Acessibilidade / Reportar erro

Phenometric predictors of Pontederia crassipes biomass under natural conditions in the Paraná River

Preditores fenométricos de biomassa de Pontederia crassipes em ambientes naturais no rio Paraná

Abstract:

The water hyacinth, Pontederia crassipes, is a free-floating aquatic plant native to South America, which has colonized tropical rivers in several continents and has become dominant in floodplains.

Aim

This study aimed to evaluate the relationship between leaf length and leaf biomass (as an indirect phenometric estimation) and to compare the accuracy of the indirect phenometric estimation (which is a non-destructive method) with that of the direct estimation of aboveground biomass (which is destructive).

Methods

Pontederia crassipes green leaves of all sizes were collected from a floodplain lake of the Paraná River (Argentina). The leaves were oven-dried in the laboratory to obtain the constant dry weight. To determine the accuracy the indirect phenometric estimation was compared with the direct estimation of aboveground biomass. The relationship between leaf weight and leaf length was evaluated by regression analysis. The length of the 279 green leaves collected ranged between 7 and 115 cm.

Results

The non-destructive method was a good predictor of leaf biomass (R2 = 0.87 p < 0.0001). No significant differences were found between the dry weight obtained directly and that estimated by the indirect method.

Conclusions

Our results suggest that leaf length is a good attribute to estimate the aboveground biomass of P. crassipes. This method can contribute to diminish the impact of the direct method of harvest of P. crassipes and can be applied in experimental studies aimed to determine the leaf life span and primary productivity of P. crassipes clones.

Keywords:
wetlands; water hyacinth; large rivers; South America

Resumo:

Pontederia crassipes é uma planta aquática flutuante livre nativa da América do Sul, que colonizou rios tropicais em vários continentes, tornando-se dominante nas planícies aluviais.

Objetivo

Neste estudo testamos a relação entre o comprimento das folhas e a biomassa foliar, e comparamos a precisão da estimativa fenométrica indireta com a biomassa direta acima do solo.

Métodos

Recolhemos folhas verdes de aguapé com diferentes tamanhos num lago de planície de inundação do rio Paraná (Argentina). As folhas foram secas em estufa de laboratório para obter um peso seco constante. Para determinar a acuracidade da estimativa fenométrica indireta foi comparada com a biomassa direta para a parte aérea. A análise de regressão foi utilizada para testar a relação entre o peso e o comprimento das folhas. O comprimento de 279 folhas verdes variou entre 7 e 115 cm.

Resultados

O método não destrutivo foi um bom preditor da biomassa foliar (R2 = 0,87 p < 0,0001). Não foram encontradas diferenças significativas entre o peso seco obtido diretamente e o peso estimado através do método indireto.

Conclusões

Os nossos resultados sugerem que o comprimento da folha é um bom atributo para estimar a biomassa aérea de P. crassipes. Este método é útil para reduzir o impacto do método direto de colheita de aguapé e necessário para aplicação em estudos experimentais que determinam a duração da vida foliar e a produtividade primária em clones.

Palavras-chave:
zonas úmidas; aguapé; grandes rios; América do Sul

1. Introduction

The water hyacinth, Pontederia crassipes (Mart.) Solms. (Pellegrini et al., 2018Pellegrini, M.O.O., Horn, C.N., & Almeida, R.F., 2018. Total evidence phylogeny of Pontederiaceae (Commelinales) sheds light on the necessity of its recircumscription and synopsis of Pontederia L. PhytoKeys 108(108), 25-83. PMid:30275733. http://doi.org/10.3897/phytokeys.108.27652.
http://doi.org/10.3897/phytokeys.108.276...
)-Pontederiaceae-, also known as Eichhornia crassipes, is one of the most frequent aquatic macrophytes in the floodplains of large South American Rivers (Puhakka & Kalliola, 1993Puhakka, M., & Kalliola, R., 1993. La vegetación en áreas de inundación en la selva baja de la Amazonia. In: Kalliola, R., Puhakka, M., & Danjoy, W., eds. Amazonia Peruana. Jyväskylä: PAUT y ONERN, 113-138.; Colonnello Bertoli, 1996Colonnello Bertoli, G., 1996. Aquatic vegetation of the Orinoco River Delta (Venezuela): an overview. Hydrobiologia 340(1-3), 109-113. http://doi.org/10.1007/BF00012741.
http://doi.org/10.1007/BF00012741...
; Navarro & Maldonado, 2002Navarro, G., & Maldonado, M., 2002. Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Bolivia: Fundación Simón Patiño.; Neiff et al., 2014Neiff, J.J., Casco, S.L., Mari, E.K., Di Rienzo, J.A., & Poi de Neiff, A., 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquat. Bot. 114, 50-57. http://doi.org/10.1016/j.aquabot.2013.12.005.
http://doi.org/10.1016/j.aquabot.2013.12...
) and has invaded warm waters in over 50 countries on five continents (Villamagna & Murphy, 2010Villamagna, A.M., & Murphy, B., 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw. Biol. 55(2), 282-298. http://doi.org/10.1111/j.1365-2427.2009.02294.x.
http://doi.org/10.1111/j.1365-2427.2009....
). This species is a key element of tropical and subtropical water bodies because it provides habitat and food to other organisms (Blanco Belmonte et al., 1998Blanco Belmonte, L., Neiff, J.J., & Poi de Neiff, A.S.G., 1998. Invertebrate fauna associated with floating macrophytes in the floodplain lakes of the Orinoco (Venezuela) and Paraná (Argentina). Verh. Int. Ver. Theor. Angew. Limnol. 26(4), 2030-2034. http://doi.org/10.1080/03680770.1995.11901099.
http://doi.org/10.1080/03680770.1995.119...
; Rocha-Ramírez et al., 2007Rocha-Ramírez, A., Ramirez-Rojas, A., Chavez-Lopez, R., & Alcocer, J., 2007. Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz, México. Aquat. Ecol. 41(2), 319-333. http://doi.org/10.1007/s10452-006-9054-2.
http://doi.org/10.1007/s10452-006-9054-2...
; Poi de Neiff et al., 2020Poi de Neiff, A.S.G., Neiff, J.J., Casco, S.L., & Gallardo, L.I., 2020. Macroinvertebrates of Eichhornia crassipes (Pontederiaceae) roots in the alluvial floodplain of large tropical rivers (Argentina). Rev. Biol. Trop. 68(S2), S104-S115. http://doi.org/10.15517/rbt.v68iS2.44342.
http://doi.org/10.15517/rbt.v68iS2.44342...
). As other aquatic macrophytes (Wetzel, 1983Wetzel, R.G., 1983. Limnology. Philadelphia: Saunders College Publishing, 2 ed.; Batzer et al., 1999Batzer, D.P., Rader, R.B., & Wissinger, S.A., 1999. Invertebrates in freshwater wetlands of North America: ecology and management. New York: John Wiley & Sons.), when the plant dies, it contributes to food webs, and is consumed mainly by detritivores living below the water line. In the Paraná River floodplain, most fish production is supported by trophic webs based on macrophyte detritus (Bonetto, 1986Bonetto, A.A., 1986. Fish of the Paraná system. In: Davies, B.R., & Walker, K.F., eds. The ecology of river systems. The Netherlands: Dr. W. Junk Publ., 573-588. http://doi.org/10.1007/978-94-017-3290-1_11.
http://doi.org/10.1007/978-94-017-3290-1...
) and the macrophyte biomass above the waterline is consumed by herbivores (Franceschini et al., 2010Franceschini, M.C., Poi de Neiff, A., & Galassi, M.E., 2010. Is the biomass of water hyacinth lost through herbivory in native areas important? Aquat. Bot. 92(4), 250-256. http://doi.org/10.1016/j.aquabot.2010.01.005.
http://doi.org/10.1016/j.aquabot.2010.01...
).

Downstream of the confluence of the Paraná River with the Paraguay River, P. crassipes covers 30-100% of the surface of the Paraná River floodplain lakes during prolonged (6-18 months) low water conditions. High of P. crassipes biomass can be sustained for long periods without external nutrient inputs from the river (Carignan & Neiff, 1992Carignan, R., & Neiff, J.J., 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17(2), 85-121. http://doi.org/10.1007/BF00002642.
http://doi.org/10.1007/BF00002642...
; Carignan et al., 1994Carignan, R., Neiff, J.J., & Planas, D., 1994. Limitation of water hyacinth by nitrogen in subtropical lakes of the Paraná floodplain (Argentina). Limnol. Oceanogr. 39(2), 439-443. http://doi.org/10.4319/lo.1994.39.2.0439.
http://doi.org/10.4319/lo.1994.39.2.0439...
). During extraordinary floods, the height of the green leaves increases, reaching over 90 cm, whereas, during the prolonged isolation phase, they are less likely to exceed 90 cm (Neiff et al., 2007Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
). In other floodplains such as that of the Pilcomayo River (Argentina), they can reach 115 cm during the isolation phase (Poi de Neiff et al., 2020Poi de Neiff, A.S.G., Neiff, J.J., Casco, S.L., & Gallardo, L.I., 2020. Macroinvertebrates of Eichhornia crassipes (Pontederiaceae) roots in the alluvial floodplain of large tropical rivers (Argentina). Rev. Biol. Trop. 68(S2), S104-S115. http://doi.org/10.15517/rbt.v68iS2.44342.
http://doi.org/10.15517/rbt.v68iS2.44342...
).

Techniques to determine the primary productivity of aquatic plants in the field include direct biomass sampling and indirect phenometric estimation (Thomaz & Esteves, 2011Thomaz, S.M., & Esteves, F.A., 2011. Comunidade de macrófitas aquáticas. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 461-518, 3 ed.). Destructive methods for direct biomass estimation involve cutting and collecting plants, which generate difficulties in experimental studies that use enclosures to determine the response to nutrient inputs or herbivory damage. In addition, the remarkable amount of plant biomass necessary to accurately estimate productivity is difficult to harvest and transport to the laboratory to determine dry weight. For these reasons, several authors have used the leaf length, leaf width, leaf area, and plant height to evaluate the relationship between these morphological variables and biomass in different macrophyte species of South American Rivers (Gonçalves et al., 2010Gonçalves, C.V., Schwarzbold, A., Jasper, A., & Vasconcelos, M.C., 2010. Application of a non-destructive method to determine biomass in Pontederiaceae. Acta Limnol. Bras. 22(4), 361-366. http://doi.org/10.4322/actalb.2011.001.
http://doi.org/10.4322/actalb.2011.001...
; Silva et al., 2010Silva, T.S., Costa, M.P.F., & Melack, J.M., 2010. Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquat. Bot. 92(3), 161-167. http://doi.org/10.1016/j.aquabot.2009.10.015.
http://doi.org/10.1016/j.aquabot.2009.10...
; Correia Nunes & Camargo, 2017Nunes, L.S.C., & Camargo, A.F.M., 2017. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnol. Bras. 29(0), e2. http://doi.org/10.1590/s2179-975x6416.
http://doi.org/10.1590/s2179-975x6416...
).

Based on the above, the aims of this research were: 1) to test the relationship between leaf length and aboveground biomass of P. crassipes by using a non-destructive method, and 2) to compare the accuracy of the indirect phenometric estimation with that of the direct estimation of aboveground biomass in four different periods (regrowth period, maximum growth period, the beginning of the senescence period and the end of the senescence period) in a floodplain lake of the Paraná River (Argentina).

2. Material and Methods

2.1. Study site

The study area has humid subtropical climate (Bruniard, 1999Bruniard, E.D., 1999. Los regímenes hídricos de las formaciones vegetales: aportes para un modelo fotoclimático mundial. Resistencia, Chaco: Editorial Universitaria del Nordeste (Eudene).), with hot summers and mild winters. There is low occurrence of frost, with three frosts per year, over a period of 31 years (Shindoi et al., 2003Shindoi, M.M.J.F., Sotelo, C.E., Galdeano, F. & Prause, J., 2003. Régimen de Heladas para el área de influencia de Colonia Benítez (Chaco). Chaco: INTA (EEA. Colonia Benítez).). The maximum air temperature can reach 41.6 °C in January, whereas the minimum can reach -3.3 °C in June (Neiff et al., 2007Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
). The mean monthly maximum temperature is 32 °C (January) and the mean monthly minimum is 9.2 °C (July). The average annual rainfall is 1598 mm (Poi de Neiff et al., 2006Poi de Neiff, A.S.G., Neiff, J.J., & Casco, S.L., 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26(2), 558-566. http://doi.org/10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2.
http://doi.org/10.1672/0277-5212(2006)26...
).

For the present study, we selected a small (200 × 3 000 m) and shallow (0.90 - 2.5 m deep) floodplain lake located within the Chaco Wetlands RAMSAR Site (Argentina) and connected with the Paraná River when the water level at the Corrientes datum exceeds 4.20 m (27°26’20”S; 58°51’13”W, Figure 1). This lake, called El Puente, belongs to a complex of several similar oxbow lakes (Figure 1) located on the west riverbank of the Paraná River, and was selected based on the expertise accredited by previous research in the study area (Neiff et al., 2001Neiff, J.J., Poi de Neiff, A., & Casco, S.L., 2001. The effect of prolonged floods on Eichhornia crassipes growth in the Paraná River floodplain lakes. Acta Limnol. Bras. 13, 51-60.). The waters have conductivity between 54 and 340 μS.cm−1, slightly acid pH (between 6 and 7.5) and variable nutrient content (between 0.1 μg.L-1 and 100 μg.L-1 of total nitrogen concentration and between 25 and 150 μg.L-1 of total phosphorus concentration). For further characteristics of the lake, see Carignan & Neiff (1992)Carignan, R., & Neiff, J.J., 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17(2), 85-121. http://doi.org/10.1007/BF00002642.
http://doi.org/10.1007/BF00002642...
and Casco et al. (2014)Casco, S.L., Carnevali, R.P., Poi, A.S.G., & Neiff, J.J., 2014. The influence of water hyacinth floating meadows on limnological characteristics in shallow subtropical waters. Am. J. Plant Sci. 5(13), 1983-1994. http://doi.org/10.4236/ajps.2014.513212.
http://doi.org/10.4236/ajps.2014.513212...
. Pontederia crassipes forms monospecific stands that cover until 60-80% of the water surface with elongate leaves (large biotype).

Figure 1
Location of the sampling site on the Paraná River floodplain.

2.2. Sampling design

During April 2018, we collected 47 plants with green leaves of all sizes present in six replicate samples of a 0.30 m2 circular plot. In the laboratory, the green, standing dead, and decomposing leaves were counted and separated. Green leaves were washed and their length (from the base of the petiole up to the end of the blade) was measured with measuring tape. Then, the leaves were oven-dried for 48 hours at 105 °C and weighed to obtain the constant dry weight. Leaf length and leaf dry weight were correlated to obtain a predictive equation.

To determine the accuracy of the phenometric method as a predictor of biomass, we used and re-elaborated data set measurements previously collected at El Puente Lake (Neiff et al., 2007Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
). The dry weight of the green leaves of three replicate samples (sampling unit of 0.30 m2) grouped in four different periods (regrowth period-August-, maximum growth period-December-, beginning of the senescence period-March- and end of the senescence period -July) was used to determine the direct aboveground biomass. For the indirect phenometric estimation of biomass, we used a predictive equation to determined leaf dry weight and the prior data of leaf densities (mean of 416, 431, 194 and 231 for each period) and leaf length (Neiff et al., 2007Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
).

2.3. Data analysis

For leaf dry weight, normality assumptions were checked using Shapiro tests. A nonparametric Kruskal–Wallis test (and its post-hoc contrasts) was used to test for significant differences in leaf dry weight between the indirect and direct methods used to estimate the aboveground biomass. We considered differences to be significant at an α = 0.05 level, using the software InfoStat version 2015 (Di Rienzo et al., 2020Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo, C.W., 2020. InfoStat (Online). Córdoba: Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Retrieved in 2023, March 17, from http://www.infostat.com.ar
http://www.infostat.com.ar...
).

Regression analysis was used to test the relationship between leaf weight and leaf length.

3. Results

In April 2018, the mean green leaf density per m2 was 310.16 ± 134.49, whereas green leaf length ranged between 7 and 115 cm (n = 279). The number of standing dead leaves (24.12 ± 16.07 leaves per m2) and decomposing leaves (19.56 ± 15.17) was smaller than that of green leaves.

The relationship between the dry weight and the length of the green leaves of P. crassipes (Figure 2) was significant (R2 = 0.87, p < 0.0001). The predictive equation fitted an exponential model with the following Formula 1:

W = 0.32. e 0.03. L (1)

where: W is the weight estimated by the indirect phenometric method; e is a constant: 2.71828; and L is the measure of the leaf length.

Figure 2
Exponential regression curve obtained from the green leaves length and the dry weight of Pontederia crassipes.

Aboveground biomass determined by both methods was high during the four periods evaluated (Figure 3). The dry weight mean maximum value obtained with both methods ranged between 739.23 g.m-2 ± 186.52 (by the indirect method) and 817.01 g.m-2 ± 110.38 (by the direct method). No significant differences were found between the dry weight obtained directly and that the estimated by the indirect method (H = 3.22, p = 0.3589).

Figure 3
Average aboveground biomass of water hyacinth determined by direct and indirect methods in four different period (regrowth period, maximum growth period, beginning of the senescence period and end of the senescence period).

4. Discussion

The non-destructive method developed in this study showed a significant correlation, indicating that the morphological variables chosen are good to estimate the aboveground biomass of P. crassipes. The accuracy was indicated by the agreement between the dry weight calculated by the indirect phenometric estimation method and the direct estimation of aboveground biomass. Phenometric methods have been extensively evaluated for other macrophytes in floodplains of other South American rivers (Silva et al., 2010Silva, T.S., Costa, M.P.F., & Melack, J.M., 2010. Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquat. Bot. 92(3), 161-167. http://doi.org/10.1016/j.aquabot.2009.10.015.
http://doi.org/10.1016/j.aquabot.2009.10...
), for emergent macrophyte species in the Everglades (Daoust & Childers, 1998Daoust, R.J., & Childers, D.L., 1998. Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a nondestructive phenometric technique. Aquat. Bot. 62(2), 115-133. http://doi.org/10.1016/S0304-3770(98)00078-3.
http://doi.org/10.1016/S0304-3770(98)000...
), and in estuaries in southeastern Brazil (Correia Nunes & Camargo, 2017Nunes, L.S.C., & Camargo, A.F.M., 2017. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnol. Bras. 29(0), e2. http://doi.org/10.1590/s2179-975x6416.
http://doi.org/10.1590/s2179-975x6416...
). In our study, which was based on a high number of leaves (279) and a wide length range (7 and 115 cm), the non-destructive method showed that leaf length data are useful to calculate biomass in wetlands where P. crassipes has leaves with a wide range of sizes. For P. crassipes, Gonçalves et al. (2010)Gonçalves, C.V., Schwarzbold, A., Jasper, A., & Vasconcelos, M.C., 2010. Application of a non-destructive method to determine biomass in Pontederiaceae. Acta Limnol. Bras. 22(4), 361-366. http://doi.org/10.4322/actalb.2011.001.
http://doi.org/10.4322/actalb.2011.001...
also found high efficiency of a non-destructive method using petiole length and limbo width of leaves in a combined model in plants with low height range. In the floating meadows of the Paraná River floodplain, a high proportion (more than 81%) of insect-attacked leaves, which have smaller length, seems to be common during the regrowth period. Nutrient input during floods determines a high frequency of leaves longer than 90 cm (Neiff et al., 2007Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
).

The values of leaf density recorded during this study are in the range of those previously obtained by Neiff et al. (2007)Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.
http://doi.org/10.15517/rbt.v56i2.5612...
during an annual cycle in the same lake. The biomass of green leaves was high during the four periods studied, whereas, in other floodplain lakes, the biomass of green leaves decreases in winter because of thermal stress from low temperatures (Neiff & Poi de Neiff, 1984Neiff, J.J., & Poi de Neiff, A., 1984. Cambios estacionales en la biomasa de Eichhornia crassipes y su fauna en una laguna del Chaco. Ecosur 11, 51-60.; Silva & Esteves, 1993Silva, C., & Esteves, F.A., 1993. Biomass of three macrophytes in the Pantanal of the Mato Grosso, Brazil. Int. J. Ecol. Environ. Sci. 19, 11-23.).

The aboveground biomass of P. crassipes can be determined by the sum of the weight estimated by the indirect method from the length of each leaf in a plot. This method could contribute to diminish the impact of the direct method of harvest of P. crassipes and could be useful in experimental studies to determine the leaf life span (Klok & van der Velde, 2017Klok, P.F., & van der Velde, G., 2017. Plant traits and environment: floating leaf blade production and turnover of waterlilies. PeerJ 5, e3212. PMid:28462025. http://doi.org/10.7717/peerj.3212.
http://doi.org/10.7717/peerj.3212...
) or the net aboveground primary production of clones (Santos & Esteves, 2002Santos, A., & Esteves, F., 2002. Primary production and mortality of Eleocharis interstincta in response to water level fluctuations. Aquat. Bot. 74(3), 189-199. http://doi.org/10.1016/S0304-3770(02)00082-7.
http://doi.org/10.1016/S0304-3770(02)000...
), which is, in turn, necessary to estimate P. crassipes production.

Acknowledgements

We are very grateful to Dr. Juan José Neiff and Dr. Alicia Poi for their meaningful contributions. We appreciate the constructive suggestions provided by the reviewer to improve the manuscript. This contribution was supported by the PIP 11220130100293CO (CONICET) and PI Q001-2014 SGCYT (UNNE) projects.

  • Cite as: Casco, S.L. et al. Phenometric predictors of Pontederia crassipes biomass under natural conditions in the Paraná River. Acta Limnologica Brasiliensia, 2024, vol. 36, e21. https://doi.org/10.1590/S2179-975X1923

References

  • Batzer, D.P., Rader, R.B., & Wissinger, S.A., 1999. Invertebrates in freshwater wetlands of North America: ecology and management. New York: John Wiley & Sons.
  • Blanco Belmonte, L., Neiff, J.J., & Poi de Neiff, A.S.G., 1998. Invertebrate fauna associated with floating macrophytes in the floodplain lakes of the Orinoco (Venezuela) and Paraná (Argentina). Verh. Int. Ver. Theor. Angew. Limnol. 26(4), 2030-2034. http://doi.org/10.1080/03680770.1995.11901099
    » http://doi.org/10.1080/03680770.1995.11901099
  • Bonetto, A.A., 1986. Fish of the Paraná system. In: Davies, B.R., & Walker, K.F., eds. The ecology of river systems. The Netherlands: Dr. W. Junk Publ., 573-588. http://doi.org/10.1007/978-94-017-3290-1_11
    » http://doi.org/10.1007/978-94-017-3290-1_11
  • Bruniard, E.D., 1999. Los regímenes hídricos de las formaciones vegetales: aportes para un modelo fotoclimático mundial. Resistencia, Chaco: Editorial Universitaria del Nordeste (Eudene).
  • Carignan, R., & Neiff, J.J., 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17(2), 85-121. http://doi.org/10.1007/BF00002642
    » http://doi.org/10.1007/BF00002642
  • Carignan, R., Neiff, J.J., & Planas, D., 1994. Limitation of water hyacinth by nitrogen in subtropical lakes of the Paraná floodplain (Argentina). Limnol. Oceanogr. 39(2), 439-443. http://doi.org/10.4319/lo.1994.39.2.0439
    » http://doi.org/10.4319/lo.1994.39.2.0439
  • Casco, S.L., Carnevali, R.P., Poi, A.S.G., & Neiff, J.J., 2014. The influence of water hyacinth floating meadows on limnological characteristics in shallow subtropical waters. Am. J. Plant Sci. 5(13), 1983-1994. http://doi.org/10.4236/ajps.2014.513212
    » http://doi.org/10.4236/ajps.2014.513212
  • Colonnello Bertoli, G., 1996. Aquatic vegetation of the Orinoco River Delta (Venezuela): an overview. Hydrobiologia 340(1-3), 109-113. http://doi.org/10.1007/BF00012741
    » http://doi.org/10.1007/BF00012741
  • Daoust, R.J., & Childers, D.L., 1998. Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a nondestructive phenometric technique. Aquat. Bot. 62(2), 115-133. http://doi.org/10.1016/S0304-3770(98)00078-3
    » http://doi.org/10.1016/S0304-3770(98)00078-3
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo, C.W., 2020. InfoStat (Online). Córdoba: Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Retrieved in 2023, March 17, from http://www.infostat.com.ar
    » http://www.infostat.com.ar
  • Franceschini, M.C., Poi de Neiff, A., & Galassi, M.E., 2010. Is the biomass of water hyacinth lost through herbivory in native areas important? Aquat. Bot. 92(4), 250-256. http://doi.org/10.1016/j.aquabot.2010.01.005
    » http://doi.org/10.1016/j.aquabot.2010.01.005
  • Gonçalves, C.V., Schwarzbold, A., Jasper, A., & Vasconcelos, M.C., 2010. Application of a non-destructive method to determine biomass in Pontederiaceae. Acta Limnol. Bras. 22(4), 361-366. http://doi.org/10.4322/actalb.2011.001
    » http://doi.org/10.4322/actalb.2011.001
  • Klok, P.F., & van der Velde, G., 2017. Plant traits and environment: floating leaf blade production and turnover of waterlilies. PeerJ 5, e3212. PMid:28462025. http://doi.org/10.7717/peerj.3212
    » http://doi.org/10.7717/peerj.3212
  • Navarro, G., & Maldonado, M., 2002. Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Bolivia: Fundación Simón Patiño.
  • Neiff, J.J., Casco, S.L., Mari, E.K., Di Rienzo, J.A., & Poi de Neiff, A., 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquat. Bot. 114, 50-57. http://doi.org/10.1016/j.aquabot.2013.12.005
    » http://doi.org/10.1016/j.aquabot.2013.12.005
  • Neiff, J.J., & Poi de Neiff, A., 1984. Cambios estacionales en la biomasa de Eichhornia crassipes y su fauna en una laguna del Chaco. Ecosur 11, 51-60.
  • Neiff, J.J., Poi de Neiff, A., & Casco, S.L., 2001. The effect of prolonged floods on Eichhornia crassipes growth in the Paraná River floodplain lakes. Acta Limnol. Bras. 13, 51-60.
  • Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612
    » http://doi.org/10.15517/rbt.v56i2.5612
  • Nunes, L.S.C., & Camargo, A.F.M., 2017. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnol. Bras. 29(0), e2. http://doi.org/10.1590/s2179-975x6416
    » http://doi.org/10.1590/s2179-975x6416
  • Pellegrini, M.O.O., Horn, C.N., & Almeida, R.F., 2018. Total evidence phylogeny of Pontederiaceae (Commelinales) sheds light on the necessity of its recircumscription and synopsis of Pontederia L. PhytoKeys 108(108), 25-83. PMid:30275733. http://doi.org/10.3897/phytokeys.108.27652
    » http://doi.org/10.3897/phytokeys.108.27652
  • Poi de Neiff, A.S.G., Neiff, J.J., & Casco, S.L., 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26(2), 558-566. http://doi.org/10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2
    » http://doi.org/10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2
  • Poi de Neiff, A.S.G., Neiff, J.J., Casco, S.L., & Gallardo, L.I., 2020. Macroinvertebrates of Eichhornia crassipes (Pontederiaceae) roots in the alluvial floodplain of large tropical rivers (Argentina). Rev. Biol. Trop. 68(S2), S104-S115. http://doi.org/10.15517/rbt.v68iS2.44342
    » http://doi.org/10.15517/rbt.v68iS2.44342
  • Puhakka, M., & Kalliola, R., 1993. La vegetación en áreas de inundación en la selva baja de la Amazonia. In: Kalliola, R., Puhakka, M., & Danjoy, W., eds. Amazonia Peruana. Jyväskylä: PAUT y ONERN, 113-138.
  • Rocha-Ramírez, A., Ramirez-Rojas, A., Chavez-Lopez, R., & Alcocer, J., 2007. Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz, México. Aquat. Ecol. 41(2), 319-333. http://doi.org/10.1007/s10452-006-9054-2
    » http://doi.org/10.1007/s10452-006-9054-2
  • Santos, A., & Esteves, F., 2002. Primary production and mortality of Eleocharis interstincta in response to water level fluctuations. Aquat. Bot. 74(3), 189-199. http://doi.org/10.1016/S0304-3770(02)00082-7
    » http://doi.org/10.1016/S0304-3770(02)00082-7
  • Shindoi, M.M.J.F., Sotelo, C.E., Galdeano, F. & Prause, J., 2003. Régimen de Heladas para el área de influencia de Colonia Benítez (Chaco). Chaco: INTA (EEA. Colonia Benítez).
  • Silva, C., & Esteves, F.A., 1993. Biomass of three macrophytes in the Pantanal of the Mato Grosso, Brazil. Int. J. Ecol. Environ. Sci. 19, 11-23.
  • Silva, T.S., Costa, M.P.F., & Melack, J.M., 2010. Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquat. Bot. 92(3), 161-167. http://doi.org/10.1016/j.aquabot.2009.10.015
    » http://doi.org/10.1016/j.aquabot.2009.10.015
  • Thomaz, S.M., & Esteves, F.A., 2011. Comunidade de macrófitas aquáticas. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 461-518, 3 ed.
  • Villamagna, A.M., & Murphy, B., 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw. Biol. 55(2), 282-298. http://doi.org/10.1111/j.1365-2427.2009.02294.x
    » http://doi.org/10.1111/j.1365-2427.2009.02294.x
  • Wetzel, R.G., 1983. Limnology. Philadelphia: Saunders College Publishing, 2 ed.

Edited by

Associate Editor: Irineu Bianchini Júnior.

Publication Dates

  • Publication in this collection
    05 July 2024
  • Date of issue
    2024

History

  • Received
    17 Mar 2023
  • Accepted
    08 May 2024
Associação Brasileira de Limnologia Av. 24 A, 1515, CEP: 13506-900 , Tel.:+55 (19) 3526-4225 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com