Acessibilidade / Reportar erro

Effect of soil management on carbon stock and soil aggregation in an area of natural regeneration and surrounding systems in the Atlantic Forest biome

Efeito da gestão do solo no estoque de carbono e na agregação do solo em área de regeneração natural e em sistemas ao entorno no bioma Mata Atlântica

Abstract

This study aimed to quantify total organic carbon (TOC), carbon of humic substances (HS), and their stocks and evaluate the soil structural stability of areas with different uses under sandy loam soil texture. Soil samples were collected from managed areas and a reference area: Permanent Pasture (PP), No-Till (NT), Private Natural Heritage Reserve in the process of natural regeneration (PNHR) and Native Forest (FN). Dry mass analysis, carbon stock quantification, chemical fractionation of soil organic matter and soil aggregation were carried out. The NF area had the highest deposition of litter mass (ML). The PP and NT areas had the highest bulk density (Bd). TOC and Stock-C contents were higher in PNHR, followed by NF, and stratification index (STRATI) was also higher in the regeneration area. The NT, PNHR, and NF areas had a higher proportion of carbon fulvic acid fraction (C-FA) than carbon humic acid fraction (C-HA), but the fraction with the highest representation in all areas was carbon humin fraction (C-HUM). The PP, PNHR, and NF areas obtained the best aggregate stability indicators, as well as a higher proportion of macroaggregates, with the NT area having low aggregate stability. Recovery of C contents was observed in recent years in the area of PNHR, leading to a greater storage of C, which shows a quantitative recovery of C in the soil in this area after four years of natural regeneration. Furthermore, the PP and NT areas present a lower capacity for C sequestration, mainly due to the management conditions.

Keywords:
aggregate stability; climate change; crop production; soil quality

Resumo

O objetivo deste trabalho foi quantificar os teores de carbono orgânico total (COT), carbono das substâncias húmicas (SH), e seus estoques, assim como avaliar a estabilidade estrutural do solo de áreas com diferentes formas de uso sob solo de textura franco arenosa. Amostras de solo foram coletadas em três áreas e uma área de referência: Pastagem permanente (PP), plantio direto (PD), Reserva Particular de Patrimônio Natural em processo de regeneração natural (RPPN) e área de Mata nativa (MN). Foram realizadas análises de massa da serapilheira (MS), densidade do solo (Ds), teores de COT, e estoque de C (EstC), variação do EstC (ΔEstC) e índice de estratificação (IE), fracionamento químico da matéria orgânica do solo (MOS) e determinações dos teores de C dos ácido fúlvico (C-AF), ácido húmico (C-AH) e humina (C-HUM), e seus respectivos estoques (EstC-AF, EstC-AH e EstC-HUM), ΔEstC de cada fração, extrato alcalino (EA=AF+AH), relação C-AF/C-AH e relação EA/C-HUM, além da análise de agregação, sendo determinado o diâmetro médio ponderado (DMP), diâmetro médio geométrico (DMG), índice de sensibilidade (IS) e nível de ordem (NOrd). A área de MN apresentou maior deposição de MS. As áreas de PP e PD tiveram maior Ds. Teores de COT e EstC foram superiores em RPPN, seguido de MN, sendo o IE também foi superior na área em regeneração, e a ΔEstC positiva apenas nesta área. Áreas de PD, RPPN e MN obtiveram maior proporção de C-AF comparado ao C-AH, porém a fração com maior representatividade em todas as áreas foi o C-HUM. As áreas de PP, RPPN e MN obtiveram os melhores indicadores de estabilidade de agregados, como DMP, DMG, IS e NOrd, assim como maior proporção de macroagregados, sendo a área de PD com baixa estabilidade de agregados. De maneira geral foi observada recuperação nos teores de C nos últimos anos na área de RPPN, acarretando maior estocagem de C, o que demonstra recuperação quantitativa de C no solo nesta área após quatro anos de regeneração natural. Ademais, as áreas de PP e PD apresentam menor capacidade de sequestro de C, devido principalmente as condições de manejo impostas nas áreas.

Palavras-chave:
estabilidade de agregados; mudanças climáticas; produção agrícola; qualidade do solo

1. INTRODUCTION

There has been a growing global concern about climate change and its consequences in recent decades. It is estimated that by 2100, the global average temperature will increase between 1.8ºC and 4.0ºC, leading to melting glaciers and polar ice caps, rising sea levels, and an increase in tropical storms and hurricanes (Blank, 2015BLANK, D. M. P. O contexto das mudanças climáticas e suas vítimas. Mercator, v. 14, n. 2, p. 157-172, 2015. https://doi.org/10.4215/RM2015.1402.0010
https://doi.org/10.4215/RM2015.1402.0010...
). In Brazil, this increase can be up to 4ºC in the interior of the country and up to 3ºC on the coast, accompanied by a decrease in rainfall (Blank, 2015BLANK, D. M. P. O contexto das mudanças climáticas e suas vítimas. Mercator, v. 14, n. 2, p. 157-172, 2015. https://doi.org/10.4215/RM2015.1402.0010
https://doi.org/10.4215/RM2015.1402.0010...
), generating impacts on the process of agricultural and livestock production (Cenci and Lorenzo, 2020CENCI, D. R.; LORENZO, C. A mudança climática e o impacto na produção de alimentos: Alguns Elementos de Análise da Realidade Brasileira e Argentina. Revista do Departamento de Ciências Jurídicas e Sociais da Unijuí, v. 29, n. 54, p. 32-43, 2020. https://doi.org/10.21527/2176-6622.2020.54.32-43
https://doi.org/10.21527/2176-6622.2020....
).

Climate change and global warming are mainly due to greenhouse gas (GHG) emissions, mainly emitted by combustion processes for energy generation (Dintwe and Okin 2018DINTWE, K.; OKIN, G. S. Soil organic carbon in savannas decreases with anthropogenic climate change. Geoderma, v. 309, p. 7-16, 2018. https://doi.org/10.1016/j.geoderma.2017.08.030
https://doi.org/10.1016/j.geoderma.2017....
; Campos et al., 2020CAMPOS, R.; PIRES, G. F.; COSTA, M. H. Soil carbon sequestration in rainfed and irrigated production systems in a new brazilian agricultural frontier. Agriculture, v. 10, n. 5, p. 156, 2020. https://doi.org/10.3390/agriculture10050156
https://doi.org/10.3390/agriculture10050...
). It is urgent to promote changes and adaptations that can control or decrease their emission rates (Cenci and Lorenzo, 2020CENCI, D. R.; LORENZO, C. A mudança climática e o impacto na produção de alimentos: Alguns Elementos de Análise da Realidade Brasileira e Argentina. Revista do Departamento de Ciências Jurídicas e Sociais da Unijuí, v. 29, n. 54, p. 32-43, 2020. https://doi.org/10.21527/2176-6622.2020.54.32-43
https://doi.org/10.21527/2176-6622.2020....
), especially of carbon dioxide (CO2), the main pollutant gas emitted into the atmosphere, with a lifetime of more than 100 years (Sun and Zhong, 2023SUN, S.; ZHONG, J.; QI, X. Research and management improvement of forest carbon sequestration. Academic Journal of Environment & Earth Science, v. 5, n. 3, p. 49-54, 2023. https://doi.org/10.1016/j.scitotenv.2023.167168
https://doi.org/10.1016/j.scitotenv.2023...
).

Studies show that some agricultural systems or environmental management techniques can potentiate the mitigation of CO2 emissions to the atmosphere, promoting the maximization of carbon sequestration and stock (C) in the soil (Carvalho et al., 2010CARVALHO, J. L. N.; AVANZI, J. C.; SILVA, M. L. N.; MELLO, C. R.; CERRI, C. E. P. Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo, v. 34, n. 2, p. 277-290, 2010. https://doi.org/10.1590/S0100-06832010000200001
https://doi.org/10.1590/S0100-0683201000...
). These are the systems or techniques considered by conservationists for promoting practices that contribute to the increase of soil organic matter (SOM), such as not disturbing the soil and no-tillage, used in crop succession and no-till systems (NTS) (Risal and Parajuli, 2022RISAL, A.; PARAJULI, P. B. Evaluation of the impact of best management practices on streamflow, sediment and nutrient yield at field and watershed scales. Water Resources Management, v. 36, n. 3, p. 1093-1105, 2022. https://doi.org/10.1007/s11269-022-03075-7
https://doi.org/10.1007/s11269-022-03075...
; Santos et al., 2023SANTOS, F. M.; PELINSON, N. S.; OLIVEIRA, R. P.; DI LOLLO, J. A. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River basin in Sao Paulo State, Brazil. Catena, v. 222, p. 106872, 2023. https://doi.org/10.1016/j.catena.2022.106872
https://doi.org/10.1016/j.catena.2022.10...
).

The premises of NTS are: minimum soil disturbance, continuous vegetation cover, and crop rotation (Silva et al., 2020SILVA, J. R. M.; ENSINAS, S. C.; BARBOSA, G. F.; REZENDE, J. V. O.; BARRETA, P. G. V.; ZUFFO, A. M. Total organic carbono and the humic fractions of the soil organic matter in silvopastoril system. Revista Brasileira de Ciências Agrárias, v. 15, n. 2, p. e6874, 2020. https://doi.org/10.5039/agraria.v15i2a6874
https://doi.org/10.5039/agraria.v15i2a68...
). Crop rotation is the orderly alternation of different crops in a given cycle in the same area and season (Franchini et al., 2011FRANCHINI, J. C.; COSTA, J. M. da; DEBIASI, H. Crop rotation: practice that confers greater sustainability in agricultural production in Parana. Informações Agronômicas, v. 134, n. 1, p. 3-13, 2011.). The use of crop rotation and the use of suitable species provides a considerable amount of mulching and nutrient cycling, increasing the storage of C and nitrogen (N) in the soil (Silva et al., 2020SILVA, J. R. M.; ENSINAS, S. C.; BARBOSA, G. F.; REZENDE, J. V. O.; BARRETA, P. G. V.; ZUFFO, A. M. Total organic carbono and the humic fractions of the soil organic matter in silvopastoril system. Revista Brasileira de Ciências Agrárias, v. 15, n. 2, p. e6874, 2020. https://doi.org/10.5039/agraria.v15i2a6874
https://doi.org/10.5039/agraria.v15i2a68...
), enhancing C sequestration (Boddey et al., 2010BODDEY, R. M.; JANTALIA, C. P.; CONCEICÃO, P. C.; ZANATTA, J. A.; BAYER, C.; MIELNICZUK, J. et al. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Global Change Biology, v. 16, n. 2, p. 784-795, 2010. https://doi.org/10.1111/j.1365-2486.2009.02020.x
https://doi.org/10.1111/j.1365-2486.2009...
). Crop succession, on the other hand, is the arrangement of two crops in the same agricultural area for an indefinite period, each grown in a season (Franchini et al., 2011FRANCHINI, J. C.; COSTA, J. M. da; DEBIASI, H. Crop rotation: practice that confers greater sustainability in agricultural production in Parana. Informações Agronômicas, v. 134, n. 1, p. 3-13, 2011.).

The main objective of evaluating the quality of edaphic attributes according to the management system is to preserve the soil and maintain or increase its productive capacity. However, when the area is in a state of degradation, it is necessary to use management techniques for recovery. Human interference in the environment, especially if done inappropriately, can affect the quality and productive capacity of an area's environmental resources, triggering degradation processes (Alves et al., 2023ALVES, M. A. B.; SOUZA, A. P.; ALMEIDA, F. T.; HOSHIDE, A. K.; ARAÚJO, H. B.; SILVA, A. F. et al. Effects of land use and cropping on soil erosion in agricultural frontier areas in the Cerrado-Amazon Ecotone, Brazil, using a rainfall simulator experiment. Sustainability, v. 15, n. 6, p. 4954, 2023. https://doi.org/10.3390/su15064954
https://doi.org/10.3390/su15064954...
; Batista et al., 2023BATISTA, P. V.; BAPTISTA, V. B. D. S.; WILKEN, F.; SEUFFERHELD, K.; QUINTON, J. N.; FIENER, P. First evidence of widespread, severe soil erosion underneath centre-pivot irrigation systems. Science of The Total Environment, v. 888, p. 164119, 2023. https://doi.org/10.1016/j.scitotenv.2023.164119
https://doi.org/10.1016/j.scitotenv.2023...
).

Among the human interference practices with high soil degradation potential, clay mining is an example of extractivism that causes a high level of degradation, altering the soil, relief, and landscape of the area (Rouhani et al., 2023ROUHANI, A.; GUSIATIN, M. Z.; HEJCMAN, M. An overview of the impacts of coal mining and processing on soil: Assessment, monitoring, and challenges in the Czech Republic. Environmental Geochemistry and Health, v. 45, p. 7459-7490, 2023. https://doi.org/10.1007/s10653-023-01700-x
https://doi.org/10.1007/s10653-023-01700...
; Madhav et al., 2024MADHAV, S.; MISHRA, R.; KUMARI, A.; SRIVASTAV, A. L.; AHAMAD, A.; SINGH, P. et al. A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. International Journal of Environmental Science and Technology, v. 21, p. 1099-1120, 2024. https://doi.org/10.1007/s13762-023-04950-5
https://doi.org/10.1007/s13762-023-04950...
). Clay extraction is of great importance in the civil construction segment and generates employment; however, it is a major cause of environmental damage, with the soil being the main affected medium. This extractivism causes high levels of erosion, the opening of pits that are often abandoned with the end of extraction, and the formation of artificial lakes from these pits are common (Geller et al., 2012GELLER, W.; KLAPPER, H.; SALOMONS, W. (eds.). Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer Science & Business Media, 2012.).

With the end of the extractivist process in the area, it is essential to search for strategies that allow the area to return to conditions close to what it was originally; one of these strategies is natural regeneration (Fonseca et al., 2017FONSECA, D. A.; BACKES, A. R.; ROSENFIELD, M. F.; OVERBECK, G. E.; MÜLLER, S. C. Avaliação da regeneração natural em área de restauração ecológica e mata ciliar de referência. Ciência Florestal, v. 27, n. 2, p. 521-534, 2017. https://doi.org/10.5902/1980509827733
https://doi.org/10.5902/1980509827733...
). Although the importance of restoring and preserving degraded areas is well known, studies that guide and evaluate the restoration of these areas are still insufficient due to the complexity of the ecological processes involved (Novak et al., 2019NOVAK, E.; CARVALHO, L. A.; SANTIAGO, E. F.; TOMAZI, M. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE, v. 25, n. 2, p. 230-239, 2019. https://doi.org/10.1590/01047760201925022618
https://doi.org/10.1590/0104776020192502...
).

When protecting the natural heritage, the Conservation Units (CUs) represent one of the best strategies. Each group of Conservation Units, either Integral Protection Units or Sustainable Use Units, and their respective categories present different objectives and established concepts, focusing on conservation, restoration, or the environmental recovery of degraded areas (Sessegolo, 2006SESSEGOLO, C. A Recuperação de áreas degradadas em unidades de conservação. In: CAMPOS, J. B.; TOSSULINO, M. G. P.; MÜLLER, C. R. C. Unidades de conservação: ações para valorização da biodiversidade. Curitiba: Instituto Ambiental do Paraná, 2006. p. 25-33.). In areas with clay extraction, the CUs, especially the Private Natural Heritage Reserve (PNHR), an Integral Protection Unit, are a promising strategy in restoring the degraded ecosystem (Abrão and Marra, 2022ABRÃO, A. L. A. B. M.; MARRA, L. M. Reserva Particular do Patrimônio Natural & Educação Ambiental. Dourados: Editora UEMS, 2022. ).

Accurately quantifying the changes in C stocks according to land use change is of paramount importance in the search for climate change mitigation strategies, as well as in the decision-making process of the best type of management to be adopted (Powers et al., 2011POWERS, J. S.; CORRE, M. D.; TRACY, E. T.; VELKAMP, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Pnas, v. 108, n. 15, p. 6318-6322, 2011. https://doi.org/10.1073/pnas.1016774108
https://doi.org/10.1073/pnas.1016774108...
; Ozório et al., 2019OZÓRIO, J. M. B.; ROSSET, J. S.; SCHIAVO, J. A.; PANACHUKI, E.; SOUZA, C. B. S.; MENEZES, R. S. et al. Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas Mata Atlântica e Cerrado. Revista Brasileira de Ciências Ambientais, n. 53, p. 97-116, 2019. https://doi.org/10.5327/Z2176-947820190518
https://doi.org/10.5327/Z2176-9478201905...
; Magalhães et al., 2016MAGALHÃES, S. S. de A.; RAMOS, F. T.; WEBER, O. L. dos S. Carbon stocks of an Oxisol after thirty-eight years under different tillage systems. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, p. 85-91, 2016. https://doi.org/10.1590/1807-1929/agriambi.v20n1p85-91
https://doi.org/10.1590/1807-1929/agriam...
). For this, it is necessary to measure and understand soil quality (SQ), specifically the processes involved in the flow and storage of C in the soil (Medeiros et al., 2023MEDEIROS, A. S.; GONZAGA, G. B. M.; SILVA, T. S.; BARRETO, B. S.; SANTOS, T. C.; MELO, P. L. A. et al. Changes in soil organic carbon and soil aggregation due to deforestation for smallholder management in the Brazilian semi-arid region. Geoderma Regional, v. 33, p. 1-12, 2023. https://doi.org/10.1016/j.geodrs.2023.e00647
https://doi.org/10.1016/j.geodrs.2023.e0...
).

In areas subject to scientific study, the SQ is measured through indicators, whether physical, chemical, or biological (Aratani et al., 2009ARATANI, R. G.; FREDDI, O. DA S.; CENTURION, J. F.; ANDRIOLI, I. Qualidade física de um Latossolo Vermelho acriférrico sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciência do Solo, v. 33, p. 677-687, 2009. https://doi.org/10.1590/S0100-06832009000300020
https://doi.org/10.1590/S0100-0683200900...
), sensitive to management changes (Vezzani and Mielniczuk, 2009VEZZANI, F. M.; MIELNICZUK, J. Uma visão sobre qualidade do solo. Revista Brasileira de Ciência do Solo, v. 33, n. 4, p. 743-755, 2009. https://doi.org/10.1590/S0100-06832009000400001
https://doi.org/10.1590/S0100-0683200900...
; Maia and Parron, 2015MAIA, C. M. B. F.; PARRON, L. M. Matéria orgânica como indicador da qualidade do solo e da prestação de serviços ambientais. In: PARRON, L. M.; GARCIA, J. R.; OLIVEIRA, E. B.; BROWN, G. G.; PRADO, R. B. Serviços ambientais em sistemas agrícolas e florestais do bioma Mata Atlântica. Brasília: Embrapa, 2015. 101-108 p. ). SOM meets the requirements of a good indicator. Its contents can be altered with greater or lesser intensity, depending on the management performed, with influence on the physical, chemical, and biological attributes of the soil, reflecting on the stability of the edaphic system in sustaining productivity, aligned with environmental sustainability (Babu et al., 2023BABU, S.; SINGH, R.; AVASTHE, R.; KUMAR, S.; RATHORE, S. S.; SINGH, V. K. et al. Soil carbon dynamics under organic farming: impact of tillage and cropping diversity. Ecological Indicators, v. 147, p. 109940, 2023. https://doi.org/10.1016/j.ecolind.2023.109940
https://doi.org/10.1016/j.ecolind.2023.1...
; Tonucci et al., 2023TONUCCI, R. G.; VOGADO, R. F.; SILVA, R. D.; POMPEU, R. C. F. F.; ODA-SOUZA, M.; SOUZA, H. A. D. Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasileira de Ciência do Solo, v. 47, p. e0220124, 2023. https://doi.org/10.36783/18069657rbcs20220124
https://doi.org/10.36783/18069657rbcs202...
).

The main constituent of SOM is C, which is why the main technique for measuring the SOM of an area is through soil organic carbon levels and stocks. The volume of C input to the soil is determined by the rates of deposition, decomposition, and renewal of SOM residues, while the volume of output is determined by the rate of mineralization and loss of C to the atmosphere (Chacon et al., 2023CHACON, S. S.; KARAOZ, U.; LOUIE, K.; BOWEN, B.; NORTHEN, T.; DIETTERICH, L. H. et al. Microbial metabolic response to throughfall exclusion and feedback on soil carbon dynamics along a tropical forest precipitation gradient. In: EGU General Assembly, 25., 23-28 April, 2023, Vienna, Austria. Copernicus Meetings, 2023.; Reichenbach et al., 2023REICHENBACH, M.; FIENER, P.; HOYT, A.; TRUMBORE, S.; SIX, J.; DOETTERL, S. Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Global Change Biology, v. 29, n. 9, p. 2591-2607, 2023. https://doi.org/10.1111/gcb.16622
https://doi.org/10.1111/gcb.16622...
).

Another effective technique to demonstrate the influence of the management system under the SQ is the chemical fractionation of the SOM (Rosset et al., 2016ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
https://doi.org/10.1590/S0100-204X201600...
; Silva et al., 2020SILVA, J. R. M.; ENSINAS, S. C.; BARBOSA, G. F.; REZENDE, J. V. O.; BARRETA, P. G. V.; ZUFFO, A. M. Total organic carbono and the humic fractions of the soil organic matter in silvopastoril system. Revista Brasileira de Ciências Agrárias, v. 15, n. 2, p. e6874, 2020. https://doi.org/10.5039/agraria.v15i2a6874
https://doi.org/10.5039/agraria.v15i2a68...
). With the evaluation of the C content of humic substances (HS), it is possible to identify the degree of stability of the SOM (Borges et al., 2015BORGES, C. S.; RIBEIRO, B. T.; WENDLING, B.; CABRAL, D. A. Agregação do solo, carbono orgânico e emissão de CO2 em áreas sob diferentes usos no Cerrado, região do Triângulo Mineiro. Revista Ambiente & Água, v. 10, n. 3, p. 661-675, 2015. https://doi.org/10.4136/ambi-agua.1573
https://doi.org/10.4136/ambi-agua.1573...
; Knox et al., 2015KNOX, N. M.; GRUNWALD, S.; MCDOWELL, M. L.; BRULAND, G. L.; MYERS, D. B.; HARRIS, W. G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma, v. 239-240, n. 2, p. 229-239, 2015. https://doi.org/10.1016/j.geoderma.2014.10.019
https://doi.org/10.1016/j.geoderma.2014....
). The contents and proportions of C in each HS vary significantly depending on soil management and depth (Pfleger et al., 2017PFLEGER, P.; CASSOL, P. C.; MAFRA, A. L. Substancias húmicas em Cambissolo sob vegetação natural e plantios de pinus em diferentes idades. Ciência Florestal, v. 27, n. 3. p. 807-817, 2017. https://doi.org/10.5902/1980509828631
https://doi.org/10.5902/1980509828631...
), bringing detailed and conclusive results on the dynamics of SOM over time (Bernoux et al., 1999BERNOUX, M.; FEIGL, B. J.; CERRI, C. C.; GERALDES, A. P. A.; FERNANDES, S. A. P. Carbono e nitrogênio em solo de uma cronossequência de floresta tropical - pastagem de Paragominas. Scientia Agrícola, v. 56, n. 4, p. 1-11, 1999. https://doi.org/10.1590/S0103-90161999000400003
https://doi.org/10.1590/S0103-9016199900...
; Pinheiro et al., 2004PINHEIRO, E. F. M.; PEREIRA, M. G.; ANJOS, L. H. C.; MACHADO, P. L. O. A. Fracionamento densimétrico da matéria orgânica do solo sob diferentes sistemas de manejo e cobertura vegetal em Paty do Alferes (RJ). Revista Brasileira de Ciência do Solo, v. 28, p. 731-737, 2004. https://doi.org/10.1590/S0100-06832004000400013
https://doi.org/10.1590/S0100-0683200400...
).

Aggregate stability is also considered a sensitive physical indicator for assessing SQ, playing an important role in C sequestration (Tisdall and Oades, 1982TISDALL, J. M.; OADES, J. M. Organic matter and water‐stable aggregates in soils. Journal of soil science, v. 33, n. 2, p. 141-163, 1982. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.1111/j.1365-2389.1982...
; Tadini et al., 2022TADINI, A. M.; GORANOV, A. I.; MARTIN-NETO, L.; BERNARDI, A. C.; OLIVEIRA, P. P.; PEZZOPANE, J. R. et al. Structural characterization using 2D NMR spectroscopy and TMAH-GC× GC-MS: Application to humic acids from soils of an integrated agricultural system and an Atlantic native forest. Science of The Total Environment, v. 815, p. 152605, 2022. https://doi.org/10.1016/j.scitotenv.2021.152605
https://doi.org/10.1016/j.scitotenv.2021...
). The quantitative analysis and interpretation of attributes related to aggregate stability are important in evaluating soil conservation status, enabling better management of the edaphic environment (Stefanoski et al., 2013STEFANOSKI, D. C.; SANTOS, G. G.; MARCHÃO, R. L.; PETTER, F. A.; PACHECO, L. P. Uso e manejo do solo e seus impactos sobre a qualidade física. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 12, p. 1301-1309, 2013. https://doi.org/10.1590/S1415-43662013001200008
https://doi.org/10.1590/S1415-4366201300...
).

Studies that guide and evaluate the edaphic quality in cultivated soils and areas in the recovery process of sandy soils in the state of Mato Grosso do Sul are still incipient. Thus, the study hypothesized that different forms of land use and management can promote different changes in soil attributes. The process of natural regeneration can show significant recoveries in MOS contents and stocks and in the state of soil aggregation in the PNHR area in the short term. The present work aimed to quantify the contents of total organic carbon, carbon of humic substances, as well as evaluate the stability of aggregates of areas with traditional management systems, area in the process of natural regeneration and native area under sandy loam soil texture in the Brazil tropical region.

2. MATERIAL AND METHODS

2.1. Location, Climate, Soil, and History of the Study Areas

The study was conducted with soil samples collected in four areas with different management systems and known history, located in the district of Porto Morumbi, municipality of Eldorado, Cone-sul planning region of Mato Grosso do Sul, Brazil (Figure 1).

The study areas are within the Environmental Preservation Area (EPA) of the Paraná River Islands and Floodplains (ICMBio, 2019ICMBio. APA das Ilhas e Várzeas do Rio Paraná. Brasília: MMA, 2019. ), at 23º48' S and 54º06' W, with an average altitude of 272 meters. According to the Köppen classification (Peel et al., 2007PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11, p. 1633-1644, 2007. https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-200...
), the climate of the region is subtropical, Cfa-type, with an average temperature of the coldest month between 14 and 15ºC and precipitation ranging from 1,400 to 1,700 mm per year (Mato Grosso do Sul, 2015MATO GROSSO DO SUL. SEMADE. Secretaria de Estado de Meio Ambiente e Desenvolvimento Econômico. Estudo da Dimensão Territorial do Estado de Mato Grosso do Sul: Regiões de Planejamento. Campo Grande, 2015. 91 p.). The soils in the study area were classified as Argissolo Vermelho-Amarelo Distrófico, which have a sandy texture at the superficial horizons (Santos et al., 2018SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: Embrapa, 2018. 356 p.). The classification corresponded with Paleudalfs in the USA Soil Taxonomy (USDA, 2014UNITED STATES. Natural Resources Conservation Services. Keys to Soil Taxonomy. Washington, 2014.) or the Acrisols in the FAO classification system (FAO, 2015FAO. World reference base for soil resources 2014. Rome, 2015.). Sandy texture, with 637, 251, and 112 g kg-1 of sand, silt, and clay, respectively (Santos et al., 2018SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: Embrapa, 2018. 356 p.).

Three managed areas (two productive and one in the natural regeneration process) and an adjacent reference area of Native Forest (NF) without anthropic action, with Atlantic Forest vegetation and a Semideciduous Seasonal Forest physiognomy, were evaluated. The three managed areas comprise: permanent pasture with Brachiaria brizantha (PP), no-tillage in a succession of soybean (summer - first crop) and corn (second crop) (NT), and a Private Natural Heritage Reserve area in the process of natural regeneration with secondary vegetation (PNHR) (Figure 1). The respective use and management histories of the study areas are presented in Table 1, shown in images in Figure 1, and described according to the chronology of use in Figure 2.

Figure 1.
Geographic location of the study area, Eldorado, Mato Grosso do Sul, Brazil. Qgis 3.28.0 "Firenze". PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest.

Table 1.
History and description of the change in management of the different study areas.

Figure 2.
History of uses and changes in the use of the areas, with the respective implementation dates of each management system: NF: Native Forest; NT: no-tillage; PP: Permanent Pasture; PNHR: Private Natural Heritage Reserve, CTS: conventional tillage system.

2.2. Soil sample collection

For the collection of soil samples carried out in October 2021, five 400 m² plots were first demarcated in each area, each representing one pseudo repetition. Composite soil samples were collected in the layers of 0.00-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.40 m, with each composite sample represented by 10 single samples. After collection, the samples were air dried, crushed, and passed through a 2 mm sieve, thus obtaining fine air-dried soil (FADS). Unformed soil samples were also collected with a 100 cm³ volumetric ring for later bulk density (Bd) analysis in all the areas and layers mentioned above.

In addition, samples of plant litter deposited on the ground in the four study areas were collected with a collection frame with dimensions of 0.25 m2 in five repetitions. Furthermore, soil monoliths were collected in the 0.00-0.05 and 0.05-0.10 m layers in five repetitions, with dimensions of 0.2 x 0.2 x 0.05 m, preserving their structure, for further analysis of aggregate stability. Notably, in the PNHR area, samples were collected around the lakes and in the furrows left by clay extraction.

2.3. Analyses performed

For the analysis of dry mass (DM), samples of plant litter were dried in an oven at 65ºC until a constant mass was obtained and then weighed on an analytical balance. For the Bd analysis, the undisturbed samples were dried in an oven at 105ºC for 24 hours and then weighed, with Bd calculation performed using the mass/volume ratio of the volumetric ring (Almeida et al., 2017ALMEIDA, B. G.; VIANA, J. H. M.; TEIXEIRA, W. G.; DONAGEMMA, G. K. Densidade do solo. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de solo. Brasília/DF: Embrapa, 2017, cap 7, p. 65-75. ).

Total organic carbon (TOC) analysis was performed using the wet oxidation method of SOM by potassium dichromate in a sulfuric medium under constant heating, titrated with ferrous ammoniacal sulfate solution (Yeomans and Bremner, 1988YEOMANS, A.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communication Soil Science Plant Analysis, v. 19, n. 13, p. 1467-1476, 1988. https://doi.org/10.1080/00103628809368027
https://doi.org/10.1080/0010362880936802...
). With the TOC and Bd contents, carbon stocks (Stock-C) were calculated using the equivalent mass method (Reis et al., 2018REIS, V. R. R.; DEON, D. S.; MUNIZ, L. C.; SILVA, M. B.; REGO, C. A. R. M.; GARCIA, U. C. et al. Carbon stocks and soil organic matter quality under different land uses in the maranhense amazon. Journal of Agricultural Science, v. 10, n. 5, p. 329-337, 2018. https://doi.org/10.5539/jas.v10n5p329
https://doi.org/10.5539/jas.v10n5p329...
; Signor et al., 2014SIGNOR, D.; ZANI, C. F.; PALADINI, A. A.; DEON, M. D.; CERRI, C. E. P. Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. Revista Brasileira de Ciência do Solo, v. 38, n. 5, p. 1402-1410, 2014. https://doi.org/10.1590/S0100-06832014000500005
https://doi.org/10.1590/S0100-0683201400...
). Subsequently, the carbon stock variation (ΔStock-C) was calculated to verify trends in C accumulation or loss, obtained by the difference of the Stock-C of the system compared to the reference system (NF) and divided by the layer thickness. The stratification index (STRATI) was also calculated through the relationship between the TOC contents of the 0.00-0.05 and 0.20-0.40 m layers (Franzluebbers, 2002FRANZLUEBBERS, A. J. Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research, v. 66, n. 2, p. 95-106, 2002. https://doi.org/10.1016/S0167-1987(02)00018-1
https://doi.org/10.1016/S0167-1987(02)00...
).

The chemical fractioning of the SOM was performed according to the differential solubility technique (Swift, 1996SWIFT, R. S. Organic matter characterization. In: SPARKS, D. L.; PAGE, A. L.; HELMKE, P. A. et al. (eds). Methods of soil analysis. Madison: Soil Science Society American, 1996. cap. 35, p. 1011-1020.), as adopted by Benites et al. (2003)BENITES, V. M.; MÁDARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado e de baixo custo. Rio de Janeiro: Embrapa Solos, 2003. 7p. (Comunicado Técnico, 16)., separating the fulvic acid (FA), humic acid (HA), and humin (HUM) fractions of each sample, and then determining the carbon content (C) of each fraction. From the C contents of HA and FA, alkaline extract (AE) (AE = HA+FA), and HUM, the HA/FA and AE/HUM ratios were calculated to verify the humification processes of the SOM. Stock-C calculations of each humic substance (HS) fraction were performed (Ellert and Bettany, 1995ELLERT, B. H.; BETTANY, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, v. 75, n. 4, p. 529-538, 1995. https://doi.org/10.4141/cjss95-075
https://doi.org/10.4141/cjss95-075...
; Sisti et al., 2004SISTI, C. P. J. et al. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and tillage research, v. 76, n. 1, p. 39-58, 2004. https://doi.org/10.1016/j.still.2003.08.007
https://doi.org/10.1016/j.still.2003.08....
) and ΔStock-C to check the trends of C accumulation or loss of the fractions compared to NF.

To analyze aggregate stability, the collected monoliths were air dried, then manually disaggregated at the point of weakness. Sieving in a set of 8.00 mm and 4.00 mm sieves was performed, and 50 g of aggregates were removed from the fraction retained on the 4.00 mm sieve. They were saturated by capillarity for 5 minutes and sieved in water through a set of sieves with mesh sizes of 2.00, 1.00, 0.50, 0.25, and 0.125 mm, using the method described by Kemper and Chepil (1965)KEMPER, W. D.; CHEPIL, W. S. Size distribution of aggregates. In: BLACK, C. A. Methods of soil analysis. Madison: American Society of Agronomy, 1965. p. 449-510. in a Yoder-type mechanical shaker (Yoder, 1936)YODER, R. E. A direct method of aggregate analysis of soil and study of the physical nature of erosion losses. Journal American Society Agronomy, v. 28, n. 1, p. 337-351, 1936. https://doi.org/10.2134/agronj1936.00021962002800050001x
https://doi.org/10.2134/agronj1936.00021...
. Information such as weighted mean diameter (WMD), geometric mean diameter (GMD), sensitivity index (SI), and order level (OLev) were calculated according to the percentage of aggregates retained in each sieve class. With this data, the percentage of aggregate classes was also obtained, being divided into macro (>2.00 mm), meso (1.00+0.50+0.125 mm), and microaggregates (<0.125 mm) (Ozório et al., 2024OZÓRIO, J. M. B.; ROSSET, J. S.; CARVALHO, L. A. D.; GONÇALVES, A. D. S.; SANTOS, W. V. D.; OLIVEIRA, N. D. S. et al. Effects of different agricultural systems on organic matter and aggregation of a medium-textured soil in subtropical region. Revista Ambiente & Água, v. 19, p. e2952, 2024. https://doi.org/10.4136/ambi-agua.2952
https://doi.org/10.4136/ambi-agua.2952...
).

The results were analyzed for normality and homogeneity of variance using the Shapiro-Wilk and Bartlett tests, respectively. Subsequently, the results were submitted to analysis of variance with application of the F test, and the means were compared to each other (one by one) using the 5% student t-test (p< 0.05) with the help of the R program (R Core Team, 2019R CORE TEAM. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2019. Available: Available: https://www.R-project.org/ Access: 15 jun. 2021.
https://www.R-project.org/...
).

3. RESULTS

The PP, NT, and PNHR areas had similar values of dry mass litter deposited on the soil, around 1300.00 kg ha-1, representing 58% of the material found in the NF area, which had 2218.00 kg ha-1 (Figure 3A).

The PP and NT areas presented similar and higher Bd values throughout all layers evaluated, around 1.40 Mg m-3 at the surface, reaching 1.61 Mg m-3 at 0.20-0.40 m. Lower Bd values were found in the PNHR and NF areas, in the surface layer, with values of 1.19 and 1.25 Mg m-3, respectively. In the layers, 0.05-0.10 and 0.10-0.20 m, both areas obtained values close to 1.40 Mg m-3, and in the last layer evaluated, the PNHR area obtained 1.54 Mg m-3, while NF, 1.28 Mg m-3, being different from each other. There was a tendency for higher Bd values to occur as the depth increased, while the NF area showed lower Bd values in the 0.20-0.40 m layer (Figure 3B).

Figure 3.
Dry mass of plant litter (A) and bulk density (Bd) of the different land use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer did not differ by the t student test (p<0.05).

In the superficial layer, the PNHR area showed the highest TOC content, 19.94 g kg-1, followed by NF, 12.65 g kg-1 (Figure 4A). The contents were significantly lower in PP and NT in the same layer, around 6.60 g kg-1. In the 0.05-0.10 m layer, the area of PNHR still obtained the highest TOC content. The NF area had a content of 6.79 g kg-1, similar to the NT area. The PP area showed the lowest content in this layer, 3.80 g kg-1, with a significant drop in TOC with increasing depth (Figure 4A).

In the 0.10-0.20 m layer, NT and NF maintained the contents near 6.00 g kg-1, and PP and PNHR near 3.00 g kg-1. In the 0.20-0.40 m layer, NT, PNHR, and NF had similar TOC contents. In all systems, TOC contents decreased with depth (Figure 4A).

The Stock-C (Figure 4B) generally followed the same patterns as the results of the TOC contents (Figure 4A). In the superficial layer, the area of PNHR showed the highest Stock-C, 24.84 Mg ha-1, while NF had 15.76 Mg ha-1. The PP and NT areas in the same layers obtained low Stock-C, with the NT area stocking around 8.00 Mg ha-1 in both layers and the PP area, 8.31 and 5.27 Mg ha-1 in the 0.00-0.05 and 0.05-0.10 m layers, respectively (Figure 4B).

In the 0.05-0.10 m layer, the NT, PNHR, and NF areas did not exhibit significant differences for Stock-C, while the PP area had the lowest Stock-C. In the 0.10-0.20 m layer, the PNHR area was similar to the PP area, with lower Stock-C, and in the 0.20-0.40 m layer, NT obtained lower Stock-C compared to NF (Figure 4B).

Figure 4.
Total organic carbon content (A) and carbon stock (B) of the different land use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer do not differ by the t student test (p<0.05).

The highest STRATI observed was in the PNHR area, with a value of 5.28, while the lowest was in NT, 1.65, with the PP and NF areas having intermediate and similar values, 2.89 and 2.78, respectively (Figure 5A). For ∆Stock-C, the PP and NT areas showed negative variation in almost all layers and the 0-0.40 m profile. The PNHR area showed positive variation in the 0.05-0.10 and 0.10-0.20 m layers and the 0-0.40 m profile (Figure 5B).

Figure 5.
Stratification index of total organic carbon content (A) and carbon stock variation (B) of the different land use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer do not differ by the t student test (p<0.05).

Regarding the humic substances, in the 0.00-0.05 m layer, the highest levels of C-FA were found in the PNHR and NF areas, 2.80 and 2.54 g kg-1, respectively. In the other layers evaluated, only the area of NF obtained higher contents, ranging from 2.42 to 1.91 g kg-1 (Table 2). The C-HA contents in the surface layer were highest in the PP, NT, and PNHR areas, near 2.65 g kg-1, and the lowest in PP, 1.20 g kg-1. In the following layers, PP and NF were the areas with the highest C-HA contents, and in all layers, there was a similarity in the C-HA contents between these two areas Table 2.

The most recalcitrant C fraction (C-HUM) was the one that predominated over the others in all layers. In the surface layer, the PNHR and NF areas had considerably higher levels of C-HUM, 18.12 and 11.36 g kg-1, respectively, while PP and NT had levels close to 7.50 g kg-1. Similar to the TOC and Stock-C results, the TOC-HUM contents of the PNHR and NF areas, with contents close to 6.0 g kg-1 in the 0.05-0.10 m layer, representing only 33% and 53% of the content found in the previous layer, respectively. The PP and NT areas obtained contents of 5.69 and 7.25 g kg-1 in the same layer, respectively. In the 0.10-0.20 and 0.20-0.40 m layers, the PP, NT, and NF areas were similar concerning the C-HUM contents (Table 2).

Table 2.
Carbon content of the fulvic acid (C-FA), humic acid (HA), and humin (HUM) fractions, carbon stock of the fulvic acid (StockC-FA), humic acid (StockC-HA), and humin (StockC-HUM) fractions, C-HA/C-FA and AE/C-HUM ratios of the different land-use systems.

The StockC-FA in the 0.00-0.05 m layer was higher in PNHR and NF, 3.49 and 3.16 Mg ha-1, respectively, and lower in PP and NT. In the next layer, PP, NT, and PNHR areas were similar for StockC-FA, ranging from 1.49 to 1.83 Mg ha-1, while the NF area had the highest StockC-FA, 3.35 Mg ha-1. Similar behavior of the previous layer, at 0.10-0.20 m, but the managed areas showed values ranging from 1.20 to 1.60 Mg ha-1, while NF had StockC-FA of 2.77 Mg ha-1. In the 0.20-0.40 m layer, the PP and PNHR areas obtained the lowest values of StockC-FA, 0.93 Mg ha-1, and 0.99 Mg ha-1, respectively, differently from that observed in NF, 2.44 Mg ha-1 (Table 2).

The PP, PNHR, and NF areas obtained the highest StockC-HA in the surface layer, ranging from 2.61 to 3.33 Mg ha-1, while NT had 1.69 Mg ha-1. As with the results of StockC-FA, in the layer 0.05-0.10 m, the values of StockC-HA did not differ in PP, NT, and PNHR. In the 0.10-0.20 m layer, the PP and NF areas showed the highest StockC-HA, 2.00 and 1.98 Mg ha-1, respectively, while NT and PNHR stored 1.17 and 0.98 Mg ha-1, respectively. At 0.20-0.40 m, PP and NF had the highest StockC-HA, 1.68 and 1.35 Mg ha-1, respectively, and the PNHR area had the lowest StockC-HA, 0.91 Mg ha-1 (Table 2).

There was a high variation in the StockC-HUM according to the layer evaluated, especially in the PNHR area. In the 0.00-0.05 m layer, the PNHR obtained the highest StockC-HUM, with 22.57 Mg ha-1, reaching 2.90 Mg ha-1 in the 0.20-0.40 m layer, equivalent to only 12.84% of the value observed in the surface layer (Table 2). The NF area had the second highest StockC-HUM in the surface layer, with 14.15 Mg ha-1, while PP and NT obtained stocks of 9.04 and 9.42 Mg ha-1, respectively.

For the HA/AF ratio, there was only a difference between the areas in the 0.00-0.05 m layer. PP showed the highest ratio, 1.54; PP was the only area with values higher than 1.00, with a predominance of the HA fraction concerning FA. Observing the AE/C-HUM ratio, the value in all areas was lower than 1.00, indicating a predominance of C-HUM concerning AE (Table 2).

For the 0-0.40 m section, the NT and PNHR areas showed positive variation in the StockC area for HUM. In the PP area, there was a negative variation in the Stock-C for all organic fractions (Figure 6).

Figure 6.
Variation of áreas no stock of humic substances of the different land-use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, according to the reference area.

Generally, aggregates were more stable in the PP, PNHR, and NF areas. In the 0.00-0.05 m layer, we observed WMD values close to 4 mm and GMD values close to 3 mm, while the same indexes in the NT area were close to 2 and 1 mm, respectively (Figure 7). In the 0.05-0.10 m layer, the PP and NT areas showed similar WMD and GMD values compared to the 0.00-0.05 m layer, while in PNHR and NF, there was a decrease in values, but still similar to PP (Figure 7B).

The PP and PNHR areas obtained SI close to 1.00 (NF reference value) in both layers, being similar, while NT obtained about half the value, 0.6 (Figures 8A and B). In both layers, the area with the highest OLev was PNHR, 200 and 100, respectively, followed by NF, 120 and 100. The other areas, PP and NT, had considerably lower OLev, 60 and 40, respectively, related to the low levels of Stock-C in these areas (Figures 8A and B).

The predominant aggregate class in the PP, PNHR, and NF areas were the macroaggregates (>2.0mm), around 80%. In NT, the predominant aggregates were mesoaggregates (0.25 to 2.00mm), around 40%, followed by macroaggregates. For the microaggregates (<0.25mm), there was a representation on the order of 20%, with NT having the highest percentage (Figures 9A and 9B).

Figure 7.
Weighted mean diameter and geometric mean diameter of aggregates in the 0.00-0.05 m (A) and 0.05-0.10 m (B) layers of the different land use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer do not differ by the t student test (p≤0.05).

Figure 8.
The sensitivity index (SI) and order level (OLev) of the 0.00-0.05 m (A) and 0.05-0.10 m (B) layers of the different land use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer do not differ by the t student test (p<0.05).

Figure 9.
Percentage of aggregates retained in different size classes in the layers 0.00-0.05 m (A) and 0.05-0.10 m (B) of the different land-use systems. PP: Permanent pasture, NT: no-tillage, PNHR: Private Natural Heritage Reserve, NF: Native Forest. Means followed by equal letters in each layer did not differ by the t student test (p<0.05).

4. DISCUSSION

The area of NF showed a higher contribution of plant litter than the managed areas and the area under the natural regeneration process. This is mainly because it is an area with a low degree of permanent human interference over decades. This fact is considered to reflect the abundance of large vegetation with dense canopy, where there is a greater contribution of organic material deposited on the soil (Nunes and Pinto, 2007NUNES, F. P.; PINTO, M. T. C. Produção de serapilheira em mata ciliar nativa e reflorestada no alto São Francisco, Minas Gerais. Biota Neotropica, v. 7, n. 3, p. 97-102, 2007. https://doi.org/10.1590/S1676-06032007000300011
https://doi.org/10.1590/S1676-0603200700...
). Plant litter is an environmental indicator, making it possible to detect and compare the amounts of DM that areas with different vegetation contribute to the soil (Machado et al., 2008MACHADO, M. R.; RODRIGUES, F. C. M. P.; PEREIRA, M. G. Produção de serapilheira como bioindicador de recuperação em plantio adensado de revegetação. Revista árvore, v. 32, n. 1, p. 143-151, 2008. https://doi.org/10.1590/S0100-67622008000100016
https://doi.org/10.1590/S0100-6762200800...
). This variable can also indicate the evolution of areas in recovery through natural regeneration (Silva et al., 2018SILVA, W. B.; PÉRICO, E.; DALZOCHIO, M. S.; SANTOS, M.; CAJAIBA, R. L. Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, v. 429, p. 189-197, 2018. https://doi.org/10.1016/j.foreco.2018.07.020
https://doi.org/10.1016/j.foreco.2018.07...
).

None of the areas presented Bd with the capacity to restrict the root growth of the implanted species. The plants in sandy/medium texture soils present growth restriction in Bd above 1.75 Mg m-3 (Reinert et al., 2008REINERT, D. J.; ALBUQUERQUE, J. A.; REICHERT, J. M.; AITA, C. A.; ANDRADA, M. M. C. Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, v. 32, n. 1, p. 1805-1816, 2008. https://doi.org/10.1590/S0100-06832008000500002
https://doi.org/10.1590/S0100-0683200800...
). The influence of management on soil structure can be observed in the PP and NT areas, as they present higher NT values in the reference area. Higher Bd in the PP area can be attributed to the fact that the pasture is degraded (low percentage of soil cover, evidence of preferential erosion gullies, and high presence of weeds), being vulnerable to the compaction process over the years of grazing, even with animal stocking of only 1.2 AU ha-1.

In studies by Martins et al. (2020)MARTINS, L. F. B. N.; TROIAN, D.; ROSSET, J. S.; SOUZA, C. B. S.; FARIAS, P. G. S.; OZÓRIO, J. M. B. et al. Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Revista de Agricultura Neotropical, v. 7, n. 4, p. 86-94, 2020. https://doi.org/10.32404/rean.v7i4.5351
https://doi.org/10.32404/rean.v7i4.5351...
, the authors compared soil physical attributes of degraded pastures with recovered pastures and concluded that pasture degradation results in increased Bd, reducing total porosity and macroporosity. Another fact associated with this is the soil trampling by animals. While in the NT area, the frequent machinery traffic in sowing, spraying, and harvesting operations may have led to increased Bd (Rosset et al., 2014ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
https://doi.org/10.5433/1679-0359.2014v3...
; Lopes et al., 2022bLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
).

In unmanaged soils, Bd varies due to intrinsic soil characteristics and pedogenetic processes. Among the factors that influence soil structure, texture is the one that most influences physical behavior due to the distinct characteristics and behaviors that soil mineral particles present. Soils with high sand content tend to have higher Bd values because they have low microporosity (Pádua et al., 2015PÁDUA, E. J.; GUERRA, A. R.; ZINN, Y. L. Modelagem da Densidade do Solo em Profundidade sob vegetação Nativa em Minas Gerais. Revista Brasileira de Ciência do Solo, v. 39, n. 3, p. 725-736, 2015. https://doi.org/10.1590/01000683rbcs20140028
https://doi.org/10.1590/01000683rbcs2014...
; Marcolin and Klein, 2011MARCOLIN, C. D.; KLEIN, V. A. Determinação da densidade relativa do solo por uma função de pedotransferência para a densidade do solo máxima. Acta Scientiarum. Agronomy, v. 33, n. 2, p. 349-354, 2011. https://doi.org/10.4025/actasciagron.v33i2.6120
https://doi.org/10.4025/actasciagron.v33...
).

In all areas, the highest TOC contents were found in the 0.00-0.05 m layer, decreasing with increasing depth. The same behavior was found in the study of Farias et al. (2022)FARIAS, P. G. S.; SOUZA, C. B. S.; ROSSET, J. S.; OZÓRIO, J. M. B.; PANACHUKI, E.; SCHIAVO, J. A. et al. Physical fractions of organic matter and mineralizable soil carbon as quality indicators in areas under different forms of use in the Cerrado-Pantanal Ecotone. Environmental Monitoring and Assessment, v. 194, n. 7, p. 194-517, 2022. https://doi.org/10.1007/s10661-022-10163-z
https://doi.org/10.1007/s10661-022-10163...
; Lopes et al. (2022aLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
https://doi.org/10.4136/ambi-agua.2814...
; 2022bLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
), Rosset et al. (2022)ROSSET, J. S.; LANA, M. C.; SCHIAVO, J. A.; PICCOLO, M. C.; PINTO, L. A. S. R.; ZIVIANI, M. M. et al. Organic matter and isotopic composition of soils under different management systems in western Paraná State, Brazil. Environmental Earth Sciences, v. 81, p. e136, 2022. https://doi.org/10.1007/s12665-022-10261-8
https://doi.org/10.1007/s12665-022-10261...
, and Pinto et al. (2023)PINTO, L. A. S. R.; MORAIS, I. S.; OZORIO, J. M. B.; MELO, T. R.; ROSSET, J. S.; PEREIRA, M. G. Soil aggregation and associated organic matter under management systems in sandy-textured soils, subtropical region of Brazil. Environmental Monitoring and Assessment, v. 195, n. 1, p. e253, 2023. https://doi.org/10.1007/s10661-022-10892-1
https://doi.org/10.1007/s10661-022-10892...
. The management defines the contribution of plant biomass that will be deposited in the soil, and the C in deeper layers comes from the decomposition of plant roots. Thus, it is favorable to use species that produce abundant straw and vigorous root systems to favor the contribution of C at depth (Salton and Tomazi, 2014SALTON, J. C.; TOMAZI, M. Sistema Radicular de Plantas e Qualidade do Solo. Comunicado Técnico. Dourados: Embrapa Agropecuária Oeste, 2014. p. 1-6. ).

Evaluating the systems against each other, it is evident that the different land-use types influence TOC and Stock-C contents, as seen in other studies (Rosset et al., 2014ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
https://doi.org/10.5433/1679-0359.2014v3...
; 2022ROSSET, J. S.; LANA, M. C.; SCHIAVO, J. A.; PICCOLO, M. C.; PINTO, L. A. S. R.; ZIVIANI, M. M. et al. Organic matter and isotopic composition of soils under different management systems in western Paraná State, Brazil. Environmental Earth Sciences, v. 81, p. e136, 2022. https://doi.org/10.1007/s12665-022-10261-8
https://doi.org/10.1007/s12665-022-10261...
; Azevedo et al., 2018AZEVEDO, A. D.; FRANCELINO, M. R.; CAMARA, R.; PEREIRA, M. G.; LELES, P. S. S. Estoque de carbono em áreas de restauração florestal da Mata Atlântica. Floresta, v. 48, n. 2, p. 183-194, 2018. https://doi.org/10.5380/rf.v48 i2.54447
https://doi.org/10.5380/rf.v48 i2.54447...
; Troian et al., 2020TROIAN, D.; ROSSET, J. R.; MARTINS, L. F. B. N.; OZÓRIO, J. M. B.; CASTILHO, S. C. P.; MARRA, L. M. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e Meio Ambiente, v. 13, n. 4, p. 1447-1469, 2020. https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
https://doi.org/10.17765/2176-9168.2020v...
; Lopes et al., 2022aLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
https://doi.org/10.4136/ambi-agua.2814...
; 2022bLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
). The areas of PNHR and NF, where there are no agricultural activities, showed the highest levels of C and Stock-C due to the absence of human interference, especially the lack of soil disturbance, which preserves the C compartment. Other studies showed similar results, i.e., unmanaged areas with higher C inputs than managed areas (Azevedo et al., 2018AZEVEDO, A. D.; FRANCELINO, M. R.; CAMARA, R.; PEREIRA, M. G.; LELES, P. S. S. Estoque de carbono em áreas de restauração florestal da Mata Atlântica. Floresta, v. 48, n. 2, p. 183-194, 2018. https://doi.org/10.5380/rf.v48 i2.54447
https://doi.org/10.5380/rf.v48 i2.54447...
; Troian et al., 2020TROIAN, D.; ROSSET, J. R.; MARTINS, L. F. B. N.; OZÓRIO, J. M. B.; CASTILHO, S. C. P.; MARRA, L. M. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e Meio Ambiente, v. 13, n. 4, p. 1447-1469, 2020. https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
https://doi.org/10.17765/2176-9168.2020v...
).

Furthermore, Pinheiro et al. (2021)PINHEIRO, F. M.; NAIR, P. R.; NAIR, V. D.; TONUCCI, R. G.; VENTURIN, R. P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. Journal of Environmental Management, v. 299, p. 113676, 2021. https://doi.org/10.1016/j.jenvman.2021.113676
https://doi.org/10.1016/j.jenvman.2021.1...
results showed greater stabilization of organic material in forest areas when compared to pasture areas. There is a tendency to increase soil fertility, mainly due to increased C sequestration, via stabilized material. Protecting forested areas is an efficient way to ensure, in the long term, a positive gradient of C incorporation in these areas (Azevedo et al., 2018AZEVEDO, A. D.; FRANCELINO, M. R.; CAMARA, R.; PEREIRA, M. G.; LELES, P. S. S. Estoque de carbono em áreas de restauração florestal da Mata Atlântica. Floresta, v. 48, n. 2, p. 183-194, 2018. https://doi.org/10.5380/rf.v48 i2.54447
https://doi.org/10.5380/rf.v48 i2.54447...
).

The PNHR area showed higher contents and Stock-C in the superficial layers than the NF area. This shows that the natural regeneration of the area is advancing after four years, allowing more organic material to be deposited in the soil to be decomposed, which can also be proven by the area's higher STRATI. This is because the first years of regeneration are filled with primary vegetation with short cycles, which decomposes quickly (Ozório et al., 2019OZÓRIO, J. M. B.; ROSSET, J. S.; SCHIAVO, J. A.; PANACHUKI, E.; SOUZA, C. B. S.; MENEZES, R. S. et al. Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas Mata Atlântica e Cerrado. Revista Brasileira de Ciências Ambientais, n. 53, p. 97-116, 2019. https://doi.org/10.5327/Z2176-947820190518
https://doi.org/10.5327/Z2176-9478201905...
). In a study carried out by Novak et al. (2019)NOVAK, E.; CARVALHO, L. A.; SANTIAGO, E. F.; TOMAZI, M. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE, v. 25, n. 2, p. 230-239, 2019. https://doi.org/10.1590/01047760201925022618
https://doi.org/10.1590/0104776020192502...
, the authors concluded that in areas of natural regeneration where any agricultural management was terminated, the vegetation and all its diversity gradually returned, occurring with greater deposition of plant residues of varied composition, incorporating MOS and, consequently, improving the attributes and SQ (Novak et al., 2019NOVAK, E.; CARVALHO, L. A.; SANTIAGO, E. F.; TOMAZI, M. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE, v. 25, n. 2, p. 230-239, 2019. https://doi.org/10.1590/01047760201925022618
https://doi.org/10.1590/0104776020192502...
). Using forest recomposition, Santos et al. (2021)SANTOS, T. M. D.; OZÓRIO, J. M. B.; ROSSET, J. S.; BISPO, L. S.; FARIA, E.; CASTILHO, S. C. P. Estoque de carbono e emissão de CO2 em áreas manejadas e nativa na Região Cone-Sul de Mato Grosso do Sul. Revista em Agronegócio e Meio Ambiente, v. 14, n. 2, p. 339-354, 2021. https://doi.org/10.17765/2176-9168.2021v14n2e7666
https://doi.org/10.17765/2176-9168.2021v...
observed an increase in Stock-C levels after one year of the recovery process of a degraded area in the municipality of Mundo Novo, in the Cone-Sul region of Mato Grosso do Sul.

Different results were seen in a study by Lopes et al. (2022b)LOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
in the same study area two years earlier, where the PNHR area obtained significantly lower C contents. This fact demonstrates that studies on the contribution of C to the soil according to the time are necessary to evaluate the effects of sequestration and fixation of C in the soil (Azevedo et al., 2018AZEVEDO, A. D.; FRANCELINO, M. R.; CAMARA, R.; PEREIRA, M. G.; LELES, P. S. S. Estoque de carbono em áreas de restauração florestal da Mata Atlântica. Floresta, v. 48, n. 2, p. 183-194, 2018. https://doi.org/10.5380/rf.v48 i2.54447
https://doi.org/10.5380/rf.v48 i2.54447...
).

It is important to highlight that the area in the recovery process showed higher Stock-C concerning the NF area, while PP and NT had lower Stock-C. Some studies prove the potential that pasture areas and no-tillage on straw present to increase soil Stock-C, even surpassing those of native areas when properly managed (Salton et al., 2011SALTON, J. C; MIELNICZUK, J.; BAYER, C.; FABRÍCIO, A. C.; MACEDO, M. C. M.; BROCH, D. L. Teor e dinâmica do carbono no solo em sistemas de integração lavorura-pecuária. Pesquisa Agropecuária Brasileira, v. 46, n. 10, p. 1349-1356, 2011. https://doi.org/10.1590/S0100-204X2011001000031
https://doi.org/10.1590/S0100-204X201100...
), but with a slow, gradual increase (Rosset et al., 2014ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
https://doi.org/10.5433/1679-0359.2014v3...
). Such results suggest that both areas are not being managed in a way that provides the potential for C sequestration and incorporation into the soil, as was seen in the work of Troian et al. (2020)TROIAN, D.; ROSSET, J. R.; MARTINS, L. F. B. N.; OZÓRIO, J. M. B.; CASTILHO, S. C. P.; MARRA, L. M. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e Meio Ambiente, v. 13, n. 4, p. 1447-1469, 2020. https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
https://doi.org/10.17765/2176-9168.2020v...
and Rosset et al. (2014)ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
https://doi.org/10.5433/1679-0359.2014v3...
.

By evaluating the data from this study over time with those from Lopes et al. (2022a)LOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
https://doi.org/10.4136/ambi-agua.2814...
, which were carried out in the same area, it was possible to prove in the NT area that crop succession did not increase C storage. The conversion of areas with less floristic heterogeneity for areas with crop rotation systems, such as no-till system (NTS), promotes a greater contribution of SOM to the soil and, consequently, an increase in TOC contents over the years of cultivation (Rosset et al., 2016ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
https://doi.org/10.1590/S0100-204X201600...
), a fact not observed in this NT area two years after the first evaluation.

In the NT area, there is only soybean (first-crop - summer) and corn (second-crop) in succession, not fitting into NTS, which has crop rotation as one of the premises, a system that promotes a greater contribution of organic material to the soil. In addition, between the implementation of a corn crop and the soybean crop, which occurs in mid-October, the NT area remains fallow for 60 days, which causes the decomposition of the already developing plant material of the corn crop straw, revealing portions of the area with exposed soil. According to Nunes et al. (2006)NUNES, U. R.; ANDRADE JÚNIOR, V. C. A.; SILVA, E. B.; SANTOS, N. F.; COSTA, H. A. O.; FERREIRA, C. A. Produção de palhada de plantas de cobertura e rendimento do feijão em plantio direto. Pesquisa Agropecuária Brasileira, v. 41, n. 6, p. 943-948, 2006. https://doi.org/10.1590/S0100-204X2006000600007
https://doi.org/10.1590/S0100-204X200600...
, seeding on straw implies knowledge and correct definition of the cover species. The crop must have good biomass production and be persistent in physically protecting the soil and nutrients.

A good alternative to increase straw production would be to change the succession system to rotation or to introduce one more crop in the succession system, such as a forage crop alone or intercropped with corn. The cultivation of winter forage can contribute by increasing the plant remains kept on the soil surface, providing physical protection, increasing organic matter, maintaining soil moisture, and reducing weeds (Vernetti Junior et al., 2009VERNETTI JUNIOR, F. J.; GOMES, A. S.; SCHUCH, L. O. B. Sustentabilidade de sistemas de rotação e sucessão de culturas em solos de várzea no Sul do Brasil. Ciência Rural, Santa Maria, v. 39, n. 6, p. 1708-1714, 2009. https://doi.org/10.1590/S0103-84782009005000112
https://doi.org/10.1590/S0103-8478200900...
).

The PP area, due to the stage of soil degradation, did not show an increase in Stock-C two years after the first evaluation because pasture in this condition presents significant losses of C to the atmosphere (Lopes et al., 2022bLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
). However, properly managed pastures can effectively accumulate C in the soil, mainly due to the root system and the high contribution of plant material that pastures bring to the soil (Salton et al., 2011SALTON, J. C; MIELNICZUK, J.; BAYER, C.; FABRÍCIO, A. C.; MACEDO, M. C. M.; BROCH, D. L. Teor e dinâmica do carbono no solo em sistemas de integração lavorura-pecuária. Pesquisa Agropecuária Brasileira, v. 46, n. 10, p. 1349-1356, 2011. https://doi.org/10.1590/S0100-204X2011001000031
https://doi.org/10.1590/S0100-204X201100...
), a fact observed when recovering pastures also in the Cone-sul region of Mato Grosso do Sul (Martins et al., 2020MARTINS, L. F. B. N.; TROIAN, D.; ROSSET, J. S.; SOUZA, C. B. S.; FARIAS, P. G. S.; OZÓRIO, J. M. B. et al. Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Revista de Agricultura Neotropical, v. 7, n. 4, p. 86-94, 2020. https://doi.org/10.32404/rean.v7i4.5351
https://doi.org/10.32404/rean.v7i4.5351...
; Lal et al., 2007LAL, R. Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change, v. 12, n. 2, p. 303-322, 2007. https://doi.org/10.1007/s11027-006-9036-7
https://doi.org/10.1007/s11027-006-9036-...
).

The area of PNHR showed higher STRATI than the area of NF, indicating a greater contribution of C at the surface. Greater C stratification indicates that there is a continuous entry of C in the area, increasing the TOC contents of the surface layer over time (Troian et al., 2020TROIAN, D.; ROSSET, J. R.; MARTINS, L. F. B. N.; OZÓRIO, J. M. B.; CASTILHO, S. C. P.; MARRA, L. M. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e Meio Ambiente, v. 13, n. 4, p. 1447-1469, 2020. https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
https://doi.org/10.17765/2176-9168.2020v...
), which can be proven by comparing with the study of Lopes et al. (2022b)LOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991.
https://doi.org/10.32404/rean.v9i3.6991...
in the same area in a previous period of two years. While the STRATI of the PP area remained similar to the reference area, PP and NF did not show similar C concentrations, indicating only the same level of C stratification in the different layers. The NT area obtained the lowest STRATI, indicating low SOM input due to the crops used in the succession system.

Several studies have proven that having a higher proportion of C in the HA fraction is more common than FA (Piccolo et al., 2002PICCOLO, A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, v. 75, p. 57-134, 2002. https://doi.org/10.1016/S0065-2113(02)75003-7
https://doi.org/10.1016/S0065-2113(02)75...
; Rosset et al., 2016ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
https://doi.org/10.1590/S0100-204X201600...
). Areas of NT and NF obtained higher contents of C in the FA fraction compared to HA, i.e., C-HA/C-FA ratio lower than 1.00. These results indicate that the SOM of these areas has less stability because the FA fraction is the most soluble and mobile in the soil, being easily polymerized or mineralized, changing it quantitatively in the soil (Steverson, 1994STEVERSON, F. J. Humus chemistry: genesis, composition, reactions. 2. ed. New York: John Willey, 1994. 496p.; Lopes et al., 2022aLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
https://doi.org/10.4136/ambi-agua.2814...
). The area with the highest SOM stability was the PP, indicating that the system favors the formation of the most stable fractions, probably because the organic material comes only from grasses (Fontana et al., 2006FONTANA, A.; PEREIRA, M. G.; LOSS, A.; CUNHA, T. J. F.; SALTON, J. C. Atributos de fertilidade e frações húmicas de um Latossolo Vermelho no Cerrado. Pesquisa Agropecuária Brasileira, v. 41, p. 847-853, 2006. https://doi.org/10.1590/S0100-204X2006000500018
https://doi.org/10.1590/S0100-204X200600...
).

In all areas and layers, HUM was the predominant fraction. The same was seen in other studies in the literature (Fontana et al., 2006FONTANA, A.; PEREIRA, M. G.; LOSS, A.; CUNHA, T. J. F.; SALTON, J. C. Atributos de fertilidade e frações húmicas de um Latossolo Vermelho no Cerrado. Pesquisa Agropecuária Brasileira, v. 41, p. 847-853, 2006. https://doi.org/10.1590/S0100-204X2006000500018
https://doi.org/10.1590/S0100-204X200600...
; Rosset et al., 2016ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
https://doi.org/10.1590/S0100-204X201600...
; Lopes et al., 2022aLOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al. Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
https://doi.org/10.4136/ambi-agua.2814...
). Moreover, the AE/HUM ratio lower than 1.00 indicates a greater proportion of the insoluble fraction in the soil compared to the soluble fraction (FA and HA). This fact indicates that the SOM tends to stabilize over time. The same was seen in the work of Rosset et al. (2016)ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
https://doi.org/10.1590/S0100-204X201600...
, concluding that not tilling the soil implies greater stability of C, with a predominance of the HUM fraction over the years of cultivation.

High WMD, GMD, and SI values in PP, PNHR, and NF indicate that these areas favor the soil ability to maintain structural stability. This fact can be associated with the high rate of water-stable macroaggregates and higher TOC contents (Loss et al., 2015LOSS, A.; BASSO, A.; OLIVEIRA, B. S.; KOUCHER, L. P.; OLIVEIRA, R. A.; KURTZ, C. et al. Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciência do Solo, v. 39, n. 4, p. 1212-1224, 2015. https://doi.org/10.1590/01000683rbcs20140718
https://doi.org/10.1590/01000683rbcs2014...
). In a study by Novak et al. (2019)NOVAK, E.; CARVALHO, L. A.; SANTIAGO, E. F.; TOMAZI, M. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE, v. 25, n. 2, p. 230-239, 2019. https://doi.org/10.1590/01047760201925022618
https://doi.org/10.1590/0104776020192502...
, with an evaluation of areas in natural recovery processes, the authors also observed better results of soil structure conservation. In a study by Cunha Neto et al. (2018)CUNHA NETO, F. V.; PEREIRA, M. G.; LELES, P. S. S.; ABEL, E. L. S. Atributos químicos e físicos do solo em áreas sob diferentes coberturas florestais e pastagem em Além Paraíba - MG. Ciência Florestal, v. 28, n. 1, p. 13-24, 2018. https://doi.org/10.5902/1980509831569
https://doi.org/10.5902/1980509831569...
, forest and pasture areas were the systems that presented the best aggregate stabilization. In the PP area, structural stability can be attributed to the influence of Brachiaria roots, even though the area is degraded, because the grass root system is the main particle aggregating agent in tropical soils, as well as the characteristics of the organic matter (Salton et al., 2014SALTON, J. C.; TOMAZI, M. Sistema Radicular de Plantas e Qualidade do Solo. Comunicado Técnico. Dourados: Embrapa Agropecuária Oeste, 2014. p. 1-6. ), a fact proven in a study by Brandão and Silva (2012)BRANDÃO, E. D.; SILVA, I. F. Formação e estabilização de agregados pelo sistema radicular de braquiária em um Nitossolo Vermelho. Ciência Rural, Santa Maria, v. 42, n. 7, p. 1193-1199, 2012. https://doi.org/10.1590/S0103-84782012000700009
https://doi.org/10.1590/S0103-8478201200...
.

In the PNHR area, the factor attributed to soil aggregation is the increase in TOC content over the years of natural regeneration in the layer 0.00-0.10 m. The increment of C to the soil is fundamental for the formation of microaggregates, resulting in the formation of macroaggregates over the years (Tisdall and Oades 1982TISDALL, J. M.; OADES, J. M. Organic matter and water‐stable aggregates in soils. Journal of soil science, v. 33, n. 2, p. 141-163, 1982. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.1111/j.1365-2389.1982...
), add to this the natural regeneration and the interruption of clay extraction as occurred in years in previous decades.

The low aggregate stability in the NT area evidenced by the indicators WMD, GMD, SI, and OLev may be associated with the fact that there is no greater diversification of species implemented in the crop rotation system, with only the succession of soybean and corn crops, not fitting as an NTS, a system that provides an improvement in the state of soil aggregation, that at the same time increases the TOC content of the soil (Rosset et al. 2014ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
https://doi.org/10.5433/1679-0359.2014v3...
; 2019). In addition, crop rotation provides various root systems in the area, improving the soil physical structure (Becker et al., 2022BECKER, R. K.; BARBOSA, E. A. A.; GIAROLA, N. F. B.; KOCHINSKI, E. G.; POVH, F. P.; PAULA, A. L. D.; CHERUBIN, M. R. Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy, v. 12, n. 10, p. 2281, 2022. https://doi.org/10.3390/agronomy12102281
https://doi.org/10.3390/agronomy12102281...
). Thus, greater vegetation diversity favors physical and chemical processes related to soil aggregation (Loss et al., 2015LOSS, A.; BASSO, A.; OLIVEIRA, B. S.; KOUCHER, L. P.; OLIVEIRA, R. A.; KURTZ, C. et al. Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciência do Solo, v. 39, n. 4, p. 1212-1224, 2015. https://doi.org/10.1590/01000683rbcs20140718
https://doi.org/10.1590/01000683rbcs2014...
).

5. CONCLUSIONS

Despite the short time in the natural regeneration process, the Private Natural Heritage Reserve shows significant improvements in soil quality, especially in the surface layers, which are more sensitive to management changes, ensuring structural stability similar to that of the native forest. This shows that, after four years of natural regeneration, several important soil attributes begin to show qualitative improvements, with consequent benefits for the soil and environmental quality of the area, proving the efficiency of the natural regeneration process for recovering soil carbon stocks in areas previously used for clay extraction.

Due to land use and management practices, the areas with permanent pasture and direct sowing evaluated in this study showed slow carbon sequestration and storage potential compared to the reference and natural regeneration areas.

The area of permanent pasture contributes to the formation of stable aggregates, even with low carbon contents, indicating that the formation of aggregates is related to the characteristics of the carbon contributed.

The no-till area with only successive crops of soybeans and corn on sandy loam soil did not provide favorable conditions for improving the structural quality of the soil over the years of cultivation in the area evaluated.

6. ACKNOWLEDGMENTS

We would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the master's scholarships awarded to the 1st, 2nd and 10th authors and the doctoral scholarships awarded to the 4th, 8th and 9th authors. We would also like to thank the Postgraduate Program in Agronomy (PGAGRO) of the State University of Mato Grosso do Sul, Aquidauana University Unit.

7. REFERENCES

  • ABRÃO, A. L. A. B. M.; MARRA, L. M. Reserva Particular do Patrimônio Natural & Educação Ambiental. Dourados: Editora UEMS, 2022.
  • ALMEIDA, B. G.; VIANA, J. H. M.; TEIXEIRA, W. G.; DONAGEMMA, G. K. Densidade do solo. In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de solo. Brasília/DF: Embrapa, 2017, cap 7, p. 65-75.
  • ALVES, M. A. B.; SOUZA, A. P.; ALMEIDA, F. T.; HOSHIDE, A. K.; ARAÚJO, H. B.; SILVA, A. F. et al Effects of land use and cropping on soil erosion in agricultural frontier areas in the Cerrado-Amazon Ecotone, Brazil, using a rainfall simulator experiment. Sustainability, v. 15, n. 6, p. 4954, 2023. https://doi.org/10.3390/su15064954
    » https://doi.org/10.3390/su15064954
  • ARATANI, R. G.; FREDDI, O. DA S.; CENTURION, J. F.; ANDRIOLI, I. Qualidade física de um Latossolo Vermelho acriférrico sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciência do Solo, v. 33, p. 677-687, 2009. https://doi.org/10.1590/S0100-06832009000300020
    » https://doi.org/10.1590/S0100-06832009000300020
  • AZEVEDO, A. D.; FRANCELINO, M. R.; CAMARA, R.; PEREIRA, M. G.; LELES, P. S. S. Estoque de carbono em áreas de restauração florestal da Mata Atlântica. Floresta, v. 48, n. 2, p. 183-194, 2018. https://doi.org/10.5380/rf.v48 i2.54447
    » https://doi.org/10.5380/rf.v48 i2.54447
  • BABU, S.; SINGH, R.; AVASTHE, R.; KUMAR, S.; RATHORE, S. S.; SINGH, V. K. et al Soil carbon dynamics under organic farming: impact of tillage and cropping diversity. Ecological Indicators, v. 147, p. 109940, 2023. https://doi.org/10.1016/j.ecolind.2023.109940
    » https://doi.org/10.1016/j.ecolind.2023.109940
  • BATISTA, P. V.; BAPTISTA, V. B. D. S.; WILKEN, F.; SEUFFERHELD, K.; QUINTON, J. N.; FIENER, P. First evidence of widespread, severe soil erosion underneath centre-pivot irrigation systems. Science of The Total Environment, v. 888, p. 164119, 2023. https://doi.org/10.1016/j.scitotenv.2023.164119
    » https://doi.org/10.1016/j.scitotenv.2023.164119
  • BECKER, R. K.; BARBOSA, E. A. A.; GIAROLA, N. F. B.; KOCHINSKI, E. G.; POVH, F. P.; PAULA, A. L. D.; CHERUBIN, M. R. Mechanical Intervention in Compacted No-Till Soil in Southern Brazil: Soil Physical Quality and Maize Yield. Agronomy, v. 12, n. 10, p. 2281, 2022. https://doi.org/10.3390/agronomy12102281
    » https://doi.org/10.3390/agronomy12102281
  • BENITES, V. M.; MÁDARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado e de baixo custo. Rio de Janeiro: Embrapa Solos, 2003. 7p. (Comunicado Técnico, 16).
  • BERNOUX, M.; FEIGL, B. J.; CERRI, C. C.; GERALDES, A. P. A.; FERNANDES, S. A. P. Carbono e nitrogênio em solo de uma cronossequência de floresta tropical - pastagem de Paragominas. Scientia Agrícola, v. 56, n. 4, p. 1-11, 1999. https://doi.org/10.1590/S0103-90161999000400003
    » https://doi.org/10.1590/S0103-90161999000400003
  • BLANK, D. M. P. O contexto das mudanças climáticas e suas vítimas. Mercator, v. 14, n. 2, p. 157-172, 2015. https://doi.org/10.4215/RM2015.1402.0010
    » https://doi.org/10.4215/RM2015.1402.0010
  • BODDEY, R. M.; JANTALIA, C. P.; CONCEICÃO, P. C.; ZANATTA, J. A.; BAYER, C.; MIELNICZUK, J. et al Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Global Change Biology, v. 16, n. 2, p. 784-795, 2010. https://doi.org/10.1111/j.1365-2486.2009.02020.x
    » https://doi.org/10.1111/j.1365-2486.2009.02020.x
  • BORGES, C. S.; RIBEIRO, B. T.; WENDLING, B.; CABRAL, D. A. Agregação do solo, carbono orgânico e emissão de CO2 em áreas sob diferentes usos no Cerrado, região do Triângulo Mineiro. Revista Ambiente & Água, v. 10, n. 3, p. 661-675, 2015. https://doi.org/10.4136/ambi-agua.1573
    » https://doi.org/10.4136/ambi-agua.1573
  • BRANDÃO, E. D.; SILVA, I. F. Formação e estabilização de agregados pelo sistema radicular de braquiária em um Nitossolo Vermelho. Ciência Rural, Santa Maria, v. 42, n. 7, p. 1193-1199, 2012. https://doi.org/10.1590/S0103-84782012000700009
    » https://doi.org/10.1590/S0103-84782012000700009
  • CAMPOS, R.; PIRES, G. F.; COSTA, M. H. Soil carbon sequestration in rainfed and irrigated production systems in a new brazilian agricultural frontier. Agriculture, v. 10, n. 5, p. 156, 2020. https://doi.org/10.3390/agriculture10050156
    » https://doi.org/10.3390/agriculture10050156
  • CARVALHO, J. L. N.; AVANZI, J. C.; SILVA, M. L. N.; MELLO, C. R.; CERRI, C. E. P. Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo, v. 34, n. 2, p. 277-290, 2010. https://doi.org/10.1590/S0100-06832010000200001
    » https://doi.org/10.1590/S0100-06832010000200001
  • CENCI, D. R.; LORENZO, C. A mudança climática e o impacto na produção de alimentos: Alguns Elementos de Análise da Realidade Brasileira e Argentina. Revista do Departamento de Ciências Jurídicas e Sociais da Unijuí, v. 29, n. 54, p. 32-43, 2020. https://doi.org/10.21527/2176-6622.2020.54.32-43
    » https://doi.org/10.21527/2176-6622.2020.54.32-43
  • CHACON, S. S.; KARAOZ, U.; LOUIE, K.; BOWEN, B.; NORTHEN, T.; DIETTERICH, L. H. et al Microbial metabolic response to throughfall exclusion and feedback on soil carbon dynamics along a tropical forest precipitation gradient. In: EGU General Assembly, 25., 23-28 April, 2023, Vienna, Austria. Copernicus Meetings, 2023.
  • CUNHA NETO, F. V.; PEREIRA, M. G.; LELES, P. S. S.; ABEL, E. L. S. Atributos químicos e físicos do solo em áreas sob diferentes coberturas florestais e pastagem em Além Paraíba - MG. Ciência Florestal, v. 28, n. 1, p. 13-24, 2018. https://doi.org/10.5902/1980509831569
    » https://doi.org/10.5902/1980509831569
  • DINTWE, K.; OKIN, G. S. Soil organic carbon in savannas decreases with anthropogenic climate change. Geoderma, v. 309, p. 7-16, 2018. https://doi.org/10.1016/j.geoderma.2017.08.030
    » https://doi.org/10.1016/j.geoderma.2017.08.030
  • ELLERT, B. H.; BETTANY, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, v. 75, n. 4, p. 529-538, 1995. https://doi.org/10.4141/cjss95-075
    » https://doi.org/10.4141/cjss95-075
  • FAO. World reference base for soil resources 2014. Rome, 2015.
  • FARIAS, P. G. S.; SOUZA, C. B. S.; ROSSET, J. S.; OZÓRIO, J. M. B.; PANACHUKI, E.; SCHIAVO, J. A. et al Physical fractions of organic matter and mineralizable soil carbon as quality indicators in areas under different forms of use in the Cerrado-Pantanal Ecotone. Environmental Monitoring and Assessment, v. 194, n. 7, p. 194-517, 2022. https://doi.org/10.1007/s10661-022-10163-z
    » https://doi.org/10.1007/s10661-022-10163-z
  • FONSECA, D. A.; BACKES, A. R.; ROSENFIELD, M. F.; OVERBECK, G. E.; MÜLLER, S. C. Avaliação da regeneração natural em área de restauração ecológica e mata ciliar de referência. Ciência Florestal, v. 27, n. 2, p. 521-534, 2017. https://doi.org/10.5902/1980509827733
    » https://doi.org/10.5902/1980509827733
  • FONTANA, A.; PEREIRA, M. G.; LOSS, A.; CUNHA, T. J. F.; SALTON, J. C. Atributos de fertilidade e frações húmicas de um Latossolo Vermelho no Cerrado. Pesquisa Agropecuária Brasileira, v. 41, p. 847-853, 2006. https://doi.org/10.1590/S0100-204X2006000500018
    » https://doi.org/10.1590/S0100-204X2006000500018
  • FRANCHINI, J. C.; COSTA, J. M. da; DEBIASI, H. Crop rotation: practice that confers greater sustainability in agricultural production in Parana. Informações Agronômicas, v. 134, n. 1, p. 3-13, 2011.
  • FRANZLUEBBERS, A. J. Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research, v. 66, n. 2, p. 95-106, 2002. https://doi.org/10.1016/S0167-1987(02)00018-1
    » https://doi.org/10.1016/S0167-1987(02)00018-1
  • GELLER, W.; KLAPPER, H.; SALOMONS, W. (eds.). Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer Science & Business Media, 2012.
  • ICMBio. APA das Ilhas e Várzeas do Rio Paraná. Brasília: MMA, 2019.
  • KEMPER, W. D.; CHEPIL, W. S. Size distribution of aggregates. In: BLACK, C. A. Methods of soil analysis. Madison: American Society of Agronomy, 1965. p. 449-510.
  • KNOX, N. M.; GRUNWALD, S.; MCDOWELL, M. L.; BRULAND, G. L.; MYERS, D. B.; HARRIS, W. G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma, v. 239-240, n. 2, p. 229-239, 2015. https://doi.org/10.1016/j.geoderma.2014.10.019
    » https://doi.org/10.1016/j.geoderma.2014.10.019
  • LAL, R. Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change, v. 12, n. 2, p. 303-322, 2007. https://doi.org/10.1007/s11027-006-9036-7
    » https://doi.org/10.1007/s11027-006-9036-7
  • LOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al Influence of land use and occupation on the chemical and physical fractions of organic matter in cultivated and native areas in the Atlantic Forest biome. Revista Ambiente & Água, v. 17, n. 5, p. 1-21, 2022a. https://doi.org/10.4136/ambi-agua.2814
    » https://doi.org/10.4136/ambi-agua.2814
  • LOPES, G. T.; ROSSET, J. S.; OZÓRIO, J. M. B.; SILVA, O. M. M.; SANTOS, W. V.; SANTOS, J. V. H. et al Impact of different use systems on total and mineralizable organic carbon in a sandy soil. Revista de Agricultura Neotropical, v. 9, n. 3, p. e6991, 2022b. https://doi.org/10.32404/rean.v9i3.6991
    » https://doi.org/10.32404/rean.v9i3.6991
  • LOSS, A.; BASSO, A.; OLIVEIRA, B. S.; KOUCHER, L. P.; OLIVEIRA, R. A.; KURTZ, C. et al Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciência do Solo, v. 39, n. 4, p. 1212-1224, 2015. https://doi.org/10.1590/01000683rbcs20140718
    » https://doi.org/10.1590/01000683rbcs20140718
  • MACHADO, M. R.; RODRIGUES, F. C. M. P.; PEREIRA, M. G. Produção de serapilheira como bioindicador de recuperação em plantio adensado de revegetação. Revista árvore, v. 32, n. 1, p. 143-151, 2008. https://doi.org/10.1590/S0100-67622008000100016
    » https://doi.org/10.1590/S0100-67622008000100016
  • MADHAV, S.; MISHRA, R.; KUMARI, A.; SRIVASTAV, A. L.; AHAMAD, A.; SINGH, P. et al A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. International Journal of Environmental Science and Technology, v. 21, p. 1099-1120, 2024. https://doi.org/10.1007/s13762-023-04950-5
    » https://doi.org/10.1007/s13762-023-04950-5
  • MAIA, C. M. B. F.; PARRON, L. M. Matéria orgânica como indicador da qualidade do solo e da prestação de serviços ambientais. In: PARRON, L. M.; GARCIA, J. R.; OLIVEIRA, E. B.; BROWN, G. G.; PRADO, R. B. Serviços ambientais em sistemas agrícolas e florestais do bioma Mata Atlântica. Brasília: Embrapa, 2015. 101-108 p.
  • MAGALHÃES, S. S. de A.; RAMOS, F. T.; WEBER, O. L. dos S. Carbon stocks of an Oxisol after thirty-eight years under different tillage systems. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, p. 85-91, 2016. https://doi.org/10.1590/1807-1929/agriambi.v20n1p85-91
    » https://doi.org/10.1590/1807-1929/agriambi.v20n1p85-91
  • MARCOLIN, C. D.; KLEIN, V. A. Determinação da densidade relativa do solo por uma função de pedotransferência para a densidade do solo máxima. Acta Scientiarum. Agronomy, v. 33, n. 2, p. 349-354, 2011. https://doi.org/10.4025/actasciagron.v33i2.6120
    » https://doi.org/10.4025/actasciagron.v33i2.6120
  • MARTINS, L. F. B. N.; TROIAN, D.; ROSSET, J. S.; SOUZA, C. B. S.; FARIAS, P. G. S.; OZÓRIO, J. M. B. et al Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Revista de Agricultura Neotropical, v. 7, n. 4, p. 86-94, 2020. https://doi.org/10.32404/rean.v7i4.5351
    » https://doi.org/10.32404/rean.v7i4.5351
  • MATO GROSSO DO SUL. SEMADE. Secretaria de Estado de Meio Ambiente e Desenvolvimento Econômico. Estudo da Dimensão Territorial do Estado de Mato Grosso do Sul: Regiões de Planejamento. Campo Grande, 2015. 91 p.
  • MEDEIROS, A. S.; GONZAGA, G. B. M.; SILVA, T. S.; BARRETO, B. S.; SANTOS, T. C.; MELO, P. L. A. et al Changes in soil organic carbon and soil aggregation due to deforestation for smallholder management in the Brazilian semi-arid region. Geoderma Regional, v. 33, p. 1-12, 2023. https://doi.org/10.1016/j.geodrs.2023.e00647
    » https://doi.org/10.1016/j.geodrs.2023.e00647
  • NOVAK, E.; CARVALHO, L. A.; SANTIAGO, E. F.; TOMAZI, M. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE, v. 25, n. 2, p. 230-239, 2019. https://doi.org/10.1590/01047760201925022618
    » https://doi.org/10.1590/01047760201925022618
  • NUNES, F. P.; PINTO, M. T. C. Produção de serapilheira em mata ciliar nativa e reflorestada no alto São Francisco, Minas Gerais. Biota Neotropica, v. 7, n. 3, p. 97-102, 2007. https://doi.org/10.1590/S1676-06032007000300011
    » https://doi.org/10.1590/S1676-06032007000300011
  • NUNES, U. R.; ANDRADE JÚNIOR, V. C. A.; SILVA, E. B.; SANTOS, N. F.; COSTA, H. A. O.; FERREIRA, C. A. Produção de palhada de plantas de cobertura e rendimento do feijão em plantio direto. Pesquisa Agropecuária Brasileira, v. 41, n. 6, p. 943-948, 2006. https://doi.org/10.1590/S0100-204X2006000600007
    » https://doi.org/10.1590/S0100-204X2006000600007
  • OZÓRIO, J. M. B.; ROSSET, J. S.; CARVALHO, L. A. D.; GONÇALVES, A. D. S.; SANTOS, W. V. D.; OLIVEIRA, N. D. S. et al Effects of different agricultural systems on organic matter and aggregation of a medium-textured soil in subtropical region. Revista Ambiente & Água, v. 19, p. e2952, 2024. https://doi.org/10.4136/ambi-agua.2952
    » https://doi.org/10.4136/ambi-agua.2952
  • OZÓRIO, J. M. B.; ROSSET, J. S.; SCHIAVO, J. A.; PANACHUKI, E.; SOUZA, C. B. S.; MENEZES, R. S. et al Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas Mata Atlântica e Cerrado. Revista Brasileira de Ciências Ambientais, n. 53, p. 97-116, 2019. https://doi.org/10.5327/Z2176-947820190518
    » https://doi.org/10.5327/Z2176-947820190518
  • PÁDUA, E. J.; GUERRA, A. R.; ZINN, Y. L. Modelagem da Densidade do Solo em Profundidade sob vegetação Nativa em Minas Gerais. Revista Brasileira de Ciência do Solo, v. 39, n. 3, p. 725-736, 2015. https://doi.org/10.1590/01000683rbcs20140028
    » https://doi.org/10.1590/01000683rbcs20140028
  • PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11, p. 1633-1644, 2007. https://doi.org/10.5194/hess-11-1633-2007
    » https://doi.org/10.5194/hess-11-1633-2007
  • PFLEGER, P.; CASSOL, P. C.; MAFRA, A. L. Substancias húmicas em Cambissolo sob vegetação natural e plantios de pinus em diferentes idades. Ciência Florestal, v. 27, n. 3. p. 807-817, 2017. https://doi.org/10.5902/1980509828631
    » https://doi.org/10.5902/1980509828631
  • PICCOLO, A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, v. 75, p. 57-134, 2002. https://doi.org/10.1016/S0065-2113(02)75003-7
    » https://doi.org/10.1016/S0065-2113(02)75003-7
  • PINHEIRO, E. F. M.; PEREIRA, M. G.; ANJOS, L. H. C.; MACHADO, P. L. O. A. Fracionamento densimétrico da matéria orgânica do solo sob diferentes sistemas de manejo e cobertura vegetal em Paty do Alferes (RJ). Revista Brasileira de Ciência do Solo, v. 28, p. 731-737, 2004. https://doi.org/10.1590/S0100-06832004000400013
    » https://doi.org/10.1590/S0100-06832004000400013
  • PINHEIRO, F. M.; NAIR, P. R.; NAIR, V. D.; TONUCCI, R. G.; VENTURIN, R. P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. Journal of Environmental Management, v. 299, p. 113676, 2021. https://doi.org/10.1016/j.jenvman.2021.113676
    » https://doi.org/10.1016/j.jenvman.2021.113676
  • PINTO, L. A. S. R.; MORAIS, I. S.; OZORIO, J. M. B.; MELO, T. R.; ROSSET, J. S.; PEREIRA, M. G. Soil aggregation and associated organic matter under management systems in sandy-textured soils, subtropical region of Brazil. Environmental Monitoring and Assessment, v. 195, n. 1, p. e253, 2023. https://doi.org/10.1007/s10661-022-10892-1
    » https://doi.org/10.1007/s10661-022-10892-1
  • POWERS, J. S.; CORRE, M. D.; TRACY, E. T.; VELKAMP, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Pnas, v. 108, n. 15, p. 6318-6322, 2011. https://doi.org/10.1073/pnas.1016774108
    » https://doi.org/10.1073/pnas.1016774108
  • R CORE TEAM. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2019. Available: Available: https://www.R-project.org/ Access: 15 jun. 2021.
    » https://www.R-project.org/
  • REICHENBACH, M.; FIENER, P.; HOYT, A.; TRUMBORE, S.; SIX, J.; DOETTERL, S. Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Global Change Biology, v. 29, n. 9, p. 2591-2607, 2023. https://doi.org/10.1111/gcb.16622
    » https://doi.org/10.1111/gcb.16622
  • REINERT, D. J.; ALBUQUERQUE, J. A.; REICHERT, J. M.; AITA, C. A.; ANDRADA, M. M. C. Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, v. 32, n. 1, p. 1805-1816, 2008. https://doi.org/10.1590/S0100-06832008000500002
    » https://doi.org/10.1590/S0100-06832008000500002
  • REIS, V. R. R.; DEON, D. S.; MUNIZ, L. C.; SILVA, M. B.; REGO, C. A. R. M.; GARCIA, U. C. et al Carbon stocks and soil organic matter quality under different land uses in the maranhense amazon. Journal of Agricultural Science, v. 10, n. 5, p. 329-337, 2018. https://doi.org/10.5539/jas.v10n5p329
    » https://doi.org/10.5539/jas.v10n5p329
  • RISAL, A.; PARAJULI, P. B. Evaluation of the impact of best management practices on streamflow, sediment and nutrient yield at field and watershed scales. Water Resources Management, v. 36, n. 3, p. 1093-1105, 2022. https://doi.org/10.1007/s11269-022-03075-7
    » https://doi.org/10.1007/s11269-022-03075-7
  • ROSSET, J. S.; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM L.; SARTO, M. V. M. Carbon stock, chemical and physical properties of soils under management systems with different deployment times in western region of Paraná, Brazil. Semina: Ciências Agrárias, v. 35, n. 6, p. 3053-3072, 2014. https://doi.org/10.5433/1679-0359.2014v35n6p3053
    » https://doi.org/10.5433/1679-0359.2014v35n6p3053
  • ROSSET, J. S; LANA, M. C.; PEREIRA, M. G.; SCHIAVO, J. A.; RAMPIM, L.; SARTO, M. V. M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1529-1538, 2016. https://doi.org/10.1590/S0100-204X2016000900052
    » https://doi.org/10.1590/S0100-204X2016000900052
  • ROSSET, J. S.; LANA, M. C.; SCHIAVO, J. A.; PICCOLO, M. C.; PINTO, L. A. S. R.; ZIVIANI, M. M. et al Organic matter and isotopic composition of soils under different management systems in western Paraná State, Brazil. Environmental Earth Sciences, v. 81, p. e136, 2022. https://doi.org/10.1007/s12665-022-10261-8
    » https://doi.org/10.1007/s12665-022-10261-8
  • ROUHANI, A.; GUSIATIN, M. Z.; HEJCMAN, M. An overview of the impacts of coal mining and processing on soil: Assessment, monitoring, and challenges in the Czech Republic. Environmental Geochemistry and Health, v. 45, p. 7459-7490, 2023. https://doi.org/10.1007/s10653-023-01700-x
    » https://doi.org/10.1007/s10653-023-01700-x
  • SALTON, J. C.; TOMAZI, M. Sistema Radicular de Plantas e Qualidade do Solo. Comunicado Técnico. Dourados: Embrapa Agropecuária Oeste, 2014. p. 1-6.
  • SALTON, J. C; MIELNICZUK, J.; BAYER, C.; FABRÍCIO, A. C.; MACEDO, M. C. M.; BROCH, D. L. Teor e dinâmica do carbono no solo em sistemas de integração lavorura-pecuária. Pesquisa Agropecuária Brasileira, v. 46, n. 10, p. 1349-1356, 2011. https://doi.org/10.1590/S0100-204X2011001000031
    » https://doi.org/10.1590/S0100-204X2011001000031
  • SANTOS, F. M.; PELINSON, N. S.; OLIVEIRA, R. P.; DI LOLLO, J. A. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River basin in Sao Paulo State, Brazil. Catena, v. 222, p. 106872, 2023. https://doi.org/10.1016/j.catena.2022.106872
    » https://doi.org/10.1016/j.catena.2022.106872
  • SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R. et al Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: Embrapa, 2018. 356 p.
  • SANTOS, T. M. D.; OZÓRIO, J. M. B.; ROSSET, J. S.; BISPO, L. S.; FARIA, E.; CASTILHO, S. C. P. Estoque de carbono e emissão de CO2 em áreas manejadas e nativa na Região Cone-Sul de Mato Grosso do Sul. Revista em Agronegócio e Meio Ambiente, v. 14, n. 2, p. 339-354, 2021. https://doi.org/10.17765/2176-9168.2021v14n2e7666
    » https://doi.org/10.17765/2176-9168.2021v14n2e7666
  • SESSEGOLO, C. A Recuperação de áreas degradadas em unidades de conservação. In: CAMPOS, J. B.; TOSSULINO, M. G. P.; MÜLLER, C. R. C. Unidades de conservação: ações para valorização da biodiversidade. Curitiba: Instituto Ambiental do Paraná, 2006. p. 25-33.
  • SIGNOR, D.; ZANI, C. F.; PALADINI, A. A.; DEON, M. D.; CERRI, C. E. P. Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. Revista Brasileira de Ciência do Solo, v. 38, n. 5, p. 1402-1410, 2014. https://doi.org/10.1590/S0100-06832014000500005
    » https://doi.org/10.1590/S0100-06832014000500005
  • SILVA, J. R. M.; ENSINAS, S. C.; BARBOSA, G. F.; REZENDE, J. V. O.; BARRETA, P. G. V.; ZUFFO, A. M. Total organic carbono and the humic fractions of the soil organic matter in silvopastoril system. Revista Brasileira de Ciências Agrárias, v. 15, n. 2, p. e6874, 2020. https://doi.org/10.5039/agraria.v15i2a6874
    » https://doi.org/10.5039/agraria.v15i2a6874
  • SILVA, W. B.; PÉRICO, E.; DALZOCHIO, M. S.; SANTOS, M.; CAJAIBA, R. L. Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, v. 429, p. 189-197, 2018. https://doi.org/10.1016/j.foreco.2018.07.020
    » https://doi.org/10.1016/j.foreco.2018.07.020
  • SISTI, C. P. J. et al Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and tillage research, v. 76, n. 1, p. 39-58, 2004. https://doi.org/10.1016/j.still.2003.08.007
    » https://doi.org/10.1016/j.still.2003.08.007
  • STEFANOSKI, D. C.; SANTOS, G. G.; MARCHÃO, R. L.; PETTER, F. A.; PACHECO, L. P. Uso e manejo do solo e seus impactos sobre a qualidade física. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 12, p. 1301-1309, 2013. https://doi.org/10.1590/S1415-43662013001200008
    » https://doi.org/10.1590/S1415-43662013001200008
  • STEVERSON, F. J. Humus chemistry: genesis, composition, reactions. 2. ed. New York: John Willey, 1994. 496p.
  • SUN, S.; ZHONG, J.; QI, X. Research and management improvement of forest carbon sequestration. Academic Journal of Environment & Earth Science, v. 5, n. 3, p. 49-54, 2023. https://doi.org/10.1016/j.scitotenv.2023.167168
    » https://doi.org/10.1016/j.scitotenv.2023.167168
  • SWIFT, R. S. Organic matter characterization. In: SPARKS, D. L.; PAGE, A. L.; HELMKE, P. A. et al (eds). Methods of soil analysis. Madison: Soil Science Society American, 1996. cap. 35, p. 1011-1020.
  • TADINI, A. M.; GORANOV, A. I.; MARTIN-NETO, L.; BERNARDI, A. C.; OLIVEIRA, P. P.; PEZZOPANE, J. R. et al Structural characterization using 2D NMR spectroscopy and TMAH-GC× GC-MS: Application to humic acids from soils of an integrated agricultural system and an Atlantic native forest. Science of The Total Environment, v. 815, p. 152605, 2022. https://doi.org/10.1016/j.scitotenv.2021.152605
    » https://doi.org/10.1016/j.scitotenv.2021.152605
  • TISDALL, J. M.; OADES, J. M. Organic matter and water‐stable aggregates in soils. Journal of soil science, v. 33, n. 2, p. 141-163, 1982. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
    » https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  • TONUCCI, R. G.; VOGADO, R. F.; SILVA, R. D.; POMPEU, R. C. F. F.; ODA-SOUZA, M.; SOUZA, H. A. D. Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasileira de Ciência do Solo, v. 47, p. e0220124, 2023. https://doi.org/10.36783/18069657rbcs20220124
    » https://doi.org/10.36783/18069657rbcs20220124
  • TROIAN, D.; ROSSET, J. R.; MARTINS, L. F. B. N.; OZÓRIO, J. M. B.; CASTILHO, S. C. P.; MARRA, L. M. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e Meio Ambiente, v. 13, n. 4, p. 1447-1469, 2020. https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
    » https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469
  • UNITED STATES. Natural Resources Conservation Services. Keys to Soil Taxonomy. Washington, 2014.
  • VERNETTI JUNIOR, F. J.; GOMES, A. S.; SCHUCH, L. O. B. Sustentabilidade de sistemas de rotação e sucessão de culturas em solos de várzea no Sul do Brasil. Ciência Rural, Santa Maria, v. 39, n. 6, p. 1708-1714, 2009. https://doi.org/10.1590/S0103-84782009005000112
    » https://doi.org/10.1590/S0103-84782009005000112
  • VEZZANI, F. M.; MIELNICZUK, J. Uma visão sobre qualidade do solo. Revista Brasileira de Ciência do Solo, v. 33, n. 4, p. 743-755, 2009. https://doi.org/10.1590/S0100-06832009000400001
    » https://doi.org/10.1590/S0100-06832009000400001
  • YODER, R. E. A direct method of aggregate analysis of soil and study of the physical nature of erosion losses. Journal American Society Agronomy, v. 28, n. 1, p. 337-351, 1936. https://doi.org/10.2134/agronj1936.00021962002800050001x
    » https://doi.org/10.2134/agronj1936.00021962002800050001x
  • YEOMANS, A.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communication Soil Science Plant Analysis, v. 19, n. 13, p. 1467-1476, 1988. https://doi.org/10.1080/00103628809368027
    » https://doi.org/10.1080/00103628809368027

Publication Dates

  • Publication in this collection
    16 Aug 2024
  • Date of issue
    2024

History

  • Received
    19 Jan 2024
  • Accepted
    07 May 2024
Instituto de Pesquisas Ambientais em Bacias Hidrográficas Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 - Taubaté - SP - Brazil
E-mail: ambi.agua@gmail.com