Acessibilidade / Reportar erro

Exploring the full potential of sperm function with nanotechnology tools

Abstract

Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.

Keywords:
biomarkers; functional genomics; nanoparticles; spermatozoa

Introduction

Routine semen analysis, such as sperm motility and morphology, has been used as the main criteria for monitoring sperm quality and subsequent fertility. However, ejaculates approved by these criteria do not necessarily have high fertility (Avendaño et al., 2009Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077-84. http://doi.org/10.1016/j.fertnstert.2008.01.015. PMid:18440529.
http://doi.org/10.1016/j.fertnstert.2008...
; Ferrigno et al., 2021Ferrigno A, Ruvolo G, Capra G, Serra N, Bosco L. Correlation between the DNA fragmentation index (DFI) and sperm morphology of infertile patients. J Assist Reprod Genet. 2021;38(4):979-86. http://doi.org/10.1007/s10815-021-02080-w. PMid:33532883.
http://doi.org/10.1007/s10815-021-02080-...
), and there is a need for robust biomarkers to effectively predict fertility and reduce/prevent losses associated with infertility. Functional genomics, a technique capable of describing the functions and interactions between genes, proteins, and metabolites, has allowed the identification of several biomarkers associated with sperm phenotype, such as motility level, fresh, chilled, frozen, or fertility status. Numerous high-throughput technologies have been used to identify biomarkers related to sperm phenotypes, such as fertility and freezability (Peddinti et al., 2008Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2(1):19. http://doi.org/10.1186/1752-0509-2-19. PMid:18294385.
http://doi.org/10.1186/1752-0509-2-19...
; Soggiu et al., 2013Soggiu A, Piras C, Hussein HA, De Canio M, Gaviraghi A, Galli A, Urbani A, Bonizzi L, Roncada P. Unravelling the bull fertility proteome. Mol Biosyst. 2013;9(6):1188-95. http://doi.org/10.1039/c3mb25494a. PMid:23392320.
http://doi.org/10.1039/c3mb25494a...
; Menezes et al., 2019Menezes EB, Velho ALC, Santos F, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics. 2019;20(1):714. http://doi.org/10.1186/s12864-019-6074-6. PMid:31533629.
http://doi.org/10.1186/s12864-019-6074-6...
; Mateo-Otero et al., 2023Mateo-Otero Y, Madrid-gambin F, Llavanera M, Gomez-gomez A, Haro N, Pozo OJ, Yeste M. Sperm physiology and in vitro fertilising ability rely on basal metabolic activity: insights from the pig model. Commun Biol. 2023;6(1):344. http://doi.org/10.1038/s42003-023-04715-3. PMid:36997604.
http://doi.org/10.1038/s42003-023-04715-...
; Song et al., 2023Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci. 2023;101:skad392. http://doi.org/10.1093/jas/skad392.
http://doi.org/10.1093/jas/skad392...
; Sun et al., 2023Sun P, Zhang G, Xian M, Zhang G, Wen F, Hu Z, Hu J. Proteomic analysis of frozen–thawed spermatozoa with different levels of freezability in dairy goats. Int J Mol Sci. 2023;24(21):15550. http://doi.org/10.3390/ijms242115550. PMid:37958534.
http://doi.org/10.3390/ijms242115550...
). These potential biomarkers offer novel perspectives for sperm preparations using nanoparticles.

Nanoparticles are nanoscale compounds produced naturally by cells as extracellular vesicles or manufactured through bottom-up (synthesis from atoms and molecules) and top-down (synthesis from bulk materials) approaches, possessing various physicochemical properties (e.g., electrical, optical, and magnetism). A typical structure of a nanoparticle with specific properties (e.g., magnetism and fluorescence), mainly acquired from its core composition is shown in Figure1. The US National Nanotechnology Initiative describes nanotechnology as the understanding and controlling matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications (NNI, 2024NNI [homepage on the Internet]. 2024 [cited 2024 Mar 16]. Available from: www.nano.gov
www.nano.gov...
). Nanotechnology has sparked as one of the emerging research fields during the last decades, with bioapplications in human healthcare as diagnostic and therapeutic agents (Abedin et al., 2021Abedin F, Asmatulu E, Andalib MN. Nanomaterials and human health: an overview. In: Kumar V, Guleria P, Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanotoxicology and nanoecotoxicology. Cham: Springer; 2021. p. 165-80. http://doi.org/10.1007/978-3-030-69492-0_7.
http://doi.org/10.1007/978-3-030-69492-0...
; Anjum et al., 2021Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals (Basel). 2021;14(8):707. http://doi.org/10.3390/ph14080707. PMid:34451803.
http://doi.org/10.3390/ph14080707...
). This technology holds great potential in veterinary medicine and livestock farming in enhancing animal health, (re)production, and husbandry, acting as antimicrobials, animal growth and well-being promoters (nano-additives in feed), vaccines, and nanomaterials for drug delivery (Hill and Li, 2017Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol. 2017;8(1):26. http://doi.org/10.1186/s40104-017-0157-5. PMid:28316783.
http://doi.org/10.1186/s40104-017-0157-5...
; Selokar et al., 2020Selokar NL, Dua S, Kumar D, Sharma B, Saini M. Application of nanotechnology in agricultural farm animals. In Ghorbanpour M, Bhargava P, Varma A, Choudhary D, editors. Biogenic nano-particles and their use in agro-ecosystem. New York: Springer; 2020. p. 1–8.. http://doi.org/10.1007/978-981-15-2985-6_1.
http://doi.org/10.1007/978-981-15-2985-6...
; ul Haq et al., 2023Ul Haq Z, Hamadani H, Khan AA, Ganai AM, Beigh YA, Gull Sheikh G, Farooq J, Ahmad Ganai I, Ahmad SM. Nanotechnology: changing the world of animal health and veterinary medicine. In: Sheikh FA, Majeed S, Beigh MA, editors. Interaction of nanomaterials with living cells.New York: Springer Nature; 2023. p. 167-96. http://doi.org/10.1007/978-981-99-2119-5_7.
http://doi.org/10.1007/978-981-99-2119-5...
; Barwant et al., 2024Barwant MM, Rasool A, Mannam VK, Hussain A, Abdullah M, Memon Z, Ahamad MI, Shirani M, Maqbool KZ, Majeed M, Asif M, Khan UA. Nanotechnology applications in livestock farming and animal health. In: Rajput V, Singh A, Ghazaryan K, Alexiou A, Said Al-Tawaha A, editors. Harnessing nanoomics and nanozymes for sustainable agriculture. Hershey: IGI Global; 2024. p. 413–42. http://doi.org/10.4018/979-8-3693-1890-4.ch020.
http://doi.org/10.4018/979-8-3693-1890-4...
). Especially in reproduction, nanotechnology has enormous potential in semen technology, as nanoparticles could be used for targeted sperm selection or nanoselection/nanopurification (Odhiambo et al., 2014Odhiambo JF, Dejarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky P. Increased conception rates in beef cattle inseminated with nanopurified bull downloaded from downloaded from. Biol Reprod. 2014;91(4):97. http://doi.org/10.1095/biolreprod.114.121897. PMid:25232015.
http://doi.org/10.1095/biolreprod.114.12...
; Feugang et al., 2015aFeugang JM, Liao SF, Crenshaw MA, Clemente H, Willard ST, Ryan PL. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. Reprod Med Genet. 2015a;3(2):145.), imaging, (Feugang et al., 2015bFeugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnology. 2015b;13(1):38. http://doi.org/10.1186/s12951-015-0097-1. PMid:26040273.
http://doi.org/10.1186/s12951-015-0097-1...
; Jain et al., 2018Jain S, Park SB, Pillai SR, Ryan PL, Willard ST, Feugang JM. Applications of fluorescent quantum dots for reproductive medicine and disease detection. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications. London: InTech; 2018. Chapter 6. http://doi.org/10.5772/intechopen.72978. ), sexing (Domínguez et al., 2018Domínguez E, Moreno-Irusta A, Castex HR, Bragulat AF, Ugaz C, Clemente H, Giojalas L, Losinno L. Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study. J Equine Vet Sci. 2018;65:123-7. http://doi.org/10.1016/j.jevs.2018.04.005.
http://doi.org/10.1016/j.jevs.2018.04.00...
), and reduction of damages occurring during (cryo) preservation (Falchi et al., 2018aFalchi L, Galleri G, Dore GM, Zedda MT, Pau S, Bogliolo L, Ariu F, Pinna A, Nieddu S, Innocenzi P, Ledda S. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4°C for 96 hours. Reprod Biol Endocrinol. 2018a;16(1):19. http://doi.org/10.1186/s12958-018-0339-9. PMid:29510737.
http://doi.org/10.1186/s12958-018-0339-9...
; Khodaei-Motlagh et al., 2022Khodaei-Motlagh M, Masoudi R, Karimi-Sabet MJ, Hatefi A. Supplementation of sperm cooling medium with Zinc and Zinc oxide nanoparticles preserves rooster sperm quality and fertility potential. Theriogenology. 2022;183:36-40. http://doi.org/10.1016/j.theriogenology.2022.02.015. PMid:35193058.
http://doi.org/10.1016/j.theriogenology....
; Khalique et al., 2023Khalique MA, Rehman H, Andrabi SMH, Majeed KA, Ahmad N, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Jammu A. Antioxidant effects of zinc-oxide nanoparticles on post-thaw quality and in vivo fertility of Beetal buck spermatozoa. Small Rumin Res. 2023;225:107012. http://doi.org/10.1016/j.smallrumres.2023.107012.
http://doi.org/10.1016/j.smallrumres.202...
).

Figure 1
Structure of a typical nanoparticle. Metal nanoparticles (MNPs) have a metal core and a shell. The core can be made of an inorganic metal (zinc, iron, silver, gold, etc.) or metal oxide (Aluminum, copper, magnesium, titanium, zinc, silica, iron oxides, etc.). The shell can be made of an organic (e.g., polymers) or inorganic material (e.g., gold), or metal oxide (e.g., silane). Nanoparticles made of metallic cores surrounded by oxide shells, also known as metal oxide core-shell nanoparticles, have become popular due to their unique properties and high stability. Diverse metal-oxide interactions in metal oxide core-shell nanoparticles enable tuning their electronic structure (shape and size), spectroscopic properties, and surface reactivity for bioapplications (e.g., sensing, drug/gene delivery, and targeted imaging and selection).

From this background, semen has unique attributes that could improve the effectiveness of sperm biotechnologies. This review explores sperm biology and identifies key molecular markers linked to sperm phenotypes, such as motility, storage, freezing, sex, and fertility. It also highlights the benefits of combining these biomarkers with nanotechnology tools to improve sperm fertility and technological outcomes.

Sperm biology

Spermatogenesis

The spermatozoon consists of the head, which contains the genetic material (DNA); the middle piece, containing the mitochondria; and the tail, responsible for motility. Spermatozoa are highly specialized, compact, and motile cells originated after spermatogenesis to move to the ampulla region, where it interacts with the oocyte and initiate fertilization process. Spermatogenesis is a species-specific cell differentiation process that occurs in the seminiferous epithelial and is regulated by the hypothalamic–pituitary–testicular axis (Amann, 2008Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008;29(5):469-87. http://doi.org/10.2164/jandrol.107.004655. PMid:18497337.
http://doi.org/10.2164/jandrol.107.00465...
).

Spermatogenesis involves three distinct phases, namely proliferation (spermatocytogenesis), meiosis, and differentiation (spermiogenesis) (Staub and Johnson, 2018Staub C, Johnson L. Review: spermatogenesis in the bull. Animal. 2018;12(1):s27-35. http://doi.org/10.1017/S1751731118000435. PMid:29882505.
http://doi.org/10.1017/S1751731118000435...
).

Proliferation phase or mitotic divisions– cell divisions occur in a sequence where chromosomes duplicate, resulting in two daughter cells or primary spermatocytes (or spermatocytes I), maintaining intercellular bridge connections with spermatogonia (types A and B). Spermatocytes I possess equal division of chromosomes (e.g. 2n=46 and 4n centromeres) and cytoplasm (Sharma and Agarwal, 2011Sharma R, Agarwal A. Spermatogenesis: an overview. In: Zini A, Agarwal A, editors, Sperm chromatin. New York: Springer; 2011. p. 19–44. http://doi.org/10.1007/978-1-4419-6857-9_2.
http://doi.org/10.1007/978-1-4419-6857-9...
).

Meiotic phase – individual spermatocytes I move into the adluminal compartment, duplicate DNA, and divide into two haploid secondary spermatocytes (spermatocyte II, with n=23 chromosomes and 2n centromeres) (Alpatov et al., 2014Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell. 2014;157(4):869-81. http://doi.org/10.1016/j.cell.2014.03.040. PMid:24813610.
http://doi.org/10.1016/j.cell.2014.03.04...
). This second stage (meiosis II) immediately follows the first stage of the meiotic phase (meiosis I), involving chromosomal exchange with divided centromeres and giving rise to four haploid daughter cells (n = 23 chromosomes and 1 centromere) (Sharma and Agarwal, 2011Sharma R, Agarwal A. Spermatogenesis: an overview. In: Zini A, Agarwal A, editors, Sperm chromatin. New York: Springer; 2011. p. 19–44. http://doi.org/10.1007/978-1-4419-6857-9_2.
http://doi.org/10.1007/978-1-4419-6857-9...
).

Spermiogenesis – sperm cells undergo complete differentiation or morphogenesis to become highly specialized spermatozoa with compacted chromatin (Durairajanayagam et al., 2015Durairajanayagam D, Rengan AK, Sharma RK, Agarwal A. Sperm biology from production to ejaculation. In: Schattman G, Esteves S, Agarwal A, editors. Unexplained Infertility. New York: Springer; 2015. p. 29–42. http://doi.org/10.1007/978-1-4939-2140-9_5.
http://doi.org/10.1007/978-1-4939-2140-9...
). Numerous nuclear and cytoplasmic changes occur in spermatozoa during that phase. For example, nuclear histone is replaced with protamine to form well-developed disulfide bonds (Holstein et al., 2003Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1(1):107. http://doi.org/10.1186/1477-7827-1-107. PMid:14617369.
http://doi.org/10.1186/1477-7827-1-107...
), various organelles of the cytoplasm such as the Golgi apparatus, acrosomal cap, proximal centriole, and flagellum structures, go through profound remodeling and reorganization (Cooper, 2005Cooper TG. Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod. 2005;20(1):9-11. http://doi.org/10.1093/humrep/deh555. PMid:15471925.
http://doi.org/10.1093/humrep/deh555...
). The midpiece surrounded by a sheath, axial core, and coarse fibrils (Neto et al., 2016Neto FTL, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10-26. http://doi.org/10.1016/j.semcdb.2016.04.009. PMid:27143445.
http://doi.org/10.1016/j.semcdb.2016.04....
) has a high concentration of mitochondria, which are responsible for aerobic functioning and supply energy for sperm motility (Gadella and Luna, 2014Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81(1):74-84. http://doi.org/10.1016/j.theriogenology.2013.09.005. PMid:24274412.
http://doi.org/10.1016/j.theriogenology....
). After successive stages of differentiation, the resulting spermatozoa emerge as immature and immotile cells, unable to fertilize the oocyte (Jones, 2002Jones RC. Evolution of the vertebrate epididymis. In: Robaire, B., Hinton, B.T., editors. The Epididymis: From Molecules to Clinical Practice. Boston: Springer; 2002. http://doi.org/10.1007/978-1-4615-0679-9_2.
http://doi.org/10.1007/978-1-4615-0679-9...
). Produced spermatozoa often carry residual bodies or excess cytoplasm (cytoplasmic droplets) that are phagocyted by surrounding Sertoli cells. This excess of cytoplasm ensured synchronization of the syncytium of spermatids (Gadella and Luna, 2014Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81(1):74-84. http://doi.org/10.1016/j.theriogenology.2013.09.005. PMid:24274412.
http://doi.org/10.1016/j.theriogenology....
), maintaining cross communications/bridges among sister spermatids.

Sperm maturation

The maturation process of spermatozoa is a fascinating journey, intricately influenced by the testosterone. The study of sperm maturation has sparked a growing interest among researchers, leading to a continuous generation of knowledge in this field (Aitken and Baker, 2008Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. Int J Androl. 2008;31(3):295-302. http://doi.org/10.1111/j.1365-2605.2007.00851.x. PMid:18179557.
http://doi.org/10.1111/j.1365-2605.2007....
; Holt and Morrell, 2013Holt W, Morrell J. Sperm biology and maturation. In: Coward K, Wells D, editors, Textbook of clinical embryology. Cambridge: Cambridge University Press; 2013. p. 89–97. http://doi.org/10.1017/CBO9781139192736.012.
http://doi.org/10.1017/CBO9781139192736....
). This process consists of number of changes:

Morphological changes – The excess of cytoplasm in produced spermatozoa is eliminated during the journey within the epididymis. Disruptions in epididymal and/or testicular function can lead to sperm abnormalities, such as cytoplasmic droplets and/or abnormally condensed chromatin. A negative correlation between such abnormalities and fertility has been reported (Sutovsky and Lovercamp, 2010Sutovsky P, Lovercamp K. Molecular markers of sperm quality. Soc Reprod Fertil Suppl. 2010;67:247-56. http://doi.org/10.7313/UPO9781907284991.021. PMid:21755677.
http://doi.org/10.7313/UPO9781907284991....
).

Biochemical changes – During epididymal transit, sperm gain motility and fertilizing potential (Sullivan et al., 2005Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35(1):1-10. http://doi.org/10.1016/j.bcmd.2005.03.005. PMid:15893944.
http://doi.org/10.1016/j.bcmd.2005.03.00...
). Biochemical changes alter the sperm plasma membrane’s biophysical properties, which is fundamental for the occurrence of subsequent steps providing fertilization capacity to the sperm (Holt and Morrell, 2013Holt W, Morrell J. Sperm biology and maturation. In: Coward K, Wells D, editors, Textbook of clinical embryology. Cambridge: Cambridge University Press; 2013. p. 89–97. http://doi.org/10.1017/CBO9781139192736.012.
http://doi.org/10.1017/CBO9781139192736....
). Numerous studies have reported the critical effects of post-gonadal sperm maturation on the sperm cell acquiring complete functionality characteristics (Dacheux and Dacheux, 2014Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):27-42. http://doi.org/10.1530/REP-13-0420. PMid:24218627.
http://doi.org/10.1530/REP-13-0420...
). Epididymal epithelial cells secrete nano- to micro-size vesicles, known as epididymosomes, that contain lipids, proteins, and RNAs (Sullivan et al., 2005Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35(1):1-10. http://doi.org/10.1016/j.bcmd.2005.03.005. PMid:15893944.
http://doi.org/10.1016/j.bcmd.2005.03.00...
; Sharma et al., 2016Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391-6. http://doi.org/10.1126/science.aad6780. PMid:26721685.
http://doi.org/10.1126/science.aad6780...
).

Functional changes – Within the epididymis, the epididymosome vesicles fuse with sperm membranes to induce surface changes and intracellular delivery of their contents, contributing to sperm functionality acquisition (e.g., motility and fertilization ability). Furthermore, during ejaculation, mature epididymal sperm interacts with several molecules contained in secretions from seminal vesicle glands, prostate (prostasomes), bulbourethral glands, and Cowper glands (Rodríguez-Martínez et al., 2011Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ. Seminal plasma proteins: what role do they play? Am J Reprod Immunol. 2011;66(Suppl 1):11-22. http://doi.org/10.1111/j.1600-0897.2011.01033.x. PMid:21726334.
http://doi.org/10.1111/j.1600-0897.2011....
) to further stabilize the sperm membrane by coating their surface (Lu et al., 2011Lu CH, Lee RKK, Hwu YM, Chu SL, Chen YJ, Chang WC, Lin SP, Li SH. SERPINE2, a serine protease inhibitor extensively expressed in adult male mouse reproductive tissues, may serve as a murine sperm decapacitation factor. Biol Reprod. 2011;84(3):514-25. http://doi.org/10.1095/biolreprod.110.085100. PMid:21084713.
http://doi.org/10.1095/biolreprod.110.08...
) and protect them during transit through the female genital tract (vagina, cervix, and utero/oviduct) (Gibbons et al., 2005Gibbons R, Adeoya-Osiguwa SA, Fraser LR. A mouse sperm decapacitation factor receptor is phosphatidylethanolamine-binding protein 1. Reproduction. 2005;130(4):497-508. http://doi.org/10.1530/rep.1.00792. PMid:16183867.
http://doi.org/10.1530/rep.1.00792...
; Troedsson et al., 2005Troedsson MHT, Desvousges A, Alghamdi AS, Dahms B, Dow CA, Hayna J, Valesco R, Collahan PT, Macpherson ML, Pozor M, Buhi WC. Components in seminal plasma regulating sperm transport and elimination. Anim Reprod Sci. 2005;89(1-4):1-4. http://doi.org/10.1016/j.anireprosci.2005.07.005. PMid:16102920.
http://doi.org/10.1016/j.anireprosci.200...
). More specifically, the prostate gland secretions include the prostasome vesicles, whose lipids, proteins, RNA, and DNA contents also affect sperm function by stimulating motility, regulating capacitation, and protecting against the immune response in the female tract (Aalberts et al., 2014Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction. 2014;147(1):R1-14. http://doi.org/10.1530/REP-13-0358. PMid:24149515.
http://doi.org/10.1530/REP-13-0358...
).

Sperm transit within the female reproductive tract

After deposition within the female reproductive tract, spermatozoa that reach the oviduct exhibit good progressive motility, adequate morphology, normal sperm head and size, sensitivity to signaling molecules, and a normal DNA status (Holt and Fazeli, 2015Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol Hum Reprod. 2015;21(6):491-501. http://doi.org/10.1093/molehr/gav012. PMid:25753084.
http://doi.org/10.1093/molehr/gav012...
). In the oviduct, epithelial cells and local fluid play a crucial role in modulating sperm function (e.g., capacitation, acrosome reaction, and fertilization) and local gene expression (López-Úbeda et al., 2015López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow. PLoS One. 2015;10(6):0130128. http://doi.org/10.1371/journal.pone.0130128. PMid:26098421.
http://doi.org/10.1371/journal.pone.0130...
).

Sperm capacitation

Capacitation is a process that involves biochemical and physiological modifications on the sperm plasma membrane during the passage of sperm within the female reproductive tract (Gadella and Luna, 2014Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81(1):74-84. http://doi.org/10.1016/j.theriogenology.2013.09.005. PMid:24274412.
http://doi.org/10.1016/j.theriogenology....
). This process includes the efflux of cholesterol from the sperm plasma membrane, leading to increased permeability to bicarbonate and calcium ions, and changes in protein phosphorylation. Bicarbonate (HCO3-) and calcium ions (Ca2+) play crucial roles in destabilizing the plasma membrane through the cAMP-dependent protein phosphorylation-signaling pathway (Tardif et al., 2001Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod. 2001;65(3):784-92. http://doi.org/10.1095/biolreprod65.3.784. PMid:11514342.
http://doi.org/10.1095/biolreprod65.3.78...
). The activation of soluble adenyl cyclase generates cyclic adenosine monophosphate (cAMP), in which the calcium ion acts as a secondary messenger, initiating a cascade of protein phosphorylation that triggers sperm motility (Chen et al., 2000Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289(5479):625-8. http://doi.org/10.1126/science.289.5479.625. PMid:10915626.
http://doi.org/10.1126/science.289.5479....
; Finkelstein et al., 2020Finkelstein M, Etkovitz N, Breitbart H. Ca2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol. 2020;516:110953. http://doi.org/10.1016/j.mce.2020.110953. PMid:32712383.
http://doi.org/10.1016/j.mce.2020.110953...
). These controlled alterations activate hyperactive motility and the ability of sperm to undergo an acrosomal reaction when they reach the oocyte (Travis and Kopf, 2002Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest. 2002;110(6):731-6. http://doi.org/10.1172/JCI0216392. PMid:12235100.
http://doi.org/10.1172/JCI0216392...
). Overall, the capacitation process could be summarized as successive steps of 1.) acrosome membrane destabilization, 2.) chemical changes in the sperm tail, 3.) increased permeability to Ca2+, and 4.) sperm hyperactivation.

In vivo Capacitation – Sperm capacitation occurs in the oviduct, where sperm cells shed adhering decapacitation factors and interact with ciliated cells of the oviduct epithelium, but mainly with substances present in the oviduct fluids (e.g., glycosaminoglycans). These sperm cells progress towards the ampullary-isthmic junction, where the ovulated oocyte arrests for fertilization (Sostaric et al., 2008Sostaric E, Dieleman SJ, Van De Lest CHA, Colenbrander B, Vos PLAM, Garcia-Gil N, Gadella BM. Sperm binding properties and secretory activity of the bovine oviduct immediately before and after ovulation. Mol Reprod Dev. 2008;75(1):60-74. http://doi.org/10.1002/mrd.20766. PMid:17546595.
http://doi.org/10.1002/mrd.20766...
; Talevi and Gualtieri, 2010Talevi R, Gualtieri R. Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 2010;73(6):796-801. http://doi.org/10.1016/j.theriogenology.2009.07.005. PMid:19682733.
http://doi.org/10.1016/j.theriogenology....
).

In vitro Capacitation – Is induced in a medium containing calcium, bicarbonate ions, and serum albumin, mimicking the ionic and metabolic composition of oviductal fluid (Touré, 2019Touré A. Importance of slc26 transmembrane anion exchangers in sperm post-testicular maturation and fertilization potential. Front Cell Dev Biol. 2019;7:230. http://doi.org/10.3389/fcell.2019.00230. PMid:31681763.
http://doi.org/10.3389/fcell.2019.00230...
). Other substances such as cAMP, caffeine, procaine, heparin, progesterone, and methyl β-cyclodextrin are often used for in vitro capacitation, a process involving sperm collection from a male donor, their washing in a buffered solution, then incubation in a capacitation medium to initiate capacitation through the synergistic effects of bicarbonate and calcium for boar sperm (Tardif et al., 2001Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod. 2001;65(3):784-92. http://doi.org/10.1095/biolreprod65.3.784. PMid:11514342.
http://doi.org/10.1095/biolreprod65.3.78...
) or negatively charged glycoconjugates for other livestock animals, such as ruminants (Ka̧tska-Ksia̧zkiewicz et al., 2004Ka̧tska-Ksia̧zkiewicz L, Ryńska B, Gajda B, Smora̧g Z. Effect of donor stimulation, frozen semen and heparin treatment on the efficiency of in vitro embryo production in goats. Theriogenology. 2004;62(3–4):576-86. http://doi.org/10.1016/j.theriogenology.2003.11.007. PMid:15226013.
http://doi.org/10.1016/j.theriogenology....
). Sperm preparation for in vitro fertilization (IVF) consist of their selection (Percoll or swim-up) followed by incubation with matured oocytes in IVF media containing substances that trigger the capacitation process (Henkel and Schill, 2003Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1(1):108. http://doi.org/10.1186/1477-7827-1-108. PMid:14617368.
http://doi.org/10.1186/1477-7827-1-108...
; Lacalle et al., 2022Lacalle E, Consuegra C, Martínez CA, Hidalgo M, Dorado J, Martínez-Pastor F, Álvarez-Rodríguez M, Rodríguez-Martínez H. Bicarbonate-triggered in vitro capacitation of boar spermatozoa conveys an increased relative abundance of the canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals (Basel). 2022;12(8):1012. http://doi.org/10.3390/ani12081012. PMid:35454259.
http://doi.org/10.3390/ani12081012...
).

Acrosome reaction and fertilization

The interaction between proteins from the sperm surface and the zona pellucida receptors facilitates the acrosomal reaction. Then, the acrosome-reacted sperm enters the zona pellucida, reaches the perivitelline space, and fuses with the oocyte membrane to transmit the sperm head contents (e.g., DNA, RNA, and protein) into the ooplasm (Coy et al., 2008Coy P, Cánovas S, Mondéjar I, Saavedra MD, Romar R, Grullón L, Matás C, Avilés M. Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci USA. 2008;105(41):15809-14. http://doi.org/10.1073/pnas.0804422105. PMid:18838686.
http://doi.org/10.1073/pnas.0804422105...
). Acrosome reaction is controlled by SNARE complexes, leading to the exocytosis of acrosomal contents upon fusion of the plasma membrane with the outer acrosomal membrane. Many studies have used various advanced technologies (e.g., gene silencing, omics) to study critical molecules (e.g., IZUMO1, TMEM95, SOF1, and SPAC6) playing critical roles in sperm-oocyte membrane interaction and fusion (Siu et al., 2021Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: gamete attachment and fusion. J Cell Biol. 2021;220(10):e202102146. http://doi.org/10.1083/jcb.202102146. PMid:34459848.
http://doi.org/10.1083/jcb.202102146...
). The functional genome of the spermatozoon, assessed via high-throughput screening methods (omics) has identified numerous sperm molecules that modulate oxidative phosphorylation, cAMP signaling, and sperm-egg interaction (Johnston et al., 2005Johnston DS, Wooters J, Kopf GS, Qiu Y, Roberts KP. Analysis of the human sperm proteome. Ann N Y Acad Sci. 2005;1061(1):190-202. http://doi.org/10.1196/annals.1336.021. PMid:16467268.
http://doi.org/10.1196/annals.1336.021...
; Baker et al., 2007Baker MA, Reeves G, Hetherington L, Müller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1(5):524-32. http://doi.org/10.1002/prca.200601013. PMid:21136703.
http://doi.org/10.1002/prca.200601013...
; Hitit and Memili, 2022Hitit M, Memili E. Sperm signatures of fertility and freezability. Anim Reprod Sci. 2022;247:107147. http://doi.org/10.1016/j.anireprosci.2022.107147. PMid:36379193.
http://doi.org/10.1016/j.anireprosci.202...
). As such, biomarkers comprising proteins, mRNAs, lipids, and metabolites hold substantial promise in predicting sperm quality and fertility. These biomarkers have the potential to provide a deep understanding of male reproductive health and sperm phenotype.

Enhancing sperm manipulation through nanotechnology

Screening technologies have revealed specific molecules that are integral to the molecular pathways of sperm biology, influencing various sperm phenotypes (e.g., quality, fertilizing potential, preservation, sex) and male fertility outcomes (Table 1) (Suchocki and Szyda, 2015Suchocki T, Szyda J. Genome-wide association study for semen production traits in Holstein-Friesian bulls. J Dairy Sci. 2015;98(8):5774-80. http://doi.org/10.3168/jds.2014-8951. PMid:26051317.
http://doi.org/10.3168/jds.2014-8951...
; Zeng et al., 2021Zeng F, Chen Y, Guo C, Li C, Wei H, Li L, Meng L, Zhang S. Analysis of differentially abundant proteins related to boar fertility in seminal plasma using iTRAQ-based quantitative proteomics. J Proteomics. 2021;236:104120. http://doi.org/10.1016/j.jprot.2021.104120. PMid:33540064.
http://doi.org/10.1016/j.jprot.2021.1041...
; Dlamini et al., 2023Dlamini NH, Nguyen T, Gad A, Tesfaye D, Liao SF, Willard ST, Ryan PL, Feugang JM. Characterization of extracellular vesicle-coupled mirna profiles in seminal plasma of boars with divergent semen quality status. Int J Mol Sci. 2023;24(4):3194. http://doi.org/10.3390/ijms24043194. PMid:36834606.
http://doi.org/10.3390/ijms24043194...
). The unique properties of nanoparticles, such as their small size and high surface area, hold immense potential for their diverse applications in livestock, impacting sperm quality and fertility outcomes (Feugang, 2017Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev. 2017;84(9):832-41. http://doi.org/10.1002/mrd.22831. PMid:28481043.
http://doi.org/10.1002/mrd.22831...
; Feugang et al., 2019Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology. 2019;137:75-81. http://doi.org/10.1016/j.theriogenology.2019.05.040. PMid:31204016.
http://doi.org/10.1016/j.theriogenology....
) (Figure 1).

Table 1
Candidate biomarkers of sperm phenotypes for nanotechnology applications.

Nanoparticles

Nanoparticles can be naturally or artificially produced in various shapes (such as cubic or spherical) and can consist of inorganic (like metals or salts) as well as organic materials (e.g., lipids, proteins or polymers) (Figures 1 and 2) (Sun et al., 2014Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64. http://doi.org/10.1002/anie.201403036. PMid:25294565.
http://doi.org/10.1002/anie.201403036...
). Metal nanoparticles are made in different sizes (ranging from 1 to 100 nm) and shapes (like irregular, rod, spherical, cylindrical, tetragonal, and hexagonal) using inorganic core materials such as cadmium, zinc, gold, silver, platinum, plomb, aluminum, nickel, iron, and copper. The composition of these core materials determines their fundamental properties, like electronical, optical, and physical characteristics, which have garnered much attention in medicine. However, these core materials are often associated with immunogenicity and cytotoxicity of nanoparticles because they can release metallic ions like cadmium (Han et al., 2016Han JW, Jeong J-K, Gurunathan S, Choi Y-J, Das J, Kwon D-N, Cho S-G, Park C, Seo HG, Park J-K, Kim J-H. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology. 2016;10(3):361-73. http://doi.org/10.3109/17435390.2015.1073396. PMid:26470004.
http://doi.org/10.3109/17435390.2015.107...
; Jain et al., 2018Jain S, Park SB, Pillai SR, Ryan PL, Willard ST, Feugang JM. Applications of fluorescent quantum dots for reproductive medicine and disease detection. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications. London: InTech; 2018. Chapter 6. http://doi.org/10.5772/intechopen.72978. ; Kuo et al., 2017Kuo R, Saito E, Miller SD, Shea LD. Peptide-conjugated nanoparticles reduce positive co-stimulatory expression and T cell activity to induce tolerance. Mol Ther. 2017;25(7):1676-85. http://doi.org/10.1016/j.ymthe.2017.03.032. PMid:28408181.
http://doi.org/10.1016/j.ymthe.2017.03.0...
; Wang et al., 2020Wang Y, Quinsaat JEQ, Ono T, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato S, Miura Y, Yamamoto T. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat Commun. 2020;11(1):6089. http://doi.org/10.1038/s41467-020-19947-8. PMid:33257670.
http://doi.org/10.1038/s41467-020-19947-...
). Nonetheless, coating the core material with multiple layers has helped mitigate its toxicity. For instance, the stabilization of the core material with an inorganic protective shell (e.g., zinc sulfide and silica) and surface modification of the core-shell with various polymers (such as polyvinylpyrrolidone - PVP, polyvinyl alcohol - PVA, polyethylene glycol - PEG, among others), ceramics (like Silicates), and adsorption of anions or charged groups (such as citrate3-, chloride ions-Cl-, dextran sulfate, polyethyleneimine, etc.) reduces nanoparticle toxicity and enhances biocompatibility (particle dispersion in biofluids), which is essential for bioapplications (Suk et al., 2016Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery HHS Public Access Graphical abstract. Adv Drug Deliv Rev. 2016;99(Pt A):28-51. http://doi.org/10.1016/j.addr.2015.09.012. PMid:26456916.
http://doi.org/10.1016/j.addr.2015.09.01...
; Jain et al., 2018Jain S, Park SB, Pillai SR, Ryan PL, Willard ST, Feugang JM. Applications of fluorescent quantum dots for reproductive medicine and disease detection. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications. London: InTech; 2018. Chapter 6. http://doi.org/10.5772/intechopen.72978. ).

Figure 2
Overview of commonly used inorganic and organic nanoparticles. The presented inorganic nanoparticles can be coated with single or multiple layers of organic or inorganic materials before biofunctionalization for bioapplications. Among the organic nanoparticles, liposomes are the most widely used for bioapplications, such as targeted bioimaging, drug delivery (hydrophobic and hydrophilic), and drug and nucleic acid intracellular delivery. The possibility of coating the external surface of nanoparticles with polyethylene glycol (PEG), or PEGylation, increases nanoparticle’s stability and decreases immunogenicity during in vivo delivery.

Organic nanoparticles (e.g., micelle, dendrimer, liposome, nanogel, and polymeric) contrast their inorganic counterparts. They are formed from aggregated molecules (e.g., polysaccharides and lipids) or polymers of various structures, each exhibiting unique size-dependent physical and chemical properties (e.g., optical and electrochemical). The non-toxic and biodegradable micelles and liposomes, with their hollow spheres, are widely used for pharmaceutical transportation (e.g., drugs and nucleic acids). These organic nanoparticles are designed for bioapplications, and their surface modification with polymers (e.g., PEG) often provides an extended lifespan (Suk et al., 2016Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery HHS Public Access Graphical abstract. Adv Drug Deliv Rev. 2016;99(Pt A):28-51. http://doi.org/10.1016/j.addr.2015.09.012. PMid:26456916.
http://doi.org/10.1016/j.addr.2015.09.01...
; Virlan et al., 2016Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic nanomaterials and their applications in the treatment of oral diseases. Molecules. 2016;21(2):207. http://doi.org/10.3390/molecules21020207. PMid:26867191.
http://doi.org/10.3390/molecules21020207...
; Feugang et al., 2022Feugang JM, Ishak GM, Eggert MW, Arnold RD, Rivers OS, Willard ST, Ryan PL, Gastal EL. Intrafollicular injection of nanomolecules for advancing knowledge on folliculogenesis in livestock. Theriogenology. 2022;192:132-40. http://doi.org/10.1016/j.theriogenology.2022.08.032. PMid:36099803.
http://doi.org/10.1016/j.theriogenology....
).

Inorganic and organic nanoparticles are biofunctionalized with attached bioactive ligands such as antibodies, oligonucleotides, peptides, and drugs to their external coating layer, providing specificity in cell targeting (Table 2 and Figure 3) (Feugang et al., 2015bFeugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnology. 2015b;13(1):38. http://doi.org/10.1186/s12951-015-0097-1. PMid:26040273.
http://doi.org/10.1186/s12951-015-0097-1...
; Jain et al., 2018Jain S, Park SB, Pillai SR, Ryan PL, Willard ST, Feugang JM. Applications of fluorescent quantum dots for reproductive medicine and disease detection. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications. London: InTech; 2018. Chapter 6. http://doi.org/10.5772/intechopen.72978. ). The high surface area-to-volume ratio and size-dependent physicochemical properties of both inorganic and organic nanoparticles make them versatile and exciting for a wide range of sperm manipulation (Table 2), such as high visibility/contrast in multiple bioimaging, biocompatibility and dispersibility, specific and molecular targeting, and ability to load and deliver diverse cargos for controlled release to target cells (Feugang, 2017Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev. 2017;84(9):832-41. http://doi.org/10.1002/mrd.22831. PMid:28481043.
http://doi.org/10.1002/mrd.22831...
; Sutovsky et al., 2024Sutovsky P, Hamilton LE, Zigo M, Ortiz DME, Assumpção A, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping. Biol Reprod. 2024;110(6):1156-6. http://doi.org/10.1093/biolre/ioae061. PMid:38640912.
http://doi.org/10.1093/biolre/ioae061...
).

Table 2
Examples of nanoparticles for sperm manipulation.
Figure 3
Schematic representation of a biofunctionalized nanoparticle. Ready-to-use nanoparticles for bioapplications include a (nano)core surrounded by single or multiple coating layers providing stability and decreasing immunogenicity and an outer surface layer functionalized based on planned unimodal (e.g., imaging) or multimodal (e.g., imaging and drug administration) applications.

Sperm phenotype and nanotechnology applications

Sperm motility, morphology, and fertility

Sperm motility and morphology are the golden standard for semen evaluation, serving as selection criteria for further processing of ejaculates post-collection. Motility assessment is conducted objectively with automated systems such as computer-assisted sperm analyzer, which allows evaluation of motility and a wide range of kinematic parameters. This assessment, encompassing a diverse range of livestock species, has contributed to establishing a positive correlation between motility parameters and fertility. The research conducted using both fresh or cryopreserved semen (Ansari et al., 2016Ansari MS, Rakha BA, Akhter S, Ashiq M. OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm. Theriogenology. 2016;85(3):528-32. http://doi.org/10.1016/j.theriogenology.2015.09.035. PMid:26522702.
http://doi.org/10.1016/j.theriogenology....
; Elmi et al., 2018Elmi A, Banchelli F, Barone F, Fantinati P, Ventrella D, Forni M, Bacci ML. Semen evaluation and in vivo fertility in a Northern Italian pig farm: can advanced statistical approaches compensate for low sample size? An observational study. Anim Reprod Sci. 2018;192:61-8. http://doi.org/10.1016/j.anireprosci.2018.02.014. PMid:29496343.
http://doi.org/10.1016/j.anireprosci.201...
; Lucca et al., 2021Lucca MS, Dal R, Gianluppi F, Paula A, Mellagi G, Pandolfo Bortolozzo F, Wentz I, Da R, Ulguim R. Effects of the classification of boars according to progressive sperm motility and the extender type on the reproductive performance of a single fixed-time insemination. Theriogenology. 2021;161:120-5. http://doi.org/10.1016/j.theriogenology.2020.11.018. PMid:33310229.
http://doi.org/10.1016/j.theriogenology....
; Khan et al., 2024Khan GS, Tahir MZ, Zahoor MY, Rahman H, Riaz A. Ameliorative effect of crocin on post-thaw quality, fertility-associated gene expression and fertilization potential of buffalo (Bubalus bubalis) bull sperm. Reprod Domest Anim. 2024;59(1):e14519. http://doi.org/10.1111/rda.14519. PMid:38268214.
http://doi.org/10.1111/rda.14519...
), has consistently shown that high-fertile males tend to exhibit superior total and progressive sperm motility and velocity parameters than their low-fertile counterparts (Vicente-Fiel et al., 2014Vicente-Fiel S, Palacín I, Santolaria P, Fantova E, Quintín-casorrán FJ, Sevilla-Mur E, Yániz JL. In vitro assessment of sperm quality from rams of high and low field fertility. Anim Reprod Sci. 2014;146(1–2):15-20. http://doi.org/10.1016/j.anireprosci.2014.02.005. PMid:24602507.
http://doi.org/10.1016/j.anireprosci.201...
). These findings suggest that the differential fertility outcomes may be influenced by the morphology and other defects of spermatozoa.

The percentage of morphologically normal spermatozoa is positively correlated with pregnancy rates in all species (Cecere, 2014Cecere JT. Eosin-nigrosin staining in the evaluation of sperm. In: Dascanio JJ, McCue PM, editors. Equine reproductive procedures. Hoboken: John Wiley and Sons; 2014. p 373–6.: http://doi.org/10.1002/9781118904398.ch114. ). On the other hand, sperm defects, such as the aplastic midpiece in bull ejaculates, disrupt sperm functions, especially motility (Díaz-Miranda et al., 2020Díaz-Miranda EA, Maitan PP, Machado TP, Camilo BS, Lima DA, Okano DS, Penitente-Filho JM, Machado-Neves M, Oliveira LL, Guimarães SEF, Costa EP, Guimarães JD. Disruption of bovine sperm functions in the presence of aplastic midpiece defect. Andrology. 2020;8(1):201-10. http://doi.org/10.1111/andr.12618. PMid:30908900.
http://doi.org/10.1111/andr.12618...
). Several studies have used proteomics and metabolomics in various livestock species to identify important molecules in sperm associated with morphological defects in the head, midpiece, and tail, which can affect sperm motility and fertility (Peddinti et al., 2008Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2(1):19. http://doi.org/10.1186/1752-0509-2-19. PMid:18294385.
http://doi.org/10.1186/1752-0509-2-19...
; Menezes et al., 2019Menezes EB, Velho ALC, Santos F, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics. 2019;20(1):714. http://doi.org/10.1186/s12864-019-6074-6. PMid:31533629.
http://doi.org/10.1186/s12864-019-6074-6...
; Zhu et al., 2020Zhu W, Zhang Y, Ren C, Cheng X, Chen J, Ge Z, Sun ZP, Zhuo X, Sun FF, Chen YL, Jia XJ, Zhang Z. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J Proteomics. 2020;210:103438. http://doi.org/10.1016/j.jprot.2019.103438. PMid:31271902.
http://doi.org/10.1016/j.jprot.2019.1034...
; DasGupta et al., 2021DasGupta MA, Kumaresan AA, Kishor Saraf KA, Karthikkeyan GB, Keshava Prasad BTS, Kumar Modi PB, Ramesha KC, Jeyakumar SC, Manimaran AC. Preliminary comparative deep metabolomic analysis of spermatozoa from zebu and crossbred cattle suggests associations between metabolites, sperm quality and fertility. Reprod Fertil Dev. 2021;33(6):427-36. http://doi.org/10.1071/RD20304. PMid:33775276.
http://doi.org/10.1071/RD20304...
; Gaitskell-Phillips et al., 2021aGaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Gil MC, Ortega-ferrusola C, Peña FJ. Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thaw†. Biol Reprod. 2021a;104(5):1097-113. http://doi.org/10.1093/biolre/ioab003. PMid:33438027.
http://doi.org/10.1093/biolre/ioab003...
; Hitit et al., 2021Hitit M, Özbek M, Ayaz-Guner S, Guner H, Oztug M, Bodu M, Kirbas M, Bulbul B, Bucak MN, Ataman MB, Memili E, Kaya A. Proteomic fertility markers in ram sperm. Anim Reprod Sci. 2021;235:106882. http://doi.org/10.1016/j.anireprosci.2021.106882. PMid:34823050.
http://doi.org/10.1016/j.anireprosci.202...
; Jia et al., 2021Jia B, Liang J, Lv C, Memon S, Fang Y, Wu G, Quan G. The characteristics of proteome and metabolome associated with contrasting sperm motility in goat seminal plasma. Sci Rep. 2021;11(1):15562. http://doi.org/10.1038/s41598-021-95138-9. PMid:34330982.
http://doi.org/10.1038/s41598-021-95138-...
; Zeng et al., 2021Zeng F, Chen Y, Guo C, Li C, Wei H, Li L, Meng L, Zhang S. Analysis of differentially abundant proteins related to boar fertility in seminal plasma using iTRAQ-based quantitative proteomics. J Proteomics. 2021;236:104120. http://doi.org/10.1016/j.jprot.2021.104120. PMid:33540064.
http://doi.org/10.1016/j.jprot.2021.1041...
; Sun et al., 2023Sun P, Zhang G, Xian M, Zhang G, Wen F, Hu Z, Hu J. Proteomic analysis of frozen–thawed spermatozoa with different levels of freezability in dairy goats. Int J Mol Sci. 2023;24(21):15550. http://doi.org/10.3390/ijms242115550. PMid:37958534.
http://doi.org/10.3390/ijms242115550...
). These identified molecules, which may interact with sperm membranes to influence sperm function, can potentially serve as biomarkers for monitoring sperm quality, including motility and morphology. When combining with traditional sperm attributes, these biomarkers may help in selecting the best spermatozoa/ejaculates and predicting fertility more accurately (Sellem et al., 2015Sellem E, Broekhuijse MLWJ, Chevrier L, Camugli S, Schmitt E, Schibler L, Koenen EPC. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenolog. 2015;84(9):1447-1454.e5. http://doi.org/10.1016/j.theriogenology.2015.07.035. PMid:26296523.
http://doi.org/10.1016/j.theriogenology....
; Inanç et al., 2018Inanç ME, Çi̇l B, Teki̇n K, Alemdar H, Daşkin A. The combination of CASA kinetic parameters and fluorescein staining as a fertility tool in cryopreserved bull semen. Turk J Vet Anim Sci. 2018;42(5):452. http://doi.org/10.3906/vet-1801-83.
http://doi.org/10.3906/vet-1801-83...
).

The knowledge of the abovementioned sperm defects with associated biomarkers, such as the lectin and annexin V, targeting damaged acrosome and DNA, respectively, has led to the adoption of different methods of sperm purification using biofunctionalized (or conjugated) nanoparticles to obtain high-quality sperm through targeted elimination of low-quality or immotile sperm in an ejaculate (Feugang, 2017Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev. 2017;84(9):832-41. http://doi.org/10.1002/mrd.22831. PMid:28481043.
http://doi.org/10.1002/mrd.22831...
; Meles et al., 2022Meles DK, Mustofa I, Hariadi M, Wurlina W, Susilowati S, Amaliya A, Suparto S, Rimayanti R. The enriched Y-bearing sperm combined with delayed fixed-time artificial insemination for obtaining male Simmental crossbred offspring. Vet World. 2022;15(1):102-9. http://doi.org/10.14202/vetworld.2022.102-109. PMid:35369602.
http://doi.org/10.14202/vetworld.2022.10...
). Among these techniques, the density gradient and single-layer centrifugation protocols use nanosized compounds such as the polyvinylpyrrolidone-, silane-, and glycidoxypropyltrimethoxsilane-coated silica colloid solutions, commercialized as Percoll, Puresperm, and Androcoll, respectively. These nanoparticle-based solutions separate pure, high-quality, and viable spermatozoa that have shown numerous applications in reproductive technologies (in vitro fertilization, intracytoplasmic sperm injection or ICSI, and artificial insemination) of various livestock species.

Sperm viability

Defects related to membrane (plasma, acrosome, and mitochondrial) losses, capacitation issues, and DNA fragmentation were collectively classified as sperm viability abnormalities (Sutovsky et al., 2024Sutovsky P, Hamilton LE, Zigo M, Ortiz DME, Assumpção A, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping. Biol Reprod. 2024;110(6):1156-6. http://doi.org/10.1093/biolre/ioae061. PMid:38640912.
http://doi.org/10.1093/biolre/ioae061...
). Sperm membrane integrity is a core attribute of spermatozoa, whose defects are associated with a decrease in the overall functionality of spermatozoa (motility, survival, acrosome reaction, ova binding), leading to early embryonic loss or genetic diseases (Avendaño et al., 2009Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077-84. http://doi.org/10.1016/j.fertnstert.2008.01.015. PMid:18440529.
http://doi.org/10.1016/j.fertnstert.2008...
; Ferrigno et al., 2021Ferrigno A, Ruvolo G, Capra G, Serra N, Bosco L. Correlation between the DNA fragmentation index (DFI) and sperm morphology of infertile patients. J Assist Reprod Genet. 2021;38(4):979-86. http://doi.org/10.1007/s10815-021-02080-w. PMid:33532883.
http://doi.org/10.1007/s10815-021-02080-...
). Plasma membrane defects could be mechanically and/or chemically induced during normal or abnormal physiological processes, leading to damage such as membrane lipid peroxidation and externalization of phosphatidyl serine residues, an indicator of early apoptosis, with subsequent decrease in fertilizing potential (Sutovsky et al., 2024Sutovsky P, Hamilton LE, Zigo M, Ortiz DME, Assumpção A, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping. Biol Reprod. 2024;110(6):1156-6. http://doi.org/10.1093/biolre/ioae061. PMid:38640912.
http://doi.org/10.1093/biolre/ioae061...
). Acrosome reaction and capacitation are determinant factors of fertilization success that occur during normal physiological conditions, where sperm capacitation is associated with specific markers and molecular pathways related to fertility outcomes (Kwon et al., 2015Kwon W, Rahman S, Ryu D, Park Y, Pang M. Increased male fertility using fertility-related biomarkers. Sci Rep. 2015;5(1):15654. http://doi.org/10.1038/srep15654. PMid:26489431.
http://doi.org/10.1038/srep15654...
; Bae et al., 2022Bae JW, Yi JK, Jeong EJ, Lee WJ, Hwang JM, Kim DH, Ha JJ, Kwon WS. Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod Biol. 2022;22(2):100617. http://doi.org/10.1016/j.repbio.2022.100617. PMid:35180576.
http://doi.org/10.1016/j.repbio.2022.100...
). Nevertheless, both acrosome reaction and capacitation processes are affected during semen manipulation (Yoon et al., 2015Yoon S-J, Kwon W-S, Rahman MS, Lee J-S, Pang M-G. A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. PLoS One. 2015;10(5):e0126232. http://doi.org/10.1371/journal.pone.0126232. PMid:25938413.
http://doi.org/10.1371/journal.pone.0126...
; Yeste, 2016Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85(1):47-64. http://doi.org/10.1016/j.theriogenology.2015.09.047. PMid:26506124.
http://doi.org/10.1016/j.theriogenology....
; Lee et al., 2023Lee B, Park Y, Pang W, Ryu D, Rahman S, Lee D, Pang M. Boar fertility is controlled through systematic changes of mitochondrial protein expression during sperm capacitation. Int J Biol Macromol. 2023;248:125955. http://doi.org/10.1016/j.ijbiomac.2023.125955. PMid:37494999.
http://doi.org/10.1016/j.ijbiomac.2023.1...
). Acrosome-reacted sperm cells exhibit membrane markers that could be targeted for viability evaluation of semen quality. Mitochondrial membrane integrity portrays mitochondria status and energy reserves used by the cell to achieve different physiological functions as a regulator and indicator of sperm motility that could be related to male fertility (Agnihotri et al., 2016Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 2016;52(9):953-60. http://doi.org/10.1007/s11626-016-0061-x. PMid:27338736.
http://doi.org/10.1007/s11626-016-0061-x...
; Gallo et al., 2021Gallo A, Esposito MC, Tosti E, Boni R. Sperm motility, oxidative status, and mitochondrial activity: exploring correlation in different species. Antioxidants. 2021;10(7):1131. http://doi.org/10.3390/antiox10071131. PMid:34356364.
http://doi.org/10.3390/antiox10071131...
). Apoptosis and DNA integrity are essential for successfully transmitting the paternal genome, fertilization, and normal embryo development (Kumaresan et al., 2020Kumaresan A, Das Gupta M, Datta TK, Morrell JM. Sperm DNA Integrity and male fertility in farm animals: a review. Front Vet Sci. 2020;7:321. http://doi.org/10.3389/fvets.2020.00321. PMid:32637425.
http://doi.org/10.3389/fvets.2020.00321...
). Apoptotic spermatozoa are routinely evaluated through Annexin V, which interacts with externalized phosphatidyl serine residues on their plasma membrane. Furthermore, the highly basic protamine 1 protein, participating in DNA packaging, is positively correlated with bull sperm motility (Ganguly et al., 2013Ganguly I, Gaur GK, Kumar S, Mandal DK, Kumar M, Singh U, Kumar S, Sharma A. Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred Frieswal (HF×Sahiwal) bulls. Res Vet Sci. 2013;94(2):256-62. http://doi.org/10.1016/j.rvsc.2012.09.001. PMid:23044178.
http://doi.org/10.1016/j.rvsc.2012.09.00...
) and fertility (Dogan et al., 2015Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod. 2015;92(4):92. http://doi.org/10.1095/biolreprod.114.124255. PMid:25673563.
http://doi.org/10.1095/biolreprod.114.12...
; Llavanera et al., 2021Llavanera M, Ribas-maynou J, Delgado-bermúdez A, Recuero S, Muiño R, Hidalgo CO, Tamargo C, Bonet S, Mateo-otero Y, Yeste M. Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. J Anim Sci Biotechnol. 2021;12(1):115. http://doi.org/10.1186/s40104-021-00634-7. PMid:34749810.
http://doi.org/10.1186/s40104-021-00634-...
; Souza et al., 2018Souza ET, Silva CV, Augusto B, Travençolo N, Geraldo B, Emílio M. Sperm chromatin alterations in fertile and subfertile bulls. Reprod Biol. 2018;18(2):177-81. http://doi.org/10.1016/j.repbio.2018.04.001. PMid:29705068.
http://doi.org/10.1016/j.repbio.2018.04....
), with further confirmation in boar spermatozoa (Alvarez-Rodriguez et al., 2021Alvarez-Rodriguez M, Martinez CA, Roca J, Rodriguez-Martinez H. mRNA expression of oxidative-reductive proteins in boars with documented different fertility can identify relevant prognostic biomarkers. Res Vet Sci. 2021;141:195-202. http://doi.org/10.1016/j.rvsc.2021.10.022. PMid:34763256.
http://doi.org/10.1016/j.rvsc.2021.10.02...
). Interestingly, a recent study demonstrated a positive correlation between DNA fragmentation and protamine deficiency (Kherzi et al., 2019Kherzi A, Naraud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morell JM, Kommisrud E, Ahmad R. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics. 2019;20(1):897. http://doi.org/10.1186/s12864-019-6307-8. PMid:31775629.
http://doi.org/10.1186/s12864-019-6307-8...
), making protamine a potential target for selecting spermatozoa with high motility and fertility potentials.

The current evaluation methods of semen quality often lead to a binary outcome, categorizing semen as either “Passed” or “Failed” for breeding. Supplementing extenders with organic nanoparticles like loaded or unloaded liposome vesicles and exosomes may reduce the proportion of non-viable sperm cells in semen. Both organic nanoparticles hold promise, demonstrating their potential in repairing damaged spermatozoa through their ability to bind sperm plasma membranes of numerous livestock species (He et al., 2001He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod. 2001;64(1):69-79. http://doi.org/10.1095/biolreprod64.1.69. PMid:11133660.
http://doi.org/10.1095/biolreprod64.1.69...
; Röpke et al., 2011Röpke T, Oldenhof H, Leiding C, Sieme H, Bollwein H, Wolkers WF. Liposomes for cryopreservation of bovine sperm. Theriogenology. 2011;76(8):1465-72. http://doi.org/10.1016/j.theriogenology.2011.06.015. PMid:21820724.
http://doi.org/10.1016/j.theriogenology....
; Pillet et al., 2012Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, Desherces S, Schmitt E, Magistrini M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology. 2012;77(2):268-79. http://doi.org/10.1016/j.theriogenology.2011.08.001. PMid:21924469.
http://doi.org/10.1016/j.theriogenology....
; Kumar et al., 2015Kumar P, Saini M, Kumar D, Balhara AK, Yadav SP, Singh P, Yadav PS. Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Anim Reprod Sci. 2015;159:38-45. http://doi.org/10.1016/j.anireprosci.2015.05.010. PMid:26065809.
http://doi.org/10.1016/j.anireprosci.201...
; Luna-Orozco et al., 2019Luna-Orozco JR, González-Ramos MA, Calderón-Leyva G, Gaytán-Alemán LR, Arellano-Rodríguez MA, Ángel-García O, Véliz-Deras FG. Comparison of different diluents based on liposomes and egg yolk for ram semen cooling and cryopreservation. IJVR. 2019;20(2):126-30. PMid:31531035.; Medina-León et al., 2019Medina-León AZ, Domínguez-mancera B, Cazalez-penino N, Cervantes-Acosta P, Jácome-Sosa E, Romero-Salas D, Barrientos-Morales M. Cryopreservation of horse semen with a liposome and trehalose added extender. Austral J Vet Sci. 2019;51(3):119-23. http://doi.org/10.4067/S0719-81322019000300119.
http://doi.org/10.4067/S0719-81322019000...
; Mafolo et al., 2020Mafolo KS, Pilane CM, Chitura T, Nedambale TL. Use of phosphatidylcholine in Tris-based extender with or without egg yolk to freeze Bapedi ram semen. S Afr J Anim Sci. 2020;50(3):389-96. http://doi.org/10.4314/sajas.v50i3.5.
http://doi.org/10.4314/sajas.v50i3.5...
; Mortazavi et al., 2020Mortazavi S, Eslami M, Farrokhi-ardabili F. Comparison of different carrier-compounds and varying concentrations of oleic acid on freezing tolerance of ram spermatozoa in tris-citric acid-egg yolk plasma semen diluent. Anim Reprod Sci. 2020;219:106533. http://doi.org/10.1016/j.anireprosci.2020.106533. PMid:32828408.
http://doi.org/10.1016/j.anireprosci.202...
). Loaded liposomes and tissular or body-fluids isolated exosomes can be used as nanocarriers for intraspermatic cargo delivery of specific molecules. Unlike the manufactured liposomes that can encapsulate any desired molecules (Feugang et al., 2022Feugang JM, Ishak GM, Eggert MW, Arnold RD, Rivers OS, Willard ST, Ryan PL, Gastal EL. Intrafollicular injection of nanomolecules for advancing knowledge on folliculogenesis in livestock. Theriogenology. 2022;192:132-40. http://doi.org/10.1016/j.theriogenology.2022.08.032. PMid:36099803.
http://doi.org/10.1016/j.theriogenology....
) for delivery, exosomes are rich in various molecules (e.g., proteins, miRNA, lipids, metabolites, and mRNA) isolated from various biofluids, including seminal plasma (Piehl et al., 2013Piehl LL, Fischman ML, Hellman U, Cisale H, Miranda PV. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing. Theriogenology. 2013;79(7):1071-82. http://doi.org/10.1016/j.theriogenology.2013.01.028. PMid:23489476.
http://doi.org/10.1016/j.theriogenology....
; Yang et al., 2017Yang C, Guo W-B, Zhang W-S, Bian J, Yang J-K, Zhou Q-Z, Chen M-K, Peng W, Qi T, Wang C-Y, Liu C-D. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 2017;5(5):1007-15. http://doi.org/10.1111/andr.12412. PMid:28914500.
http://doi.org/10.1111/andr.12412...
; Dilsiz, 2022Dilsiz N. Hallmarks of exosomes. Future Sci OA. 2022;8(1):FSO764. http://doi.org/10.2144/fsoa-2021-0102. PMid:34900338.
http://doi.org/10.2144/fsoa-2021-0102...
; Dlamini et al., 2023Dlamini NH, Nguyen T, Gad A, Tesfaye D, Liao SF, Willard ST, Ryan PL, Feugang JM. Characterization of extracellular vesicle-coupled mirna profiles in seminal plasma of boars with divergent semen quality status. Int J Mol Sci. 2023;24(4):3194. http://doi.org/10.3390/ijms24043194. PMid:36834606.
http://doi.org/10.3390/ijms24043194...
). Following binding with spermatozoa, these exosome contents entering spermatozoa may participate in energy pathways, protein metabolism, and maintenance of recipient cells, influencing sperm maturation, capacitation, acrosome reaction, and fertility (Piehl et al., 2013Piehl LL, Fischman ML, Hellman U, Cisale H, Miranda PV. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing. Theriogenology. 2013;79(7):1071-82. http://doi.org/10.1016/j.theriogenology.2013.01.028. PMid:23489476.
http://doi.org/10.1016/j.theriogenology....
; Du et al., 2016Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, Dong W. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 2016;7(37):58832-47. http://doi.org/10.18632/oncotarget.11315. PMid:27542209.
http://doi.org/10.18632/oncotarget.11315...
; Qamar et al., 2019Qamar AY, Fang X, Kim MJ, Cho J. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel). 2019;9(11):865. http://doi.org/10.3390/ani9110865. PMid:31731505.
http://doi.org/10.3390/ani9110865...
). The presence of extracellular vesicles or exosomes in cryopreservation extenders improves post-thaw sperm motility, viability, mitochondrial activity, and membrane integrity (Qamar et al., 2019Qamar AY, Fang X, Kim MJ, Cho J. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel). 2019;9(11):865. http://doi.org/10.3390/ani9110865. PMid:31731505.
http://doi.org/10.3390/ani9110865...
).

On the other hand, magnetic metal oxide nanoparticles were designed to target damaged cells for removal under a magnetic field to increase the chance of the ejaculated to be approved. In early studies with bovine (Odhiambo et al., 2014Odhiambo JF, Dejarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky P. Increased conception rates in beef cattle inseminated with nanopurified bull downloaded from downloaded from. Biol Reprod. 2014;91(4):97. http://doi.org/10.1095/biolreprod.114.121897. PMid:25232015.
http://doi.org/10.1095/biolreprod.114.12...
) and porcine (Feugang et al., 2015aFeugang JM, Liao SF, Crenshaw MA, Clemente H, Willard ST, Ryan PL. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. Reprod Med Genet. 2015a;3(2):145.; Durfey et al., 2019Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol. 2019;10(1):14. http://doi.org/10.1186/s40104-018-0307-4. PMid:30774950.
http://doi.org/10.1186/s40104-018-0307-4...
) species, iron oxide nanoparticles were conjugated with lectin, ubiquitin, and annexin V to selectively target and remove acrosome reacted, damaged, and early apoptotic spermatozoa from semen doses without impairing sperm fertility potential.

Sperm freezability

Sperm cryopreservation is a process that allows the long-term storage of semen in liquid nitrogen and is an essential technology for preserving animal fertility (Hungerford et al., 2022Hungerford A, Bakos HW, Aitken RJ, Martin G. Sperm cryopreservation: current status and future developments. Reprod Fertil Dev. 2022;35(3):265-81. http://doi.org/10.1071/RD22219. PMid:36521496.
http://doi.org/10.1071/RD22219...
). Several sperm functions, including DNA fragmentation, early capacitation, and acrosome and membrane integrity, are impaired during cryopreservation (Yoon et al., 2015Yoon S-J, Kwon W-S, Rahman MS, Lee J-S, Pang M-G. A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. PLoS One. 2015;10(5):e0126232. http://doi.org/10.1371/journal.pone.0126232. PMid:25938413.
http://doi.org/10.1371/journal.pone.0126...
; Yeste, 2016Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85(1):47-64. http://doi.org/10.1016/j.theriogenology.2015.09.047. PMid:26506124.
http://doi.org/10.1016/j.theriogenology....
), reducing the capacity of spermatozoa to achieve successful fertilization. During this process, spermatozoa experience extreme stress at different proteins, DNA, lipid metabolism levels, and long-chain polyunsaturated fatty acids in the plasma membrane, affecting sperm freezability (Ugur et al., 2019Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in Cryopreservation of Bull Sperm. Front Vet Sci. 2019;6:268. http://doi.org/10.3389/fvets.2019.00268. PMid:31552277.
http://doi.org/10.3389/fvets.2019.00268...
).

Studies of metabolite dynamics in sperm have shown signature differences between fresh, chilled, and frozen-thawed buck (Yuan et al., 2023bYuan Y, Wang G, Zou J, Zhang Y, Li D, Yu M, Chen L, Li G. Study on comparative analysis of differential metabolites in Guanzhong dairy goat semen before and after freezing. Theriogenology. 2023b;197:232-9. http://doi.org/10.1016/j.theriogenology.2022.12.009. PMid:36525862.
http://doi.org/10.1016/j.theriogenology....
) and boar (Torres et al., 2022Torres MA, Pedrosa AC, Novais FJ, Alkmin DV, Cooper BR, Yasui GS, Fukumasu H, Machaty Z, Andrade AFCD. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm†. Biol Reprod. 2022;106(1):213-26. http://doi.org/10.1093/biolre/ioab200. PMid:34725678.
http://doi.org/10.1093/biolre/ioab200...
; Zhang et al., 2023Zhang Y, Yuan W, Liu Y, Liu Y, Liang H, Xu Q, Liu Z, Weng X. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology. 2023;206:28-39. http://doi.org/10.1016/j.theriogenology.2023.04.016. PMid:37178672.
http://doi.org/10.1016/j.theriogenology....
) spermatozoa. Abundance in specific metabolites (e.g., propanoic acid, D-ribose and glycine) in seminal plasma is associated with higher liquid storage ability/freezability of spermatozoa (Pessoa et al., 2023Pessoa ER, Roger Vasconcelos F, de Oliveira Paula‐Marinho S, de Menezes Daloso D, Damasceno Guerreiro D, Matias Martins JA, Gomes-Filho E, Alencar Moura A. Metabolomic profile of seminal plasma from Guzerá bulls (Bos indicus) with contrasting sperm freezability phenotypes. Reprod Domest Anim. 2023;58(10):1379-92. http://doi.org/10.1111/rda.14453. PMid:37592767.
http://doi.org/10.1111/rda.14453...
; Song et al., 2023Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci. 2023;101:skad392. http://doi.org/10.1093/jas/skad392.
http://doi.org/10.1093/jas/skad392...
; Zeng et al., 2021Zeng F, Chen Y, Guo C, Li C, Wei H, Li L, Meng L, Zhang S. Analysis of differentially abundant proteins related to boar fertility in seminal plasma using iTRAQ-based quantitative proteomics. J Proteomics. 2021;236:104120. http://doi.org/10.1016/j.jprot.2021.104120. PMid:33540064.
http://doi.org/10.1016/j.jprot.2021.1041...
). Overall, studies indicate that sperm metabolome changes (e.g., lipids, lipid-like molecules, organic acids and their derivatives) during cryopreservation and influence various biological pathways, such as the linoleic acid metabolism pathway (Yuan et al., 2023bYuan Y, Wang G, Zou J, Zhang Y, Li D, Yu M, Chen L, Li G. Study on comparative analysis of differential metabolites in Guanzhong dairy goat semen before and after freezing. Theriogenology. 2023b;197:232-9. http://doi.org/10.1016/j.theriogenology.2022.12.009. PMid:36525862.
http://doi.org/10.1016/j.theriogenology....
). Further, sperm-borne L-citrulline and seminal plasma-derived tryptophan have been proposed as potential sperm freezability markers in boars (Sui et al., 2023Sui H, Sheng M, Luo H, Liu G, Meng F, Cao Z, Zhang Y. Characterization of freezability-associated metabolites in boar semen. Theriogenology. 2023;196:88-96. http://doi.org/10.1016/j.theriogenology.2022.11.013. PMid:36401936.
http://doi.org/10.1016/j.theriogenology....
). Similarly, numerous studies have reported the beneficial effects of free amino acids (e.g., alanine, glutamine, histidine, and proline), acting as inhibitors of lipid peroxidation or osmotic regulators. Their presence in extenders or detection in semen has been associated with sperm freezability, thereby enhancing post-thaw viability and quality (Atessahin et al., 2008Atessahin A, Numan Bucak M, Barbaros Tuncer P, Kızıl M. Effects of anti-oxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze-thawing process. Small Rumin Res. 2008;77(1):38-44. http://doi.org/10.1016/j.smallrumres.2008.03.002.
http://doi.org/10.1016/j.smallrumres.200...
; Saravia et al., 2009Saravia F, Wallgren M, Johannisson A, Calvete JJ, Sanz L, Peña FJ, Roca J, Rodríguez-Martínez H. Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in MiniFlatPacks. Theriogenology. 2009;71(4):662-75. http://doi.org/10.1016/j.theriogenology.2008.09.037. PMid:18952274.
http://doi.org/10.1016/j.theriogenology....
; Trimeche et al., 1999Trimeche A, Yvon JM, Vidament M, Palmer E, Magistrini M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology. 1999;52(1):181-91. http://doi.org/10.1016/S0093-691X(99)00120-X. PMid:10734416.
http://doi.org/10.1016/S0093-691X(99)001...
; Ugur et al., 2020Ugur MR, Dinh T, Hitit M, Kaya A, Topper E, Didion B, Memili E. Amino acids of seminal plasma associated with freezability of bull sperm. Front Cell Dev Biol. 2020;7:347. http://doi.org/10.3389/fcell.2019.00347. PMid:31993417.
http://doi.org/10.3389/fcell.2019.00347...
).

Similarly, numerous proteomic analyses of sperm ejaculates (sperm and seminal plasma) have unraveled biomarkers (Table 1) and molecular pathways associated with high-quality spermatozoa of many livestock species (Zhu et al., 2020Zhu W, Zhang Y, Ren C, Cheng X, Chen J, Ge Z, Sun ZP, Zhuo X, Sun FF, Chen YL, Jia XJ, Zhang Z. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J Proteomics. 2020;210:103438. http://doi.org/10.1016/j.jprot.2019.103438. PMid:31271902.
http://doi.org/10.1016/j.jprot.2019.1034...
; Gaitskell-Phillips et al., 2021aGaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Gil MC, Ortega-ferrusola C, Peña FJ. Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thaw†. Biol Reprod. 2021a;104(5):1097-113. http://doi.org/10.1093/biolre/ioab003. PMid:33438027.
http://doi.org/10.1093/biolre/ioab003...
; Hitit and Memili, 2022Hitit M, Memili E. Sperm signatures of fertility and freezability. Anim Reprod Sci. 2022;247:107147. http://doi.org/10.1016/j.anireprosci.2022.107147. PMid:36379193.
http://doi.org/10.1016/j.anireprosci.202...
). For instance, a study revealed hundreds of differentially expressed proteins between low- and high-freezability buck spermatozoa, with several of these proteins associated with various biological pathways influencing freezability (Sun et al., 2023Sun P, Zhang G, Xian M, Zhang G, Wen F, Hu Z, Hu J. Proteomic analysis of frozen–thawed spermatozoa with different levels of freezability in dairy goats. Int J Mol Sci. 2023;24(21):15550. http://doi.org/10.3390/ijms242115550. PMid:37958534.
http://doi.org/10.3390/ijms242115550...
). Other studies have revealed protein markers (e.g., heat shock protein 90 or HSP90, heat shock protein A8 or HSPA8, or lipocalin-type prostaglandin D synthase or L-PDGS) associated with the sperm freezability status (Ugur et al., 2019Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in Cryopreservation of Bull Sperm. Front Vet Sci. 2019;6:268. http://doi.org/10.3389/fvets.2019.00268. PMid:31552277.
http://doi.org/10.3389/fvets.2019.00268...
). These proteins and metabolites can serve as biomarkers to target high-freezability spermatozoa or could be supplemented associated with nanoparticles in extenders (Table 2). The potential of various nanoparticles, including liposomes and exosomes for successful semen cryopreservation have been evocated in previous works, summarized by (Saadeldin et al., 2020Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel). 2020;10(12):2281. http://doi.org/10.3390/ani10122281. PMid:33287256.
http://doi.org/10.3390/ani10122281...
).

Liposome vesicle nanoparticles loaded or not with the identified biomarkers can fuse with the sperm plasma membrane and deliver their contents within the sperm cytoplasm to mitigate sperm damage caused by the freezing-thawing process (He et al., 2001He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod. 2001;64(1):69-79. http://doi.org/10.1095/biolreprod64.1.69. PMid:11133660.
http://doi.org/10.1095/biolreprod64.1.69...
; Purdy and Graham, 2015Purdy PH, Graham JK. Membrane modification strategies for cryopreservation. In: Wolkers W, Oldenhof H, editors. Cryopreservation and freeze-drying protocols. New York: Springer; 2015. p. 337-42. http://doi.org/10.1007/978-1-4939-2193-5_15.
http://doi.org/10.1007/978-1-4939-2193-5...
). The addition of liposomes in egg-free commercial extender (e.g., OptiXcell®) attenuates the damages of bull, buffalo (Ansari et al., 2016Ansari MS, Rakha BA, Akhter S, Ashiq M. OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm. Theriogenology. 2016;85(3):528-32. http://doi.org/10.1016/j.theriogenology.2015.09.035. PMid:26522702.
http://doi.org/10.1016/j.theriogenology....
), and dromedary camel (Al-Bulushi et al., 2019Al-Bulushi S, Manjunatha BM, Bathgate R, Rickard JP, De Graaf SP. Liquid storage of dromedary camel semen in different extenders. Anim Reprod Sci. 2019;207:95-106. http://doi.org/10.1016/j.anireprosci.2019.06.008. PMid:31208848.
http://doi.org/10.1016/j.anireprosci.201...
; Swelum et al., 2019Swelum AA-A, Saadeldin IM, Ba-Awadh H, Al-Mutary MG, Moumen AF, Alowaimer AN, Abdalla H. Efficiency of Commercial Egg Yolk-Free and Egg Yolk-Supplemented Tris-Based Extenders for Dromedary Camel Semen Cryopreservation. Animals (Basel). 2019;9(11):999. http://doi.org/10.3390/ani9110999. PMid:31752406.
http://doi.org/10.3390/ani9110999...
) sperm. Similarly, exosomes with specific contents may play a crucial role in repairing damaged sperm during freezing-thawing (Saadeldin et al., 2020Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel). 2020;10(12):2281. http://doi.org/10.3390/ani10122281. PMid:33287256.
http://doi.org/10.3390/ani10122281...
). Furthermore, incubation of spermatozoa with exosomes before cooling or post-thawing increases the antioxidant activity of stored spermatozoa, improving motility, viability, mitochondrial activity, and membrane integrity of post-thaw canine (Qamar et al., 2019Qamar AY, Fang X, Kim MJ, Cho J. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel). 2019;9(11):865. http://doi.org/10.3390/ani9110865. PMid:31731505.
http://doi.org/10.3390/ani9110865...
) and rat (Mokarizadeh et al., 2013Mokarizadeh A, Rezvanfar M, Dorostkar K, Abdollahi M. Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol. 2013;42:78-84. http://doi.org/10.1016/j.reprotox.2013.07.024. PMid:23958892.
http://doi.org/10.1016/j.reprotox.2013.0...
) semen, while decreases the levels of ROS and malondialdehyde content. Furthermore, classes of nanoparticles can be used to discriminate high versus low freezability spermatozoa for enhanced fertility. The design of magnetic nanoparticle conjugates to target a population of spermatozoa has shown beneficial, with no toxicity effects, in enriching bovine (Odhiambo et al., 2014Odhiambo JF, Dejarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky P. Increased conception rates in beef cattle inseminated with nanopurified bull downloaded from downloaded from. Biol Reprod. 2014;91(4):97. http://doi.org/10.1095/biolreprod.114.121897. PMid:25232015.
http://doi.org/10.1095/biolreprod.114.12...
), equine (Domínguez et al., 2018Domínguez E, Moreno-Irusta A, Castex HR, Bragulat AF, Ugaz C, Clemente H, Giojalas L, Losinno L. Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study. J Equine Vet Sci. 2018;65:123-7. http://doi.org/10.1016/j.jevs.2018.04.005.
http://doi.org/10.1016/j.jevs.2018.04.00...
), and porcine (Durfey et al., 2019Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol. 2019;10(1):14. http://doi.org/10.1186/s40104-018-0307-4. PMid:30774950.
http://doi.org/10.1186/s40104-018-0307-4...
) semen with desired sub-populations.

Sperm preservation

Liquid sperm preservation in an appropriate extender is critical for prolonged chilled (15-18oC) or cold (4-10oC) storage, especially in species with poor freezability spermatozoa such as pigs. Harvested semen are generally mixed with extenders containing various protective and nutritive compounds for spermatozoa survival (Kameni et al., 2021Kameni SL, Meutchieye F, Ngoula F. Liquid storage of ram semen: associated damages and improvement. Open J Anim Sci. 2021;11(3):473-500. http://doi.org/10.4236/ojas.2021.113033.
http://doi.org/10.4236/ojas.2021.113033...
; Wiebke et al., 2022Wiebke M, Hensel B, Nitsche-Melkus E, Jung M, Schulze M. Cooled storage of semen from livestock animals (part I): boar, bull, and stallion. Anim Reprod Sci. 2022;246:106822. http://doi.org/10.1016/j.anireprosci.2021.106822. PMid:34400028.
http://doi.org/10.1016/j.anireprosci.202...
), and maintaining extended semen at low temperatures during storage is crucial to reducing sperm metabolism and ATP production, and detrimental byproducts (e.g., reactive oxygen species or ROS) are routine in breeding studs for sperm performance preservation. However, despite these precautions, spermatozoa still experience harmful effects of metabolic decoupling, ion imbalance, activated proteases, cellular acidosis, energy deprivation, and ROS that gradually accumulate in the medium and weaken spermatozoa through multiple damages (Falchi et al., 2018bFalchi L, Galleri G, Zedda MT, Pau S, Bogliolo L, Ariu F, Ledda S. Liquid storage of ram semen for 96 hours: effects on kinematic parameters, membranes and DNA integrity, and ROS production. Livest Sci. 2018b;207:1-6. http://doi.org/10.1016/j.livsci.2017.11.001.
http://doi.org/10.1016/j.livsci.2017.11....
; Ugur et al., 2019Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in Cryopreservation of Bull Sperm. Front Vet Sci. 2019;6:268. http://doi.org/10.3389/fvets.2019.00268. PMid:31552277.
http://doi.org/10.3389/fvets.2019.00268...
; Kameni et al., 2021Kameni SL, Meutchieye F, Ngoula F. Liquid storage of ram semen: associated damages and improvement. Open J Anim Sci. 2021;11(3):473-500. http://doi.org/10.4236/ojas.2021.113033.
http://doi.org/10.4236/ojas.2021.113033...
).

ROS are among the many toxins the spermatozoa release in the extender, affecting sperm quality during prolonged preservation. The use of antioxidative nanoparticles, such as cerium oxide and vitamin E nanoemulsions, has shown beneficial effects on ram spermatozoa during chilled preservation (Falchi et al., 2018aFalchi L, Galleri G, Dore GM, Zedda MT, Pau S, Bogliolo L, Ariu F, Pinna A, Nieddu S, Innocenzi P, Ledda S. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4°C for 96 hours. Reprod Biol Endocrinol. 2018a;16(1):19. http://doi.org/10.1186/s12958-018-0339-9. PMid:29510737.
http://doi.org/10.1186/s12958-018-0339-9...
; Jurado-Campos et al., 2023Jurado-Campos A, Soria-Meneses PJ, Arenas-Moreira M, Alonso-Moreno C, Rodríguez-Robledo V, Soler AJ, Garde JJ, Del Rocío Fernández-Santos M. Minimizing sperm oxidative stress using nanotechnology for breeding programs in rams. J Anim Sci Biotechnol. 2023;14(1):106. http://doi.org/10.1186/s40104-023-00907-3. PMid:37559077.
http://doi.org/10.1186/s40104-023-00907-...
) Nonetheless, the different abilities of boar semen in sustaining chilling have permitted the identification of differentially expressed proteins (187) of which several were involved in the defense mechanisms against oxidative stress, assembly and maintenance of sperm motility, and sperm metabolism and capacitation. These subsets of proteins could be considered putative biomarkers of sperm quality or preservation (Song et al., 2024Song C, Zhang Z, Wei Y, Dou Y, Qi K, Li X, Yang F, Li X, Wang K, Qiao R, Han X. Proteomic analysis of boar sperm with differential ability of liquid preservation at 17°C. Theriogenology. 2024;215:103-12. http://doi.org/10.1016/j.theriogenology.2023.11.017. PMid:38029685.
http://doi.org/10.1016/j.theriogenology....
). The identified biomarkers are gold mines for the application of appropriate nanoparticles to discriminate high versus low sperm preservability. There is potential in designing magnetic nanoparticle conjugates to selectively target a population of spermatozoa, thus enriching semen doses with high freezability spermatozoa. Furthermore, the application of magnetic nanoparticle conjugates to target the identified protein marker candidates has potential to contribute to enhanced fertility outcomes of preserved semen (Odhiambo et al., 2014Odhiambo JF, Dejarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky P. Increased conception rates in beef cattle inseminated with nanopurified bull downloaded from downloaded from. Biol Reprod. 2014;91(4):97. http://doi.org/10.1095/biolreprod.114.121897. PMid:25232015.
http://doi.org/10.1095/biolreprod.114.12...
; Feugang et al., 2015aFeugang JM, Liao SF, Crenshaw MA, Clemente H, Willard ST, Ryan PL. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. Reprod Med Genet. 2015a;3(2):145.).

Semen redox status

Oxidative stress results from the excess of ROS produced during the oxygen metabolism of spermatozoa. To maintain optimal sperm function, a balance between oxidation and reduction is necessary, involving the neutralization of ROS through antioxidants. The antioxidative status has been linked to sperm fertility potential, having beneficial roles at normal levels during acrosome reaction and fusion with the oocyte. Rupture of the redox equilibrium leads to oxidative stress, lipid peroxidation, and subsequent alterations in sperm characteristics and fertility (Gundogan et al., 2010Gundogan M, Yeni D, Avdatek F, Fidan AF. Influence of sperm concentration on the motility, morphology, membrane and DNA integrity along with oxidative stress parameters of ram sperm during liquid storage. Anim Reprod Sci. 2010;122(3–4):200-7. http://doi.org/10.1016/j.anireprosci.2010.08.012. PMid:20828947.
http://doi.org/10.1016/j.anireprosci.201...
; Sapanidou et al., 2023Sapanidou V, Tsantarliotou MP, Lavrentiadou SN. A review of the use of antioxidants in bovine sperm preparation protocols. Anim Reprod Sci. 2023;251:107215. http://doi.org/10.1016/j.anireprosci.2023.107215. PMid:37001221.
http://doi.org/10.1016/j.anireprosci.202...
). Redox disequilibrium is aggravated during post-collection semen manipulation (centrifugation, freezing, thawing, and incubation) causing damage to sperm membranes rich in polyunsaturated fatty acids. Lipid peroxidation has shown a negative correlation with sperm characteristics of bulls (Castiglioni et al., 2021Castiglioni VC, Felipe A, Siqueira P, Bicudo LDC, De Almeida TG, Rose T, Nichi M, Diego J, Losano DA, Visitin JA. Lipid peroxidation in bull semen influences sperm traits and oxidative potential of Percoll ® -selected sperm. Zygote. 2021;29(6):476-83. http://doi.org/10.1017/S0967199421000228. PMid:33818357.
http://doi.org/10.1017/S0967199421000228...
), while high-fertility bulls spermatozoa showed less susceptibility to lipid peroxidation and overexpressed transcripts associated with the reduction process compared to their low-fertile counterparts (Alvarez-Rodriguez et al., 2021Alvarez-Rodriguez M, Martinez CA, Roca J, Rodriguez-Martinez H. mRNA expression of oxidative-reductive proteins in boars with documented different fertility can identify relevant prognostic biomarkers. Res Vet Sci. 2021;141:195-202. http://doi.org/10.1016/j.rvsc.2021.10.022. PMid:34763256.
http://doi.org/10.1016/j.rvsc.2021.10.02...
; Saraf et al., 2021Saraf KK, Kumaresan A, Sinha MK, Datta TK. Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high‐ and low‐fertile crossbred bulls. Andrologia. 2021;53(5):e14029. http://doi.org/10.1111/and.14029. PMid:33665828.
http://doi.org/10.1111/and.14029...
; Leite et al., 2022Leite RF, Losano JDA, Kawai GKV, Rui BR, Nagai KK, Castiglioni VC, Siqueira AFP, D’Avila Assumpção MEO, Baruselli PS, Nichi M. Sperm function and oxidative status: effect on fertility in Bos taurus and Bos indicus bulls when semen is used for fixed-time artificial insemination. Anim Reprod Sci. 2022;237:106922. http://doi.org/10.1016/j.anireprosci.2022.106922. PMid:35065462.
http://doi.org/10.1016/j.anireprosci.202...
). Meanwhile, the oxidative stress index of chilled-stored boar semen showed a negative correlation with sperm motility and in vivo fertility (Barranco et al., 2021Barranco I, Rubio CP, Tvarijonaviciute A, Rodriguez-Martinez H, Roca J. Measurement of oxidative stress index in seminal plasma can predict in vivo fertility of liquid-stored porcine artificial insemination semen doses. Antioxidants. 2021;10(8):1203. http://doi.org/10.3390/antiox10081203. PMid:34439450.
http://doi.org/10.3390/antiox10081203...
). The mitigation of the adverse effects of oxidative stress during preservation includes supplementation of semen extenders with various antioxidants (Amidi et al., 2016Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 2016;17(4):745-56. http://doi.org/10.1007/s10561-016-9566-5. PMid:27342905.
http://doi.org/10.1007/s10561-016-9566-5...
; Hosseinmardi et al., 2022Hosseinmardi M, Siadat F, Sharafi M, Roodbari NH, Hezavehei M. Protective effect of cerium oxide nanoparticles on human sperm function during cryopreservation. Biopreserv Biobank. 2022;20(1):24-30. http://doi.org/10.1089/bio.2021.0020. PMid:34271833.
http://doi.org/10.1089/bio.2021.0020...
; Kameni et al., 2022Kameni SL, Dongmo ABN, Tebug TT, Bomba FDT, Meutchieye F, Ngoula F. Spirulina (Arthrospira platensis) extract promotes motility, microscopic, and antioxidative parameters of ram semen during refrigerated storage. BSJ Agri. 2022;5(4):481-90. http://doi.org/10.47115/bsagriculture.1162523.
http://doi.org/10.47115/bsagriculture.11...
), providing extended protection to spermatozoa during storage. Innovative approaches for sustainable protection of spermatozoa involve utilizing nanoparticles, which show potential as antioxidants owing to their inherent redox activity. These nanoparticles aid in neutralizing and alleviating oxidative stress within extenders during (cryo)preservation (Asadi et al., 2023Asadi Z, Safari-Faramani R, Aghaz F. Effects of adding antioxidant nanoparticles on sperm parameters of non-human species after the freezing and thawing process: a systematic review and meta-analysis. Anim Reprod Sci. 2023;257:107323. http://doi.org/10.1016/j.anireprosci.2023.107323. PMid:37666048.
http://doi.org/10.1016/j.anireprosci.202...
). Hence, the intrinsic antioxidative effects of several metal oxides (e.g., cerium, cupric, and zinc oxides), vitamin E nanoemulsions, and noble metals (e.g., gold and platinum) have been shown to offer beneficial effects, such as improved post-storage sperm motility and membrane integrity (Falchi, et al., 2018cFalchi L, Khalil WA, Hassan M, Marei WFA. Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med. 2018c;6(2):265-9. http://doi.org/10.1016/j.ijvsm.2018.09.001. PMid:30564607.
http://doi.org/10.1016/j.ijvsm.2018.09.0...
; Valgimigli et al., 2018Valgimigli L, Baschieri A, Amorati R. Antioxidant activity of nanomaterials. J Mater Chem B Mater Biol Med. 2018;6(14):2036-51. http://doi.org/10.1039/C8TB00107C. PMid:32254427.
http://doi.org/10.1039/C8TB00107C...
; Hashem and Gonzales-Bulnes, 2020Hashem NM, Gonzales-Bulnes A. State-of-the-art and prospective of nanotechnologies. Animals (Basel). 2020;10(5):840. http://doi.org/10.3390/ani10050840. PMid:32414174.
http://doi.org/10.3390/ani10050840...
; Hosseinmardi et al., 2022Hosseinmardi M, Siadat F, Sharafi M, Roodbari NH, Hezavehei M. Protective effect of cerium oxide nanoparticles on human sperm function during cryopreservation. Biopreserv Biobank. 2022;20(1):24-30. http://doi.org/10.1089/bio.2021.0020. PMid:34271833.
http://doi.org/10.1089/bio.2021.0020...
; Jurado-Campos et al., 2023Jurado-Campos A, Soria-Meneses PJ, Arenas-Moreira M, Alonso-Moreno C, Rodríguez-Robledo V, Soler AJ, Garde JJ, Del Rocío Fernández-Santos M. Minimizing sperm oxidative stress using nanotechnology for breeding programs in rams. J Anim Sci Biotechnol. 2023;14(1):106. http://doi.org/10.1186/s40104-023-00907-3. PMid:37559077.
http://doi.org/10.1186/s40104-023-00907-...
; Khalique et al., 2024Khalique MA, Andrabi SMH, Majeed KA, Yousaf MS, Ahmad N, Tahir SK, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Zaneb H, Rehman H. Cerium oxide nanoparticles improve the post-thaw quality and in-vivo fertility of Beetal buck spermatozoa. Theriogenology. 2024;214:166-72. http://doi.org/10.1016/j.theriogenology.2023.10.022. PMid:37879286.
http://doi.org/10.1016/j.theriogenology....
) These antioxidant nanoparticles in (cryo) preservation media improve the spermatozoa’s redox status and sperm attributes, which may positively impact pregnancy rates.

Furthermore, unilamellar liposome vesicles, prepared exosomes, and mesoporous nanoparticles can be loaded with different antioxidants for controlled release during storage. Liposomes loaded with antioxidants (e.g. quercetin, lycopene) and other lipid types (e.g., soybean lecithin) provide greater cryoprotection of spermatozoa of livestock species such as bovine (Röpke et al., 2011Röpke T, Oldenhof H, Leiding C, Sieme H, Bollwein H, Wolkers WF. Liposomes for cryopreservation of bovine sperm. Theriogenology. 2011;76(8):1465-72. http://doi.org/10.1016/j.theriogenology.2011.06.015. PMid:21820724.
http://doi.org/10.1016/j.theriogenology....
; Kumar et al., 2015Kumar P, Saini M, Kumar D, Balhara AK, Yadav SP, Singh P, Yadav PS. Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Anim Reprod Sci. 2015;159:38-45. http://doi.org/10.1016/j.anireprosci.2015.05.010. PMid:26065809.
http://doi.org/10.1016/j.anireprosci.201...
), porcine (He et al., 2001He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod. 2001;64(1):69-79. http://doi.org/10.1095/biolreprod64.1.69. PMid:11133660.
http://doi.org/10.1095/biolreprod64.1.69...
), ovine (Luna-Orozco et al., 2019Luna-Orozco JR, González-Ramos MA, Calderón-Leyva G, Gaytán-Alemán LR, Arellano-Rodríguez MA, Ángel-García O, Véliz-Deras FG. Comparison of different diluents based on liposomes and egg yolk for ram semen cooling and cryopreservation. IJVR. 2019;20(2):126-30. PMid:31531035.; Mafolo et al., 2020Mafolo KS, Pilane CM, Chitura T, Nedambale TL. Use of phosphatidylcholine in Tris-based extender with or without egg yolk to freeze Bapedi ram semen. S Afr J Anim Sci. 2020;50(3):389-96. http://doi.org/10.4314/sajas.v50i3.5.
http://doi.org/10.4314/sajas.v50i3.5...
; Mortazavi et al., 2020Mortazavi S, Eslami M, Farrokhi-ardabili F. Comparison of different carrier-compounds and varying concentrations of oleic acid on freezing tolerance of ram spermatozoa in tris-citric acid-egg yolk plasma semen diluent. Anim Reprod Sci. 2020;219:106533. http://doi.org/10.1016/j.anireprosci.2020.106533. PMid:32828408.
http://doi.org/10.1016/j.anireprosci.202...
), and equine (Pillet et al., 2012Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, Desherces S, Schmitt E, Magistrini M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology. 2012;77(2):268-79. http://doi.org/10.1016/j.theriogenology.2011.08.001. PMid:21924469.
http://doi.org/10.1016/j.theriogenology....
; Medina-León et al., 2019Medina-León AZ, Domínguez-mancera B, Cazalez-penino N, Cervantes-Acosta P, Jácome-Sosa E, Romero-Salas D, Barrientos-Morales M. Cryopreservation of horse semen with a liposome and trehalose added extender. Austral J Vet Sci. 2019;51(3):119-23. http://doi.org/10.4067/S0719-81322019000300119.
http://doi.org/10.4067/S0719-81322019000...
).

Sperm sexing

Sperm sexing is a powerful tool that selectively separates X and Y chromosome-bearing sperm cells to produce animals of predetermined sex (Yata, 2021Yata VK. Sperm sexing: methods, applications, and the possible role of microfluidics. In: Yata VK, editor. Microfluidics for assisted reproduction in animals. Singapore: Springer; 2021. p. 89-109.. http://doi.org/10.1007/978-981-33-4876-9_6.
http://doi.org/10.1007/978-981-33-4876-9...
). Flow cytometry is the modern conventional method for sperm sexing that uses lasers to differentiate between sperm genders based on their DNA content (Ugur et al., 2019Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in Cryopreservation of Bull Sperm. Front Vet Sci. 2019;6:268. http://doi.org/10.3389/fvets.2019.00268. PMid:31552277.
http://doi.org/10.3389/fvets.2019.00268...
). Sperm sexing offers advantages, and the commercial demand for sexed semen is increasing in cattle. However, the resulting low yield of sexed sperm numbers becomes a significant challenge, with species like pigs and horses requiring more sperm per insemination dose (Quelhas et al., 2023Quelhas J, Pinto-Pinho P, Lopes G, Rocha A, Pinto-Leite R, Fardilha M, Colaço B, Feugang J, Chapwanya A, Bianchi M, Alves R. Sustainable animal production: exploring the benefits of sperm sexing technologies in addressing critical industry challenges. Front Vet Sci. 2023;10:1181659. http://doi.org/10.3389/fvets.2023.1181659. PMid:38076548.
http://doi.org/10.3389/fvets.2023.118165...
). A recent proteomics study has identified specific proteins of the bull sperm membrane, of which 12 and 3 were upregulated in X- and Y-bearing spermatozoa, respectively (Quelhas et al., 2021Quelhas J, Santiago J, Matos B, Rocha A, Lopes G, Fardilha M. Bovine semen sexing: sperm membrane proteomics as candidates for immunological selection of X‐ and Y‐chromosome‐bearing sperm. Vet Med Sci. 2021;7(5):1633-41. http://doi.org/10.1002/vms3.540. PMid:34037311.
http://doi.org/10.1002/vms3.540...
). These proteins could be potential candidates for immunoselection using nanotechnology tools like magnetic nanoparticles. A large-scale production of magnetic nanoparticles is needed, and their surface modification to target differential negative charges between X and Y sperm has successfully targeted Y sperm, leaving semen enriched with X spermatozoa (Domínguez et al., 2018Domínguez E, Moreno-Irusta A, Castex HR, Bragulat AF, Ugaz C, Clemente H, Giojalas L, Losinno L. Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study. J Equine Vet Sci. 2018;65:123-7. http://doi.org/10.1016/j.jevs.2018.04.005.
http://doi.org/10.1016/j.jevs.2018.04.00...
).

Conclusions and perspectives

Advanced technologies have enabled a deeper understanding of sperm biology and the processes involved in sperm phenotype and physiological status. Identifying biomarkers linked to sperm phenotype and their combination with specific nanoparticles offer new opportunities for precision breeding in livestock. This technological approach can be extended to sperm manipulation to enhance the success of various sperm biotechnologies, such as (cryo)preservation, sexing, and sperm-mediated gene transfer. Further research using nanotechnology tools is essential to improve the success rate of assisted reproduction in livestock, especially during critical seasons and instances of animal diseases.

List of abbreviations

ACADM: Acyl-Coenzyme A dehydrogenase medium chain

ADAM2: Disintegrin and metalloproteinase domain-containing protein 2

AI: Artificial insemination

AP2S1: Adaptor related protein complex 2 subunit sigma 1

ATP: Adenosine triphosphate

BAMBI: BMP and activin membrane bound inhibitor

BBS7: Bardet-Biedl syndrome 7

cAMP: Cyclic adenosine monophosphate

DHRS4: Dehydrogenase/reductase 4

DNA: Deoxyribonucleic acid

EAF2: ELL associated factor 2

ENO4: Enolase 4

FOS: Fos proto-oncogene

GLRX: Glutaredoxin

GPX5: Glutathione peroxidase 5

HSP90: Heat shock protein 90

HSPA8: Heat shock protein A8

HSPB1: Heat shock protein family B (small) member 1

IZUMO1: Izumo sperm-egg fusion protein 1

L-PDGS: Lipocalin-type prostaglandin D synthase

miRNA: Micro ribonucleic acid

mRNA: Messenger ribonucleic acid

MWNT: Multi-walled carbon nanotube

ND6: Nicotinamide adenine dinucleotide + hydrogen dehydrogenase subunit 6

NFATC3: Nuclear factor of activated T cells 3

NUDFB8: Nicotinamide adenine dinucleotide + hydrogen: Ubiquinone Oxidoreductase Subunit B8

OXR1: Oxidation resistance 1

PDIA4: Protein disulfide isomerase family A member 4

PE: Polyethylene

PEG: Polyethylene glycol

PTPN2: Protein tyrosine phosphatase non-receptor type 2

PTPRU: Protein tyrosine phosphatase receptor type U

QPCT: Glutaminyl-peptide cyclotransferase

RNA: Ribonucleic acid

ROS: Reactive oxygen species

rRNA: Ribosomal ribonucleic acid

SDHC: Succinate dehydrogenase complex subunit C

SNARE: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SOF1: Sperm-oocyte fusion required 1

SPAC6: Sperm acrosome associated 6

SWCNT: Single-walled carbon nanotube

TMEM95: Transmembrane protein 95

  • Financial support: This work was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project accession #1016077 (Multistate # W4171 and NCERA-57), and USDA-ARS Biophotonics (project # 6066-31000-015-00D).
  • How to cite: Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod. 2024;21(3):e20240033. https://doi.org/10.1590/1984-3143-AR2024-0033

References

  • Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction. 2014;147(1):R1-14. http://doi.org/10.1530/REP-13-0358 PMid:24149515.
    » http://doi.org/10.1530/REP-13-0358
  • Abedin F, Asmatulu E, Andalib MN. Nanomaterials and human health: an overview. In: Kumar V, Guleria P, Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanotoxicology and nanoecotoxicology. Cham: Springer; 2021. p. 165-80. http://doi.org/10.1007/978-3-030-69492-0_7
    » http://doi.org/10.1007/978-3-030-69492-0_7
  • Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 2016;52(9):953-60. http://doi.org/10.1007/s11626-016-0061-x PMid:27338736.
    » http://doi.org/10.1007/s11626-016-0061-x
  • Aitken RJ, Baker MA. The role of proteomics in understanding sperm cell biology. Int J Androl. 2008;31(3):295-302. http://doi.org/10.1111/j.1365-2605.2007.00851.x PMid:18179557.
    » http://doi.org/10.1111/j.1365-2605.2007.00851.x
  • Al-Bulushi S, Manjunatha BM, Bathgate R, Rickard JP, De Graaf SP. Liquid storage of dromedary camel semen in different extenders. Anim Reprod Sci. 2019;207:95-106. http://doi.org/10.1016/j.anireprosci.2019.06.008 PMid:31208848.
    » http://doi.org/10.1016/j.anireprosci.2019.06.008
  • Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell. 2014;157(4):869-81. http://doi.org/10.1016/j.cell.2014.03.040 PMid:24813610.
    » http://doi.org/10.1016/j.cell.2014.03.040
  • Alvarez-Rodriguez M, Martinez CA, Roca J, Rodriguez-Martinez H. mRNA expression of oxidative-reductive proteins in boars with documented different fertility can identify relevant prognostic biomarkers. Res Vet Sci. 2021;141:195-202. http://doi.org/10.1016/j.rvsc.2021.10.022 PMid:34763256.
    » http://doi.org/10.1016/j.rvsc.2021.10.022
  • Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl. 2008;29(5):469-87. http://doi.org/10.2164/jandrol.107.004655 PMid:18497337.
    » http://doi.org/10.2164/jandrol.107.004655
  • Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 2016;17(4):745-56. http://doi.org/10.1007/s10561-016-9566-5 PMid:27342905.
    » http://doi.org/10.1007/s10561-016-9566-5
  • Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals (Basel). 2021;14(8):707. http://doi.org/10.3390/ph14080707 PMid:34451803.
    » http://doi.org/10.3390/ph14080707
  • Ansari MS, Rakha BA, Akhter S, Ashiq M. OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm. Theriogenology. 2016;85(3):528-32. http://doi.org/10.1016/j.theriogenology.2015.09.035 PMid:26522702.
    » http://doi.org/10.1016/j.theriogenology.2015.09.035
  • Arias LS, Pessan JP, Vieira APM, De Lima TMT, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel). 2018;7(2):46. http://doi.org/10.3390/antibiotics7020046 PMid:29890753.
    » http://doi.org/10.3390/antibiotics7020046
  • Asadi Z, Safari-Faramani R, Aghaz F. Effects of adding antioxidant nanoparticles on sperm parameters of non-human species after the freezing and thawing process: a systematic review and meta-analysis. Anim Reprod Sci. 2023;257:107323. http://doi.org/10.1016/j.anireprosci.2023.107323 PMid:37666048.
    » http://doi.org/10.1016/j.anireprosci.2023.107323
  • Atessahin A, Numan Bucak M, Barbaros Tuncer P, Kızıl M. Effects of anti-oxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze-thawing process. Small Rumin Res. 2008;77(1):38-44. http://doi.org/10.1016/j.smallrumres.2008.03.002
    » http://doi.org/10.1016/j.smallrumres.2008.03.002
  • Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077-84. http://doi.org/10.1016/j.fertnstert.2008.01.015 PMid:18440529.
    » http://doi.org/10.1016/j.fertnstert.2008.01.015
  • Bae JW, Yi JK, Jeong EJ, Lee WJ, Hwang JM, Kim DH, Ha JJ, Kwon WS. Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod Biol. 2022;22(2):100617. http://doi.org/10.1016/j.repbio.2022.100617 PMid:35180576.
    » http://doi.org/10.1016/j.repbio.2022.100617
  • Baker MA, Reeves G, Hetherington L, Müller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1(5):524-32. http://doi.org/10.1002/prca.200601013 PMid:21136703.
    » http://doi.org/10.1002/prca.200601013
  • Barranco I, Rubio CP, Tvarijonaviciute A, Rodriguez-Martinez H, Roca J. Measurement of oxidative stress index in seminal plasma can predict in vivo fertility of liquid-stored porcine artificial insemination semen doses. Antioxidants. 2021;10(8):1203. http://doi.org/10.3390/antiox10081203 PMid:34439450.
    » http://doi.org/10.3390/antiox10081203
  • Barwant MM, Rasool A, Mannam VK, Hussain A, Abdullah M, Memon Z, Ahamad MI, Shirani M, Maqbool KZ, Majeed M, Asif M, Khan UA. Nanotechnology applications in livestock farming and animal health. In: Rajput V, Singh A, Ghazaryan K, Alexiou A, Said Al-Tawaha A, editors. Harnessing nanoomics and nanozymes for sustainable agriculture. Hershey: IGI Global; 2024. p. 413–42. http://doi.org/10.4018/979-8-3693-1890-4.ch020
    » http://doi.org/10.4018/979-8-3693-1890-4.ch020
  • Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodal applications: a review. Materials (Basel). 2010;3(4):2260-345. http://doi.org/10.3390/ma3042260
    » http://doi.org/10.3390/ma3042260
  • Castiglioni VC, Felipe A, Siqueira P, Bicudo LDC, De Almeida TG, Rose T, Nichi M, Diego J, Losano DA, Visitin JA. Lipid peroxidation in bull semen influences sperm traits and oxidative potential of Percoll ® -selected sperm. Zygote. 2021;29(6):476-83. http://doi.org/10.1017/S0967199421000228 PMid:33818357.
    » http://doi.org/10.1017/S0967199421000228
  • Cecere JT. Eosin-nigrosin staining in the evaluation of sperm. In: Dascanio JJ, McCue PM, editors. Equine reproductive procedures. Hoboken: John Wiley and Sons; 2014. p 373–6.: http://doi.org/10.1002/9781118904398.ch114.
  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289(5479):625-8. http://doi.org/10.1126/science.289.5479.625 PMid:10915626.
    » http://doi.org/10.1126/science.289.5479.625
  • Cooper TG. Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod. 2005;20(1):9-11. http://doi.org/10.1093/humrep/deh555 PMid:15471925.
    » http://doi.org/10.1093/humrep/deh555
  • Coy P, Cánovas S, Mondéjar I, Saavedra MD, Romar R, Grullón L, Matás C, Avilés M. Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci USA. 2008;105(41):15809-14. http://doi.org/10.1073/pnas.0804422105 PMid:18838686.
    » http://doi.org/10.1073/pnas.0804422105
  • Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147(2):27-42. http://doi.org/10.1530/REP-13-0420 PMid:24218627.
    » http://doi.org/10.1530/REP-13-0420
  • DasGupta MA, Kumaresan AA, Kishor Saraf KA, Karthikkeyan GB, Keshava Prasad BTS, Kumar Modi PB, Ramesha KC, Jeyakumar SC, Manimaran AC. Preliminary comparative deep metabolomic analysis of spermatozoa from zebu and crossbred cattle suggests associations between metabolites, sperm quality and fertility. Reprod Fertil Dev. 2021;33(6):427-36. http://doi.org/10.1071/RD20304 PMid:33775276.
    » http://doi.org/10.1071/RD20304
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509-28. http://doi.org/10.2217/nnm.13.118 PMid:23914966.
    » http://doi.org/10.2217/nnm.13.118
  • Díaz-Miranda EA, Maitan PP, Machado TP, Camilo BS, Lima DA, Okano DS, Penitente-Filho JM, Machado-Neves M, Oliveira LL, Guimarães SEF, Costa EP, Guimarães JD. Disruption of bovine sperm functions in the presence of aplastic midpiece defect. Andrology. 2020;8(1):201-10. http://doi.org/10.1111/andr.12618 PMid:30908900.
    » http://doi.org/10.1111/andr.12618
  • Dilsiz N. Hallmarks of exosomes. Future Sci OA. 2022;8(1):FSO764. http://doi.org/10.2144/fsoa-2021-0102 PMid:34900338.
    » http://doi.org/10.2144/fsoa-2021-0102
  • Dlamini NH, Nguyen T, Gad A, Tesfaye D, Liao SF, Willard ST, Ryan PL, Feugang JM. Characterization of extracellular vesicle-coupled mirna profiles in seminal plasma of boars with divergent semen quality status. Int J Mol Sci. 2023;24(4):3194. http://doi.org/10.3390/ijms24043194 PMid:36834606.
    » http://doi.org/10.3390/ijms24043194
  • Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod. 2015;92(4):92. http://doi.org/10.1095/biolreprod.114.124255 PMid:25673563.
    » http://doi.org/10.1095/biolreprod.114.124255
  • Domínguez E, Moreno-Irusta A, Castex HR, Bragulat AF, Ugaz C, Clemente H, Giojalas L, Losinno L. Sperm sexing mediated by magnetic nanoparticles in donkeys, a preliminary in vitro study. J Equine Vet Sci. 2018;65:123-7. http://doi.org/10.1016/j.jevs.2018.04.005
    » http://doi.org/10.1016/j.jevs.2018.04.005
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5-22. http://doi.org/10.1093/toxsci/kfj130 PMid:16484287.
    » http://doi.org/10.1093/toxsci/kfj130
  • Donaldson K, Tran CL. Inflammation caused by particles and fibers. Inhal Toxicol. 2002;14(1):5-27. http://doi.org/10.1080/089583701753338613 PMid:12122558.
    » http://doi.org/10.1080/089583701753338613
  • Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, Dong W. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget. 2016;7(37):58832-47. http://doi.org/10.18632/oncotarget.11315 PMid:27542209.
    » http://doi.org/10.18632/oncotarget.11315
  • Durairajanayagam D, Rengan AK, Sharma RK, Agarwal A. Sperm biology from production to ejaculation. In: Schattman G, Esteves S, Agarwal A, editors. Unexplained Infertility. New York: Springer; 2015. p. 29–42. http://doi.org/10.1007/978-1-4939-2140-9_5
    » http://doi.org/10.1007/978-1-4939-2140-9_5
  • Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol. 2019;10(1):14. http://doi.org/10.1186/s40104-018-0307-4 PMid:30774950.
    » http://doi.org/10.1186/s40104-018-0307-4
  • Elmi A, Banchelli F, Barone F, Fantinati P, Ventrella D, Forni M, Bacci ML. Semen evaluation and in vivo fertility in a Northern Italian pig farm: can advanced statistical approaches compensate for low sample size? An observational study. Anim Reprod Sci. 2018;192:61-8. http://doi.org/10.1016/j.anireprosci.2018.02.014 PMid:29496343.
    » http://doi.org/10.1016/j.anireprosci.2018.02.014
  • Falchi L, Galleri G, Dore GM, Zedda MT, Pau S, Bogliolo L, Ariu F, Pinna A, Nieddu S, Innocenzi P, Ledda S. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4°C for 96 hours. Reprod Biol Endocrinol. 2018a;16(1):19. http://doi.org/10.1186/s12958-018-0339-9 PMid:29510737.
    » http://doi.org/10.1186/s12958-018-0339-9
  • Falchi L, Galleri G, Zedda MT, Pau S, Bogliolo L, Ariu F, Ledda S. Liquid storage of ram semen for 96 hours: effects on kinematic parameters, membranes and DNA integrity, and ROS production. Livest Sci. 2018b;207:1-6. http://doi.org/10.1016/j.livsci.2017.11.001
    » http://doi.org/10.1016/j.livsci.2017.11.001
  • Falchi L, Khalil WA, Hassan M, Marei WFA. Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med. 2018c;6(2):265-9. http://doi.org/10.1016/j.ijvsm.2018.09.001 PMid:30564607.
    » http://doi.org/10.1016/j.ijvsm.2018.09.001
  • Ferrigno A, Ruvolo G, Capra G, Serra N, Bosco L. Correlation between the DNA fragmentation index (DFI) and sperm morphology of infertile patients. J Assist Reprod Genet. 2021;38(4):979-86. http://doi.org/10.1007/s10815-021-02080-w PMid:33532883.
    » http://doi.org/10.1007/s10815-021-02080-w
  • Feugang JM, Ishak GM, Eggert MW, Arnold RD, Rivers OS, Willard ST, Ryan PL, Gastal EL. Intrafollicular injection of nanomolecules for advancing knowledge on folliculogenesis in livestock. Theriogenology. 2022;192:132-40. http://doi.org/10.1016/j.theriogenology.2022.08.032 PMid:36099803.
    » http://doi.org/10.1016/j.theriogenology.2022.08.032
  • Feugang JM, Liao SF, Crenshaw MA, Clemente H, Willard ST, Ryan PL. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. Reprod Med Genet. 2015a;3(2):145.
  • Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology. 2019;137:75-81. http://doi.org/10.1016/j.theriogenology.2019.05.040 PMid:31204016.
    » http://doi.org/10.1016/j.theriogenology.2019.05.040
  • Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST, Ryan PL. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnology. 2012;10(1):45. http://doi.org/10.1186/1477-3155-10-45 PMid:23241497.
    » http://doi.org/10.1186/1477-3155-10-45
  • Feugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnology. 2015b;13(1):38. http://doi.org/10.1186/s12951-015-0097-1 PMid:26040273.
    » http://doi.org/10.1186/s12951-015-0097-1
  • Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev. 2017;84(9):832-41. http://doi.org/10.1002/mrd.22831 PMid:28481043.
    » http://doi.org/10.1002/mrd.22831
  • Finkelstein M, Etkovitz N, Breitbart H. Ca2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol. 2020;516:110953. http://doi.org/10.1016/j.mce.2020.110953 PMid:32712383.
    » http://doi.org/10.1016/j.mce.2020.110953
  • Fitts CA, Ji N, Li Y, Tan C. Exploiting exosomes in cancer liquid biopsies and drug delivery. Adv Healthc Mater. 2019;8(6):e1801268. http://doi.org/10.1002/adhm.201801268 PMid:30663276.
    » http://doi.org/10.1002/adhm.201801268
  • Fraser L, Brym P, Pareek CS, Mogielnicka-brzozowska M, Paukszto Ł, Jastrze JP, Wasilewska-sakowska K, Ma A. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq. Theriogenology. 2020;142:400-13. http://doi.org/10.1016/j.theriogenology.2019.11.001 PMid:31711689.
    » http://doi.org/10.1016/j.theriogenology.2019.11.001
  • Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81(1):74-84. http://doi.org/10.1016/j.theriogenology.2013.09.005 PMid:24274412.
    » http://doi.org/10.1016/j.theriogenology.2013.09.005
  • Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Gil MC, Ortega-ferrusola C, Peña FJ. Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thaw†. Biol Reprod. 2021a;104(5):1097-113. http://doi.org/10.1093/biolre/ioab003 PMid:33438027.
    » http://doi.org/10.1093/biolre/ioab003
  • Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Da Silva-Álvarez E, Rojo-Domínguez P, Tapia JA, Gil MC, Ortega-Ferrusola C, Peña FJ. Proteins involved in mitochondrial metabolic functions and fertilization predominate in stallions with better motility. J Proteomics. 2021b;247:104335. http://doi.org/10.1016/j.jprot.2021.104335 PMid:34298182.
    » http://doi.org/10.1016/j.jprot.2021.104335
  • Gallo A, Esposito MC, Tosti E, Boni R. Sperm motility, oxidative status, and mitochondrial activity: exploring correlation in different species. Antioxidants. 2021;10(7):1131. http://doi.org/10.3390/antiox10071131 PMid:34356364.
    » http://doi.org/10.3390/antiox10071131
  • Ganguly I, Gaur GK, Kumar S, Mandal DK, Kumar M, Singh U, Kumar S, Sharma A. Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred Frieswal (HF×Sahiwal) bulls. Res Vet Sci. 2013;94(2):256-62. http://doi.org/10.1016/j.rvsc.2012.09.001 PMid:23044178.
    » http://doi.org/10.1016/j.rvsc.2012.09.001
  • Gibbons R, Adeoya-Osiguwa SA, Fraser LR. A mouse sperm decapacitation factor receptor is phosphatidylethanolamine-binding protein 1. Reproduction. 2005;130(4):497-508. http://doi.org/10.1530/rep.1.00792 PMid:16183867.
    » http://doi.org/10.1530/rep.1.00792
  • Gundogan M, Yeni D, Avdatek F, Fidan AF. Influence of sperm concentration on the motility, morphology, membrane and DNA integrity along with oxidative stress parameters of ram sperm during liquid storage. Anim Reprod Sci. 2010;122(3–4):200-7. http://doi.org/10.1016/j.anireprosci.2010.08.012 PMid:20828947.
    » http://doi.org/10.1016/j.anireprosci.2010.08.012
  • Han JW, Jeong J-K, Gurunathan S, Choi Y-J, Das J, Kwon D-N, Cho S-G, Park C, Seo HG, Park J-K, Kim J-H. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology. 2016;10(3):361-73. http://doi.org/10.3109/17435390.2015.1073396 PMid:26470004.
    » http://doi.org/10.3109/17435390.2015.1073396
  • Hashem NM, Gonzales-Bulnes A. State-of-the-art and prospective of nanotechnologies. Animals (Basel). 2020;10(5):840. http://doi.org/10.3390/ani10050840 PMid:32414174.
    » http://doi.org/10.3390/ani10050840
  • He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod. 2001;64(1):69-79. http://doi.org/10.1095/biolreprod64.1.69 PMid:11133660.
    » http://doi.org/10.1095/biolreprod64.1.69
  • Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1(1):108. http://doi.org/10.1186/1477-7827-1-108 PMid:14617368.
    » http://doi.org/10.1186/1477-7827-1-108
  • Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol. 2017;8(1):26. http://doi.org/10.1186/s40104-017-0157-5 PMid:28316783.
    » http://doi.org/10.1186/s40104-017-0157-5
  • Hitit M, Memili E. Sperm signatures of fertility and freezability. Anim Reprod Sci. 2022;247:107147. http://doi.org/10.1016/j.anireprosci.2022.107147 PMid:36379193.
    » http://doi.org/10.1016/j.anireprosci.2022.107147
  • Hitit M, Özbek M, Ayaz-Guner S, Guner H, Oztug M, Bodu M, Kirbas M, Bulbul B, Bucak MN, Ataman MB, Memili E, Kaya A. Proteomic fertility markers in ram sperm. Anim Reprod Sci. 2021;235:106882. http://doi.org/10.1016/j.anireprosci.2021.106882 PMid:34823050.
    » http://doi.org/10.1016/j.anireprosci.2021.106882
  • Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1(1):107. http://doi.org/10.1186/1477-7827-1-107 PMid:14617369.
    » http://doi.org/10.1186/1477-7827-1-107
  • Holt W, Morrell J. Sperm biology and maturation. In: Coward K, Wells D, editors, Textbook of clinical embryology. Cambridge: Cambridge University Press; 2013. p. 89–97. http://doi.org/10.1017/CBO9781139192736.012
    » http://doi.org/10.1017/CBO9781139192736.012
  • Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol Hum Reprod. 2015;21(6):491-501. http://doi.org/10.1093/molehr/gav012 PMid:25753084.
    » http://doi.org/10.1093/molehr/gav012
  • Hosseinmardi M, Siadat F, Sharafi M, Roodbari NH, Hezavehei M. Protective effect of cerium oxide nanoparticles on human sperm function during cryopreservation. Biopreserv Biobank. 2022;20(1):24-30. http://doi.org/10.1089/bio.2021.0020 PMid:34271833.
    » http://doi.org/10.1089/bio.2021.0020
  • Hungerford A, Bakos HW, Aitken RJ, Martin G. Sperm cryopreservation: current status and future developments. Reprod Fertil Dev. 2022;35(3):265-81. http://doi.org/10.1071/RD22219 PMid:36521496.
    » http://doi.org/10.1071/RD22219
  • Inanç ME, Çi̇l B, Teki̇n K, Alemdar H, Daşkin A. The combination of CASA kinetic parameters and fluorescein staining as a fertility tool in cryopreserved bull semen. Turk J Vet Anim Sci. 2018;42(5):452. http://doi.org/10.3906/vet-1801-83
    » http://doi.org/10.3906/vet-1801-83
  • Jain S, Park SB, Pillai SR, Ryan PL, Willard ST, Feugang JM. Applications of fluorescent quantum dots for reproductive medicine and disease detection. In: Gomes AC, Sarria MP, editors. Unraveling the safety profile of nanoscale particles and materials - from biomedical to environmental applications. London: InTech; 2018. Chapter 6. http://doi.org/10.5772/intechopen.72978.
  • Jia B, Liang J, Lv C, Memon S, Fang Y, Wu G, Quan G. The characteristics of proteome and metabolome associated with contrasting sperm motility in goat seminal plasma. Sci Rep. 2021;11(1):15562. http://doi.org/10.1038/s41598-021-95138-9 PMid:34330982.
    » http://doi.org/10.1038/s41598-021-95138-9
  • Johnston DS, Wooters J, Kopf GS, Qiu Y, Roberts KP. Analysis of the human sperm proteome. Ann N Y Acad Sci. 2005;1061(1):190-202. http://doi.org/10.1196/annals.1336.021 PMid:16467268.
    » http://doi.org/10.1196/annals.1336.021
  • Jones RC. Evolution of the vertebrate epididymis. In: Robaire, B., Hinton, B.T., editors. The Epididymis: From Molecules to Clinical Practice. Boston: Springer; 2002. http://doi.org/10.1007/978-1-4615-0679-9_2
    » http://doi.org/10.1007/978-1-4615-0679-9_2
  • Jurado-Campos A, Soria-Meneses PJ, Arenas-Moreira M, Alonso-Moreno C, Rodríguez-Robledo V, Soler AJ, Garde JJ, Del Rocío Fernández-Santos M. Minimizing sperm oxidative stress using nanotechnology for breeding programs in rams. J Anim Sci Biotechnol. 2023;14(1):106. http://doi.org/10.1186/s40104-023-00907-3 PMid:37559077.
    » http://doi.org/10.1186/s40104-023-00907-3
  • Kameni SL, Dongmo ABN, Tebug TT, Bomba FDT, Meutchieye F, Ngoula F. Spirulina (Arthrospira platensis) extract promotes motility, microscopic, and antioxidative parameters of ram semen during refrigerated storage. BSJ Agri. 2022;5(4):481-90. http://doi.org/10.47115/bsagriculture.1162523
    » http://doi.org/10.47115/bsagriculture.1162523
  • Kameni SL, Meutchieye F, Ngoula F. Liquid storage of ram semen: associated damages and improvement. Open J Anim Sci. 2021;11(3):473-500. http://doi.org/10.4236/ojas.2021.113033
    » http://doi.org/10.4236/ojas.2021.113033
  • Ka̧tska-Ksia̧zkiewicz L, Ryńska B, Gajda B, Smora̧g Z. Effect of donor stimulation, frozen semen and heparin treatment on the efficiency of in vitro embryo production in goats. Theriogenology. 2004;62(3–4):576-86. http://doi.org/10.1016/j.theriogenology.2003.11.007 PMid:15226013.
    » http://doi.org/10.1016/j.theriogenology.2003.11.007
  • Khalique MA, Andrabi SMH, Majeed KA, Yousaf MS, Ahmad N, Tahir SK, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Zaneb H, Rehman H. Cerium oxide nanoparticles improve the post-thaw quality and in-vivo fertility of Beetal buck spermatozoa. Theriogenology. 2024;214:166-72. http://doi.org/10.1016/j.theriogenology.2023.10.022 PMid:37879286.
    » http://doi.org/10.1016/j.theriogenology.2023.10.022
  • Khalique MA, Rehman H, Andrabi SMH, Majeed KA, Ahmad N, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Jammu A. Antioxidant effects of zinc-oxide nanoparticles on post-thaw quality and in vivo fertility of Beetal buck spermatozoa. Small Rumin Res. 2023;225:107012. http://doi.org/10.1016/j.smallrumres.2023.107012
    » http://doi.org/10.1016/j.smallrumres.2023.107012
  • Khan GS, Tahir MZ, Zahoor MY, Rahman H, Riaz A. Ameliorative effect of crocin on post-thaw quality, fertility-associated gene expression and fertilization potential of buffalo (Bubalus bubalis) bull sperm. Reprod Domest Anim. 2024;59(1):e14519. http://doi.org/10.1111/rda.14519 PMid:38268214.
    » http://doi.org/10.1111/rda.14519
  • Kherzi A, Naraud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morell JM, Kommisrud E, Ahmad R. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics. 2019;20(1):897. http://doi.org/10.1186/s12864-019-6307-8 PMid:31775629.
    » http://doi.org/10.1186/s12864-019-6307-8
  • Khodaei-Motlagh M, Masoudi R, Karimi-Sabet MJ, Hatefi A. Supplementation of sperm cooling medium with Zinc and Zinc oxide nanoparticles preserves rooster sperm quality and fertility potential. Theriogenology. 2022;183:36-40. http://doi.org/10.1016/j.theriogenology.2022.02.015 PMid:35193058.
    » http://doi.org/10.1016/j.theriogenology.2022.02.015
  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22(1):93-7. http://doi.org/10.1038/nbt920 PMid:14661026.
    » http://doi.org/10.1038/nbt920
  • Kumar P, Saini M, Kumar D, Balhara AK, Yadav SP, Singh P, Yadav PS. Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Anim Reprod Sci. 2015;159:38-45. http://doi.org/10.1016/j.anireprosci.2015.05.010 PMid:26065809.
    » http://doi.org/10.1016/j.anireprosci.2015.05.010
  • Kumaresan A, Das Gupta M, Datta TK, Morrell JM. Sperm DNA Integrity and male fertility in farm animals: a review. Front Vet Sci. 2020;7:321. http://doi.org/10.3389/fvets.2020.00321 PMid:32637425.
    » http://doi.org/10.3389/fvets.2020.00321
  • Kuo R, Saito E, Miller SD, Shea LD. Peptide-conjugated nanoparticles reduce positive co-stimulatory expression and T cell activity to induce tolerance. Mol Ther. 2017;25(7):1676-85. http://doi.org/10.1016/j.ymthe.2017.03.032 PMid:28408181.
    » http://doi.org/10.1016/j.ymthe.2017.03.032
  • Kwon W, Rahman S, Ryu D, Park Y, Pang M. Increased male fertility using fertility-related biomarkers. Sci Rep. 2015;5(1):15654. http://doi.org/10.1038/srep15654 PMid:26489431.
    » http://doi.org/10.1038/srep15654
  • Lacalle E, Consuegra C, Martínez CA, Hidalgo M, Dorado J, Martínez-Pastor F, Álvarez-Rodríguez M, Rodríguez-Martínez H. Bicarbonate-triggered in vitro capacitation of boar spermatozoa conveys an increased relative abundance of the canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals (Basel). 2022;12(8):1012. http://doi.org/10.3390/ani12081012 PMid:35454259.
    » http://doi.org/10.3390/ani12081012
  • Lalancette C, Thibault C, Bachand I, Caron N, Bissonnette N. Transcriptome analysis of bull semen with extreme nonreturn rate: use of suppression-subtractive hybridization to identify functional markers for fertility. Biol Reprod. 2008;78(4):618-35. http://doi.org/10.1095/biolreprod.106.059030 PMid:18003951.
    » http://doi.org/10.1095/biolreprod.106.059030
  • Lee B, Park Y, Pang W, Ryu D, Rahman S, Lee D, Pang M. Boar fertility is controlled through systematic changes of mitochondrial protein expression during sperm capacitation. Int J Biol Macromol. 2023;248:125955. http://doi.org/10.1016/j.ijbiomac.2023.125955 PMid:37494999.
    » http://doi.org/10.1016/j.ijbiomac.2023.125955
  • Leite RF, Losano JDA, Kawai GKV, Rui BR, Nagai KK, Castiglioni VC, Siqueira AFP, D’Avila Assumpção MEO, Baruselli PS, Nichi M. Sperm function and oxidative status: effect on fertility in Bos taurus and Bos indicus bulls when semen is used for fixed-time artificial insemination. Anim Reprod Sci. 2022;237:106922. http://doi.org/10.1016/j.anireprosci.2022.106922 PMid:35065462.
    » http://doi.org/10.1016/j.anireprosci.2022.106922
  • Llavanera M, Ribas-maynou J, Delgado-bermúdez A, Recuero S, Muiño R, Hidalgo CO, Tamargo C, Bonet S, Mateo-otero Y, Yeste M. Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. J Anim Sci Biotechnol. 2021;12(1):115. http://doi.org/10.1186/s40104-021-00634-7 PMid:34749810.
    » http://doi.org/10.1186/s40104-021-00634-7
  • López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow. PLoS One. 2015;10(6):0130128. http://doi.org/10.1371/journal.pone.0130128 PMid:26098421.
    » http://doi.org/10.1371/journal.pone.0130128
  • Lu CH, Lee RKK, Hwu YM, Chu SL, Chen YJ, Chang WC, Lin SP, Li SH. SERPINE2, a serine protease inhibitor extensively expressed in adult male mouse reproductive tissues, may serve as a murine sperm decapacitation factor. Biol Reprod. 2011;84(3):514-25. http://doi.org/10.1095/biolreprod.110.085100 PMid:21084713.
    » http://doi.org/10.1095/biolreprod.110.085100
  • Lucca MS, Dal R, Gianluppi F, Paula A, Mellagi G, Pandolfo Bortolozzo F, Wentz I, Da R, Ulguim R. Effects of the classification of boars according to progressive sperm motility and the extender type on the reproductive performance of a single fixed-time insemination. Theriogenology. 2021;161:120-5. http://doi.org/10.1016/j.theriogenology.2020.11.018 PMid:33310229.
    » http://doi.org/10.1016/j.theriogenology.2020.11.018
  • Luna-Orozco JR, González-Ramos MA, Calderón-Leyva G, Gaytán-Alemán LR, Arellano-Rodríguez MA, Ángel-García O, Véliz-Deras FG. Comparison of different diluents based on liposomes and egg yolk for ram semen cooling and cryopreservation. IJVR. 2019;20(2):126-30. PMid:31531035.
  • Mafolo KS, Pilane CM, Chitura T, Nedambale TL. Use of phosphatidylcholine in Tris-based extender with or without egg yolk to freeze Bapedi ram semen. S Afr J Anim Sci. 2020;50(3):389-96. http://doi.org/10.4314/sajas.v50i3.5
    » http://doi.org/10.4314/sajas.v50i3.5
  • Mateo-Otero Y, Madrid-gambin F, Llavanera M, Gomez-gomez A, Haro N, Pozo OJ, Yeste M. Sperm physiology and in vitro fertilising ability rely on basal metabolic activity: insights from the pig model. Commun Biol. 2023;6(1):344. http://doi.org/10.1038/s42003-023-04715-3 PMid:36997604.
    » http://doi.org/10.1038/s42003-023-04715-3
  • Medina-León AZ, Domínguez-mancera B, Cazalez-penino N, Cervantes-Acosta P, Jácome-Sosa E, Romero-Salas D, Barrientos-Morales M. Cryopreservation of horse semen with a liposome and trehalose added extender. Austral J Vet Sci. 2019;51(3):119-23. http://doi.org/10.4067/S0719-81322019000300119
    » http://doi.org/10.4067/S0719-81322019000300119
  • Meles DK, Mustofa I, Hariadi M, Wurlina W, Susilowati S, Amaliya A, Suparto S, Rimayanti R. The enriched Y-bearing sperm combined with delayed fixed-time artificial insemination for obtaining male Simmental crossbred offspring. Vet World. 2022;15(1):102-9. http://doi.org/10.14202/vetworld.2022.102-109 PMid:35369602.
    » http://doi.org/10.14202/vetworld.2022.102-109
  • Menezes EB, Velho ALC, Santos F, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics. 2019;20(1):714. http://doi.org/10.1186/s12864-019-6074-6 PMid:31533629.
    » http://doi.org/10.1186/s12864-019-6074-6
  • Mo R, Jiang T, Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine (Lond). 2014;9(8):1117-20. http://doi.org/10.2217/nnm.14.62 PMid:25118703.
    » http://doi.org/10.2217/nnm.14.62
  • Mokarizadeh A, Rezvanfar M, Dorostkar K, Abdollahi M. Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol. 2013;42:78-84. http://doi.org/10.1016/j.reprotox.2013.07.024 PMid:23958892.
    » http://doi.org/10.1016/j.reprotox.2013.07.024
  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756-66. http://doi.org/10.1182/blood-2011-02-338004 PMid:22031862.
    » http://doi.org/10.1182/blood-2011-02-338004
  • Mortazavi S, Eslami M, Farrokhi-ardabili F. Comparison of different carrier-compounds and varying concentrations of oleic acid on freezing tolerance of ram spermatozoa in tris-citric acid-egg yolk plasma semen diluent. Anim Reprod Sci. 2020;219:106533. http://doi.org/10.1016/j.anireprosci.2020.106533 PMid:32828408.
    » http://doi.org/10.1016/j.anireprosci.2020.106533
  • NNI [homepage on the Internet]. 2024 [cited 2024 Mar 16]. Available from: www.nano.gov
    » www.nano.gov
  • Neto FTL, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10-26. http://doi.org/10.1016/j.semcdb.2016.04.009 PMid:27143445.
    » http://doi.org/10.1016/j.semcdb.2016.04.009
  • Odhiambo JF, Dejarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky P. Increased conception rates in beef cattle inseminated with nanopurified bull downloaded from downloaded from. Biol Reprod. 2014;91(4):97. http://doi.org/10.1095/biolreprod.114.121897 PMid:25232015.
    » http://doi.org/10.1095/biolreprod.114.121897
  • Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res. 2006;67(1):47-54. http://doi.org/10.1002/ddr.20066
    » http://doi.org/10.1002/ddr.20066
  • Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2(1):19. http://doi.org/10.1186/1752-0509-2-19 PMid:18294385.
    » http://doi.org/10.1186/1752-0509-2-19
  • Pessoa ER, Roger Vasconcelos F, de Oliveira Paula‐Marinho S, de Menezes Daloso D, Damasceno Guerreiro D, Matias Martins JA, Gomes-Filho E, Alencar Moura A. Metabolomic profile of seminal plasma from Guzerá bulls (Bos indicus) with contrasting sperm freezability phenotypes. Reprod Domest Anim. 2023;58(10):1379-92. http://doi.org/10.1111/rda.14453 PMid:37592767.
    » http://doi.org/10.1111/rda.14453
  • Piehl LL, Fischman ML, Hellman U, Cisale H, Miranda PV. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing. Theriogenology. 2013;79(7):1071-82. http://doi.org/10.1016/j.theriogenology.2013.01.028 PMid:23489476.
    » http://doi.org/10.1016/j.theriogenology.2013.01.028
  • Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, Desherces S, Schmitt E, Magistrini M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology. 2012;77(2):268-79. http://doi.org/10.1016/j.theriogenology.2011.08.001 PMid:21924469.
    » http://doi.org/10.1016/j.theriogenology.2011.08.001
  • Purdy PH, Graham JK. Membrane modification strategies for cryopreservation. In: Wolkers W, Oldenhof H, editors. Cryopreservation and freeze-drying protocols. New York: Springer; 2015. p. 337-42. http://doi.org/10.1007/978-1-4939-2193-5_15
    » http://doi.org/10.1007/978-1-4939-2193-5_15
  • Qamar AY, Fang X, Kim MJ, Cho J. Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals (Basel). 2019;9(11):865. http://doi.org/10.3390/ani9110865 PMid:31731505.
    » http://doi.org/10.3390/ani9110865
  • Quelhas J, Pinto-Pinho P, Lopes G, Rocha A, Pinto-Leite R, Fardilha M, Colaço B, Feugang J, Chapwanya A, Bianchi M, Alves R. Sustainable animal production: exploring the benefits of sperm sexing technologies in addressing critical industry challenges. Front Vet Sci. 2023;10:1181659. http://doi.org/10.3389/fvets.2023.1181659 PMid:38076548.
    » http://doi.org/10.3389/fvets.2023.1181659
  • Quelhas J, Santiago J, Matos B, Rocha A, Lopes G, Fardilha M. Bovine semen sexing: sperm membrane proteomics as candidates for immunological selection of X‐ and Y‐chromosome‐bearing sperm. Vet Med Sci. 2021;7(5):1633-41. http://doi.org/10.1002/vms3.540 PMid:34037311.
    » http://doi.org/10.1002/vms3.540
  • Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ. Seminal plasma proteins: what role do they play? Am J Reprod Immunol. 2011;66(Suppl 1):11-22. http://doi.org/10.1111/j.1600-0897.2011.01033.x PMid:21726334.
    » http://doi.org/10.1111/j.1600-0897.2011.01033.x
  • Röpke T, Oldenhof H, Leiding C, Sieme H, Bollwein H, Wolkers WF. Liposomes for cryopreservation of bovine sperm. Theriogenology. 2011;76(8):1465-72. http://doi.org/10.1016/j.theriogenology.2011.06.015 PMid:21820724.
    » http://doi.org/10.1016/j.theriogenology.2011.06.015
  • Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel). 2020;10(12):2281. http://doi.org/10.3390/ani10122281 PMid:33287256.
    » http://doi.org/10.3390/ani10122281
  • Sapanidou V, Tsantarliotou MP, Lavrentiadou SN. A review of the use of antioxidants in bovine sperm preparation protocols. Anim Reprod Sci. 2023;251:107215. http://doi.org/10.1016/j.anireprosci.2023.107215 PMid:37001221.
    » http://doi.org/10.1016/j.anireprosci.2023.107215
  • Saraf KK, Kumaresan A, Sinha MK, Datta TK. Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high‐ and low‐fertile crossbred bulls. Andrologia. 2021;53(5):e14029. http://doi.org/10.1111/and.14029 PMid:33665828.
    » http://doi.org/10.1111/and.14029
  • Saravia F, Wallgren M, Johannisson A, Calvete JJ, Sanz L, Peña FJ, Roca J, Rodríguez-Martínez H. Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in MiniFlatPacks. Theriogenology. 2009;71(4):662-75. http://doi.org/10.1016/j.theriogenology.2008.09.037 PMid:18952274.
    » http://doi.org/10.1016/j.theriogenology.2008.09.037
  • Sellem E, Broekhuijse MLWJ, Chevrier L, Camugli S, Schmitt E, Schibler L, Koenen EPC. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenolog. 2015;84(9):1447-1454.e5. http://doi.org/10.1016/j.theriogenology.2015.07.035 PMid:26296523.
    » http://doi.org/10.1016/j.theriogenology.2015.07.035
  • Selokar NL, Dua S, Kumar D, Sharma B, Saini M. Application of nanotechnology in agricultural farm animals. In Ghorbanpour M, Bhargava P, Varma A, Choudhary D, editors. Biogenic nano-particles and their use in agro-ecosystem. New York: Springer; 2020. p. 1–8.. http://doi.org/10.1007/978-981-15-2985-6_1
    » http://doi.org/10.1007/978-981-15-2985-6_1
  • Sharma R, Agarwal A. Spermatogenesis: an overview. In: Zini A, Agarwal A, editors, Sperm chromatin. New York: Springer; 2011. p. 19–44. http://doi.org/10.1007/978-1-4419-6857-9_2
    » http://doi.org/10.1007/978-1-4419-6857-9_2
  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391-6. http://doi.org/10.1126/science.aad6780 PMid:26721685.
    » http://doi.org/10.1126/science.aad6780
  • Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: gamete attachment and fusion. J Cell Biol. 2021;220(10):e202102146. http://doi.org/10.1083/jcb.202102146 PMid:34459848.
    » http://doi.org/10.1083/jcb.202102146
  • Soggiu A, Piras C, Hussein HA, De Canio M, Gaviraghi A, Galli A, Urbani A, Bonizzi L, Roncada P. Unravelling the bull fertility proteome. Mol Biosyst. 2013;9(6):1188-95. http://doi.org/10.1039/c3mb25494a PMid:23392320.
    » http://doi.org/10.1039/c3mb25494a
  • Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci. 2023;101:skad392. http://doi.org/10.1093/jas/skad392
    » http://doi.org/10.1093/jas/skad392
  • Song C, Zhang Z, Wei Y, Dou Y, Qi K, Li X, Yang F, Li X, Wang K, Qiao R, Han X. Proteomic analysis of boar sperm with differential ability of liquid preservation at 17°C. Theriogenology. 2024;215:103-12. http://doi.org/10.1016/j.theriogenology.2023.11.017 PMid:38029685.
    » http://doi.org/10.1016/j.theriogenology.2023.11.017
  • Sostaric E, Dieleman SJ, Van De Lest CHA, Colenbrander B, Vos PLAM, Garcia-Gil N, Gadella BM. Sperm binding properties and secretory activity of the bovine oviduct immediately before and after ovulation. Mol Reprod Dev. 2008;75(1):60-74. http://doi.org/10.1002/mrd.20766 PMid:17546595.
    » http://doi.org/10.1002/mrd.20766
  • Souza ET, Silva CV, Augusto B, Travençolo N, Geraldo B, Emílio M. Sperm chromatin alterations in fertile and subfertile bulls. Reprod Biol. 2018;18(2):177-81. http://doi.org/10.1016/j.repbio.2018.04.001 PMid:29705068.
    » http://doi.org/10.1016/j.repbio.2018.04.001
  • Staub C, Johnson L. Review: spermatogenesis in the bull. Animal. 2018;12(1):s27-35. http://doi.org/10.1017/S1751731118000435 PMid:29882505.
    » http://doi.org/10.1017/S1751731118000435
  • Suchocki T, Szyda J. Genome-wide association study for semen production traits in Holstein-Friesian bulls. J Dairy Sci. 2015;98(8):5774-80. http://doi.org/10.3168/jds.2014-8951 PMid:26051317.
    » http://doi.org/10.3168/jds.2014-8951
  • Sui H, Sheng M, Luo H, Liu G, Meng F, Cao Z, Zhang Y. Characterization of freezability-associated metabolites in boar semen. Theriogenology. 2023;196:88-96. http://doi.org/10.1016/j.theriogenology.2022.11.013 PMid:36401936.
    » http://doi.org/10.1016/j.theriogenology.2022.11.013
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery HHS Public Access Graphical abstract. Adv Drug Deliv Rev. 2016;99(Pt A):28-51. http://doi.org/10.1016/j.addr.2015.09.012 PMid:26456916.
    » http://doi.org/10.1016/j.addr.2015.09.012
  • Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35(1):1-10. http://doi.org/10.1016/j.bcmd.2005.03.005 PMid:15893944.
    » http://doi.org/10.1016/j.bcmd.2005.03.005
  • Sun P, Zhang G, Xian M, Zhang G, Wen F, Hu Z, Hu J. Proteomic analysis of frozen–thawed spermatozoa with different levels of freezability in dairy goats. Int J Mol Sci. 2023;24(21):15550. http://doi.org/10.3390/ijms242115550 PMid:37958534.
    » http://doi.org/10.3390/ijms242115550
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64. http://doi.org/10.1002/anie.201403036 PMid:25294565.
    » http://doi.org/10.1002/anie.201403036
  • Sutovsky P, Hamilton LE, Zigo M, Ortiz DME, Assumpção A, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping. Biol Reprod. 2024;110(6):1156-6. http://doi.org/10.1093/biolre/ioae061 PMid:38640912.
    » http://doi.org/10.1093/biolre/ioae061
  • Sutovsky P, Lovercamp K. Molecular markers of sperm quality. Soc Reprod Fertil Suppl. 2010;67:247-56. http://doi.org/10.7313/UPO9781907284991.021 PMid:21755677.
    » http://doi.org/10.7313/UPO9781907284991.021
  • Swelum AA-A, Saadeldin IM, Ba-Awadh H, Al-Mutary MG, Moumen AF, Alowaimer AN, Abdalla H. Efficiency of Commercial Egg Yolk-Free and Egg Yolk-Supplemented Tris-Based Extenders for Dromedary Camel Semen Cryopreservation. Animals (Basel). 2019;9(11):999. http://doi.org/10.3390/ani9110999 PMid:31752406.
    » http://doi.org/10.3390/ani9110999
  • Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials (Basel). 2020;10(3):496. http://doi.org/10.3390/nano10030496 PMid:32164194.
    » http://doi.org/10.3390/nano10030496
  • Talevi R, Gualtieri R. Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 2010;73(6):796-801. http://doi.org/10.1016/j.theriogenology.2009.07.005 PMid:19682733.
    » http://doi.org/10.1016/j.theriogenology.2009.07.005
  • Tardif S, Dubé C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod. 2001;65(3):784-92. http://doi.org/10.1095/biolreprod65.3.784 PMid:11514342.
    » http://doi.org/10.1095/biolreprod65.3.784
  • Torres MA, Pedrosa AC, Novais FJ, Alkmin DV, Cooper BR, Yasui GS, Fukumasu H, Machaty Z, Andrade AFCD. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm†. Biol Reprod. 2022;106(1):213-26. http://doi.org/10.1093/biolre/ioab200 PMid:34725678.
    » http://doi.org/10.1093/biolre/ioab200
  • Touré A. Importance of slc26 transmembrane anion exchangers in sperm post-testicular maturation and fertilization potential. Front Cell Dev Biol. 2019;7:230. http://doi.org/10.3389/fcell.2019.00230 PMid:31681763.
    » http://doi.org/10.3389/fcell.2019.00230
  • Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest. 2002;110(6):731-6. http://doi.org/10.1172/JCI0216392 PMid:12235100.
    » http://doi.org/10.1172/JCI0216392
  • Trimeche A, Yvon JM, Vidament M, Palmer E, Magistrini M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology. 1999;52(1):181-91. http://doi.org/10.1016/S0093-691X(99)00120-X PMid:10734416.
    » http://doi.org/10.1016/S0093-691X(99)00120-X
  • Troedsson MHT, Desvousges A, Alghamdi AS, Dahms B, Dow CA, Hayna J, Valesco R, Collahan PT, Macpherson ML, Pozor M, Buhi WC. Components in seminal plasma regulating sperm transport and elimination. Anim Reprod Sci. 2005;89(1-4):1-4. http://doi.org/10.1016/j.anireprosci.2005.07.005 PMid:16102920.
    » http://doi.org/10.1016/j.anireprosci.2005.07.005
  • Ugur MR, Dinh T, Hitit M, Kaya A, Topper E, Didion B, Memili E. Amino acids of seminal plasma associated with freezability of bull sperm. Front Cell Dev Biol. 2020;7:347. http://doi.org/10.3389/fcell.2019.00347 PMid:31993417.
    » http://doi.org/10.3389/fcell.2019.00347
  • Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in Cryopreservation of Bull Sperm. Front Vet Sci. 2019;6:268. http://doi.org/10.3389/fvets.2019.00268 PMid:31552277.
    » http://doi.org/10.3389/fvets.2019.00268
  • Ul Haq Z, Hamadani H, Khan AA, Ganai AM, Beigh YA, Gull Sheikh G, Farooq J, Ahmad Ganai I, Ahmad SM. Nanotechnology: changing the world of animal health and veterinary medicine. In: Sheikh FA, Majeed S, Beigh MA, editors. Interaction of nanomaterials with living cells.New York: Springer Nature; 2023. p. 167-96. http://doi.org/10.1007/978-981-99-2119-5_7
    » http://doi.org/10.1007/978-981-99-2119-5_7
  • Valgimigli L, Baschieri A, Amorati R. Antioxidant activity of nanomaterials. J Mater Chem B Mater Biol Med. 2018;6(14):2036-51. http://doi.org/10.1039/C8TB00107C PMid:32254427.
    » http://doi.org/10.1039/C8TB00107C
  • Vicente-Fiel S, Palacín I, Santolaria P, Fantova E, Quintín-casorrán FJ, Sevilla-Mur E, Yániz JL. In vitro assessment of sperm quality from rams of high and low field fertility. Anim Reprod Sci. 2014;146(1–2):15-20. http://doi.org/10.1016/j.anireprosci.2014.02.005 PMid:24602507.
    » http://doi.org/10.1016/j.anireprosci.2014.02.005
  • Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic nanomaterials and their applications in the treatment of oral diseases. Molecules. 2016;21(2):207. http://doi.org/10.3390/molecules21020207 PMid:26867191.
    » http://doi.org/10.3390/molecules21020207
  • Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008;1(2):99-115. http://doi.org/10.1007/s12274-008-8018-3
    » http://doi.org/10.1007/s12274-008-8018-3
  • Wang Y, Quinsaat JEQ, Ono T, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato S, Miura Y, Yamamoto T. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat Commun. 2020;11(1):6089. http://doi.org/10.1038/s41467-020-19947-8 PMid:33257670.
    » http://doi.org/10.1038/s41467-020-19947-8
  • Weng J, Ren J. Luminescent Quantum Dots: A Very Attractive and Promising Tool in Biomedicine. Curr Med Chem. 2006;13(8):897-909. http://doi.org/10.2174/092986706776361076 PMid:16611074.
    » http://doi.org/10.2174/092986706776361076
  • Wiebke M, Hensel B, Nitsche-Melkus E, Jung M, Schulze M. Cooled storage of semen from livestock animals (part I): boar, bull, and stallion. Anim Reprod Sci. 2022;246:106822. http://doi.org/10.1016/j.anireprosci.2021.106822 PMid:34400028.
    » http://doi.org/10.1016/j.anireprosci.2021.106822
  • Xu C, Nam J, Hong H, Xu Y, Moon JJ. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano. 2019;13(10):12148-61. http://doi.org/10.1021/acsnano.9b06691 PMid:31556987.
    » http://doi.org/10.1021/acsnano.9b06691
  • Yang C, Guo W-B, Zhang W-S, Bian J, Yang J-K, Zhou Q-Z, Chen M-K, Peng W, Qi T, Wang C-Y, Liu C-D. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 2017;5(5):1007-15. http://doi.org/10.1111/andr.12412 PMid:28914500.
    » http://doi.org/10.1111/andr.12412
  • Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: development and application for effective cancer treatment. Sust Mat Tech. 2019;22:e00109. http://doi.org/10.1016/j.susmat.2019.e00109
    » http://doi.org/10.1016/j.susmat.2019.e00109
  • Yata VK. Sperm sexing: methods, applications, and the possible role of microfluidics. In: Yata VK, editor. Microfluidics for assisted reproduction in animals. Singapore: Springer; 2021. p. 89-109.. http://doi.org/10.1007/978-981-33-4876-9_6
    » http://doi.org/10.1007/978-981-33-4876-9_6
  • Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85(1):47-64. http://doi.org/10.1016/j.theriogenology.2015.09.047 PMid:26506124.
    » http://doi.org/10.1016/j.theriogenology.2015.09.047
  • Yoon S-J, Kwon W-S, Rahman MS, Lee J-S, Pang M-G. A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. PLoS One. 2015;10(5):e0126232. http://doi.org/10.1371/journal.pone.0126232 PMid:25938413.
    » http://doi.org/10.1371/journal.pone.0126232
  • Yuan Y, Yu M, Chen L, Ren X, Qu Y, Shari A, Li G. Comparative analysis of different metabolites in semen of Guanzhong dairy goats with different motility rates. Theriogenology. 2023a;210:53-61. http://doi.org/10.1016/j.theriogenology.2023.07.009 PMid:37473596.
    » http://doi.org/10.1016/j.theriogenology.2023.07.009
  • Yuan Y, Wang G, Zou J, Zhang Y, Li D, Yu M, Chen L, Li G. Study on comparative analysis of differential metabolites in Guanzhong dairy goat semen before and after freezing. Theriogenology. 2023b;197:232-9. http://doi.org/10.1016/j.theriogenology.2022.12.009 PMid:36525862.
    » http://doi.org/10.1016/j.theriogenology.2022.12.009
  • Zeng F, Chen Y, Guo C, Li C, Wei H, Li L, Meng L, Zhang S. Analysis of differentially abundant proteins related to boar fertility in seminal plasma using iTRAQ-based quantitative proteomics. J Proteomics. 2021;236:104120. http://doi.org/10.1016/j.jprot.2021.104120 PMid:33540064.
    » http://doi.org/10.1016/j.jprot.2021.104120
  • Zhang H, Liu H, Kataoka S, Kinukawa M, Uchiyama K, Kambe J, Watanabe G, Jin W, Nagaoka K. L-amino acid oxidase 1 in sperm is associated with reproductive performance in male mice and bulls. Biol Reprod. 2021;104(5):1154-61. http://doi.org/10.1093/biolre/ioab024 PMid:33590844.
    » http://doi.org/10.1093/biolre/ioab024
  • Zhang Y, Yuan W, Liu Y, Liu Y, Liang H, Xu Q, Liu Z, Weng X. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology. 2023;206:28-39. http://doi.org/10.1016/j.theriogenology.2023.04.016 PMid:37178672.
    » http://doi.org/10.1016/j.theriogenology.2023.04.016
  • Zhao Y, Qin J, Sun J, He J, Sun Y, Yuan R, Li Z. Motility-related microRNAs identified in pig seminal plasma exosomes by high-throughput small RNA sequencing. Theriogenology. 2024;215:351-60. http://doi.org/10.1016/j.theriogenology.2023.11.028 PMid:38150851.
    » http://doi.org/10.1016/j.theriogenology.2023.11.028
  • Zhu W, Zhang Y, Ren C, Cheng X, Chen J, Ge Z, Sun ZP, Zhuo X, Sun FF, Chen YL, Jia XJ, Zhang Z. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J Proteomics. 2020;210:103438. http://doi.org/10.1016/j.jprot.2019.103438 PMid:31271902.
    » http://doi.org/10.1016/j.jprot.2019.103438
  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. http://doi.org/10.3390/molecules25163731 PMid:32824172.
    » http://doi.org/10.3390/molecules25163731

Publication Dates

  • Publication in this collection
    16 Aug 2024
  • Date of issue
    2024

History

  • Received
    16 Mar 2024
  • Accepted
    20 June 2024
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com