eindhoven JA, Slager MA, Opić P, Utens EM, Helbing WA, et al. The Natural and Unnatural History of the Mustard Procedure: Long-Term Outcome Up to 40 Years. Eur Heart J. 2014;35(25):1666-74. doi: 10.1093/eurheartj/ehu102.
    » https://doi.org/10.1093/eurheartj/ehu102
  • 740
    Reybrouck T, Eyskens B, Mertens L, Defoor J, Daenen W, Gewillig M. Cardiorespiratory Exercise Function after the Arterial Switch Operation for Transposition of the Great Arteries. Eur Heart J. 2001;22(12):1052-9. doi: 10.1053/euhj.2000.2425.
    » https://doi.org/10.1053/euhj.2000.2425
  • 741
    Baldo MNF, Trad HS, Silva TJD Jr, Manso PH. Evaluation of Coronary Circulation after Arterial Switch Operation. Arq Bras Cardiol. 2021;116(6):1111-16. doi: 10.36660/abc.20200095.
    » https://doi.org/10.36660/abc.20200095
  • 742
    Kutty S, Jacobs ML, Thompson WR, Danford DA. Fontan Circulation of the Next Generation: Why It's Necessary, What it Might Look Like. J Am Heart Assoc. 2020;9(1):e013691. doi: 10.1161/JAHA.119.013691.
    » https://doi.org/10.1161/JAHA.119.013691
  • 743
    Mazza GA, Gribaudo E, Agnoletti G. The Pathophysiology and Complications of Fontan Circulation. Acta Biomed. 2021;92(5):e2021260. doi: 10.23750/abm.v92i5.10893.
    » https://doi.org/10.23750/abm.v92i5.10893
  • 744
    Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation. 2019;140(6):e234-84. doi: 10.1161/CIR.0000000000000696.
    » https://doi.org/10.1161/CIR.0000000000000696
  • 745
    Greenleaf CE, Lim ZN, Li W, LaPar DJ, Salazar JD, Corno AF. Impact on Clinical Outcomes from Transcatheter Closure of the Fontan Fenestration: A Systematic Review and Meta-Analysis. Front Pediatr. 2022;10:915045. doi: 10.3389/fped.2022.915045.
    » https://doi.org/10.3389/fped.2022.915045
  • 746
    Mendel B, Christianto C, Setiawan M, Siagian SN, Prakoso R. Pharmacology Management in Improving Exercise Capacity of Patients with Fontan Circulation: A Systematic Review and Meta-analysis. Curr Cardiol Rev. 2022;18(5):34-49. doi: 10.2174/1573403X18666220404101610.
    » https://doi.org/10.2174/1573403X18666220404101610
  • 747
    Haley JE, Davis C. Exercising with a Single Ventricle: Limitations and Therapies. J Cardiovasc Dev Dis. 2022;9(6):167. doi: 10.3390/jcdd9060167.
    » https://doi.org/10.3390/jcdd9060167
  • 748
    Udholm S, Aldweib N, Hjortdal VE, Veldtman GR. Prognostic Power of Cardiopulmonary Exercise Testing in Fontan Patients: A Systematic Review. Open Heart. 2018;5(1):e000812. doi: 10.1136/openhrt-2018-000812.
    » https://doi.org/10.1136/openhrt-2018-000812
  • 749
    Ohuchi H, Negishi J, Noritake K, Hayama Y, Sakaguchi H, Miyazaki A, et al. Prognostic Value of Exercise Variables in 335 Patients after the Fontan Operation: A 23-Year Single-Center Experience of Cardiopulmonary Exercise Testing. Congenit Heart Dis. 2015;10(2):105-16. doi: 10.1111/chd.12222.
    » https://doi.org/10.1111/chd.12222
  • 750
    Scheffers LE, Berg LEMV, Ismailova G, Dulfer K, Takkenberg JJM, Helbing WA. Physical Exercise Training in Patients with a Fontan Circulation: A Systematic Review. Eur J Prev Cardiol. 2021;28(11):1269-78. doi: 10.1177/2047487320942869.
    » https://doi.org/10.1177/2047487320942869
  • 751
    Driscoll DJ, Durongpisitkul K. Exercise Testing after the Fontan Operation. Pediatr Cardiol. 1999;20(1):57-9. doi: 10.1007/s002469900397.
    » https://doi.org/10.1007/s002469900397
  • 752
    Tran DL, Gibson H, Maiorana AJ, Verrall CE, Baker DW, Clode M, et al. Exercise Intolerance, Benefits, and Prescription for People Living with a Fontan Circulation: The Fontan Fitness Intervention Trial (F-FIT)-Rationale and Design. Front Pediatr. 2022;9:799125. doi: 10.3389/fped.2021.799125.
    » https://doi.org/10.3389/fped.2021.799125
  • 753
    Hedlund ER, Söderström L, Lundell B. Appropriate Heart Rate During Exercise in Fontan Patients. Cardiol Young. 2020;30(5):674-80. doi: 10.1017/S1047951120000761.
    » https://doi.org/10.1017/S1047951120000761
  • 754
    Powell AW, Veldtman G. Heart Rate Responses During Exercise by Dominant Ventricle in Pediatric and Young Adult Patients with a Fontan Circulation. Can J Cardiol. 2020;36(9):1508-15. doi: 10.1016/j.cjca.2019.10.042.
    » https://doi.org/10.1016/j.cjca.2019.10.042
  • 755
    La Gerche A, Gewillig M. What Limits Cardiac Performance during Exercise in Normal Subjects and in Healthy Fontan Patients?. Int J Pediatr. 2010;2010:791291. doi: 10.1155/2010/791291.
    » https://doi.org/10.1155/2010/791291
  • 756
    Wong T, Davlouros PA, Li W, Millington-Sanders C, Francis DP, Gatzoulis MA. Mechano-Electrical Interaction Late after Fontan Operation: Relation between P-Wave Duration and Dispersion, Right Atrial Size, and Atrial Arrhythmias. Circulation. 2004;109(19):2319-25. doi: 10.1161/01.CIR.0000129766.18065.DC.
    » https://doi.org/10.1161/01.CIR.0000129766.18065.DC
  • 757
    Tuzcu V, Ozkan B, Sullivan N, Karpawich P, Epstein ML. P Wave Signal-Averaged Electrocardiogram as a New Marker for Atrial Tachyarrhythmias in Postoperative Fontan Patients. J Am Coll Cardiol. 2000;36(2):602-7. doi: 10.1016/s0735-1097(00)00737-3.
    » https://doi.org/10.1016/s0735-1097(00)00737-3
  • 758
    Stephenson EA, Lu M, Berul CI, Etheridge SP, Idriss SF, Margossian R, et al. Arrhythmias in a Contemporary Fontan Cohort: Prevalence and Clinical Associations in a Multicenter Cross-Sectional Study. J Am Coll Cardiol. 2010;56(11):890-6. doi: 10.1016/j.jacc.2010.03.079.
    » https://doi.org/10.1016/j.jacc.2010.03.079
  • 759
    Deal BJ. Late Arrhythmias Following Fontan Surgery. World J Pediatr Congenit Heart Surg. 2012;3(2):194-200. doi: 10.1177/2150135111436314.
    » https://doi.org/10.1177/2150135111436314
  • 760
    Rydberg A, Rask P, Teien DE, Hörnsten R. Electrocardiographic ST Segment Depression and Clinical Function in Children with Fontan Circulation. Pediatr Cardiol. 2003;24(5):468-72. doi: 10.1007/s00246-002-0374-2.
    » https://doi.org/10.1007/s00246-002-0374-2
  • 761
    Goldstein BH, Connor CE, Gooding L, Rocchini AP. Relation of Systemic Venous Return, Pulmonary Vascular Resistance, and Diastolic Dysfunction to Exercise Capacity in Patients with Single Ventricle Receiving Fontan Palliation. Am J Cardiol. 2010;105(8):1169-75. doi: 10.1016/j.amjcard.2009.12.020.
    » https://doi.org/10.1016/j.amjcard.2009.12.020
  • 762
    Diller GP, Giardini A, Dimopoulos K, Gargiulo G, Müller J, Derrick G, et al. Predictors of Morbidity and Mortality in Contemporary Fontan Patients: Results from a Multicenter Study Including Cardiopulmonary Exercise Testing in 321 Patients. Eur Heart J. 2010;31(24):3073-83. doi: 10.1093/eurheartj/ehq356.
    » https://doi.org/10.1093/eurheartj/ehq356
  • 763
    de Los Monteros CTE, Harteveld LM, Kuipers IM, Rammeloo L, Hazekamp MG, Blom NA, et al. Prognostic Value of Maximal and Submaximal Exercise Performance in Fontan Patients <15 Years of Age. Am J Cardiol. 2021;154:92-8. doi: 10.1016/j.amjcard.2021.05.049.
    » https://doi.org/10.1016/j.amjcard.2021.05.049
  • 764
    Nathan AS, Loukas B, Moko L, Wu F, Rhodes J, Rathod RH, et al. Exercise Oscillatory Ventilation in Patients with Fontan Physiology. Circ Heart Fail. 2015;8(2):304-11. doi: 10.1161/CIRCHEARTFAILURE.114.001749.
    » https://doi.org/10.1161/CIRCHEARTFAILURE.114.001749
  • 765
    Chen CA, Chen SY, Chiu HH, Wang JK, Chang CI, Chiu IS, et al. Prognostic Value of Submaximal Exercise Data for Cardiac Morbidity in Fontan Patients. Med Sci Sports Exerc. 2014;46(1):10-5. doi: 10.1249/MSS.0b013e31829f8326.
    » https://doi.org/10.1249/MSS.0b013e31829f8326
  • 766
    Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation. 2019;140(1):e9-68. doi: 10.1161/CIR.0000000000000682.
    » https://doi.org/10.1161/CIR.0000000000000682
  • 767
    Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, et al. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr. 2021;9:632293. doi: 10.3389/fped.2021.632293.
    » https://doi.org/10.3389/fped.2021.632293
  • 768
    Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017;121(7):749-70. doi: 10.1161/CIRCRESAHA.117.311059.
    » https://doi.org/10.1161/CIRCRESAHA.117.311059
  • 769
    Norrish G, Kaski JP. The Risk of Sudden Death in Children with Hypertrophic Cardiomyopathy. Heart Fail Clin. 2022;18(1):9-18. doi: 10.1016/j.hfc.2021.07.012.
    » https://doi.org/10.1016/j.hfc.2021.07.012
  • 770
    Gallo G, Mastromarino V, Limongelli G, Calcagni G, Maruotti A, Ragni L, et al. Insights from Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Biomolecules. 2021;11(3):376. doi: 10.3390/biom11030376.
    » https://doi.org/10.3390/biom11030376
  • 771
    Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e558-631. doi: 10.1161/CIR.0000000000000937.
    » https://doi.org/10.1161/CIR.0000000000000937
  • 772
    Maskatia SA. Hypertrophic Cardiomyopathy: Infants, Children, and Adolescents. Congenit Heart Dis. 2012;7(1):84-92. doi: 10.1111/j.1747-0803.2011.00613.x.
    » https://doi.org/10.1111/j.1747-0803.2011.00613.x
  • 773
    Edelson JB, Stanley HM, Min J, Burstein DS, Lane-Fall M, O’Malley S, et al. Cardiopulmonary Exercise Testing in Pediatric Patients With Hypertrophic Cardiomyopathy. JACC Adv. 2022;1(4):100107. doi: 10.1016/j.jacadv.2022.100107.
    » https://doi.org/10.1016/j.jacadv.2022.100107
  • 774
    Edelson JB, Burstein D, Stanley H, Shah M, Mc Bride MW, Stephens P, et al. Abstract 13535: Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Circulation. 2020;142(Suppl 3). doi: 10.1161/circ.142.suppl_3.13535.
    » https://doi.org/10.1161/circ.142.suppl_3.13535
  • 775
    Thakkar K, Karajgi AR, Kallamvalappil AM, Avanthika C, Jhaveri S, Shandilya A, et al. Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy. Dis Mon. 2023;69(4):101548. doi: 10.1016/j.disamonth.2023.101548.
    » https://doi.org/10.1016/j.disamonth.2023.101548
  • 776
    Rajasekaran K, Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus. 2022;14(8):e28358. doi: 10.7759/cureus.28358.
    » https://doi.org/10.7759/cureus.28358
  • 777
    Koyama Y, Miura M, Kobayashi T, Hokosaki T, Suganuma E, Numano F, et al. A Registry Study of Kawasaki Disease Patients with Coronary Artery Aneurysms (KIDCAR): A Report on a Multicenter Prospective Registry Study Three Years after Commencement. Eur J Pediatr. 2023;182(2):633-40. doi: 10.1007/s00431-022-04719-x.
    » https://doi.org/10.1007/s00431-022-04719-x
  • 778
    Brogan P, Burns JC, Cornish J, Diwakar V, Eleftheriou D, Gordon JB, et al. Lifetime Cardiovascular Management of Patients with Previous Kawasaki Disease. Heart. 2020;106(6):411-20. doi: 10.1136/heartjnl-2019-315925.
    » https://doi.org/10.1136/heartjnl-2019-315925
  • 779
    Robinson C, Chanchlani R, Gayowsky A, Brar S, Darling E, Demers C, et al. Cardiovascular Outcomes in Children with Kawasaki Disease: A Population-Based Cohort Study. Pediatr Res. 2023;93(5):1267-75. doi: 10.1038/s41390-022-02391-3.
    » https://doi.org/10.1038/s41390-022-02391-3
  • 780
    Tsuda E, Yamada O. Clinical Course and Outcomes in Patients with Left Ventricular Dysfunction Due to Myocardial Infarction after Kawasaki Disease. Pediatr Cardiol. 2023;44(1):187-95. doi: 10.1007/s00246-022-02971-4.
    » https://doi.org/10.1007/s00246-022-02971-4
  • 781
    Miura M, Kobayashi T, Kaneko T, Ayusawa M, Fukazawa R, Fukushima N, et al. Association of Severity of Coronary Artery Aneurysms in Patients with Kawasaki Disease and Risk of Later Coronary Events. JAMA Pediatr. 2018;172(5):e180030. doi: 10.1001/jamapediatrics.2018.0030.
    » https://doi.org/10.1001/jamapediatrics.2018.0030
  • 782
    Zhu F, Ang JY. 2021 Update on the Clinical Management and Diagnosis of Kawasaki Disease. Curr Infect Dis Rep. 2021;23(3):3. doi: 10.1007/s11908-021-00746-1.
    » https://doi.org/10.1007/s11908-021-00746-1
  • 783
    Dahdah N, Jaeggi E, Fournier A. Long-Term Changes in Depolarization and Repolarization after Kawasaki Disease. Pediatr Res. 2003;53:162. doi: 10.1203/00006450-200301000-00049.
    » https://doi.org/10.1203/00006450-200301000-00049
  • 784
    Salsano A, Liao J, Miette A, Capoccia M, Mariscalco G, Santini F, et al. Surgical Myocardial Revascularization Outcomes in Kawasaki Disease: Systematic Review and Meta-Analysis. Open Med (Wars). 2021;16(1):375-86. doi: 10.1515/med-2021-0242.
    » https://doi.org/10.1515/med-2021-0242
  • 785
    Sumitomo N, Karasawa K, Taniguchi K, Ichikawa R, Fukuhara J, Abe O, et al. Association of Sinus Node Dysfunction, Atrioventricular Node Conduction Abnormality and Ventricular Arrhythmia in Patients with Kawasaki Disease and Coronary Involvement. Circ J. 2008;72(2):274-80. doi: 10.1253/circj.72.274.
    » https://doi.org/10.1253/circj.72.274
  • 786
    Tuan SH, Su HT, Chen CH, Liou IH, Weng TP, Chen GB, et al. Analysis of Exercise Capacity of Children with Kawasaki Disease by a Coronary Artery Z Score Model (ZSP Version 4) Derived by the Lambda-Mu-Sigma Method. J Pediatr. 2018;201:128-33. doi: 10.1016/j.jpeds.2018.05.036.
    » https://doi.org/10.1016/j.jpeds.2018.05.036
  • 787
    Paridon SM, Galioto FM, Vincent JA, Tomassoni TL, Sullivan NM, Bricker JT. Exercise Capacity and Incidence of Myocardial Perfusion Defects after Kawasaki Disease in Children and Adolescents. J Am Coll Cardiol. 1995;25(6):1420-4. doi: 10.1016/0735-1097(95)00003-m.
    » https://doi.org/10.1016/0735-1097(95)00003-m
  • 788
    Tsuda E, Hirata T, Matsuo O, Abe T, Sugiyama H, Yamada O. The 30-Year Outcome for Patients after Myocardial Infarction Due to Coronary Artery Lesions Caused by Kawasaki Disease. Pediatr Cardiol. 2011;32(2):176-82. doi: 10.1007/s00246-010-9838-y.
    » https://doi.org/10.1007/s00246-010-9838-y
  • 789
    Gravel H, Dahdah N, Fournier A, Mathieu MÈ, Curnier D. Ventricular Repolarisation During Exercise Challenge Occurring Late after Kawasaki Disease. Pediatr Cardiol. 2012;33(5):728-34. doi: 10.1007/s00246-012-0201-3.
    » https://doi.org/10.1007/s00246-012-0201-3
  • 790
    Oliveira GMM, Brant LCC, Polanczyk CA, Malta DC, Biolo A, Nascimento BR, et al. Cardiovascular Statistics - Brazil 2021. Arq Bras Cardiol. 2022;118(1):115-373. doi: 10.36660/abc.20211012.
    » https://doi.org/10.36660/abc.20211012
  • 791
    Burstein DS, Shamszad P, Dai D, Almond CS, Price JF, Lin KY, et al. Significant Mortality, Morbidity and Resource Utilization Associated with Advanced Heart Failure in Congenital Heart Disease in Children and Young Adults. Am Heart J. 2019;209:9-19. doi: 10.1016/j.ahj.2018.11.010.
    » https://doi.org/10.1016/j.ahj.2018.11.010
  • 792
    Adebiyi EO, Edigin E, Shaka H, Hunter J, Swaminathan S. Pediatric Heart Failure Inpatient Mortality: A Cross-Sectional Analysis. Cureus. 2022;14(7):e26721. doi: 10.7759/cureus.26721.
    » https://doi.org/10.7759/cureus.26721
  • 793
    Hsu DT, Pearson GD. Heart Failure in Children: Part II: Diagnosis, Treatment, and Future Directions. Circ Heart Fail. 2009;2(5):490-8. doi: 10.1161/CIRCHEARTFAILURE.109.856229.
    » https://doi.org/10.1161/CIRCHEARTFAILURE.109.856229
  • 794
    Price JF. Congestive Heart Failure in Children. Pediatr Rev. 2019;40(2):60-70. doi: 10.1542/pir.2016-0168.
    » https://doi.org/10.1542/pir.2016-0168
  • 795
    Rosenthal D, Chrisant MR, Edens E, Mahony L, Canter C, Colan S, et al. International Society for Heart and Lung Transplantation: Practice Guidelines for Management of Heart Failure in Children. J Heart Lung Transplant. 2004;23(12):1313-33. doi: 10.1016/j.healun.2004.03.018.
    » https://doi.org/10.1016/j.healun.2004.03.018
  • 796
    Rossano JW, Singh TP, Cherikh WS, Chambers DC, Harhay MO, Hayes D Jr, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-Second Pediatric Heart Transplantation Report - 2019; Focus Theme: Donor and Recipient Size Match. J Heart Lung Transplant. 2019;38(10):1028-41. doi: 10.1016/j.healun.2019.08.002.
    » https://doi.org/10.1016/j.healun.2019.08.002
  • 797
    Castaldi B, Cuppini E, Fumanelli J, Di Candia A, Sabatino J, Sirico D, et al. Chronic Heart Failure in Children: State of the Art and New Perspectives. J Clin Med. 2023;12(7):2611. doi: 10.3390/jcm12072611.
    » https://doi.org/10.3390/jcm12072611
  • 798
    Wolf CM, Reiner B, Kühn A, Hager A, Müller J, Meierhofer C, et al. Subclinical Cardiac Dysfunction in Childhood Cancer Survivors 10-Years Follow-Up Correlates with Cumulative Anthracycline Dose and is Best Detected by Cardiopulmonary Exercise Testing, Circulating Serum Biomarker, Speckle Tracking Echocardiography, and Tissue Doppler Imaging. Front Pediatr. 2020;8:123. doi: 10.3389/fped.2020.00123.
    » https://doi.org/10.3389/fped.2020.00123
  • 799
    Hauser M, Gibson BS, Wilson N. Diagnosis of Anthracycline-Induced Late Cardiomyopathy by Exercise-Spiroergometry and Stress-Echocardiography. Eur J Pediatr. 2001;160(10):607-10. doi: 10.1007/s004310100830.
    » https://doi.org/10.1007/s004310100830
  • 800
    Loss KL, Shaddy RE, Kantor PF. Recent and Upcoming Drug Therapies for Pediatric Heart Failure. Front Pediatr. 2021;9:681224. doi: 10.3389/fped.2021.681224.
    » https://doi.org/10.3389/fped.2021.681224
  • 801
    Hegazy M, Ghaleb S, Das BB. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. Children (Basel). 2023;10(1):149. doi: 10.3390/children10010149.
    » https://doi.org/10.3390/children10010149
  • 802
    Mah K, Chen S, Chandhoke G, Kantor PF, Stephenson E. QTc and QRS Abnormalities are Associated with Outcome in Pediatric Heart Failure. Pediatr Cardiol. 2022;43(8):1903-12. doi: 10.1007/s00246-022-02932-x.
    » https://doi.org/10.1007/s00246-022-02932-x
  • 803
    Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017;58(4):303-12. doi: 10.1016/j.pedneo.2017.01.001.
    » https://doi.org/10.1016/j.pedneo.2017.01.001
  • 804
    Guimarães GV, Bellotti G, Mocelin AO, Camargo PR, Bocchi EA. Cardiopulmonary Exercise Testing in Children with Heart Failure Secondary to Idiopathic Dilated Cardiomyopathy. Chest. 2001;120(3):816-24. doi: 10.1378/chest.120.3.816.
    » https://doi.org/10.1378/chest.120.3.816
  • 805
    Chen CK, Manlhiot C, Russell JL, Kantor PF, McCrindle BW, Conway J. The Utility of Cardiopulmonary Exercise Testing for the Prediction of Outcomes in Ambulatory Children with Dilated Cardiomyopathy. Transplantation. 2017;101(10):2455-60. doi: 10.1097/TP.0000000000001672.
    » https://doi.org/10.1097/TP.0000000000001672
  • 806
    Lytrivi ID, Blume ED, Rhodes J, Dillis S, Gauvreau K, Singh TP. Prognostic Value of Exercise Testing During Heart Transplant Evaluation in Children. Circ Heart Fail. 2013;6(4):792-9. doi: 10.1161/CIRCHEARTFAILURE.112.000103.
    » https://doi.org/10.1161/CIRCHEARTFAILURE.112.000103
  • 807
    Giardini A, Fenton M, Andrews RE, Derrick G, Burch M. Peak Oxygen Uptake Correlates with Survival Without Clinical Deterioration in Ambulatory Children with Dilated Cardiomyopathy. Circulation. 2011;124(16):1713-8. doi: 10.1161/CIRCULATIONAHA.111.035956.
    » https://doi.org/10.1161/CIRCULATIONAHA.111.035956
  • 808
    Canter CE, Shaddy RE, Bernstein D, Hsu DT, Chrisant MR, Kirklin JK, et al. Indications for Heart Transplantation in Pediatric Heart Disease: A Scientific Statement from the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;115(5):658-76. doi: 10.1161/CIRCULATIONAHA.106.180449.
    » https://doi.org/10.1161/CIRCULATIONAHA.106.180449
  • 809
    Kucera F, Fenton M. Cardiac Transplantation in Children. Paediatr Child Health. 2017;27:58-63. doi: 10.1016/j.paed.2016.12.001.
    » https://doi.org/10.1016/j.paed.2016.12.001
  • 810
    Davis JA, McBride MG, Chrisant MR, Patil SM, Hanna BD, Paridon SM. Longitudinal Assessment of Cardiovascular Exercise Performance After Pediatric Heart Transplantation. J Heart Lung Transplant. 2006;25(6):626-33. doi: 10.1016/j.healun.2006.02.011.
    » https://doi.org/10.1016/j.healun.2006.02.011
  • 811
    Vanderlaan RD, Conway J, Manlhiot C, McCrindle BW, Dipchand AI. Enhanced Exercise Performance and Survival Associated with Evidence of Autonomic Reinnervation in Pediatric Heart Transplant Recipients. Am J Transplant. 2012;12(8):2157-63. doi: 10.1111/j.1600-6143.2012.04046.x.
    » https://doi.org/10.1111/j.1600-6143.2012.04046.x
  • 812
    Wang M, Peterson DR, Pagan E, Bagnardi V, Mazzanti A, McNitt S, et al. Assessment of Absolute Risk of Life-Threatening Cardiac Events in Long QT Syndrome Patients. Front Cardiovasc Med. 2022;9:988951. doi: 10.3389/fcvm.2022.988951.
    » https://doi.org/10.3389/fcvm.2022.988951
  • 813
    Schnell F, Behar N, Carré F. Long-QT Syndrome and Competitive Sports. Arrhythm Electrophysiol Rev. 2018;7(3):187-92. doi: 10.15420/aer.2018.39.3.
    » https://doi.org/10.15420/aer.2018.39.3
  • 814
    Lankaputhra M, Voskoboinik A. Congenital Long QT Syndrome: A Clinician's Guide. Intern Med J. 2021;51(12):1999-2011. doi: 10.1111/imj.15437.
    » https://doi.org/10.1111/imj.15437
  • 815
    Yang Y, Lv TT, Li SY, Liu P, Gao QG, Zhang P. Utility of Provocative Testing in the Diagnosis and Genotyping of Congenital Long QT Syndrome: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2022;11(14):e025246. doi: 10.1161/JAHA.122.025246.
    » https://doi.org/10.1161/JAHA.122.025246
  • 816
    Schwartz PJ, Crotti L. QTc Behavior During Exercise and Genetic Testing for the Long-QT Syndrome. Circulation. 2011;124(20):2181-4. doi: 10.1161/CIRCULATIONAHA.111.062182.
    » https://doi.org/10.1161/CIRCULATIONAHA.111.062182
  • 817
    Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, et al. Congenital Long QT Syndrome. JACC Clin Electrophysiol. 2022;8(5):687-706. doi: 10.1016/j.jacep.2022.02.017.
    » https://doi.org/10.1016/j.jacep.2022.02.017
  • 818
    Kwok SY, Pflaumer A, Pantaleo SJ, Date E, Jadhav M, Davis AM. Ten-Year Experience in Atenolol Use and Exercise Evaluation in Children with Genetically Proven Long QT Syndrome. J Arrhythm. 2017;33(6):624-9. doi: 10.1016/j.joa.2017.08.004.
    » https://doi.org/10.1016/j.joa.2017.08.004
  • 819
    Han L, Liu F, Li Q, Qing T, Zhai Z, Xia Z, et al. The Efficacy of Beta-Blockers in Patients with Long QT Syndrome 1-3 According to Individuals‘ Gender, Age, and QTc Intervals: A Network Meta-analysis. Front Pharmacol. 2020;11:579525. doi: 10.3389/fphar.2020.579525.
    » https://doi.org/10.3389/fphar.2020.579525
  • 820
    Corcia MCG, Asmundis C, Chierchia GB, Brugada P. Brugada Syndrome in the Paediatric Population: A Comprehensive Approach to Clinical Manifestations, Diagnosis, and Management. Cardiol Young. 2016;26(6):1044-55. doi: 10.1017/S1047951116000548.
    » https://doi.org/10.1017/S1047951116000548
  • 821
    Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol. 2022;8(3):386-405. doi: 10.1016/j.jacep.2021.12.001.
    » https://doi.org/10.1016/j.jacep.2021.12.001
  • 822
    Michowitz Y, Milman A, Andorin A, Sarquella-Brugada G, Corcia MCG, Gourraud JB, et al. Characterization and Management of Arrhythmic Events in Young Patients with Brugada Syndrome. J Am Coll Cardiol. 2019;73(14):1756-65. doi: 10.1016/j.jacc.2019.01.048.
    » https://doi.org/10.1016/j.jacc.2019.01.048
  • 823
    Behere SP, Weindling SN. Brugada Syndrome in Children - Stepping Into Unchartered Territory. Ann Pediatr Cardiol. 2017;10(3):248-258. doi: 10.4103/apc.APC_49_17.
    » https://doi.org/10.4103/apc.APC_49_17
  • 824
    Peltenburg PJ, Hoedemaekers YM, Clur SAB, Blom NA, Blank AC, Boesaard EP, et al. Screening, Diagnosis and Follow-Up of Brugada Syndrome in Children: A Dutch Expert Consensus Statement. Neth Heart J. 2023;31(4):133-7. doi: 10.1007/s12471-022-01723-6.
    » https://doi.org/10.1007/s12471-022-01723-6
  • 825
    Crosson JE, Nies M. Brugada Syndrome in Children. Expert Rev Cardiovasc Ther. 2015;13(2):173-81. doi: 10.1586/14779072.2015.999765.
    » https://doi.org/10.1586/14779072.2015.999765
  • 826
    Kawada S, Morita H, Antzelevitch C, Morimoto Y, Nakagawa K, Watanabe A, et al. Shanghai Score System for Diagnosis of Brugada Syndrome: Validation of the Score System and System and Reclassification of the Patients. JACC Clin Electrophysiol. 2018;4(6):724-30. doi: 10.1016/j.jacep.2018.02.009.
    » https://doi.org/10.1016/j.jacep.2018.02.009
  • 827
    Conte G, Dewals W, Sieira J, de Asmundis C, Ciconte G, Chierchia GB, et al. Drug-Induced Brugada Syndrome in Children: Clinical Features, Device-Based Management, and Long-Term Follow-Up. J Am Coll Cardiol. 2014;63(21):2272-9. doi: 10.1016/j.jacc.2014.02.574.
    » https://doi.org/10.1016/j.jacc.2014.02.574
  • 828
    Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, et al. The Circadian Pattern of the Development of Ventricular Fibrillation in Patients with Brugada Syndrome. Eur Heart J. 1999;20(6):465-70. doi: 10.1053/euhj.1998.1332.
    » https://doi.org/10.1053/euhj.1998.1332
  • 829
    Abbas M, Miles C, Behr E. Catecholaminergic Polymorphic Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.09.
    » https://doi.org/10.15420/aer.2022.09
  • 830
    Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, et al. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci. 2021;22(17):9293. doi: 10.3390/ijms22179293.
    » https://doi.org/10.3390/ijms22179293
  • 831
    Song J, Luo Y, Jiang Y, He J. Advances in the Molecular Genetics of Catecholaminergic Polymorphic Ventricular Tachycardia. Front Pharmacol. 2021;12:718208. doi: 10.3389/fphar.2021.718208.
    » https://doi.org/10.3389/fphar.2021.718208
  • 832
    Kim CW, Aronow WS, Dutta T, Frenkel D, Frishman WH. Catecholaminergic Polymorphic Ventricular Tachycardia. Cardiol Rev. 2020;28(6):325-31. doi: 10.1097/CRD.0000000000000302.
    » https://doi.org/10.1097/CRD.0000000000000302
  • 833
    Miyata K, Ohno S, Itoh H, Horie M. Bradycardia Is a Specific Phenotype of Catecholaminergic Polymorphic Ventricular Tachycardia Induced by RYR2 Mutations. Intern Med. 2018;57(13):1813-7. doi: 10.2169/internalmedicine.9843-17.
    » https://doi.org/10.2169/internalmedicine.9843-17
  • 834
    Aizawa Y, Komura S, Okada S, Chinushi M, Aizawa Y, Morita H, et al. Distinct U Wave Changes in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Int Heart J. 2006;47(3):381-9. doi: 10.1536/ihj.47.381.
    » https://doi.org/10.1536/ihj.47.381
  • 835
    Stiles MK, Wilde AAM, Abrams DJ, Ackerman MJ, Albert CM, Behr ER, et al. 2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of their Families. Heart Rhythm. 2021;18(1):e1-e50. doi: 10.1016/j.hrthm.2020.10.010.
    » https://doi.org/10.1016/j.hrthm.2020.10.010
  • 836
    Inoue YY, Aiba T, Kawata H, Sakaguchi T, Mitsuma W, Morita H, et al. Different Responses to Exercise Between Andersen-Tawil Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia. Europace. 2018;20(10):1675-82. doi: 10.1093/europace/eux351.
    » https://doi.org/10.1093/europace/eux351
  • 837
    Blich M, Marai I, Suleiman M, Lorber A, Gepstein L, Boulous M, et al. Electrocardiographic Comparison of Ventricular Premature Complexes During Exercise Test in Patients with CPVT and Healthy Subjects. Pacing Clin Electrophysiol. 2015;38(3):398-402. doi: 10.1111/pace.12574.
    » https://doi.org/10.1111/pace.12574
  • 838
    Sumitomo N, Harada K, Nagashima M, Yasuda T, Nakamura Y, Aragaki Y, et al. Catecholaminergic Polymorphic Ventricular Tachycardia: Electrocardiographic Characteristics and Optimal Therapeutic Strategies to Prevent Sudden Death. Heart. 2003;89(1):66-70. doi: 10.1136/heart.89.1.66.
    » https://doi.org/10.1136/heart.89.1.66
  • 839
    Pflaumer A, Davis AM. Guidelines for the Diagnosis and Management of Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2012;21(2):96-100. doi: 10.1016/j.hlc.2011.10.008.
    » https://doi.org/10.1016/j.hlc.2011.10.008
  • 840
    Marjamaa A, Hiippala A, Arrhenius B, Lahtinen AM, Kontula K, Toivonen L, et al. Intravenous Epinephrine Infusion Test in Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia. J Cardiovasc Electrophysiol. 2012;23(2):194-9. doi: 10.1111/j.1540-8167.2011.02188.x.
    » https://doi.org/10.1111/j.1540-8167.2011.02188.x
  • 841
    Wangüemert F, Calero CB, Pérez C, Campuzano O, Beltran-Alvarez P, Scornik FS, et al. Clinical and Molecular Characterization of a Cardiac Ryanodine Receptor Founder Mutation Causing Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Rhythm. 2015;12(7):1636-43. doi: 10.1016/j.hrthm.2015.03.033.
    » https://doi.org/10.1016/j.hrthm.2015.03.033
  • 842
    Imberti JF, Underwood K, Mazzanti A, Priori SG. Clinical Challenges in Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2016;25(8):777-83. doi: 10.1016/j.hlc.2016.01.012.
    » https://doi.org/10.1016/j.hlc.2016.01.012
  • 843
    van der Werf C, Nederend I, Hofman N, van Geloven N, Ebink C, Frohn-Mulder IM, et al. Familial Evaluation in Catecholaminergic Polymorphic Ventricular Tachycardia: Disease Penetrance and Expression in Cardiac Ryanodine Receptor Mutation-Carrying Relatives. Circ Arrhythm Electrophysiol. 2012;5(4):748-56. doi: 10.1161/CIRCEP.112.970517.
    » https://doi.org/10.1161/CIRCEP.112.970517
  • 844
    Shimamoto K, Ohno S, Kato K, Takayama K, Sonoda K, Fukuyama M, et al. Impact of Cascade Screening for Catecholaminergic Polymorphic Ventricular Tachycardia Type 1. Heart. 2022;108(11):840-7. doi: 10.1136/heartjnl-2021-320220.
    » https://doi.org/10.1136/heartjnl-2021-320220
  • 845
    Roston TM, Jones K, Hawkins NM, Bos JM, Schwartz PJ, Perry F, et al. Implantable Cardioverter-Defibrillator Use in Catecholaminergic Polymorphic Ventricular Tachycardia: A Systematic Review. Heart Rhythm. 2018;15(12):1791-9. doi: 10.1016/j.hrthm.2018.06.046.
    » https://doi.org/10.1016/j.hrthm.2018.06.046
  • 846
    Peltenburg PJ, Pultoo SNJ, Tobert KE, Bos JM, Lieve KVV, Tanck M, et al. Repeatability of Ventricular Arrhythmia Characteristics on the Exercise-Stress Test in RYR2-Mediated Catecholaminergic Polymorphic Ventricular Tachycardia. Europace. 2023;25(2):619-26. doi: 10.1093/europace/euac177.
    » https://doi.org/10.1093/europace/euac177
  • 847
    Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP, et al. Catecholaminergic Polymorphic Ventricular Tachycardia in Children: Analysis of Therapeutic Strategies and Outcomes from an International Multicenter Registry. Circ Arrhythm Electrophysiol. 2015;8(3):633-42. doi: 10.1161/CIRCEP.114.002217.
    » https://doi.org/10.1161/CIRCEP.114.002217
  • 848
    Heidbuchel H, Arbelo E, D’Ascenzi F, Borjesson M, Boveda S, Castelletti S, et al. Recommendations for Participation in Leisure-Time Physical Activity and Competitive Sports of Patients with Arrhythmias and Potentially Arrhythmogenic Conditions. Part 2: Ventricular Arrhythmias, Channelopathies, and Implantable Defibrillators. Europace. 2021;23(1):147-8. doi: 10.1093/europace/euaa106.
    » https://doi.org/10.1093/europace/euaa106
  • 849
    Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(7):784-804. doi: 10.1016/j.jacc.2018.05.065.
    » https://doi.org/10.1016/j.jacc.2018.05.065
  • 850
    Corcia MCG, Motonaga KS. Pediatric Arrhythmogenic Right Ventricular Cardiomyopathy: They May Be Small, But They Pack a Big Punch. JACC Clin Electrophysiol. 2022;8(3):319-21. doi: 10.1016/j.jacep.2021.09.014.
    » https://doi.org/10.1016/j.jacep.2021.09.014
  • 851
    Te Riele ASJM, James CA, Calkins H, Tsatsopoulou A. Arrhythmogenic Right Ventricular Cardiomyopathy in Pediatric Patients: An Important but Underrecognized Clinical Entity. Front Pediatr. 2021;9:750916. doi: 10.3389/fped.2021.750916.
    » https://doi.org/10.3389/fped.2021.750916
  • 852
    Cicenia M, Drago F. Arrhythmogenic Cardiomyopathy: Diagnosis, Evolution, Risk Stratification and Pediatric Population-Where Are We? J Cardiovasc Dev Dis. 2022;9(4):98. doi: 10.3390/jcdd9040098.
    » https://doi.org/10.3390/jcdd9040098
  • 853
    Surget E, Maltret A, Raimondi F, Fressart V, Bonnet D, Gandjbakhch E, et al. Clinical Presentation and Heart Failure in Children with Arrhythmogenic Cardiomyopathy. Circ Arrhythm Electrophysiol. 2022;15(2):e010346. doi: 10.1161/CIRCEP.121.010346.
    » https://doi.org/10.1161/CIRCEP.121.010346
  • 854
    Smedsrud MK, Chivulescu M, Forså MI, Castrini I, Aabel EW, Rootwelt-Norberg C, et al. Highly Malignant Disease in Childhood-Onset Arrhythmogenic Right Ventricular Cardiomyopathy. Eur Heart J. 2022;43(45):4694-703. doi: 10.1093/eurheartj/ehac485.
    » https://doi.org/10.1093/eurheartj/ehac485
  • 855
    James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, et al. Exercise Increases Age-Related Penetrance and Arrhythmic Risk in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy-Associated Desmosomal Mutation Carriers. J Am Coll Cardiol. 2013;62(14):1290-7. doi: 10.1016/j.jacc.2013.06.033.
    » https://doi.org/10.1016/j.jacc.2013.06.033
  • 856
    Corrado D, Marra MP, Zorzi A, Beffagna G, Cipriani A, Lazzari M, et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int J Cardiol. 2020;319:106-14. doi: 10.1016/j.ijcard.2020.06.005.
    » https://doi.org/10.1016/j.ijcard.2020.06.005
  • 857
    DeWitt ES, Chandler SF, Hylind RJ, Ladouceur VB, Blume ED, VanderPluym C, et al. Phenotypic Manifestations of Arrhythmogenic Cardiomyopathy in Children and Adolescents. J Am Coll Cardiol. 2019;74(3):346-58. doi: 10.1016/j.jacc.2019.05.022.
    » https://doi.org/10.1016/j.jacc.2019.05.022
  • 858
    Etoom Y, Govindapillai S, Hamilton R, Manlhiot C, Yoo SJ, Farhan M, et al. Importance of CMR Within the Task Force Criteria for the Diagnosis of ARVC in Children and Adolescents. J Am Coll Cardiol. 2015;65(10):987-95. doi: 10.1016/j.jacc.2014.12.041.
    » https://doi.org/10.1016/j.jacc.2014.12.041
  • 859
    Schmied C, Brunckhorst C, Duru F, Haegeli L. Exercise Testing for Risk Stratification of Ventricular Arrhythmias in the Athlete. Card Electrophysiol Clin 2013;5:53-64. doi: 10.1016/j.ccep.2012.11.003.
    » https://doi.org/10.1016/j.ccep.2012.11.003
  • 860
    Hamilton RM, Fidler L. Right Ventricular Cardiomyopathy in the Young: An Emerging Challenge. Heart Rhythm. 2009;6(4):571-5. doi: 10.1016/j.hrthm.2009.01.026.
    » https://doi.org/10.1016/j.hrthm.2009.01.026
  • 861
    Perrin MJ, Angaran P, Laksman Z, Zhang H, Porepa LF, Rutberg J, et al. Exercise Testing in Asymptomatic Gene Carriers Exposes a Latent Electrical Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772-9. doi: 10.1016/j.jacc.2013.04.084.
    » https://doi.org/10.1016/j.jacc.2013.04.084
  • 862
    Martínez-Solé J, Sabater-Molina M, Braza-Boïls A, Santos-Mateo JJ, Molina P, Martínez-Dolz L, et al. Facts and Gaps in Exercise Influence on Arrhythmogenic Cardiomyopathy: New Insights from a Meta-Analysis Approach. Front Cardiovasc Med. 2021;8:702560. doi: 10.3389/fcvm.2021.702560.
    » https://doi.org/10.3389/fcvm.2021.702560
  • 863
    Landry CH, Fatah M, Connelly KA, Angaran P, Hamilton RM, Dorian P. Evaluating the 12-Lead Electrocardiogram for Diagnosing ARVC in Young Populations: Implications for Preparticipation Screening of Athletes. CJC Open. 2020;3(4):498-503. doi: 10.1016/j.cjco.2020.12.011.
    » https://doi.org/10.1016/j.cjco.2020.12.011
  • 864
    Miljoen H, Spera F, Van Kolen K, Saenen J, Claessen G, Huybrechts W, et al. Electrocardiographic Phenotype of Exercise-Induced Arrhythmogenic Cardiomyopathy: A Retrospective Observational Study. Front Cardiovasc Med. 2022;9:1052174. doi: 10.3389/fcvm.2022.1052174.
    » https://doi.org/10.3389/fcvm.2022.1052174
  • 865
    Scheel PJ 3rd, Florido R, Hsu S, Murray B, Tichnell C, James CA, et al. Safety and Utility of Cardiopulmonary Exercise Testing in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. J Am Heart Assoc. 2020;9(3):e013695. doi: 10.1161/JAHA.119.013695.
    » https://doi.org/10.1161/JAHA.119.013695
  • 866
    Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm. 2019;16(11):e301-e372. doi: 10.1016/j.hrthm.2019.05.007.
    » https://doi.org/10.1016/j.hrthm.2019.05.007
  • 867
    Adler A, Perrin MJ, Spears D, Gollob MH. Epsilon Wave Uncovered by Exercise Test in a Patient with Desmoplakin-Positive Arrhythmogenic Right Ventricular Cardiomyopathy. Can J Cardiol. 2015;31(6):819.e1-2. doi: 10.1016/j.cjca.2015.01.025.
    » https://doi.org/10.1016/j.cjca.2015.01.025
  • 868
    Chungsomprasong P, Hamilton R, Luining W, Fatah M, Yoo SJ, Grosse-Wortmann L. Left Ventricular Function in Children and Adolescents with Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol. 2017;119(5):778-84. doi: 10.1016/j.amjcard.2016.11.020.
    » https://doi.org/10.1016/j.amjcard.2016.11.020
  • 869
    Manolis AA, Manolis TA, Melita H, Manolis AS. Congenital Heart Block: Pace Earlier (Childhood) than Later (Adulthood). Trends Cardiovasc Med. 2020;30(5):275-86. doi: 10.1016/j.tcm.2019.06.006.
    » https://doi.org/10.1016/j.tcm.2019.06.006
  • 870
    Jaeggi ET, Hamilton RM, Silverman ED, Zamora SA, Hornberger LK. Outcome of Children with Fetal, Neonatal or Childhood Diagnosis of Isolated Congenital Atrioventricular Block. A Single Institution's Experience of 30 Years. J Am Coll Cardiol. 2002;39(1):130-7. doi: 10.1016/s0735-1097(01)01697-7.
    » https://doi.org/10.1016/s0735-1097(01)01697-7
  • 871
    Moak JP, Barron KS, Hougen TJ, Wiles HB, Balaji S, Sreeram N, et al. Congenital Heart Block: Development of Late-Onset Cardiomyopathy, a Previously Underappreciated Sequela. J Am Coll Cardiol. 2001;37(1):238-42. doi: 10.1016/s0735-1097(00)01048-2.
    » https://doi.org/10.1016/s0735-1097(00)01048-2
  • 872
    Sülü A, Kafalı HC, Kamalı H, Genç SB, Onan IS, Haydin S, et al. Clinical Characteristics and Mid-term Follow-up in Children with Isolated Complete Atrioventricular Block. Anatol J Cardiol. 2023;27(2):106-12. doi: 10.14744/AnatolJCardiol.2022.2235.
    » https://doi.org/10.14744/AnatolJCardiol.2022.2235
  • 873
    Sumiyoshi M, Nakata Y, Yasuda M, Tokano T, Ogura S, Nakazato Y, et al. Clinical and Electrophysiologic Features of Exercise-Induced Atrioventricular Block. Am Heart J. 1996;132(6):1277-81. doi: 10.1016/s0002-8703(96)90476-7.
    » https://doi.org/10.1016/s0002-8703(96)90476-7
  • 874
    Fischbach PS, Frias PA, Strieper MJ, Campbell RM. Natural History and Current Therapy for Complete Heart Block in Children and Patients with Congenital Heart Disease. Congenit Heart Dis. 2007;2(4):224-34. doi: 10.1111/j.1747-0803.2007.00106.x.
    » https://doi.org/10.1111/j.1747-0803.2007.00106.x
  • 875
    Chandler SF, Fynn-Thompson F, Mah DY. Role of Cardiac Pacing in Congenital Complete Heart Block. Expert Rev Cardiovasc Ther. 2017;15(11):853-61. doi: 10.1080/14779072.2017.1376655.
    » https://doi.org/10.1080/14779072.2017.1376655
  • 876
    Motonaga KS, Punn R, Axelrod DM, Ceresnak SR, Hanisch D, Kazmucha JA, et al. Diminished Exercise Capacity and Chronotropic Incompetence in Pediatric Patients with Congenital Complete Heart Block and Chronic Right Ventricular Pacing. Heart Rhythm. 2015;12(3):560-5. doi: 10.1016/j.hrthm.2014.11.036.
    » https://doi.org/10.1016/j.hrthm.2014.11.036
  • 877
    Siddharth CB, Relan J. Is Left Ventricular Superior to Right Ventricular Pacing in Children with Congenital or Postoperative Complete Heart Block? Interact Cardiovasc Thorac Surg. 2021;33(1):131-5. doi: 10.1093/icvts/ivab048.
    » https://doi.org/10.1093/icvts/ivab048
  • 878
    Villain E. Pediatric Cardiac Pacing: Indications, Implant Techniques, Pacing Mode. Ann Cardiol Angeiol. 2005;54(1):2-6. doi: 10.1016/j.ancard.2004.11.006.
    » https://doi.org/10.1016/j.ancard.2004.11.006
  • 879
    Vanagt WY, Prinzen FW, Delhaas T. Physiology of Cardiac Pacing in Children: The Importance of the Ventricular Pacing Site. Pacing Clin Electrophysiol. 2008;31(Suppl 1):S24-7. doi: 10.1111/j.1540-8159.2008.00950.x.
    » https://doi.org/10.1111/j.1540-8159.2008.00950.x
  • 880
    Chen L, Duan H, Li X, Yang Z, Jiao M, Sun K, et al. The Causes of Chest Pain in Children and the Criteria for Targeted Myocardial Enzyme Testing in Identifying the Causes of Chest Pain in Children. Front Cardiovasc Med. 2021;8:582129. doi: 10.3389/fcvm.2021.582129.
    » https://doi.org/10.3389/fcvm.2021.582129
  • 881
    Anderson BR, Vetter VL. Arrhythmogenic Causes of Chest Pain in Children. Pediatr Clin North Am. 2010;57(6):1305-29. doi: 10.1016/j.pcl.2010.09.005.
    » https://doi.org/10.1016/j.pcl.2010.09.005
  • 882
    Boon AW, Forton J. How to Evaluate a Child with Chest Pain. Curr Paediatr. 2004;14(1):64-70. doi: 10.1016/j.cupe.2003.09.003.
    » https://doi.org/10.1016/j.cupe.2003.09.003
  • 883
    Guardamagna O, Abello F, Saracco P, Baracco V, Rolfo E, Pirro M. Endothelial Activation, Inflammation and Premature Atherosclerosis in Children with Familial Dyslipidemia. Atherosclerosis. 2009;207(2):471-5. doi: 10.1016/j.atherosclerosis.2009.06.006.
    » https://doi.org/10.1016/j.atherosclerosis.2009.06.006
  • 884
    Narverud I, Retterstøl K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, et al. Markers of Atherosclerotic Development in Children with Familial Hypercholesterolemia: A Literature Review. Atherosclerosis. 2014;235(2):299-309. doi: 10.1016/j.atherosclerosis.2014.05.917.
    » https://doi.org/10.1016/j.atherosclerosis.2014.05.917
  • 885
    Mitsnefes MM. Cardiovascular Complications of Pediatric Chronic Kidney Disease. Pediatr Nephrol. 2008;23(1):27-39. doi: 10.1007/s00467-006-0359-0.
    » https://doi.org/10.1007/s00467-006-0359-0
  • 886
    Paoli S, Mitsnefes MM. Coronary Artery Calcification and Cardiovascular Disease in Children with Chronic Kidney Disease. Curr Opin Pediatr. 2014;26(2):193-7. doi: 10.1097/MOP.0000000000000059.
    » https://doi.org/10.1097/MOP.0000000000000059
  • 887
    Shen CC, Chung HT, Huang YL, Yeh KW, Huang JL. Coronary Artery Dilation Among Patients with Paediatric-Onset Systemic Lupus Erythematosus. Scand J Rheumatol. 2012;41(6):458-65. doi: 10.3109/03009742.2012.694470.
    » https://doi.org/10.3109/03009742.2012.694470
  • 888
    Mavrogeni S, Smerla R, Grigoriadou G, Servos G, Koutsogeorgopoulou L, Karabela G, et al. Cardiovascular Magnetic Resonance Evaluation of Paediatric Patients with Systemic Lupus Erythematosus and Cardiac Symptoms. Lupus. 2016;25(3):289-95. doi: 10.1177/0961203315611496.
    » https://doi.org/10.1177/0961203315611496
  • 889
    Khositseth A, Prangwatanagul W, Tangnararatchakit K, Vilaiyuk S, Su-Angka N. Myocardial Performance Index in Active and Inactive Paediatric Systemic Lupus Erythematosus. Clin Exp Rheumatol. 2017;35(2):344-500. PMID: 28229822.
  • 890
    Gazarian M, Feldman BM, Benson LN, Gilday DL, Laxer RM, Silverman ED. Assessment of Myocardial Perfusion and Function in Childhood Systemic Lupus Erythematosus. J Pediatr. 1998;132(1):109-16. doi: 10.1016/s0022-3476(98)70494-9.
    » https://doi.org/10.1016/s0022-3476(98)70494-9
  • 891
    Takahashi T, Nakano S, Shimazaki Y, Kaneko M, Hirata N, Nakamura T, et al. Long-Term Appraisal of Coronary Bypass Operations in Familial Hypercholesterolemia. Ann Thorac Surg. 1993;56(3):499-505. doi: 10.1016/0003-4975(93)90887-n.
    » https://doi.org/10.1016/0003-4975(93)90887-n
  • 892
    Bergoënd E, Raisky O, Degandt A, Tamisier D, Sidi D, Vouhé P. Myocardial Revascularization in Infants and Children by Means of Coronary Artery Proximal Patch Arterioplasty or Bypass Grafting: A Single-Institution Experience. J Thorac Cardiovasc Surg. 2008;136(2):298-305. doi: 10.1016/j.jtcvs.2008.02.059.
    » https://doi.org/10.1016/j.jtcvs.2008.02.059
  • 893
    Auriau J, Belhadjer Z, Panaioli E, Derridj N, Jais JP, Gaudin R, et al. Exercise Electrocardiogram for Risk-Based Screening of Severe Residual Coronary Lesion in Children After Coronary Surgery. Arch Cardiovasc Dis. 2022;115(12):656-63. doi: 10.1016/j.acvd.2022.10.001.
    » https://doi.org/10.1016/j.acvd.2022.10.001
  • 894
    Yetman AT, McCrindle BW, MacDonald C, Freedom RM, Gow R. Myocardial Bridging in Children with Hypertrophic Cardiomyopathy--a Risk Factor for Sudden Death. N Engl J Med. 1998;339(17):1201-9. doi: 10.1056/NEJM199810223391704.
    » https://doi.org/10.1056/NEJM199810223391704
  • 895
    Singh GK. Congenital Aortic Valve Stenosis. Children (Basel). 2019;6(5):69. doi: 10.3390/children6050069.
    » https://doi.org/10.3390/children6050069
  • 896
    Kliegman R, Behrman RE, Nelson WE, editors. Nelson Textbook of Pediatrics. 20th ed. Phialdelphia: Elsevier; 2016. ISBN-10: 1455775665; ISBN-13: 978-1455775668.
  • 897
    Atalay S, Imamoğlu A, Tutar HE, Altuğ N. Relation of Mass/Volume Ratio to ECG Abnormalities and Symptoms in Children with Aortic Stenosis/Insufficiency. Angiology. 1999;50(2):131-6. doi: 10.1177/000331979905000206.
    » https://doi.org/10.1177/000331979905000206
  • 898
    Piorecka-Makula A, Werner B. Prolonged QT Dispersion in Children with Congenital Valvular Aortic Stenosis. Med Sci Monit. 2009;15(10):CR534-538. PMID: 19789513.
  • 899
    Naik R, Kunselman A, Wackerle E, Johnson G, Cyran SE, Chowdhury D. Stress Echocardiography: A Useful Tool for Children with Aortic Stenosis. Pediatr Cardiol. 2013;34(5):1237-43. doi: 10.1007/s00246-013-0635-2.
    » https://doi.org/10.1007/s00246-013-0635-2
  • 900
    Guo Y, Zhou A, Sun K, Li F, Gao W, Huang M, et al. Exercise Capacity Evaluation after Percutaneous Balloon Pulmonary Valvuloplasty in Children with Pulmonary Valve Stenosis. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(1):55-8. doi: 10.3760/j:issn:0253-3758.2007.01.014.
    » https://doi.org/10.3760/j:issn:0253-3758.2007.01.014
  • 901
    Fishbein GA, Fishbein MC. Pathology of the Aortic Valve: Aortic Valve Stenosis/Aortic Regurgitation. Curr Cardiol Rep. 2019;21(8):81. doi: 10.1007/s11886-019-1162-4.
    » https://doi.org/10.1007/s11886-019-1162-4
  • 902
    Akinseye OA, Pathak A, Ibebuogu UN. Aortic Valve Regurgitation: A Comprehensive Review. Curr Probl Cardiol. 2018;43(8):315-34. doi: 10.1016/j.cpcardiol.2017.10.004.
    » https://doi.org/10.1016/j.cpcardiol.2017.10.004
  • 903
    Albertí JFF, Mora MN, López AC, Pericàs P, Márquez LP, Montero FJC, et al. Changes in the Severity of Aortic Regurgitation at Peak Effort During Exercise. Int J Cardiol. 2017;228:145-8. doi: 10.1016/j.ijcard.2016.11.168.
    » https://doi.org/10.1016/j.ijcard.2016.11.168
  • 904
    Généreux P, Stone GW, O’Gara PT, Marquis-Gravel G, Redfors B, Giustino G, et al. Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients with Asymptomatic Severe Aortic Stenosis. J Am Coll Cardiol. 2016;67(19):2263-88. doi: 10.1016/j.jacc.2016.02.057.
    » https://doi.org/10.1016/j.jacc.2016.02.057
  • 905
    Hraška V, Photiadis J, Zartner P, Haun C. Congenital Aortic Valve Stenosis and Regurgitation. In: Cruz EM, Ivy D, Jaggers J. Pediatric and Congenital Cardiology, Cardiac Surgery, and Intensive Care. London: Springer Reference; 2014. p. 1577-98. doi: 10.1007/978-1-4471-4619-3_23.
    » https://doi.org/10.1007/978-1-4471-4619-3_23
  • 906
    Pelliccia A, Fagard R, Bjørnstad HH, Anastassakis A, Arbustini E, Assanelli D, et al. Recommendations for Competitive Sports Participation in Athletes with Cardiovascular Disease: A Consensus Document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(14):1422-45. doi: 10.1093/eurheartj/ehi325.
    » https://doi.org/10.1093/eurheartj/ehi325
  • 907
    Rodrigues I, Agapito AF, de Sousa L, Oliveira JA, Branco LM, Galrinho A, et al. Bicuspid Aortic Valve Outcomes. Cardiol Young. 2017;27(3):518-29. doi: 10.1017/S1047951116002560.
    » https://doi.org/10.1017/S1047951116002560
  • 908
    Kececioglu D, Kotthoff S, Vogt J. Williams-Beuren Syndrome: A 30-Year Follow-Up of Natural and Postoperative Course. Eur Heart J. 1993;14(11):1458-64. doi: 10.1093/eurheartj/14.11.1458.
    » https://doi.org/10.1093/eurheartj/14.11.1458
  • 909
    Feltes TF, Bacha E, Beekman RH 3rd, Cheatham JP, Feinstein JA, Gomes AS, et al. Indications for Cardiac Catheterization and Intervention in Pediatric Cardiac Disease: A Scientific Statement from the American Heart Association. Circulation. 2011;123(22):2607-52. doi: 10.1161/CIR.0b013e31821b1f10.
    » https://doi.org/10.1161/CIR.0b013e31821b1f10
  • 910
    Kwiatkowski DM, Hanley FL, Krawczeski CD. Right Ventricular Outflow Tract Obstruction: Pulmonary Atresia with Intact Ventricular Septum, Pulmonary Stenosis, and Ebstein's Malformation. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S323-9. doi: 10.1097/PCC.0000000000000818.
    » https://doi.org/10.1097/PCC.0000000000000818
  • 911
    Guidelines for the Management of Congenital Heart Diseases in Childhood and Adolescence. Cardiol Young. 2017;27(S3):S1-S105. doi: 10.1017/S1047951116001955.
    » https://doi.org/10.1017/S1047951116001955
  • 912
    Arunamata A, Goldstein BH. Right Ventricular Outflow Tract Anomalies: Neonatal Interventions and Outcomes. Semin Perinatol. 2022;46(4):151583. doi: 10.1016/j.semperi.2022.151583.
    » https://doi.org/10.1016/j.semperi.2022.151583
  • 913
    Skoglund K, Rosengren A, Lappas G, Fedchenko M, Mandalenakis Z. Long-Term Survival in Patients with Isolated Pulmonary Valve Stenosis: A Not so Benign Disease? Open Heart. 2021;8(2):e001836. doi: 10.1136/openhrt-2021-001836.
    » https://doi.org/10.1136/openhrt-2021-001836
  • 914
    Galian-Gay L, Gordon B, Marsal JR, Rafecas A, Domènech AP, Castro MA, et al. Determinants of Long-Term Outcome of Repaired Pulmonary Valve Stenosis. Rev Esp Cardiol. 2020;73(2):131-8. doi: 10.1016/j.rec.2019.02.014.
    » https://doi.org/10.1016/j.rec.2019.02.014
  • 915
    Devanagondi R, Peck D, Sagi J, Donohue J, Yu S, Pasquali SK, et al. Long-Term Outcomes of Balloon Valvuloplasty for Isolated Pulmonary Valve Stenosis. Pediatr Cardiol. 2017;38(2):247-54. doi: 10.1007/s00246-016-1506-4.
    » https://doi.org/10.1007/s00246-016-1506-4
  • 916
    de Meester P, Buys R, Van De Bruaene A, Gabriels C, Voigt JU, Vanhees L, et al. Functional and Haemodynamic Assessment of Mild-To-Moderate Pulmonary Valve Stenosis at Rest and During Exercise. Heart. 2014;100(17):1354-9. doi: 10.1136/heartjnl-2014-305627.
    » https://doi.org/10.1136/heartjnl-2014-305627
  • 917
    Reybrouck T, Rogers R, Weymans M, Dumoulin M, Vanhove M, Daenen W, et al. Serial Cardiorespiratory Exercise Testing in Patients with Congenital Heart Disease. Eur J Pediatr. 1995;154(10):801-6. doi: 10.1007/BF01959785.
    » https://doi.org/10.1007/BF01959785
  • 918
    Müller J, Engelhardt A, Fratz S, Eicken A, Ewert P, Hager A. Improved Exercise Performance and Quality of Life after Percutaneous Pulmonary Valve Implantation. Int J Cardiol. 2014;173(3):388-92. doi: 10.1016/j.ijcard.2014.03.002.
    » https://doi.org/10.1016/j.ijcard.2014.03.002
  • 919
    Driscoll DJ, Wolfe RR, Gersony WM, Hayes CJ, Keane JF, Kidd L, et al. Cardiorespiratory Responses to Exercise of Patients with Aortic Stenosis, Pulmonary Stenosis, and Ventricular Septal Defect. Circulation. 1993;87(2 Suppl):I102-13. PMID: 8425316.
  • 920
    Chatrath N, Papadakis M. Physical Activity and Exercise Recommendations for Patients with Valvular Heart Disease. Heart. 2022;108(24):1938-44. doi: 10.1136/heartjnl-2021-319824.
    » https://doi.org/10.1136/heartjnl-2021-319824
  • 921
    Gauthier N, Muter A, Rhodes J, Gauvreau K, Nathan M. Better Preoperative Exercise Function is Associated with Shorter Hospital Stay After Paediatric Pulmonary Valve Replacement or Conduit Revision. Cardiol Young. 2021;31(10):1636-43. doi: 10.1017/S1047951121000743.
    » https://doi.org/10.1017/S1047951121000743
  • 922
    Lurz P, Giardini A, Taylor AM, Nordmeyer J, Muthurangu V, Odendaal D, et al. Effect of Altering Pathologic Right Ventricular Loading Conditions by Percutaneous Pulmonary Valve Implantation on Exercise Capacity. Am J Cardiol. 2010;105(5):721-6. doi: 10.1016/j.amjcard.2009.10.054.
    » https://doi.org/10.1016/j.amjcard.2009.10.054
  • 923
    Baird CW, Marx GR, Borisuk M, Emani S, del Nido PJ. Review of Congenital Mitral Valve Stenosis: Analysis, Repair Techniques and Outcomes. Cardiovasc Eng Technol. 2015;6(2):167-73. doi: 10.1007/s13239-015-0223-0.
    » https://doi.org/10.1007/s13239-015-0223-0
  • 924
    Nobuyoshi M, Arita T, Shirai S, Hamasaki N, Yokoi H, Iwabuchi M, et al. Percutaneous Balloon Mitral Valvuloplasty: A Review. Circulation. 2009;119(8):e211-9. doi: 10.1161/CIRCULATIONAHA.108.792952.
    » https://doi.org/10.1161/CIRCULATIONAHA.108.792952
  • 925
    Petek BJ, Baggish AL. Valvular Heart Disease in Athletes. Curr Treat Options Cardiovasc Med. 2021;23(11):69. doi: 10.1007/s11936-021-00950-1.
    » https://doi.org/10.1007/s11936-021-00950-1
  • 926
    Bonow RO, Nishimura RA, Thompson PD, Udelson JE; American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 5: Valvular Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e292-7. doi: 10.1161/CIR.0000000000000241.
    » https://doi.org/10.1161/CIR.0000000000000241
  • 927
    Bonow RO, Nikas D, Elefteriades JA. Valve Replacement for Regurgitant Lesions of the Aortic or Mitral Valve in Advanced Left Ventricular Dysfunction. Cardiol Clin. 1995;13(1):73-83, 85. PMID: 7796434.
  • 928
    Delling FN, Vasan RS. Epidemiology and Pathophysiology of Mitral Valve Prolapse: New Insights Into Disease Progression, Genetics, and Molecular Basis. Circulation. 2014;129(21):2158-70. doi: 10.1161/CIRCULATIONAHA.113.006702.
    » https://doi.org/10.1161/CIRCULATIONAHA.113.006702
  • 929
    Korovesis TG, Koutrolou-Sotiropoulou P, Katritsis DG. Arrhythmogenic Mitral Valve Prolapse. Arrhythm Electrophysiol Rev. 2022;11:e16. doi: 10.15420/aer.2021.28.
    » https://doi.org/10.15420/aer.2021.28
  • 930
    Vriz O, Landi I, Eltayeb A, Limongelli G, Mos L, Delise P, et al. Mitral Valve Prolapse and Sudden Cardiac Death in Athletes at High Risk. Curr Cardiol Rev. 2023;19(3):e201222212066. doi: 10.2174/1573403X19666221220163431.
    » https://doi.org/10.2174/1573403X19666221220163431
  • 931
    Alenazy A, Eltayeb A, Alotaibi MK, Anwar MK, Mulafikh N, Aladmawi M, et al. Diagnosis of Mitral Valve Prolapse: Much More than Simple Prolapse. Multimodality Approach to Risk Stratification and Therapeutic Management. J Clin Med. 2022;11(2):455. doi: 10.3390/jcm11020455.
    » https://doi.org/10.3390/jcm11020455
  • 932
    Basso C, Marra MP, Rizzo S, De Lazzari M, Giorgi B, Cipriani A, et al. Arrhythmic Mitral Valve Prolapse and Sudden Cardiac Death. Circulation. 2015;132(7):556-66. doi: 10.1161/CIRCULATIONAHA.115.016291.
    » https://doi.org/10.1161/CIRCULATIONAHA.115.016291
  • 933
    Nalliah CJ, Mahajan R, Elliott AD, Haqqani H, Lau DH, Vohra JK, et al. Mitral Valve Prolapse and Sudden Cardiac Death: A Systematic Review and Meta-Analysis. Heart. 2019;105(2):144-51. doi: 10.1136/heartjnl-2017-312932.
    » https://doi.org/10.1136/heartjnl-2017-312932
  • 934
    Cavarretta E, Peruzzi M, Versaci F, Frati G, Sciarra L. How to Manage an Athlete with Mitral Valve Prolapse. Eur J Prev Cardiol. 2021;28(10):1110-7. doi: 10.1177/2047487320941646.
    » https://doi.org/10.1177/2047487320941646
  • 935
    Chung JH, Tsai YJ, Lin KL, Weng KP, Huang MH, Chen GB, et al. Comparison of Cardiorespiratory Fitness Between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. J Cardiovasc Dev Dis. 2023;10(4):167. doi: 10.3390/jcdd10040167.
    » https://doi.org/10.3390/jcdd10040167
  • 936
    Huang MH, Tuan SH, Tsai YJ, Huang WC, Huang TC, Chang ST, et al. Comparison of the Results of Cardiopulmonary Exercise Testing Between Healthy Peers and Pediatric Patients with Different Echocardiographic Severity of Mitral Valve Prolapse. Life. 2023;13(2):302. doi: 10.3390/life13020302.
    » https://doi.org/10.3390/life13020302
  • 937
    Basso C, Iliceto S, Thiene G, Marra MP. Mitral Valve Prolapse, Ventricular Arrhythmias, and Sudden Death. Circulation. 2019;140(11):952-64. doi: 10.1161/CIRCULATIONAHA.118.034075.
    » https://doi.org/10.1161/CIRCULATIONAHA.118.034075
  • 938
    Steriotis AK, Nava A, Rigato I, Mazzotti E, Daliento L, Thiene G, et al. Noninvasive Cardiac Screening in Young Athletes with Ventricular Arrhythmias. Am J Cardiol. 2013;111(4):557-62. doi: 10.1016/j.amjcard.2012.10.044.
    » https://doi.org/10.1016/j.amjcard.2012.10.044
  • 939
    Bhatia R, Abu-Hasan M, Weinberger M. Exercise-Induced Dyspnea in Children and Adolescents: Differential Diagnosis. Pediatr Ann. 2019;48(3):e121-e127. doi: 10.3928/19382359-20190219-02.
    » https://doi.org/10.3928/19382359-20190219-02
  • 940
    Hengeveld VS, van der Kamp MR, Thio BJ, Brannan JD. The Need for Testing-The Exercise Challenge Test to Disentangle Causes of Childhood Exertional Dyspnea. Front Pediatr. 2022;9:773794. doi: 10.3389/fped.2021.773794.
    » https://doi.org/10.3389/fped.2021.773794
  • 941
    Johansson H, Emtner M, Janson C, Nordang L, Malinovschi A. The Course of Specific Self-Reported Exercise-Induced Airway Symptoms in Adolescents with and Without Asthma. ERJ Open Res. 2020;6(4):00349-2020. doi: 10.1183/23120541.00349-2020.
    » https://doi.org/10.1183/23120541.00349-2020
  • 942
    Hseu A, Sandler M, Ericson D, Ayele N, Kawai K, Nuss R. Paradoxical Vocal Fold Motion in Children Presenting with Exercise Induced Dyspnea. Int J Pediatr Otorhinolaryngol. 2016;90:165-9. doi: 10.1016/j.ijporl.2016.09.007.
    » https://doi.org/10.1016/j.ijporl.2016.09.007
  • 943
    Pianosi PT, Huebner M, Zhang Z, McGrath PJ. Dalhousie Dyspnea and Perceived Exertion Scales: Psychophysical Properties in Children and Adolescents. Respir Physiol Neurobiol. 2014;199:34-40. doi: 10.1016/j.resp.2014.04.003.
    » https://doi.org/10.1016/j.resp.2014.04.003
  • 944
    Pianosi PT, Huebner M, Zhang Z, Turchetta A, McGrath PJ. Dalhousie Pictorial Scales Measuring Dyspnea and Perceived Exertion during Exercise for Children and Adolescents. Ann Am Thorac Soc. 2015;12(5):718-26. doi: 10.1513/AnnalsATS.201410-477OC.
    » https://doi.org/10.1513/AnnalsATS.201410-477OC
  • 945
    Stickland MK, Neder JA, Guenette JA, O‘Donnell DE, Jensen D. Using Cardiopulmonary Exercise Testing to Understand Dyspnea and Exercise Intolerance in Respiratory Disease. Chest. 2022;161(6):1505-16. doi: 10.1016/j.chest.2022.01.021.
    » https://doi.org/10.1016/j.chest.2022.01.021
  • 946
    Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J, et al. An Official American Thoracic Society statement: Update on the Mechanisms, Assessment, and Management of Dyspnea. Am J Respir Crit Care Med. 2012;185(4):435-52. doi: 10.1164/rccm.201111-2042ST.
    » https://doi.org/10.1164/rccm.201111-2042ST
  • 947
    Lin LL, Huang SJ, Ou LS, Yao TC, Tsao KC, Yeh KW, et al. Exercise-Induced Bronchoconstriction in Children with Asthma: An Observational Cohort Study. J Microbiol Immunol Infect. 2019;52(3):471-9. doi: 10.1016/j.jmii.2017.08.013.
    » https://doi.org/10.1016/j.jmii.2017.08.013
  • 948
    Klain A, Indolfi C, Dinardo G, Contieri M, Decimo F, Del Giudice MM. Exercise-Induced Bronchoconstriction in Children. Front Med. 2022;8:814976. doi: 10.3389/fmed.2021.814976.
    » https://doi.org/10.3389/fmed.2021.814976
  • 949
    Aggarwal B, Mulgirigama A, Berend N. Exercise-Induced Bronchoconstriction: Prevalence, Pathophysiology, Patient Impact, Diagnosis and Management. NPJ Prim Care Respir Med. 2018;28(1):31. doi: 10.1038/s41533-018-0098-2.
    » https://doi.org/10.1038/s41533-018-0098-2
  • 950
    Dreßler M, Friedrich T, Lasowski N, Herrmann E, Zielen S, Schulze J. Predictors and Reproducibility of Exercise-Induced Bronchoconstriction in Cold Air. BMC Pulm Med. 2019;19(1):94. doi: 10.1186/s12890-019-0845-3.
    » https://doi.org/10.1186/s12890-019-0845-3
  • 951
    Ersson K, Mallmin E, Malinovschi A, Norlander K, Johansson H, Nordang L. Prevalence of Exercise-Induced Bronchoconstriction and Laryngeal Obstruction in Adolescent Athletes. Pediatr Pulmonol. 2020;55(12):3509-16. doi: 10.1002/ppul.25104.
    » https://doi.org/10.1002/ppul.25104
  • 952
    Boutou AK, Daniil Z, Pitsiou G, Papakosta D, Kioumis I, Stanopoulos I. Cardiopulmonary Exercise Testing in Patients with Asthma: What is its Clinical Value? Respir Med. 2020;167:105953. doi: 10.1016/j.rmed.2020.105953.
    » https://doi.org/10.1016/j.rmed.2020.105953
  • 953
    Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, et al. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Eur Respir J. 2018;52(5):1801033. doi: 10.1183/13993003.01033-2018.
    » https://doi.org/10.1183/13993003.01033-2018
  • 954
    Randolph C. Diagnostic Exercise Challenge Testing. Curr Allergy Asthma Rep. 2011;11(6):482-90. doi: 10.1007/s11882-011-0225-4.
    » https://doi.org/10.1007/s11882-011-0225-4
  • 955
    Anderson SD, Pearlman DS, Rundell KW, Perry CP, Boushey H, Sorkness CA, et al. Reproducibility of the Airway Response to an Exercise Protocol Standardized for Intensity, Duration, and Inspired air Conditions, in Subjects with Symptoms Suggestive of Asthma. Respir Res. 2010;11(1):120. doi: 10.1186/1465-9921-11-120.
    » https://doi.org/10.1186/1465-9921-11-120
  • 956
    Liyanagedera S, McLeod R, Elhassan HA. Exercise Induced Laryngeal Obstruction: A Review of Diagnosis and Management. Eur Arch Otorhinolaryngol. 2017;274(4):1781-9. doi: 10.1007/s00405-016-4338-1.
    » https://doi.org/10.1007/s00405-016-4338-1
  • 957
    Welsh L, Giannini A, Massie J. Exercise-Induced Laryngeal Obstruction in Children and Adolescents: Are we Listening? Arch Dis Child Educ Pract Ed. 2021;106(2):66-70. doi: 10.1136/archdischild-2020-319454.
    » https://doi.org/10.1136/archdischild-2020-319454
  • 958
    Clemm HH, Olin JT, McIntosh C, Schwellnus M, Sewry N, Hull JH, et al. Exercise-Induced Laryngeal Obstruction (EILO) in Athletes: A Narrative Review by a Subgroup of the IOC Consensus on ‘Acute Respiratory Illness in the Athlete’. Br J Sports Med. 2022;56(11):622-9. doi: 10.1136/bjsports-2021-104704.
    » https://doi.org/10.1136/bjsports-2021-104704
  • 959
    Hull JH, Walsted ES, Pavitt MJ, Menzies-Gow A, Backer V, Sandhu G. High Prevalence of Laryngeal Obstruction During Exercise in Severe Asthma. Am J Respir Crit Care Med. 2019;199(4):538-42. doi: 10.1164/rccm.201809-1734LE.
    » https://doi.org/10.1164/rccm.201809-1734LE
  • 960
    Walsted ES, Faisal A, Jolley CJ, Swanton LL, Pavitt MJ, Luo YM, et al. Increased Respiratory Neural Drive and Work of Breathing in Exercise-Induced Laryngeal Obstruction. J Appl Physiol (1985). 2018;124(2):356-63. doi: 10.1152/japplphysiol.00691.2017.
    » https://doi.org/10.1152/japplphysiol.00691.2017
  • 961
    Hilland M, Røksund OD, Sandvik L, Haaland Ø, Aarstad HJ, Halvorsen T, et al. Congenital Laryngomalacia is Related to Exercise-Induced Laryngeal Obstruction in Adolescence. Arch Dis Child. 2016;101(5):443-8. doi: 10.1136/archdischild-2015-308450.
    » https://doi.org/10.1136/archdischild-2015-308450
  • 962
    Olin JT, Clary MS, Fan EM, Johnston KL, State CM, Strand M, et al. Continuous Laryngoscopy Quantitates Laryngeal Behaviour in Exercise and Recovery. Eur Respir J. 2016;48(4):1192-200. doi: 10.1183/13993003.00160-2016.
    » https://doi.org/10.1183/13993003.00160-2016
  • 963
    Giraud L, Wuyam B, Destors M, Atallah I. Exercise-Induced Laryngeal Obstruction: From Clinical Examination to Continuous Laryngoscopy During Exercise. Eur Ann Otorhinolaryngol Head Neck Dis. 2021;138(6):479-82. doi: 10.1016/j.anorl.2021.02.005.
    » https://doi.org/10.1016/j.anorl.2021.02.005
  • 964
    Tervonen H, Niskanen MM, Sovijärvi AR, Hakulinen AS, Vilkman EA, Aaltonen LM. Fiberoptic Videolaryngoscopy During Bicycle Ergometry: A Diagnostic Tool for Exercise-Induced Vocal Cord Dysfunction. Laryngoscope. 2009;119(9):1776-80. doi: 10.1002/lary.20558.
    » https://doi.org/10.1002/lary.20558
  • 965
    Engan M, Hammer IJ, Bekken M, Halvorsen T, Fretheim-Kelly ZL, Vollsæter M, et al. Reliability of Maximum Oxygen Uptake in Cardiopulmonary Exercise Testing with Continuous Laryngoscopy. ERJ Open Res. 2021;7(1):00825-2020. doi: 10.1183/23120541.00825-2020.
    » https://doi.org/10.1183/23120541.00825-2020
  • 966
    Carvalho-Pinto RM, Cançado JED, Pizzichini MMM, Fiterman J, Rubin AS, Cerci A Neto, et al. 2021 Brazilian Thoracic Association Recommendations for the Management of Severe Asthma. J Bras Pneumol. 2021;47(6):e20210273. doi: 10.36416/1806-3756/e20210273.
    » https://doi.org/10.36416/1806-3756/e20210273
  • 967
    Hengeveld VS, Keijzer PB, Diamant Z, Thio BJ. An Algorithm for Strategic Continuation or Restriction of Asthma Medication Prior to Exercise Challenge Testing in Childhood Exercise Induced Bronchoconstriction. Front Pediatr. 2022;10:800193. doi: 10.3389/fped.2022.800193.
    » https://doi.org/10.3389/fped.2022.800193
  • 968
    de Jong CCM, Pedersen ESL, Mozun R, Goutaki M, Trachsel D, Barben J, et al. Diagnosis of Asthma in Children: The Contribution of a Detailed History and Test Results. Eur Respir J. 2019;54(6):1901326. doi: 10.1183/13993003.01326-2019.
    » https://doi.org/10.1183/13993003.01326-2019
  • 969
    Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: An overview. Eur Clin Respir J. 2015 Nov 3;2:27984. doi: 10.3402/ecrj.v2.27984.
    » https://doi.org/10.3402/ecrj.v2.27984
  • 970
    Carlsen KH, Hem E, Stensrud T. Asthma in Adolescent Athletes. Br J Sports Med 2011;45(16):1266-71. doi: 10.1136/bjsports-2011-090591.
    » https://doi.org/10.1136/bjsports-2011-090591
  • 971
    Dajani AS, Taubert KA, Takahashi M, Bierman FZ, Freed MD, Ferrieri P, et al. Report from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 1994;89(2):916-22. doi: 10.1161/01.cir.89.2.916.
    » https://doi.org/10.1161/01.cir.89.2.916
  • 972
    Schindel CS, Schiwe D, Heinzmann-Filho JP, Gheller MF, Campos NE, Pitrez PM, et al. Determinants of Exercise Capacity in Children and Adolescents with Severe Therapy-Resistant Asthma. J Asthma. 2022;59(1):115-25. doi: 10.1080/02770903.2020.1833915.
    » https://doi.org/10.1080/02770903.2020.1833915
  • 973
    Sudário LC, Kroger FL, Paula NCS, Santos OF, Cintra RB, Rodrigues DOW. Sickle Cell Disease and Social Security Aspects. Braz J Health Ver. 2020;3(6):18259-70. doi: 10.34119/bjhrv3n6-225.
    » https://doi.org/10.34119/bjhrv3n6-225
  • 974
    Kavanagh PL, Fasipe TA, Wun T. Sickle Cell Disease: A Review. JAMA. 2022;328(1):57-68. doi: 10.1001/jama.2022.10233.
    » https://doi.org/10.1001/jama.2022.10233
  • 975
    van Beers EJ, van der Plas MN, Nur E, Bogaard HJ, van Steenwijk RP, Biemond BJ, et al. Exercise Tolerance, Lung Function Abnormalities, Anemia, and Cardiothoracic Ratio in Sickle Cell Patients. Am J Hematol. 2014;89(8):819-24. doi: 10.1002/ajh.23752.
    » https://doi.org/10.1002/ajh.23752
  • 976
    Colombatti R, Maschietto N, Varotto E, Grison A, Grazzina N, Meneghello L, et al. Pulmonary Hypertension in Sickle Cell Disease Children Under 10 Years of Age. Br J Haematol. 2010;150(5):601-9. doi: 10.1111/j.1365-2141.2010.08269.x.
    » https://doi.org/10.1111/j.1365-2141.2010.08269.x
  • 977
    Niss O, Quinn CT, Lane A, Daily J, Khoury PR, Bakeer N, et al. Cardiomyopathy with Restrictive Physiology in Sickle Cell Disease. JACC Cardiovasc Imaging. 2016;9(3):243-52. doi: 10.1016/j.jcmg.2015.05.013.
    » https://doi.org/10.1016/j.jcmg.2015.05.013
  • 978
    Liem RI, Akinosun M, Muntz DS, Thompson AA. Feasibility and Safety of Home Exercise Training in Children with Sickle Cell Anemia. Pediatr Blood Cancer. 2017;64(12). doi: 10.1002/pbc.26671.
    » https://doi.org/10.1002/pbc.26671
  • 979
    Smith KN, Baynard T, Fischbach PS, Hankins JS, Hsu LL, Murphy PM, et al. Safety of Maximal Cardiopulmonary Exercise Testing in Individuals with Sickle Cell Disease: A Systematic Review. Br J Sports Med. 2022;56(13):764-9. doi: 10.1136/bjsports-2021-104450.
    » https://doi.org/10.1136/bjsports-2021-104450
  • 980
    Arteta M, Campbell A, Nouraie M, Rana S, Onyekwere OC, Ensing G, et al. Abnormal Pulmonary Function and Associated Risk Factors in Children and Adolescents with Sickle Cell Anemia. J Pediatr Hematol Oncol. 2014;36(3):185-9. doi: 10.1097/MPH.0000000000000011.
    » https://doi.org/10.1097/MPH.0000000000000011
  • 981
    De A, Williams S, Yao Y, Jin Z, Brittenham GM, Kattan M, et al. Acute Chest Syndrome, Airway Inflammation and Lung Function in Sickle Cell Disease. PLoS One. 2023;18(3):e0283349. doi: 10.1371/journal.pone.0283349.
    » https://doi.org/10.1371/journal.pone.0283349
  • 982
    Willen SM, Cohen R, Rodeghier M, Kirkham F, Redline SS, Rosen C, et al. Age is a Predictor of a Small Decrease in Lung Function in Children with Sickle Cell Anemia. Am J Hematol. 2018;93(3):408-15. doi: 10.1002/ajh.25003.
    » https://doi.org/10.1002/ajh.25003
  • 983
    Alvarado AM, Ward KM, Muntz DS, Thompson AA, Rodeghier M, Fernhall B, et al. Heart Rate Recovery is Impaired After Maximal Exercise Testing in Children with Sickle Cell Anemia. J Pediatr. 2015;166(2):389-93.e1. doi: 10.1016/j.jpeds.2014.10.064.
    » https://doi.org/10.1016/j.jpeds.2014.10.064
  • 984
    Dei-Adomakoh YA, Afriyie-Mensah JS, Forson A, Adadey M, Ndanu TA, Acquaye JK. Lung Function Abnormalities in Sickle Cell Anaemia. Adv Hematol. 2019;2019:1783240. doi: 10.1155/2019/1783240.
    » https://doi.org/10.1155/2019/1783240
  • 985
    Caboot JB, Jawad AF, McDonough JM, Bowdre CY, Arens R, Marcus CL, et al. Non-Invasive Measurements of Carboxyhemoglobin and Methemoglobin in Children with Sickle Cell Disease. Pediatr Pulmonol. 2012;47(8):808-15. doi: 10.1002/ppul.22504.
    » https://doi.org/10.1002/ppul.22504
  • 986
    Waltz X, Romana M, Lalanne-Mistrih ML, Machado RF, Lamarre Y, Tarer V, et al. Hematologic and Hemorheological Determinants of Resting and Exercise-Induced Hemoglobin Oxygen Desaturation in Children with Sickle Cell Disease. Haematologica. 2013;98(7):1039-44. doi: 10.3324/haematol.2013.083576.
    » https://doi.org/10.3324/haematol.2013.083576
  • 987
    Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical Applications of Radionuclide Imaging in the Evaluation and Management of Patients with Congenital Heart Disease. J Nucl Cardiol. 2016;23(1):45-63. doi: 10.1007/s12350-015-0185-5.
    » https://doi.org/10.1007/s12350-015-0185-5
  • 988
    Fogel MA, Anwar S, Broberg C, Browne L, Chung T, Johnson T, et al. Society for Cardiovascular Magnetic Resonance/European Society of Cardiovascular Imaging/American Society of Echocardiography/Society for Pediatric Radiology/North American Society for Cardiovascular Imaging Guidelines for the use of Cardiovascular Magnetic Resonance in Pediatric Congenital and Acquired Heart Disease: Endorsed by The American Heart Association. J Cardiovasc Magn Reson. 2022;24(1):37. doi: 10.1186/s12968-022-00843-7.
    » https://doi.org/10.1186/s12968-022-00843-7
  • 989
    Biko DM, Collins RT 2nd, Partington SL, Harris M, Whitehead KK, Keller MS, et al. Magnetic Resonance Myocardial Perfusion Imaging: Safety and Indications in Pediatrics and Young Adults. Pediatr Cardiol. 2018;39(2):275-82. doi: 10.1007/s00246-017-1752-0.
    » https://doi.org/10.1007/s00246-017-1752-0
  • 990
    Milanesi O, Stellin G, Zucchetta P. Nuclear Medicine in Pediatric Cardiology. Semin Nucl Med. 2017;47(2):158-69. doi: 10.1053/j.semnuclmed.2016.10.008.
    » https://doi.org/10.1053/j.semnuclmed.2016.10.008
  • 991
    Ermis P. Stress Echocardiography: An Overview for Use in Pediatric and Congenital Cardiology. Congenit Heart Dis. 2017;12(5):624-6. doi: 10.1111/chd.12495.
    » https://doi.org/10.1111/chd.12495
  • 992
    Lai WW, Mertens L, Cohen M, Geva T, editors. Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. 2th ed. Chichester: John Wiley & Sons; 2015. ISBN-10: 0470674644; ISBN-13: 978-0470674642.
  • 993
    Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RSL, et al. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol. 2020;114(2):325-429. doi: 10.36660/abc.20200087.
    » https://doi.org/10.36660/abc.20200087
  • 994
    Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol. 2021;11:627838. doi: 10.3389/fphar.2020.627838.
    » https://doi.org/10.3389/fphar.2020.627838
  • 995
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC Imaging Guidelines for SPECT Nuclear Cardiology Procedures: Stress, Protocols, and Tracers. J Nucl Cardiol. 2016;23(3):606-39. doi: 10.1007/s12350-015-0387-x.
    » https://doi.org/10.1007/s12350-015-0387-x
  • 996
    Chalela WA, Moffa PJ, Meneghetti JC. Estresse Cardiovascular: Princípios e Aplicações Clínicas. São Paulo: Roca; 2004. ISBN-10: 8572415130; ISBN-13: 978-8572415132.
  • 997
    Kim C, Kwok YS, Heagerty P, Redberg R. Pharmacologic Stress Testing for Coronary Disease Diagnosis: A Meta-Analysis. Am Heart J. 2001;142(6):934-44. doi: 10.1067/mhj.2001.119761.
    » https://doi.org/10.1067/mhj.2001.119761
  • 998
    Fukuda T, Ishibashi M, Shinohara T, Miyake T, Kudoh T, Saga T. Follow-Up Assessment of the Collateral Circulation in Patients with Kawasaki Disease Who Underwent Dipyridamole Stress Technetium-99m Tetrofosmin Scintigraphy. Pediatr Cardiol. 2005;26(5):558-64. doi: 10.1007/s00246-004-0726-1.
    » https://doi.org/10.1007/s00246-004-0726-1
  • 999
    Geleijnse ML, Elhendy A, Fioretti PM, Roelandt JR. Dobutamine Stress Myocardial Perfusion Imaging. J Am Coll Cardiol. 2000;36(7):2017-27. doi: 10.1016/s0735-1097(00)01012-3.
    » https://doi.org/10.1016/s0735-1097(00)01012-3
  • 1000
    Dilsizian V; Narula J, editors. Atlas of Nuclear Cardiology. 4th ed. New York: Springer; 2013. ISBN-13: 978-3030498849.
  • 1001
    Pahl E, Duffy CE, Chaudhry FA. The Role of Stress Echocardiography in Children. Echocardiography. 2000;17(5):507-12. doi: 10.1111/j.1540-8175.2000.tb01171.x.
    » https://doi.org/10.1111/j.1540-8175.2000.tb01171.x
  • 1002
    Fricke TA, Bell D, Daley M, d‘Udekem Y, Brizard CP, Alphonso N, et al. The Influence of Coronary Artery Anatomy on Mortality After the Arterial Switch Operation. J Thorac Cardiovasc Surg. 2020;160(1):191-9.e1. doi: 10.1016/j.jtcvs.2019.11.146.
    » https://doi.org/10.1016/j.jtcvs.2019.11.146
  • 1003
    van Wijk SWH, van der Stelt F, Ter Heide H, Schoof PH, Doevendans PAFM, Meijboom FJ, et al. Sudden Death Due to Coronary Artery Lesions Long-term After the Arterial Switch Operation: A Systematic Review. Can J Cardiol. 2017;33(9):1180-7. doi: 10.1016/j.cjca.2017.02.017.
    » https://doi.org/10.1016/j.cjca.2017.02.017
  • 1004
    Noel CV, Krishnamurthy R, Masand P, Moffett B, Schlingmann T, Cheong BY, et al. Myocardial Stress Perfusion MRI: Experience in Pediatric and Young-Adult Patients Following Arterial Switch Operation Utilizing Regadenoson. Pediatr Cardiol. 2018;39(6):1249-57. doi: 10.1007/s00246-018-1890-z.
    » https://doi.org/10.1007/s00246-018-1890-z
  • 1005
    Sterrett LE, Schamberger MS, Ebenroth ES, Siddiqui AR, Hurwitz RA. Myocardial Perfusion and Exercise Capacity 12 Years After Arterial Switch Surgery for D-Transposition of the Great Arteries. Pediatr Cardiol. 2011;32(6):785-91. doi: 10.1007/s00246-011-9975-y.
    » https://doi.org/10.1007/s00246-011-9975-y
  • 1006
    Hauser M, Bengel FM, Kühn A, Sauer U, Zylla S, Braun SL, et al. Myocardial Blood Flow and Flow Reserve After Coronary Reimplantation in Patients After Arterial Switch and Ross Operation. Circulation. 2001;103(14):1875-80. doi: 10.1161/01.cir.103.14.1875.
    » https://doi.org/10.1161/01.cir.103.14.1875
  • 1007
    Pizzi MN, Franquet E, Aguadé-Bruix S, Manso B, Casaldáliga J, Cuberas-Borrós G, et al. Long-Term Follow-Up Assessment After the Arterial Switch Operation for Correction of Dextro-Transposition of the Great Arteries by Means of Exercise Myocardial Perfusion-Gated SPECT. Pediatr Cardiol. 2014;35(2):197-207. doi: 10.1007/s00246-013-0759-4.
    » https://doi.org/10.1007/s00246-013-0759-4
  • 1008
    Rickers C, Sasse K, Buchert R, Stern H, van den Hoff J, Lübeck M, et al. Myocardial Viability Assessed by Positron Emission Tomography in Infants and Children After the Arterial Switch Operation and Suspected Infarction. J Am Coll Cardiol. 2000;36(5):1676-83. doi: 10.1016/s0735-1097(00)00891-3.
    » https://doi.org/10.1016/s0735-1097(00)00891-3
  • 1009
    Tsuno K, Fukazawa R, Kiriyama T, Imai S, Watanabe M, Kumita S, et al. Peripheral Coronary Artery Circulatory Dysfunction in Remote Stage Kawasaki Disease Patients Detected by Adenosine Stress 13N-Ammonia Myocardial Perfusion Positron Emission Tomography. J Clin Med. 2022;11(4):1134. doi: 10.3390/jcm11041134.
    » https://doi.org/10.3390/jcm11041134
  • 1010
    Hauser M, Bengel F, Kuehn A, Nekolla S, Kaemmerer H, Schwaiger M, et al. Myocardial Blood Flow and Coronary Flow Reserve in Children with „Normal" Epicardial Coronary Arteries After the Onset of Kawasaki Disease Assessed by Positron Emission Tomography. Pediatr Cardiol. 2004;25(2):108-12. doi: 10.1007/s00246-003-0472-9.
    » https://doi.org/10.1007/s00246-003-0472-9
  • 1011
    Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The Case for Myocardial Ischemia in Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2009;54(9):866-75. doi: 10.1016/j.jacc.2009.04.072.
    » https://doi.org/10.1016/j.jacc.2009.04.072
  • 1012
    Rosa SA, Lopes LR, Fiarresga A, Ferreira RC, Mota Carmo M. Coronary Microvascular Dysfunction in Hypertrophic Cardiomyopathy: Pathophysiology, Assessment, and Clinical Impact. Microcirculation. 2021;28(1):e12656. doi: 10.1111/micc.12656.
    » https://doi.org/10.1111/micc.12656
  • 1013
    Hallioglu O, Gunay EC, Unal S, Erdogan A, Balci S, Citirik D. Gated Myocardial Perfusion Scintigraphy in Children with Sickle Cell Anemia: Correlation with Echocardiography. Rev Esp Med Nucl. 2011;30(6):354-9. doi: 10.1016/j.remn.2011.02.003.
    » https://doi.org/10.1016/j.remn.2011.02.003
  • 1014
    Kindel SJ, Law YM, Chin C, Burch M, Kirklin JK, Naftel DC, et al. Improved Detection of Cardiac Allograft Vasculopathy: A Multi-Institutional Analysis of Functional Parameters in Pediatric Heart Transplant Recipients. J Am Coll Cardiol. 2015;66(5):547-57. doi: 10.1016/j.jacc.2015.05.063.
    » https://doi.org/10.1016/j.jacc.2015.05.063
  • 1015
    Neskovic AN. Stress Echocardiography Essential Guide and DVD. New York: Healthcare; 2010. ISBN-10: 0367384094; ISBN-13: 978-0367384098.
  • 1016
    Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(2):101-38. doi: 10.1016/j.echo.2016.10.016.
    » https://doi.org/10.1016/j.echo.2016.10.016
  • 1017
    Barberato SH, Romano MMD, Beck ALS, Rodrigues ACT, Almeida ALC, Assunção BMBL, et al. Position Statement on Indications of Echocardiography in Adults - 2019. Arq Bras Cardiol. 2019;113(1):135-81. doi: 10.5935/abc.20190129.
    » https://doi.org/10.5935/abc.20190129
  • 1018
    Conselho Federal de Medicina. Resolução CFM no 2.217/2018. Aprova o código de ética médica. Diário Oficial da União, Brasília, 1 nov. 2018.
  • 1019
    Conselho Federal de Medicina. Resolução CFM no 2.222/2018. Corrige erro material do Código de Ética Médica (Resolução CFM n° 2.217/2018) publicado no D.O.U. de 1 de novembro de 2018, Seção I, p. 179.Diário Oficial da União, Brasília, 11 dec. 2018.
  • 1020
    Conselho Federal de Medicina. Resolução CFM No 2.226/2019. Revoga a Resolução CFM n° 1.649/2002, os artigos 4° e 5° e seu parágrafo único da Resolução CFM n° 2.170/2017 e altera o artigo 72 do Código de Ética Médica, que proíbem descontos em honorários médicos através de cartões de descontos e a divulgação de preços das consultas médicas de forma exclusivamente interna. Diário Oficial da União, Brasília, 5 apr. 2019.
  • 1021
    Conselho Federal de Medicina. Resolução CFM no 2.380/2024. Homologa a Portaria CME n° 1/2024, que atualiza a relação de especialidades e áreas de atuação médicas aprovadas pela Comissão Mista de Especialidades. Diário Oficial da União, Brasília, 24 jun. 2024.
  • 1022
    Conselho Federal de Medicina. Resolução CFM no 2.021/2013. A realização do teste ergométrico é ato médico, devendo ser feito, em todas as suas etapas, por médico habilitado e capacitado, apto a atender as ocorrências cardiovasculares, sendo falta ética sua delegação para outros profissionais da área da saúde, de 20 de junho de 2013. Diário Oficial da União, Brasília, 27 sep. 2013.
  • 1023
    Conselho Federal de Medicina. Resolução CFM No 2.336/2023. Dispõe sobre publicidade e propaganda médicas. Diário Oficial da União. Brasília, 13/09/2023. Edição: 175. Seção: 1. Página: 312.
  • 1024
    Brasil. Constituição da República Federativa do Brasi de 1988. Brasília, 5 out. 1988.
  • 1025
    Brasil. Lei n° 10.406, de 10 de janeiro de 2002. Institui o Código Civil. Diário Oficial da União, Brasília, 11 jan. 2002.
  • 1026
    Brasil. Lei no 8.078, de 11 de setembro de 1990. Dispõe sobre a proteção do consumidor e dá outras providências. Diário Oficial da União, Brasília, 12 set. 1990.
  • 1027
    Brasil. Lei no 12.741, de 8 de dezembro de 2012. Dispõe sobre as medidas de esclarecimento ao consumidor, de que trata o § 5° do artigo 150 da Constituição Federal; altera o inciso III do art. 6° e o inciso IV do art. 106 da Lei n° 8.078, de 11 de setembro de 1990 - Código de Defesa do Consumidor. Diário Oficial da União, Brasília, 9 dez. 2012.
  • 1028
    Eisenmann JC, Laurson KR, Welk GJ. Aerobic Fitness Percentiles for U.S. Adolescents. Am J Prev Med. 2011;41(4 Suppl 2):S106-10. doi: 10.1016/j.amepre.2011.07.005.
    » https://doi.org/10.1016/j.amepre.2011.07.005
  • 1029
    Almeida AEM, Santander IRMF, Campos MIM, Nascimento JA, Nascimento JA, Ritt LEF, et al. Classification System for Cardiorespiratory Fitness Based on a Sample of the Brazilian Population. Int J Cardiovasc Sci. 201932(4):343-54. doi: 10.5935/2359-4802.20190057.
    » https://doi.org/10.5935/2359-4802.20190057
  • 1030
    Ilarraza-Lomelí H, Castañeda-López J, Myers J, Miranda I, Quiroga P, Rius M-D, et al. Cardiopulmonary exercise testing in healthy children and adolescents at moderately high altitude. Arch Cardiol México 2013;83:176–82. doi: 10.1016/j.acmx.2013.04.003.
    » https://doi.org/10.1016/j.acmx.2013.04.003
  • 1031
    van Genuchten WJ, Helbing WA, Ten Harkel ADJ, Fejzic Z, Md IMK, Slieker MG, et al. Exercise Capacity in a Cohort of Children with Congenital Heart Disease. Eur J Pediatr. 2023;182(1):295-306. doi: 10.1007/s00431-022-04648-9.
    » https://doi.org/10.1007/s00431-022-04648-9
  • 1032
    Fredriksen PM, Ingjer F, Nystad W, Thaulow E. A Comparison of VO2(peak) Between Patients with Congenital Heart Disease and Healthy Subjects, all Aged 8-17 Years. Eur J Appl Physiol Occup Physiol. 1999;80(5):409-16. doi: 10.1007/s004210050612.
    » https://doi.org/10.1007/s004210050612
  • 1033
    Guimarães GV, d’Avila VM, Camargo PR, Moreira LFP, Luces JRL, Bocchi EA. Prognostic value of cardiopulmonary exercise testing in children with heart failure secondary to idiopathic dilated cardiomyopathy in a non-β-blocker therapy setting. Eur J Heart Fail 2008;10:560–5. doi: 10.1016/j.ejheart.2008.04.009.
    » https://doi.org/10.1016/j.ejheart.2008.04.009
  • Development:

    Department of Exercise Test, Exercise, Nuclear Cardiology, and Cardiovascular Rehabilitation (DERC), Brazilian Society of Cardiology (SBC)
  • SBC Clinical Practice Guidelines Committee:

    Carisi Anne Polanczyk (Coordinator), Humberto Graner Moreira, Mário de Seixas Rocha, Jose Airton de Arruda, Pedro Gabriel Melo de Barros e Silva – Period 2022-2023
  • Note:

    These guidelines are for information purposes and should not replace the clinical judgment of a physician, who must ultimately determine the appropriate treatment for each patient.

Edited by

Editors:

Tales de Carvalho, Odilon Gariglio Alvarenga de Freitas, William Azem Chalela

Publication Dates

  • Publication in this collection
    23 Sept 2024
  • Date of issue
    2024
Sociedade Brasileira de Cardiologia - SBC Avenida Marechal Câmara, 160, sala: 330, Centro, CEP: 20020-907, (21) 3478-2700 - Rio de Janeiro - RJ - Brazil, Fax: +55 21 3478-2770 - São Paulo - SP - Brazil
E-mail: revista@cardiol.br