Acessibilidade / Reportar erro

Influence of eucalyptus plantations on benthic macroinvertebrate assemblages in neotropical springs

Influência de plantações de eucalipto na comunidade de macroinvertebrados bentônicos em nascentes neotropicais

Abstract

Aim

The high sensitivity of springs to anthropic impacts is largely due to the high existing aquatic-terrestrial connectivity. The degradation of these ecosystems can be caused by land use, such as eucalyptus monoculture. The aim of this study was to test the influence of Eucalyptus urograndis plantations on the richness and diversity of the benthic macroinvertebrate community and on the environmental variables measured in springs in the Atlantic Forest domains.

Methods

Ten springs (5 in native forest areas and 5 in eucalyptus area) were sampled in the dry period of 2017. The organisms were screened and identified at the family level. For each spring, dissolved oxygen, temperature, pH, turbidity, electrical conductivity, total dissolved solids, total nitrogen, nitrite, nitrate, ammonia, total phosphorus, vegetation cover, granulometric characterization and organic matter were also measured.

Results: The t-test showed that some environmental variables differed, with the eucalyptus areas having higher values of total dissolved solids and electrical conductivity, and lower values of coarse sand. In the present study, the richness and diversity of the benthic fauna of springs were significantly lower in eucalyptus sites than in native sites. Nonetheless, the composition of the communities did not differ. The Indicator Species Analysis (IndVal) associated Acari, Hydropsychidae, Leptoceridae, Nematoda, Psychodidae, and Tipulidae with areas of native forest.

Conclusions

Our results show that Brazilian springs are affected by eucalyptus monocultures reducing the richness and diversity of benthic macroinvertebrates and also changing water environmental properties. Thus, we verified that previous studies elsewhere in the world also apply to neotropical areas where eucalyptus is not native.

Keywords:
monoculture; Brazil; aquatic insects; freshwater; anthropic impact

Resumo

Objetivo

A alta sensibilidade das nascentes à impactos antrópicos deve-se, em grande parte, a elevada conectividade aquático-terrestre existente. A degradação desses ecossistemas pode ser causada pelo uso do solo, como por exemplo o monocultivo de eucalipto. O objetivo deste estudo foi testar a influência de plantações de Eucalyptus urograndis sobre a riqueza, a diversidade da comunidade de macroinvertebrados bentônicos e as variáveis ambientais aferidas em nascentes nos domínios de Floresta Atlântica.

Métodos

Dez nascentes (5 em áreas de floresta nativa e 5 em áreas de eucalipto) foram amostradas no período seco de 2017. Os organismos foram triados e identificados ao nível de família. Para cada nascente foram mensuradas o oxigênio dissolvido, temperatura, pH, turbidez, condutividade elétrica, sólidos totais dissolvidos, nitrogênio total, nitrito, nitrato, amônia, fósforo total, cobertura vegetal, caracterização granulométrica e matéria orgânica.

Resultados

O teste t evidenciou algumas variáveis ambientais diferiram, apresentando as áreas de eucalipto maiores valores de sólidos totais dissolvidos e condutividade elétrica e menores de areia muito grossa. No presente estudo, a riqueza e diversidade da fauna bentônica em nascentes foram significativamente menores nas áreas de eucalipto do que nas áreas de vegetação nativa. Entretanto, a composição das comunidades não diferiu. A análise de espécies indicadoras (IndVal) associou Acari, Hydropsychidae, Leptoceridae, Nematoda, Psychodidae e Tipulidae a áreas de floresta nativa.

Conclusões

Nossos resultados mostram que nascentes em áreas de eucalipto são afetadas pela monocultura reduzindo a riqueza e diversidade de macroinvertebrados bentônicos e alterando também os parâmetros ambientais. Por fim, verificamos que estudos anteriores em outras partes do mundo também se aplicam a áreas neotropicais onde o eucalipto não é nativo.

Palavras-chave:
monocultura; Brasil; insetos aquáticos; água doce; impacto antrópico

Graphical Abstract

1. Introduction

Springs are natural discharge points from aquifers that can give origin to lakes, streams, wetlands, and geysers (Cantonati et al., 2021Cantonati, M., Fensham, R.J., Stevens, L.E., Gerecke, R., Glazier, D.S., Goldscheider, N., Knight, R.L., Richardson, J.S., Springer, A.E., & Tockner, K., 2021. Urgent plea for global protection of springs. Conserv. Biol. 35(1), 378-382. PMid:32876356. http://doi.org/10.1111/cobi.13576.
http://doi.org/10.1111/cobi.13576...
). They connect groundwater, surface water and the terrestrial ecosystem through spatial flows of energy, matter, and organisms (von Fumetti & Blattner, 2017von Fumetti, S., & Blattner, L., 2017. Faunistic assemblages of natural springs in different areas in the Swiss National Park a small-scale comparison. Hydrobiologia 793(1), 175-184. http://doi.org/10.1007/s10750-016-2788-5.
http://doi.org/10.1007/s10750-016-2788-5...
). Thus, an environmental impact on springs has the potential to modify the associated ecosystem compartments. Because they receive strong influence from the aquifer, springs present unique geomorphological habitats and are distinguished from other aquatic ecosystems (Junghans et al., 2016Junghans, K., Springer, A.E., Stevens, L.E., & Ledbetter, J.D., 2016. Springs ecosystem distribution and density for improving stewardship. Freshw. Sci. 35(4), 1330-1339. http://doi.org/10.1086/689182.
http://doi.org/10.1086/689182...
).

In addition, they are characterized by high environmental heterogeneity through a mosaic of microhabitats (Stevens et al., 2021Stevens, L.E., Schenk, E.R., & Springer, A.E., 2021. Springs ecosystem classification. Ecol. Appl. 31(1), e2218. PMid:32799393. http://doi.org/10.1002/eap.2218.
http://doi.org/10.1002/eap.2218...
) that generate high biological, genetic, and functional diversity, being considered hotspots for aquatic biodiversity (Cantonati et al., 2006Cantonati, M., Gerecke, R., & Bertuzzi, E., 2006. Springs of the Alps–sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562(1), 59-96. http://doi.org/10.1007/s10750-005-1806-9.
http://doi.org/10.1007/s10750-005-1806-9...
, 2012Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I., & Cox, E.J., 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshw. Sci. 31(2), 463-480. http://doi.org/10.1899/11-111.1.
http://doi.org/10.1899/11-111.1...
) and contain a high number of Red List species taxa compared to other aquatic ecosystems (Cantonati et al., 2022Cantonati, M., Hofmann, G., Spitale, D., Werum, M., & Lange-Bertalot, H., 2022. Diatom Red Lists: important tools to assess and preserve biodiversity and habitats in the face of direct impacts and environmental change. Biodivers. Conserv. 31(2), 453-477. http://doi.org/10.1007/s10531-021-02339-9.
http://doi.org/10.1007/s10531-021-02339-...
). Although springs are abundant around the world, they have been suffering from various anthropogenic impacts, such as habitat degradation, pollution, water flow modification, groundwater depletion, and land use (Dudgeon et al., 2006Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950.
http://doi.org/10.1017/S1464793105006950...
; Cantonati et al., 2020Cantonati, M., Stevens, L.E., Segadelli, S., Springer, A.E., Goldscheider, N., Celico, F., Filippini, M., Ogata, K., & Gargini, A., 2020. Ecohydrogeology: the interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems. Ecol. Indic. 110, 105803. http://doi.org/10.1016/j.ecolind.2019.105803.
http://doi.org/10.1016/j.ecolind.2019.10...
). Occupation by human populations can structurally simplify aquatic habitats and affect the quantity, distribution, biology, and/or functional characteristics of the organisms present there (Gimenez & Higuti, 2017Gimenez, B.C.G., & Higuti, J., 2017. Land use effects on the functional structure of aquatic insect communities in Neotropical streams. Inland Waters 7(3), 305-313. http://doi.org/10.1080/20442041.2017.1329910.
http://doi.org/10.1080/20442041.2017.132...
; Vitule et al., 2012Vitule, J.R.S., Skóra, F., & Abilhoa, V., 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 18(2), 111-120. http://doi.org/10.1111/j.1472-4642.2011.00821.x.
http://doi.org/10.1111/j.1472-4642.2011....
).

The replacement of native vegetation by monocultures is a widespread practice globally (Ferreira et al., 2019Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves Junior, J.F., Goyenola, G., Graça, M.A.S., Hepp, L.U., Kariuki, S., Rodríguez, A.L., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Mello, F.T., 2019. A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22(3), 629-642. http://doi.org/10.1007/s10021-018-0292-7.
http://doi.org/10.1007/s10021-018-0292-7...
). Eucalyptus plantations, for example, represent 8% of all trees planted in the world (Hartley, 2002Hartley, M.J., 2002. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manage. 155(1-3), 81-95. http://doi.org/10.1016/S0378-1127(01)00549-7.
http://doi.org/10.1016/S0378-1127(01)005...
). Brazil is the largest exporter of cellulose on the world market, and Minas Gerais is the state with the largest area of trees, predominantly planted with eucalyptus (IBA, 2020Indústria Brasileira de Árvores – IBA, 2020. Relatório anual. São Paulo: IBA. Retrieved in 2023, September 1, from https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
https://iba.org/datafiles/publicacoes/re...
). Dumnicka et al. (2007)Dumnicka, E., Galas, J., & Koperski, P., 2007. Benthic invertebrates in karst springs: does substratum or location define communities? Int. Rev. Hydrobiol. 92(4-5), 452-464. http://doi.org/10.1002/iroh.200610991.
http://doi.org/10.1002/iroh.200610991...
has shown that the replacement of original forests by monocultures is usually responsible for causing changes in soil structure, which can lead to changes in the physical and chemical characteristics of freshwater environments and the fauna present there.

Eucalyptus plantations areas have less quality of organic matter, and the potential toxicity of their leaves can affect the diversity and abundance of benthic macroinvertebrates (Abelho & Graça, 1996Abelho, M., & Graça, M.A.S., 1996. Effects of Eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324(3), 195-204. http://doi.org/10.1007/BF00016391.
http://doi.org/10.1007/BF00016391...
; Larrañaga et al., 2009Larrañaga, A., Basaguren, A., Elosegi, A., & Pozo, J., 2009. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundam. Appl. Limnol. 175(2), 151-160. http://doi.org/10.1127/1863-9135/2009/0175-0151.
http://doi.org/10.1127/1863-9135/2009/01...
; Kiffer Junior et al., 2018Kiffer Junior, W.P., Mendes, F., Casotti, C.G., Costa, L.C., & Moretti, M.S., 2018. Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS One 13(1), e0190743. PMid:29293646. http://doi.org/10.1371/journal.pone.0190743.
http://doi.org/10.1371/journal.pone.0190...
). When analyzing the effects of eucalyptus plantations on streams at different latitudes, it was found that changes in macroinvertebrate communities that occur in temperate climate regions do not apply to other climatic zones (Ferreira et al., 2019Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves Junior, J.F., Goyenola, G., Graça, M.A.S., Hepp, L.U., Kariuki, S., Rodríguez, A.L., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Mello, F.T., 2019. A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22(3), 629-642. http://doi.org/10.1007/s10021-018-0292-7.
http://doi.org/10.1007/s10021-018-0292-7...
). In subtropical streams, although the total richness and density of macroinvertebrates did not differ, the different groups of invertebrates responded differently to eucalyptus afforestation (Barrios et al., 2024Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhof, M., Alonso, J., Touma, B.R., & Mello, F.T., 2024. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus aforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://doi.org/10.1007/s10750-023-05248-w.
http://doi.org/10.1007/s10750-023-05248-...
). According to Amaral et al. (2021)Amaral, P.H.M., Rocha, C.H.B., & Alves, R.G., 2021. Effect of Eucalyptus plantations on the taxonomic and functional structure of aquatic insect assemblages in Neotropical springs. Stud. Neotrop. Fauna Environ. 58(1), 35-46. http://doi.org/10.1080/01650521.2021.1895512.
http://doi.org/10.1080/01650521.2021.189...
, the composition of the fauna and the taxonomic richness of Ephemeroptera, Plecoptera and Trichoptera in Neotropical springs can be negatively affected by eucalyptus plantations. However, studies evaluating the impact of eucalyptus monoculture on macroinvertebrate fauna in Neotropical springs are scarce.

In this study, the following objectives were established: (1) to investigate the structure and composition of benthic macroinvertebrate communities in neotropical springs in areas with eucalyptus plantations and in areas with native forest; (2) to define indicator taxa for each area. Our hypothesis one is that springs in eucalyptus plantation areas will present lower Shannon-Wienner index and richness of benthic macroinvertebrates. Hypothesis two is that more sensitive taxa associated with preserved environments will be indicators of springs in native forest areas.

2. Material and Methods

2.1. Study area

Ten perennial springs were selected (five in areas with Eucalyptus urograndis plantations and five in native forest areas), located in three rural properties (called areas A, B and C) that belong to the sub-basin of the Paraíba do Sul River in southeastern Minas Gerais, Brazil (Figure 1, Table 1).

Figure 1
Springs in eucalyptus plantation areas (E1A, E2A, E3A, E4B, E5C) and in native forest areas (F1A, F2A, F3B, F4B and F5B) in rural properties in Southeast Minas Gerais, Brazil.
Table 1
Coordinates of 10 springs, 5 in native areas and 5 in eucalyptus areas, in southeastern Minas Gerais, Brazil.

The springs, according to Brazilian environmental legislation, have their marginal edges considered permanent preservation areas - APP (Brasil, 2012Brasil. Presidência da República. Casa Civil, 28 maio 2012. Lei Federal n. 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2023, September 1, from https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm
https://www.planalto.gov.br/ccivil_03/_a...
). Thus, the springs studied in Eucalyptus urograndis areas have native vegetation margins (material available in https://doi.org/10.48331/scielodata.LRDB6H), and the native forest areas are characterized as remnants of Semideciduous Seasonal Forest, belonging to the Atlantic Forest domain. Most of the fragments in this region are in the secondary stage of regeneration (Paiva et al., 2015Paiva, R.V.E., Ribeiro, J.H.C., & Carvalho, F.A., 2015. Estrutura, diversidade e heterogeneidade do estrato regenerante em um fragmento florestal urbano após 10 anos de sucessão florestal. Floresta 45(3), 535-544. http://doi.org/10.5380/rf.v45i3.34533.
http://doi.org/10.5380/rf.v45i3.34533...
; Veloso et al., 1991Veloso, H.P., Rangel-Filho, A.L.R., & Lima, J.C.A., 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: IBGE.). The regional climate, according to the Köppen classification, is Cwa (mesothermal, with a rainy and hot summer, and dry winter).

2.2. Sampling

The springs were sampled only once during the dry season in 2017, at 3 different sampling points (P1, P2 and P3), along a 5 m long transect in the eucrenal zone. Point 1, located closer to the water extrusion area (upstream); point 3 further downstream; and point 2, in an intermediate area. The three points of the same spring were considered a sampling unit. The collection of the substrate for macroinvertebrate analysis was performed by the trawling method, using a hand sampler (area 0.01 m2; mesh 250 μm) for 15 seconds at each point, totaling a sampling effort of 45 seconds per spring. The substrate from each sampling point was stored separately in plastic bags and fixed in 85% ethyl alcohol. In the laboratory, the organisms were sorted and identified under a stereoscopic microscope. The insects were identified with the aid of specialized keys (Hamada et al., 2014Hamada, N., Nessimian, J.L., & Querino, R.B., 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora do INPA.; Lecci & Froehlich, 2007Lecci, L.S., & Froehlich, C.G., 2007. Ordem Plecoptera Burmeister 1839 (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Trichoptera_b.pdf
https://sites.ffclrp.usp.br/aguadoce/Gui...
; Pes et al., 2005Pes, A.M.O., Hamada, N., & Nessimian, J.L., 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Rev. Bras. Entomol. 49(2), 181-204. http://doi.org/10.1590/S0085-56262005000200002.
http://doi.org/10.1590/S0085-56262005000...
; Pinho, 2008Pinho, L.C., 2008. Ordem Diptera (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Diptera.pdf
https://sites.ffclrp.usp.br/aguadoce/Gui...
; Segura et al., 2011Segura, M.O., Valente-Neto, F., & Fonseca-Gessner, A.A., 2011. Chave de famílias de coleoptera aquáticos (Insecta) do estado de São Paulo, Brasil. Biota Neotrop. 11(1), 393-412. http://doi.org/10.1590/S1676-06032011000100037.
http://doi.org/10.1590/S1676-06032011000...
; Souza et al., 2007Souza, L.O.I., Costa, J.M., & Oldrini, B.B., 2007. Ordem Odonata Fabricius, 1793 (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/guia_online/Guia_on-line_Odonata_Vers%C3%A3o_1%C3%9F2.0.pdf
https://sites.ffclrp.usp.br/aguadoce/gui...
). The identification was performed at the family level, since it is a widely used and appropriate taxonomic level to assess the quality of aquatic environments (Brito et al., 2018Brito, J.G., Martins, R.T., Oliveira, V.C., Hamada, N., Nessimian, J.L., Hughes, R.M., Ferraz, S.F.B., & Paula, F.R., 2018. Biological indicators of diversity in tropical streams: congruence in the similarity of invertebrate assemblages. Ecol. Indic. 85, 85-92. http://doi.org/10.1016/j.ecolind.2017.09.001.
http://doi.org/10.1016/j.ecolind.2017.09...
; Martins et al., 2023Martins, C.S., Crisigiovanni, E.L., Oliveira Filho, P.C., & Nascimento, E.A., 2023. Water quality decreased by urbanisation and Pinus based silviculture in Southern Brazil. Int. J. River Basin Manage. 1-10. http://doi.org/10.1080/15715124.2023.2187398.
http://doi.org/10.1080/15715124.2023.218...
). The other groups, such as Acari, Mollusca, Crustacea, Nematoda and Oligochaeta were kept in higher taxonomic categories.

2.3. Environmental variables

Dissolved oxygen, temperature, pH, turbidity, electrical conductivity, and total dissolved solids were measured in the field using a Horiba-U10 multisensor. Water samples were collected for analysis of total nitrogen, nitrite, nitrate, ammonia, and total phosphorus (Baird et al., 2005Baird, R.B., Eaton, A.D., & Rice, E.W., 2005. Standard methods for the examination of water and wastewater. Washington: American Public Health Association, Water Environment Federation, American Water Works Association.; Wetzel & Likens, 2000Wetzel, R.G., & Likens, G.E., 2000. Inorganic nutrients: nitrogen, phosphorus, and other nutrients. In: Wetzel, R.G., & Likens, G.E., eds. Limnological analyses. New York: Springer, 81-105. http://doi.org/10.1007/978-1-4757-3250-4_7.
http://doi.org/10.1007/978-1-4757-3250-4...
). All variables were measured only once per spring. To measure the vegetation cover of each spring, photographs of the canopy were taken, 10 centimeters away from the water surface. The images were converted to black and white and analyzed using ImageJ software (Rasband, 2018Rasband, W.S., 2018. ImageJ. Bethesda: National Institutes of Health.). The results obtained generate an average pixel value that ranged from 0 (total cover) to 255 (total light input) and is converted into a percentage. For granulometric characterization, after being dried at room temperature and homogenized, 120g of substrate samples from each spring were processed in a mechanical shaker, using sieves of different mesh openings, for the separation of the following fractions: very coarse sand (1 mm < × < 2 mm), coarse sand (500 µm < x < 1 mm), medium sand (250 µm < × < 500 µm), fine sand (150 µm < × < 250 µm), very fine sand (75 µm < × < 150 µm) and silt and clay (<75 µm) according to the procedure recommended by the technical standard NBR 7181 (ABNT, 1984Associação Brasileira de Normas Técnicas – ABNT, 1984. ABNT NBR 7181: solo: análise granulométrica. Rio de Janeiro: ABNT.). The organic matter (OM) content was determined according to the technical standard NBR 13600 (ABNT, 1996Associação Brasileira de Normas Técnicas – ABNT, 1996. ABNT NBR 13600: solo: determinação do teor de matéria orgânica por queima a 440 °C. Rio de Janeiro: ABNT.). The environmental variables measured per spring are shown in Supplementary Material A.

2.4. Statistical analysis

Richness (number of families), abundance, Shannon-Wienner index, and Pielou's evenness (J) were calculated for each spring. To verify possible differences in environmental variables, richness, abundance, diversity (H') and evenness (J) between springs in forest and eucalyptus areas, a T-test was performed. The data were previously tested regarding the assumptions. When necessary, the data were log-transformed, and when the assumption of a normal distribution was not met, the non-parametric Wilcoxon test was performed. To verify the possible association of benthic macroinvertebrates with springs in eucalyptus and forest areas, the Indicator Species Analysis (IndVal) was performed, which considers the abundance and frequency of each taxon (Cáceres & Legendre, 2009Cáceres, M.D., & Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566-3574. PMid:20120823. http://doi.org/10.1890/08-1823.1.
http://doi.org/10.1890/08-1823.1...
). For this analysis, the Stats (R Core Team, 2018R Core Team, 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 2, from https://www.R-project.org/
https://www.R-project.org/...
) and Indicspecies (Cáceres & Legendre, 2009Cáceres, M.D., & Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566-3574. PMid:20120823. http://doi.org/10.1890/08-1823.1.
http://doi.org/10.1890/08-1823.1...
) packages were used. Non-metric Multidimensional Scaling (nMDS) with Bray-Curtis distance was used to order the springs according to areas, based on the abundance (log x+1) of benthic macroinvertebrates. The Analysis of Similarity (ANOSIM) was performed with the same nMDS data to verify if there was a significant difference in the fauna composition between the native forest and eucalyptus areas. The “vegan” package (Oksanen et al., 2016Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., & Weedon, J., 2016. Vegan: Community Ecology Package. R package, version 2.4-1. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 2, from https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan...
) was used to run the diversity indices, nMDS and ANOSIM. All analyses were performed in the program Rstudio (version 1.1.463.0) (R Core Team, 2018R Core Team, 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 2, from https://www.R-project.org/
https://www.R-project.org/...
).

3. Results

3.1. Environmental variables

The t-test showed that the variables total dissolved solids, electrical conductivity, and very coarse sand differed significantly according to areas (Table 2).

Table 2
Mean and standard error (SE) of environmental variables of springs in forest and eucalyptus areas belonging to the Paraíba do Sul River sub-basin in southeastern Minas Gerais, Brazil.

3.2. Structure and composition of benthic macroinvertebrate fauna

We found 8474 specimens in springs in native forest areas and 5261 in eucalyptus areas, distributed in 58 taxa (Supplementary Material B). Abundance (t = -1.05 df = 8; p = 0.163) and evenness (t = -1.67; df = 8; p = 0.066) did not differ between the different areas. On the other hand, richness (t = -1.89; df = 8; p = 0.048) and Shannon-Wienner index (H') (t = -2.44; df = 8; p = 0.020) differed among treatments, being smaller in eucalyptus areas. Regarding the richness, we found that there was an overall reduction of around 28.37%.

The non-metric multidimensional scaling (nMDS) analysis (stress = 0.055), showed that there was no clear separation between the springs in native forest areas and in eucalyptus areas in relation to fauna (Figure 2), but the eucalypt sites were more different to each other than the native forest sites. This result was corroborated by ANOSIM, which showed no difference in the composition of benthic macroinvertebrate assemblages (R = 0.092; p = 0.194).

Figure 2
Similarity of benthic macroinvertebrate community composition (NMDS; Bray-Curtis similarity index) among 10 springs: 5 in eucalyptus (E1A, E2A, E3A, E4B, E5C) and 5 in forest areas (F1A, F2A, F3B, F4B and F5B) in Southeast Minas Gerais, Brazil.

The analysis of indicator species (IndVal) showed that six taxa were associated with native forest areas (Table 3). In eucalyptus areas, no indicator taxon was evidenced.

Table 3
Indicator species analysis (IndVal) of 10 springs, 5 in native forest areas and 5 in eucalyptus areas, in southeastern Minas Gerais, Brazil.

4. Discussion

4.1. Environmental variables

Although only one measurement of the environmental variables was carried out, in our study, springs in eucalyptus areas showed higher values of electrical conductivity and total dissolved solids. This shows that eucalyptus can alter environmental parameters in springs. The effect of eucalypt has been identified in streams through increased electrical conductivity and total dissolved solids (Barrios et al., 2024Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhof, M., Alonso, J., Touma, B.R., & Mello, F.T., 2024. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus aforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://doi.org/10.1007/s10750-023-05248-w.
http://doi.org/10.1007/s10750-023-05248-...
). Similarly, it has been found that suspended solids, nitrate, chlorides, and sulfates can be found in higher concentrations in aquatic systems that have had their native vegetation replaced by monocultures of eucalyptus (Fierro et al., 2016Fierro, P., Quilodrán, L., Bertrán, C., Arismendi, I., Tapia, J., Peña-Cortés, F., Hauenstein, E., Arriagada, R., Fernández, E., & Vargas-Chacoff, L., 2016. Rainbow Trout diets and macroinvertebrates assemblages responses from watersheds dominated by native and exotic plantations. Ecol. Indic. 60, 655-667. http://doi.org/10.1016/j.ecolind.2015.08.018.
http://doi.org/10.1016/j.ecolind.2015.08...
).

It is common for finer particle size fractions to be related to environments under the influence of eucalyptus monoculture (Amaral et al., 2020Amaral, P.H.M., Peixoto, S.J., Machado, M.M.M., Rocha, C.H.B., & Alves, R.G., 2020. Caracterização granulométrica do sedimento de nascentes tropicais em áreas plantadas com eucalipto. Cienc. Florest. 30(4), 1075-1084. http://doi.org/10.5902/1980509839523.
http://doi.org/10.5902/1980509839523...
). In the present study, we found no association between the finer particle size fractions and eucalyptus areas. However, the springs in forest areas had a higher percentage of very coarse sand. It is likely that the native riparian vegetation has contributed to the maintenance of soil structure, keeping it consolidated, little exposed to erosion, in order to reduce the entry of fine particles in the springs in forest areas.

4.2. Structure and composition of benthic macroinvertebrate fauna

Springs in native forest areas had higher values of benthic macroinvertebrate richness and diversity, a fact that corroborates our first hypothesis. When studying the fauna of Ephemeroptera, Plecoptera and Trichoptera in springs located in eucalyptus areas, Amaral et al. (2021)Amaral, P.H.M., Rocha, C.H.B., & Alves, R.G., 2021. Effect of Eucalyptus plantations on the taxonomic and functional structure of aquatic insect assemblages in Neotropical springs. Stud. Neotrop. Fauna Environ. 58(1), 35-46. http://doi.org/10.1080/01650521.2021.1895512.
http://doi.org/10.1080/01650521.2021.189...
found similar results. In contrast, faunal composition was not clearly distinguished by nMDS. However, it is noticeable that the communities in forest areas are more similar to each other than those in eucalyptus areas. The fact that springs usually present high thermal and chemical stability (Barquín & Scarsbrook, 2008Barquín, J., & Scarsbrook, M., 2008. Management and conservation strategies for coldwater springs. Aquat. Conserv. 18(5), 580-591. http://doi.org/10.1002/aqc.884.
http://doi.org/10.1002/aqc.884...
; van der Kamp, 1995van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J. Kans. Entomol. Soc. 68, 4-17. Retrieved in 2023, September 1, from http://www.jstor.org/stable/25085630
http://www.jstor.org/stable/25085630...
) leads us to assume that those in forest areas have a greater possibility of remaining stable, providing a greater similarity in faunal composition. In turn, interference from eucalyptus plantations can modify the environment and select species within communities, favoring differentiation between springs.

Springs in native forest areas showed higher richness and diversity. The composition and distribution of benthic macroinvertebrate assemblages can be influenced by substrate composition (Buss et al., 2004Buss, D.F., Baptista, D.F., Nessimian, J.L., & Egler, M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1-3), 179-188. http://doi.org/10.1023/B:HYDR.0000025067.66126.1c.
http://doi.org/10.1023/B:HYDR.0000025067...
; von Fumetti et al., 2006von Fumetti, S., Nagel, P., Scheifhacken, N., & Baltes, B., 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568(1), 467-475. http://doi.org/10.1007/s10750-006-0227-8.
http://doi.org/10.1007/s10750-006-0227-8...
); water flow (Statzner & Higler, 1986Statzner, B., & Higler, B., 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshw. Biol. 16(1), 127-139. http://doi.org/10.1111/j.1365-2427.1986.tb00954.x.
http://doi.org/10.1111/j.1365-2427.1986....
); availability of food resources (Abelho & Graça, 1996Abelho, M., & Graça, M.A.S., 1996. Effects of Eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324(3), 195-204. http://doi.org/10.1007/BF00016391.
http://doi.org/10.1007/BF00016391...
); land use; and habitat modification (Amaral et al., 2015Amaral, P.H.M., Silveira, L.S., Rosa, B.F.J.V., Oliveira, V.C., & Alves, R.G., 2015. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15(1), 60. PMid:25989807. http://doi.org/10.1093/jisesa/iev042.
http://doi.org/10.1093/jisesa/iev042...
; Ilmonen et al., 2012Ilmonen, J., Mykrä, H., Virtanen, R., Paasivirta, L., & Muotka, T., 2012. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness, and red-listed species. Freshw. Sci. 31(2), 657-667. http://doi.org/10.1899/10-060.1.
http://doi.org/10.1899/10-060.1...
; Knysh et al., 2016Knysh, K.M., Giberson, D.J., & van den Heuvel, M.R., 2016. The influence of agricultural land‐use on plant and macroinvertebrate communities in springs. Limnol. Oceanogr. 61(2), 518-530. http://doi.org/10.1002/lno.10230.
http://doi.org/10.1002/lno.10230...
). In streams, the impact of eucalyptus plantations on the richness and density of the benthic macroinvertebrate fauna varies according to the tolerance of the group, the local climate, and the quality of the leaf detritus (Barrios et al., 2024Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhof, M., Alonso, J., Touma, B.R., & Mello, F.T., 2024. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus aforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://doi.org/10.1007/s10750-023-05248-w.
http://doi.org/10.1007/s10750-023-05248-...
; Ferreira et al., 2019Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves Junior, J.F., Goyenola, G., Graça, M.A.S., Hepp, L.U., Kariuki, S., Rodríguez, A.L., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Mello, F.T., 2019. A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22(3), 629-642. http://doi.org/10.1007/s10021-018-0292-7.
http://doi.org/10.1007/s10021-018-0292-7...
; Larrañaga et al., 2009Larrañaga, A., Basaguren, A., Elosegi, A., & Pozo, J., 2009. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundam. Appl. Limnol. 175(2), 151-160. http://doi.org/10.1127/1863-9135/2009/0175-0151.
http://doi.org/10.1127/1863-9135/2009/01...
).

In the same sense, the analysis of indicator species identified six groups with greater specificity in springs in forest areas and none in eucalyptus areas. Leptoceridae (Trichoptera) and Hydropsychidae (Trichoptera) are families considered sensitive to anthropogenic disturbance and are indicators of good environmental integrity (Amaral et al., 2015Amaral, P.H.M., Silveira, L.S., Rosa, B.F.J.V., Oliveira, V.C., & Alves, R.G., 2015. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15(1), 60. PMid:25989807. http://doi.org/10.1093/jisesa/iev042.
http://doi.org/10.1093/jisesa/iev042...
; Bispo et al., 2006Bispo, P.C., Oliveira, L.G., Bini, L.M., & Sousa, K.G., 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66(2B), 611-622. PMid:16906293. http://doi.org/10.1590/S1519-69842006000400005.
http://doi.org/10.1590/S1519-69842006000...
; Cortezzi et al., 2009Cortezzi, S.S., Bispo, P.C., Paciencia, G.P., & Leite, R.C., 2009. Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia Ser. Zool. 99(1), 36-43. http://doi.org/10.1590/S0073-47212009000100005.
http://doi.org/10.1590/S0073-47212009000...
) and their occurrences have already been negatively related to streams that have eucalyptus plantations in their surroundings (Cordero-Rivera et al., 2017Cordero–Rivera, A., Martínez Álvarez, A.M., & Álvarez, M., 2017. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams. Anim. Biodivers. Conserv. 40(1), 87-97. http://doi.org/10.32800/abc.2017.40.0087.
http://doi.org/10.32800/abc.2017.40.0087...
), including in the subtropical region (Barrios et al., 2024Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhof, M., Alonso, J., Touma, B.R., & Mello, F.T., 2024. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus aforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://doi.org/10.1007/s10750-023-05248-w.
http://doi.org/10.1007/s10750-023-05248-...
), which corroborates our hypothesis that more sensitive taxa related to preserved environments would be associated with springs in areas of native forest.

Other groups that showed a negative association to springs under eucalypt plantations were mites, nematodes, and the dipterans Tipulidae and Psychodidae. In addition, most mites have a low tolerance to electrolytes, i.e., they have a negative relationship with water conductivity (Sabatino et al., 2000Sabatino, A.D., Gerecke, R., & Martin, P., 2000. The biology and ecology of lotic water mites (Hydrachnidia). Freshw. Biol. 44(1), 47-62. http://doi.org/10.1046/j.1365-2427.2000.00591.x.
http://doi.org/10.1046/j.1365-2427.2000....
). In the present work, electrical conductivity had lower values in native forest areas, which could explain the higher abundance and frequency of mites in these springs. Nematoda is a group of trophic importance in aquatic environments, as it connects the microfauna compartments to the higher trophic levels. They are able to feed on different items (bacteria, algae, fungi, protozoa, and dissolved organic matter) (Majdi & Traunspurger, 2015Majdi, N., & Traunspurger, W., 2015. Free-living nematodes in the freshwater food web: a review. J. Nematol. 47(1), 28-44. PMid:25861114.). However, there is almost no information on these organisms in crenal environments (Cantonati et al., 2006Cantonati, M., Gerecke, R., & Bertuzzi, E., 2006. Springs of the Alps–sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562(1), 59-96. http://doi.org/10.1007/s10750-005-1806-9.
http://doi.org/10.1007/s10750-005-1806-9...
).

The dipterans Psychodidae and Tipulidae are detritivores/gatherers, which can be found on the banks of lotic environments with accumulation of detritus (Hamada et al., 2014Hamada, N., Nessimian, J.L., & Querino, R.B., 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora do INPA.), a fact that may have contributed to the higher abundance and frequency of these insects in springs in forest areas. In this sense, springs in eucalyptus areas may receive lower quality leaf resources due to the presence of oil glands, phenols, and thick leaf cuticle (Abelho & Graça, 1996Abelho, M., & Graça, M.A.S., 1996. Effects of Eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324(3), 195-204. http://doi.org/10.1007/BF00016391.
http://doi.org/10.1007/BF00016391...
) and thus, lower richness and diversity of these organisms can be expected. Tipulidae larvae reduced their consumption rates of native leaves by 50% when polyphenols and oils from Eucalyptus globulus were added experimentally (Canhoto & Graça, 1999Canhoto, C., & Graça, M., 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microb. Ecol. 37(3), 163-172. PMid:10227874. http://doi.org/10.1007/s002489900140.
http://doi.org/10.1007/s002489900140...
) and, when fed experimentally with eucalyptus leaves from the same species abovementioned, they suffered damage to their mouth apparatus and alterations to their intestinal microbiota (Canhoto & Graça, 2006Canhoto, C., & Graça, M., 2006. Digestive tract and leaf processing capacity of the stream invertebrate Tipula lateralis. Can. J. Zool. 84(8), 1087-1095. http://doi.org/10.1139/z06-092.
http://doi.org/10.1139/z06-092...
).

In conclusion, we emphasize that our hypotheses were corroborated in this study. The results obtained showed that springs in tropical areas are also negatively affected by exotic eucalyptus monocultures, with a decrease in the richness and diversity of benthic macroinvertebrates. In addition, sensitive taxa were associated with springs in native forest areas, indicating better environmental conditions in these systems. Thus, we highlight the importance of maintaining native forest for the conservation and integrity of springs and aquatic biodiversity.

Data availability

All research data analyzed in the research is available in the Dataverse of Acta Limnologica Brasiliensia in SciELO Data. Access is free. It can be accessed in https://doi.org/10.48331/scielodata.LRDB6H.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

  • Cite as: Peixoto, S.S.J., Guimarães, L.P. and Alves, R.G. Influence of eucalyptus plantations on benthic macroinvertebrate assemblages in neotropical springs. Acta Limnologica Brasiliensia, 2024, vol. 36, e24. https://doi.org/10.1590/S2179-975X8623

References

  • Abelho, M., & Graça, M.A.S., 1996. Effects of Eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324(3), 195-204. http://doi.org/10.1007/BF00016391
    » http://doi.org/10.1007/BF00016391
  • Amaral, P.H.M., Peixoto, S.J., Machado, M.M.M., Rocha, C.H.B., & Alves, R.G., 2020. Caracterização granulométrica do sedimento de nascentes tropicais em áreas plantadas com eucalipto. Cienc. Florest. 30(4), 1075-1084. http://doi.org/10.5902/1980509839523
    » http://doi.org/10.5902/1980509839523
  • Amaral, P.H.M., Rocha, C.H.B., & Alves, R.G., 2021. Effect of Eucalyptus plantations on the taxonomic and functional structure of aquatic insect assemblages in Neotropical springs. Stud. Neotrop. Fauna Environ. 58(1), 35-46. http://doi.org/10.1080/01650521.2021.1895512
    » http://doi.org/10.1080/01650521.2021.1895512
  • Amaral, P.H.M., Silveira, L.S., Rosa, B.F.J.V., Oliveira, V.C., & Alves, R.G., 2015. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15(1), 60. PMid:25989807. http://doi.org/10.1093/jisesa/iev042
    » http://doi.org/10.1093/jisesa/iev042
  • Associação Brasileira de Normas Técnicas – ABNT, 1984. ABNT NBR 7181: solo: análise granulométrica. Rio de Janeiro: ABNT.
  • Associação Brasileira de Normas Técnicas – ABNT, 1996. ABNT NBR 13600: solo: determinação do teor de matéria orgânica por queima a 440 °C. Rio de Janeiro: ABNT.
  • Baird, R.B., Eaton, A.D., & Rice, E.W., 2005. Standard methods for the examination of water and wastewater. Washington: American Public Health Association, Water Environment Federation, American Water Works Association.
  • Barquín, J., & Scarsbrook, M., 2008. Management and conservation strategies for coldwater springs. Aquat. Conserv. 18(5), 580-591. http://doi.org/10.1002/aqc.884
    » http://doi.org/10.1002/aqc.884
  • Barrios, M., Tesitore, G., Burwood, M., Suárez, B., Meerhof, M., Alonso, J., Touma, B.R., & Mello, F.T., 2024. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus aforestation gradient in subtropical lowland streams. Hydrobiologia 851(2), 343-365. http://doi.org/10.1007/s10750-023-05248-w
    » http://doi.org/10.1007/s10750-023-05248-w
  • Bispo, P.C., Oliveira, L.G., Bini, L.M., & Sousa, K.G., 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66(2B), 611-622. PMid:16906293. http://doi.org/10.1590/S1519-69842006000400005
    » http://doi.org/10.1590/S1519-69842006000400005
  • Brasil. Presidência da República. Casa Civil, 28 maio 2012. Lei Federal n. 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2023, September 1, from https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm
    » https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm
  • Brito, J.G., Martins, R.T., Oliveira, V.C., Hamada, N., Nessimian, J.L., Hughes, R.M., Ferraz, S.F.B., & Paula, F.R., 2018. Biological indicators of diversity in tropical streams: congruence in the similarity of invertebrate assemblages. Ecol. Indic. 85, 85-92. http://doi.org/10.1016/j.ecolind.2017.09.001
    » http://doi.org/10.1016/j.ecolind.2017.09.001
  • Buss, D.F., Baptista, D.F., Nessimian, J.L., & Egler, M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1-3), 179-188. http://doi.org/10.1023/B:HYDR.0000025067.66126.1c
    » http://doi.org/10.1023/B:HYDR.0000025067.66126.1c
  • Cáceres, M.D., & Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566-3574. PMid:20120823. http://doi.org/10.1890/08-1823.1
    » http://doi.org/10.1890/08-1823.1
  • Canhoto, C., & Graça, M., 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microb. Ecol. 37(3), 163-172. PMid:10227874. http://doi.org/10.1007/s002489900140
    » http://doi.org/10.1007/s002489900140
  • Canhoto, C., & Graça, M., 2006. Digestive tract and leaf processing capacity of the stream invertebrate Tipula lateralis. Can. J. Zool. 84(8), 1087-1095. http://doi.org/10.1139/z06-092
    » http://doi.org/10.1139/z06-092
  • Cantonati, M., Fensham, R.J., Stevens, L.E., Gerecke, R., Glazier, D.S., Goldscheider, N., Knight, R.L., Richardson, J.S., Springer, A.E., & Tockner, K., 2021. Urgent plea for global protection of springs. Conserv. Biol. 35(1), 378-382. PMid:32876356. http://doi.org/10.1111/cobi.13576
    » http://doi.org/10.1111/cobi.13576
  • Cantonati, M., Füreder, L., Gerecke, R., Jüttner, I., & Cox, E.J., 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshw. Sci. 31(2), 463-480. http://doi.org/10.1899/11-111.1
    » http://doi.org/10.1899/11-111.1
  • Cantonati, M., Gerecke, R., & Bertuzzi, E., 2006. Springs of the Alps–sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562(1), 59-96. http://doi.org/10.1007/s10750-005-1806-9
    » http://doi.org/10.1007/s10750-005-1806-9
  • Cantonati, M., Hofmann, G., Spitale, D., Werum, M., & Lange-Bertalot, H., 2022. Diatom Red Lists: important tools to assess and preserve biodiversity and habitats in the face of direct impacts and environmental change. Biodivers. Conserv. 31(2), 453-477. http://doi.org/10.1007/s10531-021-02339-9
    » http://doi.org/10.1007/s10531-021-02339-9
  • Cantonati, M., Stevens, L.E., Segadelli, S., Springer, A.E., Goldscheider, N., Celico, F., Filippini, M., Ogata, K., & Gargini, A., 2020. Ecohydrogeology: the interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems. Ecol. Indic. 110, 105803. http://doi.org/10.1016/j.ecolind.2019.105803
    » http://doi.org/10.1016/j.ecolind.2019.105803
  • Cordero–Rivera, A., Martínez Álvarez, A.M., & Álvarez, M., 2017. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams. Anim. Biodivers. Conserv. 40(1), 87-97. http://doi.org/10.32800/abc.2017.40.0087
    » http://doi.org/10.32800/abc.2017.40.0087
  • Cortezzi, S.S., Bispo, P.C., Paciencia, G.P., & Leite, R.C., 2009. Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia Ser. Zool. 99(1), 36-43. http://doi.org/10.1590/S0073-47212009000100005
    » http://doi.org/10.1590/S0073-47212009000100005
  • Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950
    » http://doi.org/10.1017/S1464793105006950
  • Dumnicka, E., Galas, J., & Koperski, P., 2007. Benthic invertebrates in karst springs: does substratum or location define communities? Int. Rev. Hydrobiol. 92(4-5), 452-464. http://doi.org/10.1002/iroh.200610991
    » http://doi.org/10.1002/iroh.200610991
  • Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves Junior, J.F., Goyenola, G., Graça, M.A.S., Hepp, L.U., Kariuki, S., Rodríguez, A.L., Mazzeo, N., M’Erimba, C., Monroy, S., Peil, A., Pozo, J., Rezende, R., & Mello, F.T., 2019. A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22(3), 629-642. http://doi.org/10.1007/s10021-018-0292-7
    » http://doi.org/10.1007/s10021-018-0292-7
  • Fierro, P., Quilodrán, L., Bertrán, C., Arismendi, I., Tapia, J., Peña-Cortés, F., Hauenstein, E., Arriagada, R., Fernández, E., & Vargas-Chacoff, L., 2016. Rainbow Trout diets and macroinvertebrates assemblages responses from watersheds dominated by native and exotic plantations. Ecol. Indic. 60, 655-667. http://doi.org/10.1016/j.ecolind.2015.08.018
    » http://doi.org/10.1016/j.ecolind.2015.08.018
  • Gimenez, B.C.G., & Higuti, J., 2017. Land use effects on the functional structure of aquatic insect communities in Neotropical streams. Inland Waters 7(3), 305-313. http://doi.org/10.1080/20442041.2017.1329910
    » http://doi.org/10.1080/20442041.2017.1329910
  • Hamada, N., Nessimian, J.L., & Querino, R.B., 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora do INPA.
  • Hartley, M.J., 2002. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manage. 155(1-3), 81-95. http://doi.org/10.1016/S0378-1127(01)00549-7
    » http://doi.org/10.1016/S0378-1127(01)00549-7
  • Ilmonen, J., Mykrä, H., Virtanen, R., Paasivirta, L., & Muotka, T., 2012. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness, and red-listed species. Freshw. Sci. 31(2), 657-667. http://doi.org/10.1899/10-060.1
    » http://doi.org/10.1899/10-060.1
  • Indústria Brasileira de Árvores – IBA, 2020. Relatório anual. São Paulo: IBA. Retrieved in 2023, September 1, from https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
    » https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
  • Junghans, K., Springer, A.E., Stevens, L.E., & Ledbetter, J.D., 2016. Springs ecosystem distribution and density for improving stewardship. Freshw. Sci. 35(4), 1330-1339. http://doi.org/10.1086/689182
    » http://doi.org/10.1086/689182
  • Kiffer Junior, W.P., Mendes, F., Casotti, C.G., Costa, L.C., & Moretti, M.S., 2018. Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS One 13(1), e0190743. PMid:29293646. http://doi.org/10.1371/journal.pone.0190743
    » http://doi.org/10.1371/journal.pone.0190743
  • Knysh, K.M., Giberson, D.J., & van den Heuvel, M.R., 2016. The influence of agricultural land‐use on plant and macroinvertebrate communities in springs. Limnol. Oceanogr. 61(2), 518-530. http://doi.org/10.1002/lno.10230
    » http://doi.org/10.1002/lno.10230
  • Larrañaga, A., Basaguren, A., Elosegi, A., & Pozo, J., 2009. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundam. Appl. Limnol. 175(2), 151-160. http://doi.org/10.1127/1863-9135/2009/0175-0151
    » http://doi.org/10.1127/1863-9135/2009/0175-0151
  • Lecci, L.S., & Froehlich, C.G., 2007. Ordem Plecoptera Burmeister 1839 (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Trichoptera_b.pdf
    » https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Trichoptera_b.pdf
  • Majdi, N., & Traunspurger, W., 2015. Free-living nematodes in the freshwater food web: a review. J. Nematol. 47(1), 28-44. PMid:25861114.
  • Martins, C.S., Crisigiovanni, E.L., Oliveira Filho, P.C., & Nascimento, E.A., 2023. Water quality decreased by urbanisation and Pinus based silviculture in Southern Brazil. Int. J. River Basin Manage. 1-10. http://doi.org/10.1080/15715124.2023.2187398
    » http://doi.org/10.1080/15715124.2023.2187398
  • Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., & Weedon, J., 2016. Vegan: Community Ecology Package. R package, version 2.4-1. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 2, from https://CRAN.R-project.org/package=vegan
    » https://CRAN.R-project.org/package=vegan
  • Paiva, R.V.E., Ribeiro, J.H.C., & Carvalho, F.A., 2015. Estrutura, diversidade e heterogeneidade do estrato regenerante em um fragmento florestal urbano após 10 anos de sucessão florestal. Floresta 45(3), 535-544. http://doi.org/10.5380/rf.v45i3.34533
    » http://doi.org/10.5380/rf.v45i3.34533
  • Pes, A.M.O., Hamada, N., & Nessimian, J.L., 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Rev. Bras. Entomol. 49(2), 181-204. http://doi.org/10.1590/S0085-56262005000200002
    » http://doi.org/10.1590/S0085-56262005000200002
  • Pinho, L.C., 2008. Ordem Diptera (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Diptera.pdf
    » https://sites.ffclrp.usp.br/aguadoce/Guia_online/Guia_Diptera.pdf
  • R Core Team, 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 2, from https://www.R-project.org/
    » https://www.R-project.org/
  • Rasband, W.S., 2018. ImageJ. Bethesda: National Institutes of Health.
  • Sabatino, A.D., Gerecke, R., & Martin, P., 2000. The biology and ecology of lotic water mites (Hydrachnidia). Freshw. Biol. 44(1), 47-62. http://doi.org/10.1046/j.1365-2427.2000.00591.x
    » http://doi.org/10.1046/j.1365-2427.2000.00591.x
  • Segura, M.O., Valente-Neto, F., & Fonseca-Gessner, A.A., 2011. Chave de famílias de coleoptera aquáticos (Insecta) do estado de São Paulo, Brasil. Biota Neotrop. 11(1), 393-412. http://doi.org/10.1590/S1676-06032011000100037
    » http://doi.org/10.1590/S1676-06032011000100037
  • Souza, L.O.I., Costa, J.M., & Oldrini, B.B., 2007. Ordem Odonata Fabricius, 1793 (Arthropoda: Insecta). In: Universidade de São Paulo. Guia on-line de identificação de larvas de insetos aquáticos do Estado de São Paulo. Ribeirão Preto: USP. Retrieved in 2023, September 1, from https://sites.ffclrp.usp.br/aguadoce/guia_online/Guia_on-line_Odonata_Vers%C3%A3o_1%C3%9F2.0.pdf
    » https://sites.ffclrp.usp.br/aguadoce/guia_online/Guia_on-line_Odonata_Vers%C3%A3o_1%C3%9F2.0.pdf
  • Statzner, B., & Higler, B., 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshw. Biol. 16(1), 127-139. http://doi.org/10.1111/j.1365-2427.1986.tb00954.x
    » http://doi.org/10.1111/j.1365-2427.1986.tb00954.x
  • Stevens, L.E., Schenk, E.R., & Springer, A.E., 2021. Springs ecosystem classification. Ecol. Appl. 31(1), e2218. PMid:32799393. http://doi.org/10.1002/eap.2218
    » http://doi.org/10.1002/eap.2218
  • van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J. Kans. Entomol. Soc. 68, 4-17. Retrieved in 2023, September 1, from http://www.jstor.org/stable/25085630
    » http://www.jstor.org/stable/25085630
  • Veloso, H.P., Rangel-Filho, A.L.R., & Lima, J.C.A., 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: IBGE.
  • Vitule, J.R.S., Skóra, F., & Abilhoa, V., 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 18(2), 111-120. http://doi.org/10.1111/j.1472-4642.2011.00821.x
    » http://doi.org/10.1111/j.1472-4642.2011.00821.x
  • von Fumetti, S., & Blattner, L., 2017. Faunistic assemblages of natural springs in different areas in the Swiss National Park a small-scale comparison. Hydrobiologia 793(1), 175-184. http://doi.org/10.1007/s10750-016-2788-5
    » http://doi.org/10.1007/s10750-016-2788-5
  • von Fumetti, S., Nagel, P., Scheifhacken, N., & Baltes, B., 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568(1), 467-475. http://doi.org/10.1007/s10750-006-0227-8
    » http://doi.org/10.1007/s10750-006-0227-8
  • Wetzel, R.G., & Likens, G.E., 2000. Inorganic nutrients: nitrogen, phosphorus, and other nutrients. In: Wetzel, R.G., & Likens, G.E., eds. Limnological analyses. New York: Springer, 81-105. http://doi.org/10.1007/978-1-4757-3250-4_7
    » http://doi.org/10.1007/978-1-4757-3250-4_7

Edited by

Associate Editor: Victor Satoru Saito

Publication Dates

  • Publication in this collection
    02 Aug 2024
  • Date of issue
    2024

History

  • Received
    11 Sept 2023
  • Accepted
    07 May 2024
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com