Acessibilidade / Reportar erro

Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins

Abstract

The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the “nature versus/and nurture” question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.

Keywords:
oocyte maturation; soma-germ interactions; monozygotic twins; demi-embryos; maternal effects

Introduction

“Knowledge of history allows the conquest of the future. This is especially true for embryo transfer with all its ramifications, which has become one of the most challenging frontiers in theriogenology” (Jöchle, 1983, pJöchle W. To our readers. Theriogenology. 1983;19:293.. 293). About 50 years ago, physiological aspects of oocytes and embryos came into research focus, mainly driven by questions on bovine embryo transfer (ET), which enhanced the interest in reproductive biology in farm animals. Depending on the species, each year thousands of embryos are produced in vitro or collected in vivo and transferred to final recipients. Basis of these events is the physiological and undisturbed maturation of fertilizable oocytes. Resulting preimplantation embryos, regardless of their in vivo or in vitro origin, show tremendous regulatory capacities, and in some cases more than half of the blastomeres can be lost before further development completely fails. The ability to compensate for a reduced blastomere count is the basis of facultative or induced polyembryonic development. Artificial splitting of high quality embryos and single transfer of the resulting halves allows, in dependence on the manual skills of the operator, a 30% to 40% greater embryo transfer success in cattle compared to the transfer of intact embryos.

Despite the successful implementation of the newly developed reproductive technologies into animal production and human reproductive medicine, essential questions remained only incompletely answered. Two of the most puzzling processes, the preovulatory maturation of the oocyte and the origin of monozygotic twins, accompanied our research and are covered by the following sections of the review.

Oocyte maturation: the perspective of the pig

Animal models

Experiments of Pincus and Enzmann (1935)Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. 1. The activation of ovarian eggs. J Exp Med. 1935;62(5):665-75. http://dx.doi.org/10.1084/jem.62.5.665. PMid:19870440.
http://dx.doi.org/10.1084/jem.62.5.665...
and of Edwards (1965)Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208(5008):349-51. http://dx.doi.org/10.1038/208349a0. PMid:4957259.
http://dx.doi.org/10.1038/208349a0...
initiated a countless number of studies about in vitro maturation (IVM) of mammalian oocytes. Many of these studies were conducted to improve the quality of IVM-oocytes for use in animal biotechnology but also to decipher basic mechanisms of mammalian oocyte maturation. Female meiosis is an outstanding model for studying the cell cycle since oocytes become arrested in prophase1 (equivalent to the G2-phase of mitotic cells) during fetal development until just before ovulation when they proceed to metaphase 2 (M2). Newly developed methods have led to a significant broadening and deepening of knowledge about the regulation of oogenesis. It became evident that key molecules of this complex process appeared rather early in vertebrate evolution (Dalbies-Tran et al., 2020Dalbies-Tran R, Cadoret V, Desmarchais A, Elis S, Maillard V, Monget P, Monniaux D, Reynaud K, Saint-Dizier M, Uzbekova S. A comparative analysis of oocyte development in mammals. Cells. 2020;9(4):1002. http://dx.doi.org/10.3390/cells9041002. PMid:32316494.
http://dx.doi.org/10.3390/cells9041002...
). At the same time, these new findings also shed light on special features of the animal species and the necessity to verify observations in each of them. The ability to manipulate the mouse genome makes mice the premier model organism for genetic approaches to study the molecular mechanisms underlying the maturation of oocytes. However, different adaptations of physiological regulatory circuits make it necessary to develop new model systems according to the respective questions. For example, in contrast to mice, pig oocytes depend on mRNA- and protein synthesis for germinal vesicle breakdown (GVBD) and show a chromosome dependent spindel formation (Fulka et al., 1986Fulka J Jr, Motlik J, Fulka J, Jílek F. Effect of cycloheximide on nuclear maturation of pig and mouse oocytes. J Reprod Fertil. 1986;77(1):281-5. http://dx.doi.org/10.1530/jrf.0.0770281. PMid:3723473.
http://dx.doi.org/10.1530/jrf.0.0770281...
; Meinecke and Meinecke-Tillmann, 1993Meinecke B, Meinecke-Tillmann S. Effects of α-amanitin on nuclear maturation of porcine oocytes in vitro. J Reprod Fertil. 1993;98(1):195-201. http://dx.doi.org/10.1530/jrf.0.0980195. PMid:8345464.
http://dx.doi.org/10.1530/jrf.0.0980195...
; Miyano et al., 2007Miyano T, Ogushi S, Bui H-T, Lee J. Meiotic resumption and spindle formation of pig oocytes. J Mamm Ova Res. 2007;24(3):92-8. http://dx.doi.org/10.1274/jmor.24.92.
http://dx.doi.org/10.1274/jmor.24.92...
). The following review about some aspects of oocyte maturation focuses on the pig. Additional information derived from other species will be used in order to complete the description of the relevant processes.

Physiological considerations

Porcine follicular development from the primordial to the preovulatory stage lasts about 120 days (Hunter, 2000Hunter MG. Oocyte maturation and ovum quality in pigs. Rev Reprod. 2000;5(2):122-30. http://dx.doi.org/10.1530/ror.0.0050122. PMid:10864857.
http://dx.doi.org/10.1530/ror.0.0050122...
). In the course of follicular maturation it is inevitable that the countless factors influencing this evolvement cause a considerable heterogeneity of follicles and their oocytes. (Moor and Dai, 2001Moor R, Dai Y. Maturation of pig oocytes in vivo and in vitro. Reprod Suppl. 2001;58:91-104. PMid:11980205.). However, in vivo a cohort of heterogeneous oocytes is being transformed to a selected few of widely homogenous oocytes before ovulation occurs. Maturation of pig oocytes is initiated by the preovulatory endogenous LH surge at the end of a follicular phase of 4 to 6 days. Recruitment from the pool of about 100 developing follicles occurs after the pulsatile GnRH-LH secretion changed from a lesser frequency/greater amplitude to a greater frequency/lesser amplitude pattern. In pigs FSH is important for increasing the number of follicles that reach the medium/larger sized category, whereas LH is necessary for the further growth of these follicles to preovulatory size. Luteinizing hormone (LH) stimulates follicular estrogen synthesis in theca interna and granulosa cells which have expressed sufficient LH receptors. Two to 3 days before ovulation, LH pulsatility and FSH secretion decrease to hardly detectable levels, while estrogen concentrations reach their maximum. On the first day of standing estrus (Day 0 of the estrus cycle) and on Day 1 estrogens dominate follicular steroid hormone synthesis and output. About 12 h before ovulation occurs on Day 2, estrogen synthesis has ceased and follicular levels have dropped to a tenth of their original maximum levels (Eiler and Nalbandov, 1977Eiler H, Nalbandov AV. Sex steroids in follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology. 1977;100(2):331-8. http://dx.doi.org/10.1210/endo-100-2-331. PMid:556689.
http://dx.doi.org/10.1210/endo-100-2-331...
; Meinecke et al., 1987Meinecke B, Gips H, Meinecke-Tillmann S. Steroid hormone content of the developing preovulatory porcine follicle. In: Roche JF, O’Callaghan D, editors. Follicular growth and ovulatory rate in farm animals. Dordrecht: Martinus Nijhoff Publishers; 1987. p. 207-13.; Soede et al., 2011Soede NM, Langendijk P, Kemp B. Reproductive cycles in pigs. Anim Reprod Sci. 2011;124(3-4):251-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.025. PMid:21397415.
http://dx.doi.org/10.1016/j.anireprosci....
; Knox, 2019Knox RV. Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation. J Anim Sci. 2019;97(4):1433-45. http://dx.doi.org/10.1093/jas/skz036. PMid:30715326.
http://dx.doi.org/10.1093/jas/skz036...
). Ovulations take place 44 h ± 3 h after the onset of the LH surge and last about 3 h (Soede et al., 1994Soede NM, Helmond FA, Kemp B. Periovulatory profiles of oestradiol, LH and progesterone in relation to oestrus and embryo mortality in multiparous sows using transrectal ultrasonography to detect ovulation. J Reprod Fertil. 1994;101(3):633-41. http://dx.doi.org/10.1530/jrf.0.1010633. PMid:7966019.
http://dx.doi.org/10.1530/jrf.0.1010633...
). Compared to adult sows, induction of ovulation in prepubertal gilts with an equine chorionic gonadotropin/human chorionic gonadotropin (eCG/hCG) regimen is accompanied by an altered pattern of follicular growth and steroid hormone synthesis, as well as a greater variability in oocyte maturation, and a prolonged ovulation process (Ainsworth et al., 1980Ainsworth L, Tsang BK, Downey BR, Marcus GJ, Armstrong DT. Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicles. Biol Reprod. 1980;23(3):621-7. http://dx.doi.org/10.1095/biolreprod23.3.621. PMid:7448265.
http://dx.doi.org/10.1095/biolreprod23.3...
; Meinecke et al., 1984Meinecke B, Gips H, Meinecke-Tillmann S. Zur Dynamik der präovulatorischen intrafollikulären Steroidhormoninkretion beim Schwein. Zuchthygiene. 1984;19(4):193-204. http://dx.doi.org/10.1111/j.1439-0531.1984.tb00970.x. German,
http://dx.doi.org/10.1111/j.1439-0531.19...
; Foxcroft and Hunter, 1985Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19. PMid:3003359.; Wiesak et al., 1990Wiesak T, Hunter MG, Foxcroft GR. Differences in follicular morphology, steroidogenesis and oocyte maturation in naturally cyclic and PMSG/hCG-treated prepubertal gilts. J Reprod Fertil. 1990;89(2):633-41. http://dx.doi.org/10.1530/jrf.0.0890633. PMid:2401990.
http://dx.doi.org/10.1530/jrf.0.0890633...
; Soede et al., 1998Soede NM, Hazeleger W, Kemp B. Follicle size and the process of ovulation in sows as studied with ultrasound. Reprod Domest Anim. 1998;33(3-4):239-44. http://dx.doi.org/10.1111/j.1439-0531.1998.tb01350.x.
http://dx.doi.org/10.1111/j.1439-0531.19...
). The considerable aberration of morphological and biochemical parameters is also reflected in reduced developmental competence of oocytes from prepubertal gilts (Pinkert et al., 1989Pinkert CA, Kooyman DL, Baumgartner A, Keisler DH. In-vitro development of zygotes from superovulated prepubertal and mature gilts. J Reprod Fertil. 1989;87(1):63-6. http://dx.doi.org/10.1530/jrf.0.0870063. PMid:2621715.
http://dx.doi.org/10.1530/jrf.0.0870063...
; Bagg et al., 2004Bagg MA, Vassena R, Papasso-Brambilla E, Grupen CG, Armstrong DT, Gandolfi F. Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig. Theriogenology. 2004;62(6):1003-11. http://dx.doi.org/10.1016/j.theriogenology.2003.12.028. PMid:15289043.
http://dx.doi.org/10.1016/j.theriogenolo...
, 2007Bagg MA, Nottle MB, Armstrong DT, Grupen CG. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod Fertil Dev. 2007;19(7):797-803. http://dx.doi.org/10.1071/RD07018. PMid:17897582.
http://dx.doi.org/10.1071/RD07018...
).

Nuclear changes

Nuclear changes in follicular oocytes at various times after the onset of estrus were reported by Spalding et al. (1955)Spalding JF, Berry RO, Moffit JG. The maturation process of the ovum of swine during normal and induced ovulations. J Anim Sci. 1955;14(3):609-20. http://dx.doi.org/10.1093/ansci/14.3.609.
http://dx.doi.org/10.1093/ansci/14.3.609...
, or after hCG application by Hunter and Polge (1966)Hunter RHF, Polge C. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J Reprod Fertil. 1966;12(3):525-31. http://dx.doi.org/10.1530/jrf.0.0120525. PMid:5333204.
http://dx.doi.org/10.1530/jrf.0.0120525...
. A first report on IVM of pig follicular oocytes revealed a coinciding time line between in vitro and in vivo nuclear maturation (Edwards, 1965Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208(5008):349-51. http://dx.doi.org/10.1038/208349a0. PMid:4957259.
http://dx.doi.org/10.1038/208349a0...
). However, it soon became evident that the presence of a M2 figure is in no sense an adequate indication of normal maturation of the oocyte and that complete maturation comprises two separate but interacting entities (Leman and Dziuk, 1971Leman AD, Dziuk PJ. Fertilization and development of pig follicular oocytes. J Reprod Fertil. 1971;26(3):387-9. http://dx.doi.org/10.1530/jrf.0.0260387. PMid:5569655.
http://dx.doi.org/10.1530/jrf.0.0260387...
; Motlík and Fulka, 1976Motlík J, Fulka J. Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool. 1976;198(2):155-62. http://dx.doi.org/10.1002/jez.1401980205. PMid:978166.
http://dx.doi.org/10.1002/jez.1401980205...
; Mattioli et al., 1989Mattioli M, Bacci ML, Galeati G, Seren E. Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology. 1989;31(6):1201-7. http://dx.doi.org/10.1016/0093-691X(89)90089-7. PMid:16726638.
http://dx.doi.org/10.1016/0093-691X(89)9...
). It turned out that in pigs, the transfer of IVM oocytes as well as of oocytes recovered from atretic follicles into previously mated recipients revealed a reduced and retarded cleavage rate of IVM oocytes. In contrast, the sperm penetration rate of oocytes from atretic follicles was equivalent to IVM oocytes, indicating that under in vivo conditions spermatozoa do not discriminate between in vitro matured, atretic, and ovulated oocytes (Meinecke and Meinecke-Tillmann, 1978aMeinecke B, Meinecke-Tillmann S. Die Reifungs- und Befruchtungspotenz atretischer Schweineeizellen in vivo und in vitro. Zuchthyg. 1978a;13(1):5-14. http://dx.doi.org/10.1111/j.1439-0531.1978.tb00176.x. German.
http://dx.doi.org/10.1111/j.1439-0531.19...
, bMeinecke B, Meinecke-Tillmann S. Experimentelle Untersuchungen zur Funktion der Cumuluszellen während der extrakorporalen Eizellreifung beim Schwein. Zbl Vet Med C. 1978b;7(1):58-69. http://dx.doi.org/10.1111/j.1439-0264.1978.tb00494.x. German.
http://dx.doi.org/10.1111/j.1439-0264.19...
).

Aquisition of meiotic competence

Although oocytes of follicles ≤ 1 mm in diameter are able to resume meiosis in vitro, only those of > 2 mm in diameter can complete the first meiotic division indicating a close relationship between follicular growth and oocyte maturation. During pig folliculogenesis, the ability to undergo GVBD and to proceed to metaphase 1 (M1) is acquired earlier than the ability to reach M2 (Tsafriri and Channing, 1975Tsafriri A, Channing CP. Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J Reprod Fertil. 1975;43(1):149-52. http://dx.doi.org/10.1530/jrf.0.0430149. PMid:1127632.
http://dx.doi.org/10.1530/jrf.0.0430149...
; Motlik et al., 1984Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J Reprod Fertil. 1984;72(2):323-8. http://dx.doi.org/10.1530/jrf.0.0720323. PMid:6392543.
http://dx.doi.org/10.1530/jrf.0.0720323...
). The competence to transit through post-GVBD stages undisturbed is only achieved following transcriptional silencing (McGaughey et al., 1979McGaughey RW, Montgomery DH, Richter JD. Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size, as related to their competency for spontaneous maturation. J Exp Zool. 1979;209(2):239-53. http://dx.doi.org/10.1002/jez.1402090206. PMid:512593.
http://dx.doi.org/10.1002/jez.1402090206...
; Crozet et al., 1981Crozet N, Motlik J, Szollosi D. Nucleolar fine structure and RNA synthesis in porcine oocytes during early stages of antrum formation. Biol Cell. 1981;41:35-42.; Motlik et al., 1984Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J Reprod Fertil. 1984;72(2):323-8. http://dx.doi.org/10.1530/jrf.0.0720323. PMid:6392543.
http://dx.doi.org/10.1530/jrf.0.0720323...
; Motlík and Fulka, 1986Motlík J, Fulka J. Factors affecting meiotic competenz in pig oocytes. Theriogenology. 1986;25(1):87-96. http://dx.doi.org/10.1016/0093-691X(86)90185-8.
http://dx.doi.org/10.1016/0093-691X(86)9...
; Meinecke and Meinecke-Tillmann, 1998Meinecke B, Meinecke-Tillmann S. Inhibition of hnRNA synthesis prevents chromatin condensation activity in pig oocytes during maturation in vitro. Arch Tierz Dummerstorf. 1998;41:89-98.; Bjerregaard et al., 2004Bjerregaard B, Wrenzycki C, Philimonenko VV, Hozak P, Laurincik J, Niemann H, Motlik J, Maddox-Hyttel P. Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol Reprod. 2004;70(4):925-35. http://dx.doi.org/10.1095/biolreprod.103.020941. PMid:14627545.
http://dx.doi.org/10.1095/biolreprod.103...
; Pan et al., 2018Pan LZ, Zhu S, Zhang M, Sun MJ, Lin J, Chen F, Tan JH. A new classification of the germinal vesicle chromatin configurations in pig oocytes. Biol Reprod. 2018;99(6):1149-58. http://dx.doi.org/10.1093/biolre/ioy139. PMid:29912286.
http://dx.doi.org/10.1093/biolre/ioy139...
). Subsequent to removal of the nucleolus, fully grown porcine oocytes resume meiosis and proceed undisturbed to M2. Removal of the nucleolus induces GVBD in growing oocytes which normally are unable to resume meiosis, and the cell cycle proceeds to M2 (Fulka et al., 2003Fulka J Jr, Moor RM, Loi P, Fulka J. Enucleolation of porcine oocytes. Theriogenology. 2003;59(8):1879-85. http://dx.doi.org/10.1016/S0093-691X(02)01226-8. PMid:12566159.
http://dx.doi.org/10.1016/S0093-691X(02)...
). These observations challenge the concept of the nucleolus as a mere ribosome factory and indicate an active role in preventing GVBD in growing oocytes. The changes in transcriptional activity are reflected by chromatin appearance and can be used to differentiate transcriptionally active oocytes from transcriptionally silent ones (Motlík and Fulka, 1986Motlík J, Fulka J. Factors affecting meiotic competenz in pig oocytes. Theriogenology. 1986;25(1):87-96. http://dx.doi.org/10.1016/0093-691X(86)90185-8.
http://dx.doi.org/10.1016/0093-691X(86)9...
). The chromatin in porcine oocyte nuclei is initially decondensed in a non-surrounded-nucleolus (NSN) configuration, but subsequently condensed, forming a surrounded nucleolus (NS) configuration with a heterochromatin rim around the nucleolus (Sun et al., 2004Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev. 2004;69(2):228-34. http://dx.doi.org/10.1002/mrd.20123. PMid:15293225.
http://dx.doi.org/10.1002/mrd.20123...
). In the meantime, the morphological criteria have been further refined (Guthrie and Garrett, 2000Guthrie HD, Garrett WM. Changes in porcine oocyte germinal vesicle development as follicles approach preovulatory maturity. Theriogenology. 2000;54(3):389-99. http://dx.doi.org/10.1016/S0093-691X(00)00356-3. PMid:11051322.
http://dx.doi.org/10.1016/S0093-691X(00)...
; Sun et al., 2016Sun M-J, Zhu S, Li Y-W, Lin J, Gong S, Jiao GZ, Chen F, Tan JH. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6(1):23555. http://dx.doi.org/10.1038/srep23555. PMid:27009903.
http://dx.doi.org/10.1038/srep23555...
; Pan et al., 2018Pan LZ, Zhu S, Zhang M, Sun MJ, Lin J, Chen F, Tan JH. A new classification of the germinal vesicle chromatin configurations in pig oocytes. Biol Reprod. 2018;99(6):1149-58. http://dx.doi.org/10.1093/biolre/ioy139. PMid:29912286.
http://dx.doi.org/10.1093/biolre/ioy139...
; Lee et al., 2019Lee JB, Lee MG, Lin T, Shin HY, Lee EJ, Kang WJ, Jin DI. Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro. Asian-Australas J Anim Sci. 2019;32(7):956-65. http://dx.doi.org/10.5713/ajas.18.0739. PMid:30744366.
http://dx.doi.org/10.5713/ajas.18.0739...
). Although growing (≤ 90 μm in diameter) and fully grown pig oocytes (≥ 115 μm) contain comparable amounts of the two subunits of the maturation promoting factor (MPF), they are not able to activate the MPF to a sufficient extent. One of the causes of this incompetence is the continuous activation of a MPF-inhibiting kinase (WEE1B) which became phosphorylated by a persistent activity of cAMP-dependent protein kinase (PKA) (Christmann et al., 1994Christmann L, Jung T, Moor RM. MPF components and meiotic competence in growing pig oocytes. Mol Reprod Dev. 1994;38(1):85-90. http://dx.doi.org/10.1002/mrd.1080380114. PMid:8049069.
http://dx.doi.org/10.1002/mrd.1080380114...
; Nishimura et al., 2009Nishimura T, Shimaoka T, Kano K, Naito K. Insufficient amount of Cdc2 and continous activation of Wee1 B are the cause of meiotic failure in porcine growing oocytes. J Reprod Dev. 2009;55(5):553-7. http://dx.doi.org/10.1262/jrd.09-072A. PMid:19550110.
http://dx.doi.org/10.1262/jrd.09-072A...
, 2012Nishimura T, Fujii W, Kano K, Sugiura K, Naito K. Analyses of the involvement of PKA regulation mechanism in meiotic incompetence of porcine growing oocytes. Biol Reprod. 2012;87(3):53. http://dx.doi.org/10.1095/biolreprod.112.101279. PMid:22674394.
http://dx.doi.org/10.1095/biolreprod.112...
). Furthermore, growing oocytes are unable to establish an intact mitogen-activated protein kinase-pathway (MAPK3/1) required for full meiotic competence (Kanayama et al., 2002Kanayama N, Miyano T, Lee J. Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase. Zygote. 2002;10(3):261-70. http://dx.doi.org/10.1017/S0967199402002344. PMid:12214808.
http://dx.doi.org/10.1017/S0967199402002...
). Extracellular signal-regulated kinases (ERK1/2) are involved in early porcine folliculogenesis as evidenced by the marked intensity of activated MAPK3/1 immunolabeling in the cytoplasm of oocytes from primordial/primary, secondary and tertiary follicles (Moreira et al., 2013Moreira F, Corcini CD, Mondadori RG, Gevehr-Fernandes C, Mendes FF, Araújo EG, Lucia T Jr. Leptin and mitogen-activated protein kinase (MAPK) in oocytes of sows and gilts. Anim Reprod Sci. 2013;139(1-4):89-94. http://dx.doi.org/10.1016/j.anireprosci.2013.03.011. PMid:23602489.
http://dx.doi.org/10.1016/j.anireprosci....
). Furthermore, Sun et al. (2016)Sun M-J, Zhu S, Li Y-W, Lin J, Gong S, Jiao GZ, Chen F, Tan JH. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6(1):23555. http://dx.doi.org/10.1038/srep23555. PMid:27009903.
http://dx.doi.org/10.1038/srep23555...
highlighted the signaling pathways of MAPK3/1 required for the transition of chromatin from a decondensed to a condensed condition in growing pig oocytes.

Prophase1 arrest

Since prophase1 arrest of mammalian oocytes could be maintained in vitro by a membrane-permeate form of cAMP or a cAMP phosphodiesterase inhibitor, early ideas of prophase1 arrest were based on the concept that premature resumption of meiosis is prevented either by cAMP which is produced by follicle cells and diffuses into the oocyte or by cAMP synthesized by the oocyte itself (Jaffe and Egbert, 2017Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79(1):237-60. http://dx.doi.org/10.1146/annurev-physiol-022516-034102. PMid:27860834.
http://dx.doi.org/10.1146/annurev-physio...
). This concept held until the demonstration of a constitutive active G-protein-coupled-receptor 3 (GPR3), stimulating adenylyl cyclase in mice oocytes. The resulting elevated cAMP levels in the oocyte prevent resumption of meiosis (Kalinowski et al., 2004Kalinowski RR, Berlot CH, Jones TL, Ross LF, Jaffe LA, Mehlmann LM. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev Biol. 2004;267(1):1-13. http://dx.doi.org/10.1016/j.ydbio.2003.11.011. PMid:14975713.
http://dx.doi.org/10.1016/j.ydbio.2003.1...
; Mehlmann et al., 2004Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science. 2004;306(5703):1947-50. http://dx.doi.org/10.1126/science.1103974. PMid:15591206.
http://dx.doi.org/10.1126/science.110397...
). Creation of mouse oocytes defective in synthesis and degradation of cAMP has shown that both, GPR3 and phosphodiesterase 3A, are the most important regulators of intra-oocyte cAMP concentrations necessary to block resumption of meiosis (Vaccari et al., 2008Vaccari S, Horner K, Mehlmann LM, Conti M. Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev Biol. 2008;316(1):124-34. http://dx.doi.org/10.1016/j.ydbio.2008.01.018. PMid:18280465.
http://dx.doi.org/10.1016/j.ydbio.2008.0...
; Norris et al., 2009Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869-78. http://dx.doi.org/10.1242/dev.035238. PMid:19429786.
http://dx.doi.org/10.1242/dev.035238...
). Phosphodiesterase 3A is competitively inhibited by cyclic guanosine monophosphate (cGMP) which is provided by granulosa cells and diffuses through gap junctions into the oocyte. Granulosa cell production of cGMP is controlled by natriuretic peptide stimulation of natriuretic peptide receptor 2 (NPR2) which is coupled to a guanylyl cyclase (Zhang et al., 2010Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330(6002):366-9. http://dx.doi.org/10.1126/science.1193573. PMid:20947764.
http://dx.doi.org/10.1126/science.119357...
). Convincing evidence of cAMP production by the oocyte itself, and the meiosis-inhibiting effect of cAMP have also been demonstrated in the pig (Rice and McGaughey, 1981Rice C, McGaughey RW. Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes. J Reprod Fertil. 1981;62(1):245-56. http://dx.doi.org/10.1530/jrf.0.0620245. PMid:6262508.
http://dx.doi.org/10.1530/jrf.0.0620245...
; Mattioli et al., 1994Mattioli M, Galeati B, Barboni G, Seren E. Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J Reprod Fertil. 1994;100(2):403-9. http://dx.doi.org/10.1530/jrf.0.1000403. PMid:8021856.
http://dx.doi.org/10.1530/jrf.0.1000403...
). Likewise, proof has been given of the presence of the GPR3-adenylyl cyclase-cAMP system and cGMP inhibition of phosphodiesterase 3 A in porcine oocytes (Laforest et al., 2005Laforest MF, Pouliot É, Guéguen L, Richard FJ. Fundamental significance of specific phophodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol Reprod Dev. 2005;70(3):361-72. http://dx.doi.org/10.1002/mrd.20203. PMid:15625697.
http://dx.doi.org/10.1002/mrd.20203...
; Sasseville et al., 2006Sasseville M, Côté N, Guillemette C, Richard FJ. New insight into the role of phophodiesterase 3A in porcine oocyte maturation. BMC Dev Biol. 2006;6(1):47. http://dx.doi.org/10.1186/1471-213X-6-47. PMid:17038172.
http://dx.doi.org/10.1186/1471-213X-6-47...
; Morikawa et al., 2007Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K. Meiotic resumption of porcine immature oocytes is prevented by ooplasma Gsα functions. J Reprod Dev. 2007;53(6):1151-7. http://dx.doi.org/10.1262/jrd.19055. PMid:17693700.
http://dx.doi.org/10.1262/jrd.19055...
; Yang et al., 2012Yang CR, Wei Y, Qi ST, Chen L, Zhang QH, Ma JY, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun QY. The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One. 2012;7(6):e38807. http://dx.doi.org/10.1371/journal.pone.0038807. PMid:22685609.
http://dx.doi.org/10.1371/journal.pone.0...
; Zhang et al., 2012Zhang B, Ding J, Li Y, Wang J, Zhao Y, Wang W, Shi S, Dong F, Zhang Z, Shi F, Xu Y. The porcine Gpr3 gene: molecular cloning, characterization and expression level in tissues and cumulus-oocyte complexes during in vitro maturation. Mol Biol Rep. 2012;39(5):5831-9. http://dx.doi.org/10.1007/s11033-011-1393-y. PMid:22207171.
http://dx.doi.org/10.1007/s11033-011-139...
). Pig granulosa cells produce and secrete both B-type brain natriuretic peptide (BNP) as well as C-type natriuretic peptide (CNP), and are endowed with NPR1 and NPR2. Moreover, meiotic resumption of porcine oocytes has been inhibited by CNP signaling (Kim et al., 1992Kim SH, Cho KW, Lim SH, Hwang YH, Ryu H, Oh SH, Seul KH, Jeong GB, Yoon S. Presence and release of immunoreactive atrial natriuretic peptide in granulosa cells of the pig ovarian follicle. Regul Pept. 1992;42(3):153-62. http://dx.doi.org/10.1016/0167-0115(92)90095-C. PMid:1289975.
http://dx.doi.org/10.1016/0167-0115(92)9...
; Ivanova et al., 2003Ivanova MD, Gregoraszczuk EL, Augustowska K, Kolodziejczyk J, Mollova MV, Kehayov IR. Localization of atrial natriuretic peptide in pig granulosa cells isolated from ovarian follicles of various size. Reprod Biol. 2003;3(2):173-81. PMid:14666140.; Hiradate et al., 2014Hiradate Y, Hoshino Y, Tanemura K, Sato E. C-type natriuretic peptide inhibits porcine oocyte meiotic resumption. Zygote. 2014;22(3):372-7. http://dx.doi.org/10.1017/S0967199412000615. PMid:23331536.
http://dx.doi.org/10.1017/S0967199412000...
; Santiquet et al., 2014Santiquet N, Papillon-Dion É, Djender N, Guillemette C, Richard FJ. New elements in the c-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol Reprod. 2014;91(1):16. http://dx.doi.org/10.1095/biolreprod.113.114132. PMid:24899572.
http://dx.doi.org/10.1095/biolreprod.113...
; Zhang et al., 2015Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, Zhang Y, Zhang M, Xia G. Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol. 2015;230(1):71-81. PMid:24912131.).

The combined data suggest that subsequent to binding of CNP and BNP to NPR2, production of cGMP in porcine granulosa cells is activated which then passes through gap junctions into the oocyte. Prophase1 is maintained by high cGMP concentrations which competitively inhibit phosphodiesterase 3, thus retaining high intra-oocyte cAMP levels. The cAMP activates PKA which holds MPF in an inactive state by phosphorylating WEE1 (Shimaoka et al., 2009Shimaoka T, Nishimura T, Kano K, Naito K. Critical effect of pigWee1B on the regulation of meiotic resumption in porcine immature oocytes. Cell Cycle. 2009;8(15):2375-84. http://dx.doi.org/10.4161/cc.8.15.9073. PMid:19633431.
http://dx.doi.org/10.4161/cc.8.15.9073...
; Jaffe and Egbert, 2017Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79(1):237-60. http://dx.doi.org/10.1146/annurev-physiol-022516-034102. PMid:27860834.
http://dx.doi.org/10.1146/annurev-physio...
). The cooperations between somatic and germinative compartments remain stable until increasing and persistent estrogen blood concentrations support the LH surge.

Resumption of meiosis by LH signaling

Gonadotropin receptor expression of porcine ovarian follicles during the estrous cycle depends on both follicular development and stage of the estrous cycle. In small and medium ovarian follicles of prepubertal and adult pigs, follicle stimulating hormone receptors (FSHR) are highly expressed in granulosa cells and decline in mature follicles at estrus. In contrast to the luteinizing hormone receptor (LHR), the number of FSHR per granulosa cell and their binding affinity do not increase in the course of follicular development (Nakano et al., 1977Nakano R, Akahori T, Katayama K, Tojo S. Binding of LH and FSH to porcine granulosa cells during follicular maturation. J Reprod Fertil. 1977;51(1):23-7. http://dx.doi.org/10.1530/jrf.0.0510023. PMid:199723.
http://dx.doi.org/10.1530/jrf.0.0510023...
). Luteinizing hormone receptor (LHR) expression in granulosa cells weakly starts in medium sized follicles and is increased in large follicles on Day 0 (Nakano et al., 1977Nakano R, Akahori T, Katayama K, Tojo S. Binding of LH and FSH to porcine granulosa cells during follicular maturation. J Reprod Fertil. 1977;51(1):23-7. http://dx.doi.org/10.1530/jrf.0.0510023. PMid:199723.
http://dx.doi.org/10.1530/jrf.0.0510023...
; Daguet, 1979Daguet MC. Increase of follicle cell LH binding and changes in the LH level of follicular fluid during the preovulatory period in the sow. Ann Biol Anim Biochim Biophys. 1979;19(6):1655-67. http://dx.doi.org/10.1051/rnd:19791003.
http://dx.doi.org/10.1051/rnd:19791003...
; Liu et al., 1998Liu J, Aronow BJ, Witte DP, Pope WF, La Barbera AR. Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biol Reprod. 1998;58(3):648-58. http://dx.doi.org/10.1095/biolreprod58.3.648. PMid:9510952.
http://dx.doi.org/10.1095/biolreprod58.3...
). Porcine cumulus cells express low numbers of LHRs and show no cAMP response upon LH stimulation (Mattioli et al., 1994Mattioli M, Galeati B, Barboni G, Seren E. Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J Reprod Fertil. 1994;100(2):403-9. http://dx.doi.org/10.1530/jrf.0.1000403. PMid:8021856.
http://dx.doi.org/10.1530/jrf.0.1000403...
). In vitro LHR-expression of porcine cumulus cells increases only after additional FSH stimulation (Shimada et al., 2003Shimada M, Nishibori M, Isobe N, Kawano N, Terada T. Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod. 2003;68(4):1142-9. http://dx.doi.org/10.1095/biolreprod.102.010082. PMid:12606491.
http://dx.doi.org/10.1095/biolreprod.102...
; Ozawa et al., 2008Ozawa M, Nagai T, Somfai T, Nakai M, Maedomari N, Fahrudin M, Karja NW, Kaneko H, Noguchi J, Ohnuma K, Yoshimi N, Miyazaki H, Kikuchi K. Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH receptor expression, and meiotic maturation in cumulus-oocyte complexes in pigs. Mol Reprod Dev. 2008;75(5):857-66. http://dx.doi.org/10.1002/mrd.20820. PMid:18022826.
http://dx.doi.org/10.1002/mrd.20820...
). Simultaneously with the follicular development, the adenylyl cyclase-system of porcine granulosa cells reacts increasingly responsive to hCG. Following LH stimulation of follicles (6-10 mm in diameter) about 7.000 molecules of cAMP are formed/sec/granulosa cell (Lee, 1976Lee CY. The porcine ovarian follicle: III. Development of chorionic gonadotropin receptors associated with increase in adenyl cyclase avtivity during follicle maturation. Endocrinology. 1976;99(1):42-8. http://dx.doi.org/10.1210/endo-99-1-42. PMid:181240.
http://dx.doi.org/10.1210/endo-99-1-42...
). Since follicles of that size class contain about 2 to 3 million granulosa cells (Foxcroft and Hunter, 1985Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19. PMid:3003359.) one can imagine that follicles become submerged by cAMP molecules. Moreover, LH signaling is extended by internalization of the receptors after LH binding, such that signaling may continue from endosome compartments even in the absence of extracellular LH (Johnson and Jonas, 2020Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol Reprod. 2020;102(4):773-83. http://dx.doi.org/10.1093/biolre/ioz228. PMid:31882999.
http://dx.doi.org/10.1093/biolre/ioz228...
). Prophase1 of oocytes remains arrested when pig ovarian follicles are isolated and subsequently cultivated without gonadotropins, whereas addition of LH/FSH or eCG/hCG to the culure medium induces resumption of meiosis (Gérard et al., 1979Gérard M, Ménézo Y, Rombauts P, Szöllösi D, Thibault C. In vitro studies of oocyte maturation and follicular metabolism in the pig. Ann Biol Anim Biochim Biophys. 1979;19(5):1521-35. http://dx.doi.org/10.1051/rnd:19790914.
http://dx.doi.org/10.1051/rnd:19790914...
; Meinecke and Meinecke-Tillmann, 1981Meinecke B, Meinecke-Tillmann S. Induction and inhibition of meiotic maturation of follicle-enclosed porcine oocytes in vitro. Theriogenology. 1981;15(6):581-9. http://dx.doi.org/10.1016/0093-691X(81)90061-3.
http://dx.doi.org/10.1016/0093-691X(81)9...
). The LHR is a G protein-coupled receptor and, upon binding of its ligand, the activation of cAMP-dependent targets is stimulated (Mattioli and Barboni, 2000Mattioli M, Barboni B. Signal transduction mechanism for LH in the cumulus-oocyte complex. Mol Cell Endocrinol. 2000;161(1-2):19-23. http://dx.doi.org/10.1016/S0303-7207(99)00218-X. PMid:10773386.
http://dx.doi.org/10.1016/S0303-7207(99)...
; Choi and Smitz, 2014Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: origins and difference. Mol Cell Endocrinol. 2014;383(1-2):203-13. http://dx.doi.org/10.1016/j.mce.2013.12.009. PMid:24365330.
http://dx.doi.org/10.1016/j.mce.2013.12....
). Furthermore, signal transduction also takes place via additional G protein-independent pathways (Johnson and Jonas, 2020Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol Reprod. 2020;102(4):773-83. http://dx.doi.org/10.1093/biolre/ioz228. PMid:31882999.
http://dx.doi.org/10.1093/biolre/ioz228...
). However, the primary targets of the LH signal, initiating the ovulation process and the resumption of meiosis are a.) the steroidogenesis of the preovulatory follicle, b.) the gap junctional communication between follicle cells and the oocyte, c.) the natriuretic peptide system, and d.) the epidermal growth factor network.

  1. Steroidogenesis of the preovulatory follicle

In early studies, porcine follicles were cultivated in vitro after ovariectomy of eCG/hCG treated prepubertal gilts. It was shown that stimulation of progesterone secretion already started in follicles removed 15 min after intravenous hCG application, whereas resumption of meiosis was induced in follicles removed after at least 4 h following hCG (Meinecke and Meinecke-Tillmann, 1979Meinecke B, Meinecke-Tillmann S. Effects of gonadotropins on oocyte maturation and progesterone production by porcine ovarian follicles cultured in vitro. Theriogenology. 1979;11(5):351-65. http://dx.doi.org/10.1016/0093-691X(79)90059-1. PMid:16725420.
http://dx.doi.org/10.1016/0093-691X(79)9...
). The time window for in vivo LH signaling targeting oocyte maturation corresponds with the results obtained by IVM of porcine cumulus oocyte complexes (Ebeling et al., 2007Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotropin-induced resumption of meiosis in vitro. Zygote. 2007;15(2):139-47. http://dx.doi.org/10.1017/S0967199406004011. PMid:17462106.
http://dx.doi.org/10.1017/S0967199406004...
; Sasseville et al., 2009Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320. PMid:19228792.
http://dx.doi.org/10.1210/me.2008-0320...
). In further investigations the relative amount of progestagens, androgens, and estrogens in follicular fluid and in follicular wall samples, revealed the change from estrogen to progesterone synthesis of the preovulatory follicle (Eiler and Nalbandov, 1977Eiler H, Nalbandov AV. Sex steroids in follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology. 1977;100(2):331-8. http://dx.doi.org/10.1210/endo-100-2-331. PMid:556689.
http://dx.doi.org/10.1210/endo-100-2-331...
; Ainsworth et al., 1980Ainsworth L, Tsang BK, Downey BR, Marcus GJ, Armstrong DT. Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicles. Biol Reprod. 1980;23(3):621-7. http://dx.doi.org/10.1095/biolreprod23.3.621. PMid:7448265.
http://dx.doi.org/10.1095/biolreprod23.3...
; Meinecke, 1981Meinecke B. Hormonal and cellular interactions during maturation of porcine follicular oocytes. In: Hafez ESE, Semm K, editors. In vitro fertilization and embryo transfer. Saarbruecken: MTP press; 1981. p. 103-9.; Foxcroft and Hunter, 1985Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19. PMid:3003359.; Meinecke et al., 1987Meinecke B, Gips H, Meinecke-Tillmann S. Steroid hormone content of the developing preovulatory porcine follicle. In: Roche JF, O’Callaghan D, editors. Follicular growth and ovulatory rate in farm animals. Dordrecht: Martinus Nijhoff Publishers; 1987. p. 207-13.). The role of steroid hormones in oocyte maturation has been debated for decades (Tsafriri and Motola, 2007Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals? Trends Endocrinol Metab. 2007;18(8):321-7. http://dx.doi.org/10.1016/j.tem.2007.08.005. PMid:17826173.
http://dx.doi.org/10.1016/j.tem.2007.08....
) but recently became a subject of interest again. Estrogen promotes the natriuretic peptide driven production of cGMP in mouse granulosa cells and in cumulus cells, thus assisting meiotic arrest (Liu et al., 2017Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, Yang Y, Zhang Y, Zhang Z, Wang C, Xu Y, Duan E, Xia G. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis. 2017;8(3):e2662. http://dx.doi.org/10.1038/cddis.2017.82. PMid:28277543.
http://dx.doi.org/10.1038/cddis.2017.82...
), whereas progesterone signaling via its receptor is essential for the resumption of meiosis and cumulus expansion in pigs (Yamashita et al., 2010Yamashita Y, Kawashima I, Gunji Y, Hishinuma M, Shimada M. Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EGF-like factor, in cumulus cells, which enhances the EGF receptor signaling pathway during in vitro maturation of porcine COCs. J Reprod Dev. 2010;56(3):315-23. http://dx.doi.org/10.1262/jrd.09-199H. PMid:20168049.
http://dx.doi.org/10.1262/jrd.09-199H...
). Our own investigations have demonstrated that an inhibition of MAPK3/1 by U0126 in porcine cumulus cells during gonadotropin induced IVM resulted in a cessation of progesterone synthesis by suppression of 3ß-hsd gene expression and an increase of estradiol synthesis by stimulating Cyp 19 a1 gene expression (Ebeling et al., 2011Ebeling S, Töpfer D, Meinecke B. Steroidogenesis and the influence of MAPK activity during in vitro maturation of porcine cumulus oocyte complexes. Reprod Domest Anim. 2011;46(3):513-9. http://dx.doi.org/10.1111/j.1439-0531.2010.01699.x. PMid:20946537.
http://dx.doi.org/10.1111/j.1439-0531.20...
). The same effect had been noticed in cultured granulosa cells and cumulus oocyte complexes (COCs) of mice (Su et al., 2006Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cell of mouse preovulatory follicles. Biol Reprod. 2006;75(6):859-67. http://dx.doi.org/10.1095/biolreprod.106.052613. PMid:16943367.
http://dx.doi.org/10.1095/biolreprod.106...
). Thus, it can be assumed that the LH signal induces a differential expression of genes essential for estrogen and progesterone synthesis in cumulus cells as well as in granulosa cells and that this process is mediated by a MAPK3/1-dependent signaling pathway.

  1. Gap junctional communication between follicular cells and the oocyte

Pigs strongly express connexin 43 in cumulus cells, connexin 60 in oocytes, and connexin 45 in both oocytes and cumulus cells (Santiquet et al., 2013Santiquet N, Robert C, Richard J. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes. PLoS One. 2013;8(7):e68456. http://dx.doi.org/10.1371/journal.pone.0068456. PMid:23861906.
http://dx.doi.org/10.1371/journal.pone.0...
). Following hCG application to eCG pretreated pigs, coupling of cumulus cells and oocytes as determined by [3H]uridin uptake remains unchanged until about 32 h. At this point of time pig oocytes reach M1 and exhibit complete cumulus cell expansion (Motlik et al., 1986Motlik J, Fulka J, Fléchon J-E. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod Fertil. 1986;76(1):31-7. http://dx.doi.org/10.1530/jrf.0.0760031. PMid:3080593.
http://dx.doi.org/10.1530/jrf.0.0760031...
; Mattioli et al., 1988Mattioli M, Galeati G, Bacci ML, Seren E. Follicular factors influence oocyte fertilizability by modulating the intracellular cooperation between cumulus cells and oocyte. Gamete Res. 1988;21(3):223-32. PMid:3246367.). Gonadotropin treatment (FSH/LH; eCG/hCG) causes a rise in the amount of connexin 43 protein in pig COCs corresponding to an increase in gap junctional communication during the initial phase of IVM, whereas GVBD is accompanied by closure of gap junctions (Shimada et al., 2001Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001;64(4):1255-63. http://dx.doi.org/10.1095/biolreprod64.4.1255. PMid:11259274.
http://dx.doi.org/10.1095/biolreprod64.4...
; Sasseville et al., 2009Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320. PMid:19228792.
http://dx.doi.org/10.1210/me.2008-0320...
). During the first few hours of IVM the presence or absence of gonadotropins has hardly any effect on the gap junction network between porcine cumulus cells. Currently, gap junctional communication during porcine IVM is explained in terms of increasing and decreasing the total number of connexin 43 molecules in cumulus cells, thus varying the number of gap junctions and hence the gap junctional communication flow rate (Santiquet et al., 2013Santiquet N, Robert C, Richard J. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes. PLoS One. 2013;8(7):e68456. http://dx.doi.org/10.1371/journal.pone.0068456. PMid:23861906.
http://dx.doi.org/10.1371/journal.pone.0...
). However, it should be stressed that the capacity of cumulus cells to promote resumption and completion of oocyte meiosis is gonadotropin-dependent and that a rapid and profound decrease of gap junctional communication accompanies GVBD in porcine oocytes (Sasseville et al., 2009Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320. PMid:19228792.
http://dx.doi.org/10.1210/me.2008-0320...
; Santiquet et al., 2012Santiquet NW, Develle Y, Laroche A, Robert C, Richard FJ. Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine, a gap-FRAP study. Biol Reprod. 2012;87(2):46. http://dx.doi.org/10.1095/biolreprod.112.099754. PMid:22649071.
http://dx.doi.org/10.1095/biolreprod.112...
).

  1. The natriuretic peptide system

In rodent follicles, LH inhibits gualylyl xyclase activity of NPR2 via dephosphorylation by a rapid still unknown way, thus lowering the cGMP levels in the somatic compartment (Robinson et al., 2012Robinson JW, Zhang M, Shuhaibar LC, Norris RP, Geerts A, Wunder F, Eppig JJ, Potter LR, Jaffe LA. Luteinizing hormone reduces the activity of the NPR2 guanyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev Biol. 2012;366(2):308-16. http://dx.doi.org/10.1016/j.ydbio.2012.04.019. PMid:22546688.
http://dx.doi.org/10.1016/j.ydbio.2012.0...
; Egbert et al., 2014Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. Dephosphorylation and inactivation of NPR2 gyanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development. 2014;141(18):3594-604. http://dx.doi.org/10.1242/dev.112219. PMid:25183874.
http://dx.doi.org/10.1242/dev.112219...
; Shuhaibar et al., 2015Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, Wen L, Feil R, Jaffe LA. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci USA. 2015;112(17):5527-32. http://dx.doi.org/10.1073/pnas.1423598112. PMid:25775542.
http://dx.doi.org/10.1073/pnas.142359811...
). Additionally, the LH-cAMP-PKA system of granulosa cells activates phophodiesterase 5 which also contributes to a reduction of somatic cGMP concentrations via hydrolytic cleavage (Egbert et al., 2016Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing hormone causes phosphorylation and activation of the cGMP phosphodiesterase PDE5 in rat ovarian follicles, contributing, together with PDE1 activity, to the resumption of meiosis. Biol Reprod. 2016;94(5):110. http://dx.doi.org/10.1095/biolreprod.115.135897. PMid:27009040.
http://dx.doi.org/10.1095/biolreprod.115...
).

In pigs, the application of hCG to eCG pretreated animals decreased CNP as well as BNP concentrations (~ 80%) in follicular fluid at 18 h and 36 h after treatment, respectively. These observations indicate that under physiological conditions BNP and CNP jointly contribute to meiotic arrest, and LH attenuates this inhibitory effect by decreasing the expression levels of BNP and CNP in vivo (Hiradate et al., 2014Hiradate Y, Hoshino Y, Tanemura K, Sato E. C-type natriuretic peptide inhibits porcine oocyte meiotic resumption. Zygote. 2014;22(3):372-7. http://dx.doi.org/10.1017/S0967199412000615. PMid:23331536.
http://dx.doi.org/10.1017/S0967199412000...
; Zhang et al., 2015Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, Zhang Y, Zhang M, Xia G. Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol. 2015;230(1):71-81. PMid:24912131.). The timely upregulation of the principal phosphodiesterase 3 activity in porcine cumulus cells requires FSH signaling (Sasseville et al., 2009Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320. PMid:19228792.
http://dx.doi.org/10.1210/me.2008-0320...
), and so both, the CNP-NPR2 down-regulation and the upregulation of phosphodiesterase 3 activity lowers the cGMP concentrations in the somatic compartment. As a consequence, cGMP diffuses out of the oocyte down its concentration gradient. Consequently, the competitive inhibition of phosphodiesterase 3 by high cGMP levels in the oocyte is released and hydrolysis of cAMP begins (Jaffe and Egbert, 2017Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79(1):237-60. http://dx.doi.org/10.1146/annurev-physiol-022516-034102. PMid:27860834.
http://dx.doi.org/10.1146/annurev-physio...
).

  1. The epidermal growth factor network

Activation of the EGF receptor after the LH surge is mediated by amphiregulin and epiregulin (Park et al., 2004Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682-4. http://dx.doi.org/10.1126/science.1092463. PMid:14726596.
http://dx.doi.org/10.1126/science.109246...
). Synthesis of both peptides increases after LH stimulation in porcine granulosa cells, and after EGF receptor activation cGMP levels decrease in granulosa cells and in cumulus cells (Zhang et al., 2014Zhang W, Chen Q, Yang Y, Liu W, Zhang M, Xia G, Wang C. Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BND and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol Reprod Dev. 2014;81(11):1030-41. http://dx.doi.org/10.1002/mrd.22424. PMid:25348585.
http://dx.doi.org/10.1002/mrd.22424...
). It is suggested that amphiregulin and epiregulin are released from granulosa cells into the extracellular space and diffuse to cumulus cells, where they lower cGMP concentrations. In addition, LH related EGF receptor signaling induces MAPK3/1 activation, mucification of the cumulus matrix, gap junction closure, and oocyte meiotic resumption in several mammals including the pig (Liang et al., 2005Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY. Cyclic adenosine 3′,5′-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology. 2005;146(10):4437-44. http://dx.doi.org/10.1210/en.2005-0309. PMid:16002524.
http://dx.doi.org/10.1210/en.2005-0309...
; Prochazka and Blaha, 2015Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev. 2015;61(6):495-502. http://dx.doi.org/10.1262/jrd.2015-069. PMid:26688146.
http://dx.doi.org/10.1262/jrd.2015-069...
). During porcine folliculogenesis, responsiveness to EGF signaling develops concomitantly with follicular growth (Marchal et al., 2001Marchal R, Feugang JM, Perreau C, Venturi E, Terqui M, Mermillod P. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology. 2001;56(1):17-29. http://dx.doi.org/10.1016/S0093-691X(01)00539-8. PMid:11467513.
http://dx.doi.org/10.1016/S0093-691X(01)...
; Procházka et al., 2000Procházka R, Sršeň V, Nagyová E, Miyano T, Flechon JE. Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus complexes: nuclear maturation, expansion, and F-actin remodeling. Mol Reprod Dev. 2000;56(1):63-73. http://dx.doi.org/10.1002/(SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D. PMid:10737968.
http://dx.doi.org/10.1002/(SICI)1098-279...
). Porcine cumulus cells from small (<4 mm in diameter) and large (>4mm in diameter) follicles contain similar quantities of EGF receptor protein but following EGF stimulation only expanding cumulus cells from large follicles contain EGF receptors capable to activate intrinsic tyrosine phosphorylation (Prochazka et al., 2003Prochazka R, Kalab P, Nagyova E. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Biol Reprod. 2003;68(3):797-803. http://dx.doi.org/10.1095/biolreprod.102.005520. PMid:12604628.
http://dx.doi.org/10.1095/biolreprod.102...
). In addition, porcine COCs from small follicles expressed equivalent amounts of EGF receptor mRNA compared to COCs from large follicles. However, the former had less total EGF receptor protein, resulting in failed activation of phospho-EGF receptor and phospho-ERK1/2, despite of equivalent total ERK1/2 protein levels (Ritter et al., 2015Ritter LJ, Sugimura S, Gilchrist B. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology. 2015;156(6):2299-312. http://dx.doi.org/10.1210/en.2014-1884. PMid:25849729.
http://dx.doi.org/10.1210/en.2014-1884...
). This underlines the importance of an intact EGF receptor signaling pathway, since MAPK3/1 in particular is of importance for cumulus expansion, resumption of meiosis, and ovulation.

Germinal vesicle breakdown (GVBD)

The MPF complex consists of two components, a catalytic subunit, namely the cyclin dependent kinase 1 (CDK1), and a regulatory subunit, cyclin B (Dunphy and Newport, 1988Dunphy WG, Newport JW. Unraveling of mitotic control mechanisms. Cell. 1988;55(6):925-8. http://dx.doi.org/10.1016/0092-8674(88)90234-6. PMid:3060263.
http://dx.doi.org/10.1016/0092-8674(88)9...
; Nurse, 1990Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990;344(6266):503-8. http://dx.doi.org/10.1038/344503a0. PMid:2138713.
http://dx.doi.org/10.1038/344503a0...
). Phosphorylation on threonine 161 by a Cdk activating kinase (CAK1) and dephosphorylation on Thr 14 and thyrosine 15 by the cell division phosphatase 25 (CDC25) activates CDK1 (Krek and Nigg, 1992Krek W, Nigg EA. Cell cycle regulation of vertebrate p34cdc2 activity: identification of Thr 161 as an essential in vivo phosphorylation site. New Biol. 1992;4(4):323-9. PMid:1622929.; Solomon et al., 1992Solomon MJ, Lee T, Kirschner MW. Role of phosphorylation in p34cdc2 activation: identification of activating kinase. Mol Biol Cell. 1992;3(1):13-27. http://dx.doi.org/10.1091/mbc.3.1.13. PMid:1532335.
http://dx.doi.org/10.1091/mbc.3.1.13...
). The necessity of threonine 161 phosphorylation of CDK1 for MPF activation at meiotic resumption of porcine oocytes has been confirmed (Fujii et al., 2011Fujii W, Nishimura T, Kano K, Sugiura K, Naito K. CDK7 and CCNH are components of CDK-activating kinase and are required for meiotic progression of pig oocytes. Biol Reprod. 2011;85(6):1124-32. http://dx.doi.org/10.1095/biolreprod.111.091801. PMid:21778139.
http://dx.doi.org/10.1095/biolreprod.111...
). In immature porcine oocytes, high cAMP levels activate WEE1B which subsequently inactivates CDK1 (Nishimura et al., 2009Nishimura T, Shimaoka T, Kano K, Naito K. Insufficient amount of Cdc2 and continous activation of Wee1 B are the cause of meiotic failure in porcine growing oocytes. J Reprod Dev. 2009;55(5):553-7. http://dx.doi.org/10.1262/jrd.09-072A. PMid:19550110.
http://dx.doi.org/10.1262/jrd.09-072A...
). After in vivo/in vitro induction of meiotic resumption, declining cAMP levels in the oocyte inactivate WEE1B, followed by activation of CDC25 and the conversion of pre-MPF to MPF. It is suggested that the MPF activity during this early period is not sufficient to induce meiotic resumption because of still low cyclin B concentrations. The moderate MPF activity starts the cyclin synthesis which results in a further MPF activation and provokes GVBD (Shimaoka et al., 2009Shimaoka T, Nishimura T, Kano K, Naito K. Critical effect of pigWee1B on the regulation of meiotic resumption in porcine immature oocytes. Cell Cycle. 2009;8(15):2375-84. http://dx.doi.org/10.4161/cc.8.15.9073. PMid:19633431.
http://dx.doi.org/10.4161/cc.8.15.9073...
). Activation of MPF during IVM of pig oocytes occurs in close correspondence to GVBD but is influenced among other factors by media composition and quality of the oocytes (Naito and Toyoda, 1991Naito K, Toyoda Y. Fluctuation of histone HI kinase activity during meiotic maturation in porcine oocytes. J Reprod Fertil. 1991;93(2):467-73. http://dx.doi.org/10.1530/jrf.0.0930467. PMid:1787467.
http://dx.doi.org/10.1530/jrf.0.0930467...
; Wehrend and Meinecke, 2001Wehrend A, Meinecke B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the lenth of the meiotic stages. Anim Reprod Sci. 2001;66(3-4):175-84. http://dx.doi.org/10.1016/S0378-4320(01)00094-X. PMid:11348780.
http://dx.doi.org/10.1016/S0378-4320(01)...
; Setiadi et al., 2009Setiadi MA, Trumpa M, Rath D, Meinecke B. Elevated histone H1 (MPF) and mitogenn-activated protein kinase activities in pig oocytes following in vitro maturation do not indicate cytoplasmic maturation. Reprod Domest Anim. 2009;44(2):235-40. http://dx.doi.org/10.1111/j.1439-0531.2007.01041.x. PMid:19323796.
http://dx.doi.org/10.1111/j.1439-0531.20...
). Since inhibition of protein synthesis as well as suppression of CDK1 activation prevents porcine GVBD, it was assumed that cyclin B synthesis is required for GVBD (Naito et al., 1995Naito K, Hawkins C, Yamashita M, Nagahama Y, Aoki F, Kohmoto K, Toyoda Y, Moor RM. Association of p34cdc2 and Cyclin B1 during meiotic maturation in porcine oocytes. Dev Biol. 1995;168(2):627-34. http://dx.doi.org/10.1006/dbio.1995.1107. PMid:7729593.
http://dx.doi.org/10.1006/dbio.1995.1107...
; Kubelka et al., 2002Kubelka M, Anger M, Kalous J, Schultz RM, Motlik J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev. 2002;63(1):110-8. http://dx.doi.org/10.1002/mrd.10176. PMid:12211068.
http://dx.doi.org/10.1002/mrd.10176...
). However, the trigger of GVBD in pig oocytes might not be the cyclin synthesis but the dephosphorylation of pre-MPF. When porcine oocytes were injected with antisense cyclin RNAs (B1 and B2), they gradually underwent GVBD in the absence of cyclin B synthesis. Despite the resulting low MPF activity in these oocytes, they were able to activate a small amount of pre-MPF to induce GVBD, although the time line was retarded. This suggests that pig oocytes do not require cyclin synthesis for GVBD induction per se but they need either cyclin B1 or B2 synthesis for GVBD in a correct time course (Kuroda et al., 2004Kuroda T, Naito K, Sugiura K, Yamashita M, Takakura I, Tojo H. Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antsense RNA injection. Biol Reprod. 2004;70(1):154-9. http://dx.doi.org/10.1095/biolreprod.103.021519. PMid:12954723.
http://dx.doi.org/10.1095/biolreprod.103...
).

During IVM, the activities of MPF and MAPK3/1 increase around the time of GVBD. Maturation promoting factor exhibits two maxima at M1 and M2 with a temporary drop during M1 to M2-transition, whereas MAPK3/1 activities remain stable at peak levels until M2 (Mattioli et al., 1991Mattioli M, Galeati B, Bacci ML, Barboni G. Changes in maturation-promoting activity in the cytoplasm of pig oocytes throughout maturation. Mol Reprod Dev. 1991;30(2):119-25. http://dx.doi.org/10.1002/mrd.1080300208. PMid:1954026.
http://dx.doi.org/10.1002/mrd.1080300208...
; Inoue et al., 1995Inoue M, Naito K, Aoki F, Toyoda Y, Sato Y. Activation of mitogen-activated protein kinase during meiotic maturation in porcine oocytes. Zygote. 1995;3(3):265-71. http://dx.doi.org/10.1017/S0967199400002665. PMid:8903796.
http://dx.doi.org/10.1017/S0967199400002...
; Wehrend and Meinecke, 2001Wehrend A, Meinecke B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the lenth of the meiotic stages. Anim Reprod Sci. 2001;66(3-4):175-84. http://dx.doi.org/10.1016/S0378-4320(01)00094-X. PMid:11348780.
http://dx.doi.org/10.1016/S0378-4320(01)...
; Ye et al., 2003Ye J, Flint APF, Luck MR, Campbell KHS. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Reproduction. 2003;125(5):645-56. http://dx.doi.org/10.1530/rep.0.1250645. PMid:12713427.
http://dx.doi.org/10.1530/rep.0.1250645...
). In COCs connected to a piece of the mural granulosa cell layer, spontaneous maturation is prevented unless a combination of LH/FSH is present in the medium (Motlik et al., 1991Motlik J, Nagai T, Kikuchi K. Resumption of meiosis in pig oocytes cultured with cumulus and parietal granulosa cells: the effect of protein synthesis inhibition. J Exp Zool. 1991;259(3):386-91. http://dx.doi.org/10.1002/jez.1402590314. PMid:1919466.
http://dx.doi.org/10.1002/jez.1402590314...
; Ebeling et al., 2007Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotropin-induced resumption of meiosis in vitro. Zygote. 2007;15(2):139-47. http://dx.doi.org/10.1017/S0967199406004011. PMid:17462106.
http://dx.doi.org/10.1017/S0967199406004...
). This in vitro model allows for a distinction between spontaneous and gonadotropin induced resumption of meiosis. In cumulus cells, FSH/LH induces an early and rapid U0126-insensitive MAPK3/1 phosphorylation, while U0126-susceptible MAPK3/1 phosphorylation occurs in the oocyte itself at GVBD (Ebeling et al., 2007Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotropin-induced resumption of meiosis in vitro. Zygote. 2007;15(2):139-47. http://dx.doi.org/10.1017/S0967199406004011. PMid:17462106.
http://dx.doi.org/10.1017/S0967199406004...
). Since chromosome condensation can occur in the absence of MPF-activity, and GVBD can take place without MAPK3/1 activation, the specific roles of MPF and of MAPK3/1 in the oocyte have yet not fully been elucidated (Kubelka et al., 2002Kubelka M, Anger M, Kalous J, Schultz RM, Motlik J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev. 2002;63(1):110-8. http://dx.doi.org/10.1002/mrd.10176. PMid:12211068.
http://dx.doi.org/10.1002/mrd.10176...
; Ye et al., 2003Ye J, Flint APF, Luck MR, Campbell KHS. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Reproduction. 2003;125(5):645-56. http://dx.doi.org/10.1530/rep.0.1250645. PMid:12713427.
http://dx.doi.org/10.1530/rep.0.1250645...
; Prochazka and Blaha, 2015Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev. 2015;61(6):495-502. http://dx.doi.org/10.1262/jrd.2015-069. PMid:26688146.
http://dx.doi.org/10.1262/jrd.2015-069...
; Kalous et al., 2018Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int J Mol Sci. 2018;19(3):698. http://dx.doi.org/10.3390/ijms19030698. PMid:29494492.
http://dx.doi.org/10.3390/ijms19030698...
).

Cytoplasmic maturation

Cytoplasmic maturation is an ill-defined process providing the oocyte with the ability to navigate through fertilization and early embryonic cleavage until completion of zygotic genome activation. Previous experiments have demonstrated that follicle size affects the competence of the oocyte to develop to the blastocyst stage (Marchal et al., 2002Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002;57(5):1523-32. http://dx.doi.org/10.1016/S0093-691X(02)00655-6. PMid:12054210.
http://dx.doi.org/10.1016/S0093-691X(02)...
; Bagg et al., 2007Bagg MA, Nottle MB, Armstrong DT, Grupen CG. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod Fertil Dev. 2007;19(7):797-803. http://dx.doi.org/10.1071/RD07018. PMid:17897582.
http://dx.doi.org/10.1071/RD07018...
). Induction of cytoplasmic maturation requires signal exchange between somatic cells and the oocyte as shown by the first successful IVF of porcine in vitro matured oocytes (Mattioli et al., 1989Mattioli M, Bacci ML, Galeati G, Seren E. Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology. 1989;31(6):1201-7. http://dx.doi.org/10.1016/0093-691X(89)90089-7. PMid:16726638.
http://dx.doi.org/10.1016/0093-691X(89)9...
).

At present the efficiency of porcine in vitro production (IVP) of embryos is very low. Despite the many improvements of maturation and fertilization of the oocyte as well as cultivation of the early embryo under in vitro conditions, it has yet not been possible to achieve a significant enhancement in the overall process (Grupen, 2014Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology. 2014;81(1):24-37. http://dx.doi.org/10.1016/j.theriogenology.2013.09.022. PMid:24274407.
http://dx.doi.org/10.1016/j.theriogenolo...
; Chen et al., 2021Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10(10):2770. http://dx.doi.org/10.3390/cells10102770. PMid:34685749.
http://dx.doi.org/10.3390/cells10102770...
). Involvement of the MAPK3/1 in cytoplasmic maturation had been demonstrated by our group through the role of the kinase during the oocyte aging process. By prolonging the culture period of porcine COCs from 46 h up to 72 h to induce oocyte aging, a significant decrease of the MAPK3/1 activity occurred during the first 12 h of aging and stabilized during a further prolonged culture time (Ebeling et al., 2010Ebeling S, Labudda A, Meinecke B. In vitro aging of porcine oocytes: changes in phosphorylation of the mitogen-activated protein kinase (MAPK) and parthenogenetic activability. Reprod Domest Anim. 2010;45(6):e398-404. http://dx.doi.org/10.1111/j.1439-0531.2010.01588.x. PMid:20210885.
http://dx.doi.org/10.1111/j.1439-0531.20...
). Prematurely decreasing MAPK3/1 activities in aged MII porcine oocytes seem to hamper subsequent early embryonic development. Furthermore, a proportion of oocytes with abnormal anaphase II significantly increased after parthenogenetic activation of aged oocytes (Ma et al., 2005Ma W, Zhang D, Hou Y, Li Y-H, Sun Q, Sun X-F, Wang W-H. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Reprod. 2005;72(2):373-83. http://dx.doi.org/10.1095/biolreprod.104.030999. PMid:15469999.
http://dx.doi.org/10.1095/biolreprod.104...
). However, our attempts to use MPF/MAPK3/1 monitoring as an indicator of cytoplasmic maturation during porcine IVM showed that this method is not suitable (Setiadi et al., 2009Setiadi MA, Trumpa M, Rath D, Meinecke B. Elevated histone H1 (MPF) and mitogenn-activated protein kinase activities in pig oocytes following in vitro maturation do not indicate cytoplasmic maturation. Reprod Domest Anim. 2009;44(2):235-40. http://dx.doi.org/10.1111/j.1439-0531.2007.01041.x. PMid:19323796.
http://dx.doi.org/10.1111/j.1439-0531.20...
).

Conclusion

Maturation into a developmentally competent oocyte under in vitro conditions seems to be particularly difficult in swine as compared to cattle. Despite the tremendous efforts during the past decades only limited success has been achieved. Main problems like heterogeneity of oocytes, polyspermic penetration, and aberrant early embryonic development, to name the most obvious examples, have yet not been fully understood. In almost all studies, oocytes from slaughtered prepubertal animals are used, which may explain part of the limited competencies of the oocytes seen following IVM. On the other hand, these oocytes represent an indispensable source for deciphering fundamental phenomena. Advances in the systematic analysis of the signals generated in the somatic and germinative compartments of the follicles will help to solve the problems. The prerequisite, however, is that the results are checked against the in-vivo conditions.

Monozygotic twins and multiples

Facultative and obligatory polyembryony in mammals

In mammals, sexual reproduction is the rule. In contrast to monotocous/uniparous species with singleton pregnancies, polytocous/multiparous animals normally produce more than one progeny per gestation which might be achieved by multiple ovulations with fertilization of the resulting oocytes or by polyembryony. The latter can be classified as a reproductive strategy in which sexual reproduction is combined with asexual splitting of the fertilization product: During this natural cloning process one fertilized oocyte gives rise to more than one individual. In most mammalian species, regardless of whether uni- or multiparous, this natural process occurs only occasionally (facultative polyembryony), resulting in monozygotic (MZ) twins or multiples, such as in humans (Bulmer, 1970Bulmer MG. The biology of twinning in man. Oxford: Clarendon Press;1970.), horses (Meadows et al., 1995Meadows SJ, Binns MM, Newcombe JR, Thompson CJ, Rossdale PD. Identical triplets in a thoroughbred mare. Equine Vet J. 1995;27(5):394-7. http://dx.doi.org/10.1111/j.2042-3306.1995.tb04076.x. PMid:8654356.
http://dx.doi.org/10.1111/j.2042-3306.19...
; Govaere et al., 2009Govaere J, Hoogewijs M, Schauwer C, Van Zeveren A, Smits K, Cornillie P, Kruif A. An abortion of monozygotic twins in a warmblood mare. Reprod Domest Anim. 2009;44(5):852-4. http://dx.doi.org/10.1111/j.1439-0531.2008.01112.x. PMid:19055562.
http://dx.doi.org/10.1111/j.1439-0531.20...
), cattle (Hancock, 1954Hancock J. Monozygotic twins in cattle. Adv Genet. 1954;6:141-81. http://dx.doi.org/10.1016/S0065-2660(08)60129-7. PMid:13180447.
http://dx.doi.org/10.1016/S0065-2660(08)...
; Johansson et al., 1974Johansson I, Lindhé B, Pirchner F. Causes of variation in the frequency of monozygous and dizygous twinning in various breeds of cattle. Hereditas. 1974;78(2):201-34. http://dx.doi.org/10.1111/j.1601-5223.1974.tb01443.x. PMid:4477988.
http://dx.doi.org/10.1111/j.1601-5223.19...
; Silva del Río et al., 2006Silva del Río N, Kirkpatrick BW, Fricke PM. Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology. 2006;66(5):1292-9. http://dx.doi.org/10.1016/j.theriogenology.2006.04.013. PMid:16766024.
http://dx.doi.org/10.1016/j.theriogenolo...
; Rogberg Muñoz et al., 2020Rogberg-Muñoz A, Castillo NS, Zappa ME, Crespi JA, Villegas-Castagnasso EE, Gómez PM, Peral-García P, Giovambattista G. Naturally monozygotic quadruplets in a Braford cow confirmed by DNA analysis: a case report. Reprod Domest Anim. 2020;55(9):1267-70. http://dx.doi.org/10.1111/rda.13778. PMid:32688438.
http://dx.doi.org/10.1111/rda.13778...
), pigs (Ashworth et al., 1998Ashworth CJ, Ross AW, Barrett P. The use of DNA fingerprinting to assess monozygotic twinning in Meishan and Landrace × Large White pigs. Reprod Fertil Dev. 1998;10(6):487-90. http://dx.doi.org/10.1071/RD99010. PMid:10588379.
http://dx.doi.org/10.1071/RD99010...
; Bjerre et al., 2009Bjerre D, Thorup F, Jørgensen CB, Vejlsted M, Fredholm M. A study of the occurrence of monochorionic and monozygotic twinning in the pig. Anim Genet. 2009;40(1):53-6. http://dx.doi.org/10.1111/j.1365-2052.2008.01801.x. PMid:19016673.
http://dx.doi.org/10.1111/j.1365-2052.20...
), and dogs (Joonè et al., 2016Joonè CJ, Cramer KGM, Nöthling JO. The first case of genetically confirmed monozygotic twinning in the dog. Reprod Domest Anim. 2016;51(5):835-9. http://dx.doi.org/10.1111/rda.12746. PMid:27545903.
http://dx.doi.org/10.1111/rda.12746...
). In contrast, polyembryony seems to be obligatory at least in two of the living armadillo species (Kölliker, 1876Kölliker A. 27. Placenta, Nabelstrang. In: Kölliker A. Entwicklungsgeschichte des Menschen und den höheren Thiere. Leipzig: Engelmann; 1876. p. 331-363, 348-50, 362 German. http://dx.doi.org/10.5962/bhl.title.51250.
http://dx.doi.org/10.5962/bhl.title.5125...
; Fernandez, 1909Fernandez M. Beitrag zur Embryologie der Gürteltiere. I. Zur Keimblätterinversion und spezifischen Polyembryonie der Mulita (Tatusia hybrida). Gegenbaurs Morphologisches Jahrbuch; eine Zeitschrift für Anatomie und Entwicklungsgeschichte. 1909;39:302-33. German., 1915Fernández M. Die Entwicklung der Mulita. Rev Museo de la Plata. 1915;21:1-519. German.; Prodöhl et al., 1996Prodöhl PA, Loughry WJ, McDonough CM, Nelson WS, Avise JC. Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc Biol Sci. 1996;263(1377):1643-9. http://dx.doi.org/10.1098/rspb.1996.0240. PMid:9025312.
http://dx.doi.org/10.1098/rspb.1996.0240...
; Loughry et al., 1998Loughry WJ, Prodöhl PA, McDonough CM, Avise JC. Polyembryony in Armadillos. Am Sci. 1998;86:274-9. http://dx.doi.org/10.1511/1998.3.274.
http://dx.doi.org/10.1511/1998.3.274...
; Enders, 2002Enders AC. Implantation in the nine-banded armadillo: how does a single blastocyst form four embryos? Placenta. 2002;23(1):71-85. http://dx.doi.org/10.1053/plac.2001.0753. PMid:11869094.
http://dx.doi.org/10.1053/plac.2001.0753...
).

Presumably due to the high dizygotic (DZ) twinning frequency in sheep and goats, scientific studies on natural MZ twins are missing in these species and only anecdotal reports are available. However, from observations during preimplantation development in vivo (Assheton, 1898Assheton R. An account of a blastodermic vesicle of the sheep of the seventh day, with twin germinal areas. J Anat Physiol. 1898;32(Pt 3):362-72.2. PMid:17232315.; Rowson and Moor, 1964Rowson LE, Moor R. Occurrence and development of identical twins in sheep. Nature. 1964;201(4918):521-2. http://dx.doi.org/10.1038/201521a0. PMid:14164644.
http://dx.doi.org/10.1038/201521a0...
; Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.) and from the occurrence of conjoined twins (Dennis, 1975Dennis SM. Embryonic duplications in sheep. Aust Vet J. 1975;51(2):83-7. http://dx.doi.org/10.1111/j.1751-0813.1975.tb09411.x. PMid:1172431.
http://dx.doi.org/10.1111/j.1751-0813.19...
; Ahmad et al., 2020Ahmad I, Chafe UM, Umar AA, Salisu MD. Conjoined twins in Red Sokoto goat. J Hell Vet Med Soc. 2020;70(4):1919-24. http://dx.doi.org/10.12681/jhvms.22245.
http://dx.doi.org/10.12681/jhvms.22245...
) it can be concluded that facultative polyembryony also occurs in small ruminants.

Data on naturally occurring MZ twins indicate a low frequency of about 0.2% to 0.33% per calving in cattle (Johansson et al., 1974Johansson I, Lindhé B, Pirchner F. Causes of variation in the frequency of monozygous and dizygous twinning in various breeds of cattle. Hereditas. 1974;78(2):201-34. http://dx.doi.org/10.1111/j.1601-5223.1974.tb01443.x. PMid:4477988.
http://dx.doi.org/10.1111/j.1601-5223.19...
; Silva del Río et al., 2006Silva del Río N, Kirkpatrick BW, Fricke PM. Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology. 2006;66(5):1292-9. http://dx.doi.org/10.1016/j.theriogenology.2006.04.013. PMid:16766024.
http://dx.doi.org/10.1016/j.theriogenolo...
) which corresponds well with the reported frequency of 0.4% per birth in humans (Steinman, 2001Steinman G. Mechanism of twinning IV. Sex preference and lactation. J Reprod Med. 2001;46(11):1003-7. PMid:11762143.).

Historical aspects

In the 19th century the concept was developed that MZ twins are derived from a single fertilized egg or oocyte. Despite many advances in the field of embryology, there is still uncertainty about the precise mechanisms in which MZ twins or multiples arise. The common hypotheses had been developed on the basis of retrospective analyses of the fetal membranes. Chorionicity and amnionicity allowed the classification into dichorionic-diamniotic (DC/DA), monochorionic-diamniotic (MC/DA) and monochorionic-monoamniotic twins (MC/MA) and gave some indications on the initiation of MZ twin formation via separation of blastomeres or subdivision/splitting of embryos during early development (Corner, 1955Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6. PMid:13258680.
http://dx.doi.org/10.1016/0002-9378(55)9...
), as it was the case with X-chromosome inactivation studies in human embryos (Chitnis et al., 1999Chitnis S, Derom C, Vlietinck R, Derom R, Monteiro J, Gregersen PK. X chromosome-inactivation patterns confirm the late timing of monoamniotic-MZ twinning. Am J Hum Genet. 1999;65(2):570-1. http://dx.doi.org/10.1086/302502. PMid:10417301.
http://dx.doi.org/10.1086/302502...
).

In contrast, López-Moratalla and Cerezo (2011)López-Moratalla N, Cerezo M. The self-construction of a living organism. In: Terzis G, Arp R, editors. Information and living systems: philosophical and scientific perspectives. Massachussets: MIT Press; 2011. p. 177-204. http://dx.doi.org/10.7551/mitpress/7944.003.0012.
http://dx.doi.org/10.7551/mitpress/7944....
and Herranz (2015Herranz G. The timing of monozygotic twinning: a criticism of the common model. Zygote. 2015;23(1):27-40. http://dx.doi.org/10.1017/S0967199413000257. PMid:23735171.
http://dx.doi.org/10.1017/S0967199413000...
, 2014Herranz G. Response: the timing of monozygotic twinning: a pro-life challenge to conventional scientific wisdom. Reprod Biomed Online. 2014;28(6):789. http://dx.doi.org/10.1016/j.rbmo.2014.04.004. PMid:24899086.
http://dx.doi.org/10.1016/j.rbmo.2014.04...
) suggested that all types of MZ twins originate from the constitution of “two zygotes” through one longer fertilization process and the subsequent fusion of membranes rather than from the separation of two compartments of an original embryo. However, at least in human embryos (Asami et al., 2022Asami M, Lam YHB, Ma MK, Rainbow K, Braun S, VerMilyea MD, Yeo GS, Perry ACF. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29(2):209-16.e4. http://dx.doi.org/10.1016/j.stem.2021.11.012. PMid:34936886.
http://dx.doi.org/10.1016/j.stem.2021.11...
; Perry et al., 2022Perry ACF, Asami M, Lam BYH, Yeo GSH. The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol. Forthcoming 2022. http://dx.doi.org/10.1016/j.tcb.2022.08.008. PMid:36182534.
http://dx.doi.org/10.1016/j.tcb.2022.08....
), first embryonic genes are already activated after male and female nuclear syngamy in the one-cell stage, hence indicating the beginning of embryonic development.

In vivo, separate development of blastomeres or groups of blastomeres in early cleavage stages was postulated to occur in about one-third of human MZ twins and to result in DC/DA individuals, whereas the most common form of MZ twinning, the MC/DA twins, should originate from two separate ICMs (ICM: inner cell mass, embryoblast) in the blastocyst stage (Corner, 1955Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6. PMid:13258680.
http://dx.doi.org/10.1016/0002-9378(55)9...
; Boklage, 1981Boklage CE. On the timing of monozygotic twinning events. In: Gedda L, Parisi P, Nance WE, editors. Twin research 3: twin biology and multiple pregnancy. New York: Alan R. Liss; 1981. p. 155-65.; Sadler, 2012Sadler TW. Langman’s medical embryology. 12th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. Chapter 8, Third month to birth: The fetus and placenta; p. 96-116.).

MC/MA MZ twins are not topic of the present review. They are rare and were assumed to emerge after amnion formation, resulting in the growth of two primitive streaks (Corner, 1955Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6. PMid:13258680.
http://dx.doi.org/10.1016/0002-9378(55)9...
) in about 2% to 4% of the cases (Bulmer, 1970Bulmer MG. The biology of twinning in man. Oxford: Clarendon Press;1970.; Derom et al., 1995Derom R, Derom C, Vlietinck R. Placentation. In: Keith LG, Papiernik E, Keith DM, Luke B, editors. Multiple pregnancy. New York: Parthenon Publishing Group; 1995. p. 113-28.).

These possible modes of MZ twin formation were adopted for other species including farm and companion animals, too.

DC/DA monozygotic twins

DC/DA monozygotic twins associated with atypical or with assisted hatching

The MZ twinning frequency in humans seems to be higher in assisted reproduction programs than during natural MZ twinning and reaches about 1.2% to 4.9% (Blickstein et al., 1999Blickstein I, Verhoeven HC, Keith LG. Zygotic splitting after assisted reproduction. N Engl J Med. 1999;340(9):738-9. http://dx.doi.org/10.1056/NEJM199903043400916. PMid:10068338.
http://dx.doi.org/10.1056/NEJM1999030434...
, 2003Blickstein I, Jones C, Keith LG. Zygotic-splitting rates after single-embryo transfers in in vitro fertilization. N Engl J Med. 2003;348(23):2366-7. http://dx.doi.org/10.1056/NEJMc026724. PMid:12789011.
http://dx.doi.org/10.1056/NEJMc026724...
; Nakasuji et al., 2014Nakasuji T, Saito H, Araki R, Nakaza A, Nakashima A, Kuwahara A, Ishihara O, Irahara M, Kubota T, Yoshimura Y, Sakumoto T. The incidence of monozygotic twinning in assisted reproductive technology: analysis based on results from the 2010 Japanese ART national registry. J Assist Reprod Genet. 2014;31(7):803-7. http://dx.doi.org/10.1007/s10815-014-0225-0. PMid:24722789.
http://dx.doi.org/10.1007/s10815-014-022...
; Scaravelli et al., 2022Scaravelli G, Pisaturo V, Setti PEL, Ubaldi FM, Livi C, Borini A, Greco E, Villani MT, Coccia ME, Revelli A, Ricci G, Fusi F, Costa M, Migliorati E, Luca R, Vigiliano V, Bolli S, Reschini M. Monozygotic twin rate among ART centers: a multicenter analysis of data from 18 Italian units. J Assist Reprod Genet. 2022;39(10):2349-54. http://dx.doi.org/10.1007/s10815-022-02603-z. PMid:36053372.
http://dx.doi.org/10.1007/s10815-022-026...
). Data on domestic animals are scarce: A frequency of 1.6% monozygotic multiples had been reported after transfers of single in vitro produced (IVP) equine blastocysts (Dijkstra et al., 2020Dijkstra A, Cuervo‐Arango J, Stout TAE, Claes A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet J. 2020;52(2):258-61. http://dx.doi.org/10.1111/evj.13146. PMid:31232484.
http://dx.doi.org/10.1111/evj.13146...
).

Traditionally DC/DA MZ twin pregnancies were believed to originate early in development, i.e. before the first differentiation into trophoblast and embryoblast (Corner, 1955Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6. PMid:13258680.
http://dx.doi.org/10.1016/0002-9378(55)9...
). This first possibility of twin formation was suggested because of obstetrical evidence, but it has been questioned by experienced embryologists and reproductive physicians: In association with artificial reproductive technologies (ART) the development of DC/DA MZ twins was not uncommon after blastocyst transfer in humans (Peramo et al., 1999Peramo B, Ricciarelli E, Cuadros‐Fernandez JM, Huguet E, Hernandez ER. Blastocyst transfer and monozygotic twinning. Fertil Steril. 1999;72(6):1116-7. http://dx.doi.org/10.1016/S0015-0282(99)00412-4. PMid:10593392.
http://dx.doi.org/10.1016/S0015-0282(99)...
; Costa et al., 2001Costa ALE, Abdelmassih S, Oliveira FG, Abdelmassih V, Abdelmassih R, Nagy ZP, Balmaceda JP. Monozygotic twins and transfer at the blastocyst stage after ICSI. Hum Reprod. 2001;16(2):333-6. http://dx.doi.org/10.1093/humrep/16.2.333. PMid:11157829.
http://dx.doi.org/10.1093/humrep/16.2.33...
; Kyono, 2013Kyono K. The precise timing of embryo splitting for monozygotic dichorionic diamniotic twins: when does embryo splitting for monozygotic dichorionic diamniotic twins occur? Evidence for splitting at the morula/blastocyst stage from studies of in vitro fertilization. Twin Res Hum Genet. 2013;16(4):827-32. http://dx.doi.org/10.1017/thg.2013.32. PMid:23702384.
http://dx.doi.org/10.1017/thg.2013.32...
; Sundaram et al., 2018Sundaram V, Ribeiro S, Noel M. Multi-chorionic pregnancies following single embryo transfer at the blastocyst stage: a case series and review of the literature. J Assist Reprod Genet. 2018;35(12):2109-17. http://dx.doi.org/10.1007/s10815-018-1329-8. PMid:30362060.
http://dx.doi.org/10.1007/s10815-018-132...
; Li et al., 2020Li H, Shen T, Sun X. Monozygotic dichorionic-diamniotic pregnancies following single frozen-thawed blastocyst transfer: a retrospective case series. BMC Pregnancy Childbirth. 2020;20(1):768. http://dx.doi.org/10.1186/s12884-020-03450-5. PMid:33302917.
http://dx.doi.org/10.1186/s12884-020-034...
; Dallagiovanna et al., 2021Dallagiovanna C, Vanni VS, Somigliana E, Busnelli A, Papaleo E, Villanacci R, Candiani M, Reschini M. Risk factors for monozygotic twins in IVF-ICSI cycles: a case-control study. Reprod Sci. 2021;28(5):1421-7. http://dx.doi.org/10.1007/s43032-020-00406-0. PMid:33258063.
http://dx.doi.org/10.1007/s43032-020-004...
; Brouillet et al., 2022Brouillet S, Mereuze S, Ranisavljevic N, Chauveau C, Hamamah S, Cattin J, Verebi C, Cabrol C, Ishmukhametova A, Girardet A, Anahory T, Willems M. Molecular characterization of a rare case of monozygotic dichorionic diamniotic twin pregnancy after single blastocyst transfer in preimplantation genetic testing (PGT). Int J Mol Sci. 2022;23(18):10835. http://dx.doi.org/10.3390/ijms231810835. PMid:36142745.
http://dx.doi.org/10.3390/ijms231810835...
; Chu et al., 2023Chu CS, Li D, Olson-Chen C, Kawwass J, Vitek W. Recurrence risk and risk factors for monozygotic twin and triplet birth in over 65,000 single-embryo transfers. J Assist Reprod Genet. 2023;40(4):851-5. http://dx.doi.org/10.1007/s10815-023-02737-8. PMid:36746891.
http://dx.doi.org/10.1007/s10815-023-027...
). This observation was mainly attributed to a disturbed hatching process in the blastocyst stage, with herniation of trophoblast and some ICM cells (Malter and Cohen, 1989Malter HE, Cohen J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res. 1989;24(1):67-80. http://dx.doi.org/10.1002/mrd.1120240110. PMid:2591852.
http://dx.doi.org/10.1002/mrd.1120240110...
). Accordingly, spontaneous MZ twinning or development of MZ multiples in animals occurred after ET of in vivo collected, cultured, frozen, or in IVP-embryos, such as in horses (McCue et al., 1998McCue PM, Thayer J, Squires EL, Brinsko SP, Vanderwall DK. Twin pregnancies following transfer of single embryos in three mares: a case report. J Equine Vet Sci. 1998;18(12):832-4. http://dx.doi.org/10.1016/S0737-0806(98)80333-X.
http://dx.doi.org/10.1016/S0737-0806(98)...
; Mancill et al., 2011Mancill SS, Blodgett G, Arnott RJ, Alvarenga M, Love CC, Hinrichs K. Description and genetic analysis of three sets of monozygotic twins resulting from transfers of single embryos to recipient mares. J Am Vet Med Assoc. 2011;238(8):1040-3. http://dx.doi.org/10.2460/javma.238.8.1040. PMid:21492048.
http://dx.doi.org/10.2460/javma.238.8.10...
; Roberts et al., 2015Roberts MA, London K, Campos-Chillón LF, Altermatt JL. Presumed monozygotic twins develop following transfer of an in vitro-produced equine embryo. J Equine Sci. 2015;26(3):89-94. http://dx.doi.org/10.1294/jes.26.89. PMid:26435682.
http://dx.doi.org/10.1294/jes.26.89...
; Dijkstra et al., 2020Dijkstra A, Cuervo‐Arango J, Stout TAE, Claes A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet J. 2020;52(2):258-61. http://dx.doi.org/10.1111/evj.13146. PMid:31232484.
http://dx.doi.org/10.1111/evj.13146...
; Peere et al., 2022Peere S, Papas M, Gerits I, Van den Branden E, Smits K, Govaere J. Management of monozygotic twins in the mare. J Equine Vet Sci. 2022;113:103988. http://dx.doi.org/10.1016/j.jevs.2022.103988.
http://dx.doi.org/10.1016/j.jevs.2022.10...
), cattle (Moyaert et al., 1982Moyaert I, Bouters R, Bouquet Y. Birth of a monozygotic cattle twin following non surgical transfer of a single 7 day old embryo. Theriogenology. 1982;18(2):127-32. http://dx.doi.org/10.1016/0093-691X(82)90097-8. PMid:16725734.
http://dx.doi.org/10.1016/0093-691X(82)9...
; Kraay et al., 1983Kraay GJ, Menard DP, Bedoy M. Monozygous cattle twins as a result of transfer of a single embryo. Can Vet J. 1983;24(9):281-3. PMid:17422302.; Smith et al., 1991Smith SD, Schmidt M, Greve T. Transfer of bisected cattle embryos within the same zona pellucida. Reprod Domest Anim. 1991;26(2):91-3. http://dx.doi.org/10.1111/j.1439-0531.1991.tb01523.x.
http://dx.doi.org/10.1111/j.1439-0531.19...
), or mice (Chida, 1990Chida S. Monozygous double inner cell masses in mouse blastocysts following fertilization in vitro and in vivo. J In Vitro Fert Embryo Transf. 1990;7(3):177-9. http://dx.doi.org/10.1007/BF01135685. PMid:2380625.
http://dx.doi.org/10.1007/BF01135685...
; Yan et al., 2015Yan Z, Liang H, Deng L, Long H, Chen H, Chai W, Suo L, Xu C, Kuang Y, Wu L, Lu S, Lyu Q. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS One. 2015;10(12):e0145172. http://dx.doi.org/10.1371/journal.pone.0145172. PMid:26680631.
http://dx.doi.org/10.1371/journal.pone.0...
).

Interestingly, in own experiments on assisted hatching (AH) in commercial ET in cattle (Rüther et al., 2002Rüther M, Meinecke-Tillmann S, Gehring M, Hausschulte H, Meinecke B. Assisted hatching in bovine embryos in commercial embryo transfer programs with respect to embryo quality and thickness of zona pellucida. Am Embryo Transfer Assoc [Internet]. 2002 [cited 2023 Jun 12];17(4):5-6. Available from: https://www.aeta.org/newsletters/fall_2002.pdf
https://www.aeta.org/newsletters/fall_20...
; Rüther, 2005Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.) 3 sets of MZ twins were born after single transfers of in vivo collected embryos in superovulatory cycles but only in the control group (334 transfers of zona-intact embryos, 150 animals calving) and not in the experimental group (324 transfers of zona-manipulated embryos, 177 animals calving).

In contrast to other studies with small zona openings [human zona: <10-30 μm as summarized by Alteri et al. (2018)Alteri A, Viganò P, Maizar AA, Jovine L, Giacomini E, Rubino P. Revisiting embryo assisted hatching approaches: a systematic review of the current protocols. J Assist Reprod Genet. 2018;35(3):367-91. http://dx.doi.org/10.1007/s10815-018-1118-4. PMid:29350315.
http://dx.doi.org/10.1007/s10815-018-111...
, Sills et al. (2000)Sills ES, Tucker MJ, Palermo GD. Assisted reproductive technologies and monozygous twins: implications for future study and clinical practice. Twin Res. 2000;3(4):217-23. http://dx.doi.org/10.1375/twin.3.4.217. PMid:11463142.
http://dx.doi.org/10.1375/twin.3.4.217...
and Liu et al. (2022)Liu Y, Jones C, Coward K. The current practice of assisted hatching for embryos in fertility centres: a general survey. Reprod Sci. 2022;29(9):2664-73. http://dx.doi.org/10.1007/s43032-022-00931-0. PMid:35411451.
http://dx.doi.org/10.1007/s43032-022-009...
; bovine zona: 7-15x40 μm or at least 40x40 μm: (Schmoll et al., 2003Schmoll F, Schneider H, Montag M, Wimmers K, Rink K, Schellander K. Effects of different laser-drilled openings in the zona pellucida on hatching of in vitro produced cattle blastocysts. Fertil Steril. 2003;80(Suppl 2):714-9. http://dx.doi.org/10.1016/S0015-0282(03)00989-0. PMid:14505744.
http://dx.doi.org/10.1016/S0015-0282(03)...
)], a wide slit of the zona pellucida (~ 120 μm slit) was produced by zona dissection in own experiments in order to avoid a disturbed hatching process and, thus, the development of MZ twins in the experimental group (Rüther et al., 2002Rüther M, Meinecke-Tillmann S, Gehring M, Hausschulte H, Meinecke B. Assisted hatching in bovine embryos in commercial embryo transfer programs with respect to embryo quality and thickness of zona pellucida. Am Embryo Transfer Assoc [Internet]. 2002 [cited 2023 Jun 12];17(4):5-6. Available from: https://www.aeta.org/newsletters/fall_2002.pdf
https://www.aeta.org/newsletters/fall_20...
; Rüther, 2005Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.).

Whereas significant differences in zona pellucida thickness were recognized between human patients (Schiewe et al., 1995Schiewe MC, Araujo E Jr, Asch RH, Balmaceda JP. Enzymatic characterization of zona pellucida hardening in human eggs and embryos. J Assist Reprod Genet. 1995;12(1):2-7. http://dx.doi.org/10.1007/BF02214120. PMid:7580004.
http://dx.doi.org/10.1007/BF02214120...
), zona pellucida thickness measured at eight different points of the zona, respectively, was homogenous in cattle but differed highly significantly (P < 0.0001) between the developmental stages (Rüther, 2005Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.). Zona thickness was not associated with pregnancy rates (Rüther, 2005Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.), but transfer success was significantly higher after assisted hatching, particularly when fresh first quality rank or frozen/thawed embryos were transferred [pregnancy rates: Rüther et al. (2002)Rüther M, Meinecke-Tillmann S, Gehring M, Hausschulte H, Meinecke B. Assisted hatching in bovine embryos in commercial embryo transfer programs with respect to embryo quality and thickness of zona pellucida. Am Embryo Transfer Assoc [Internet]. 2002 [cited 2023 Jun 12];17(4):5-6. Available from: https://www.aeta.org/newsletters/fall_2002.pdf
https://www.aeta.org/newsletters/fall_20...
; calves born: Rüther (2005)Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.]. Thus, zona hardening during IVC and too small openings in the zona pellucida seem to be associated with disturbed hatching processes in bovine embryos (Schmoll et al., 2003Schmoll F, Schneider H, Montag M, Wimmers K, Rink K, Schellander K. Effects of different laser-drilled openings in the zona pellucida on hatching of in vitro produced cattle blastocysts. Fertil Steril. 2003;80(Suppl 2):714-9. http://dx.doi.org/10.1016/S0015-0282(03)00989-0. PMid:14505744.
http://dx.doi.org/10.1016/S0015-0282(03)...
).

In a new study, blastocyst transfers after IVF and AH are confirmed as risk factors for MZ twinning in humans, whereas intracytoplasmic sperm injection, preimplantation genetic testing, and frozen embryo transfer do not appear to be associated with MZ twinning (Chu et al., 2023Chu CS, Li D, Olson-Chen C, Kawwass J, Vitek W. Recurrence risk and risk factors for monozygotic twin and triplet birth in over 65,000 single-embryo transfers. J Assist Reprod Genet. 2023;40(4):851-5. http://dx.doi.org/10.1007/s10815-023-02737-8. PMid:36746891.
http://dx.doi.org/10.1007/s10815-023-027...
).

Another own observation after in vivo collection of small ruminant embryos shed some additional light on a possible origin of DC/DA MZ twins or multiples: In a sheep blastocyst which had been collected for embryonic stem cell isolation on D10 of pregnancy, an atypical hatching process in vivo was observed. The zona-entrapped embryo had initiated incomplete hatching and outgrowth of three strangulated vesicles at different areas via tiny openings in a thinned zona pellucida which had not been lost in time (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.). Provided that each or at least two of these vesicles contained numerically enough ICM cells to support further embryonic development, DC/DA MZ twins or even multiples are conceivable. In this special case the spreading of ICM cells was observed from two of these vesicles during IVC, i.e. from the zona-entrapped blastocyst and from the largest outgrowth. Thus, independent from AH or other in vitro techniques, an altered hatching process in in-vivo developed embryos might result in DC/DA MZ twins or multiples, although the first differentiation into trophoblast and ICM had already occurred.

This assumption is supported by observations in humans (Van Langendonckt et al., 2000Van Langendonckt A, Wyns C, Godin PA, Toussaint-Demylle D, Donnez J. Atypical hatching of a human blastocyst leading to monozygotic twinning: a case report. Fertil Steril. 2000;74(5):1047-50. http://dx.doi.org/10.1016/S0015-0282(00)01554-5. PMid:11056259.
http://dx.doi.org/10.1016/S0015-0282(00)...
; Konno et al., 2020Konno H, Murakoshi T, Miura K, Masuzaki H. The incidence of dichorionic diamniotic twin pregnancy after single blastocyst embryo transfer and zygosity: 8 years of single-center experience. Twin Res Hum Genet. 2020;23(1):51-4. http://dx.doi.org/10.1017/thg.2020.5. PMid:32209150.
http://dx.doi.org/10.1017/thg.2020.5...
; Brouillet et al., 2022Brouillet S, Mereuze S, Ranisavljevic N, Chauveau C, Hamamah S, Cattin J, Verebi C, Cabrol C, Ishmukhametova A, Girardet A, Anahory T, Willems M. Molecular characterization of a rare case of monozygotic dichorionic diamniotic twin pregnancy after single blastocyst transfer in preimplantation genetic testing (PGT). Int J Mol Sci. 2022;23(18):10835. http://dx.doi.org/10.3390/ijms231810835. PMid:36142745.
http://dx.doi.org/10.3390/ijms231810835...
), horses (Dijkstra et al., 2020Dijkstra A, Cuervo‐Arango J, Stout TAE, Claes A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet J. 2020;52(2):258-61. http://dx.doi.org/10.1111/evj.13146. PMid:31232484.
http://dx.doi.org/10.1111/evj.13146...
) and cattle (Massip et al., 1983Massip A, Vanderzwalmen P, Mulnard J, Zwijsen W. Atypical hatching of a cow blastocyst leading to separation of complete twin half blastocysts. Vet Rec. 1983;112(13):301. http://dx.doi.org/10.1136/vr.112.13.301. PMid:6682587.
http://dx.doi.org/10.1136/vr.112.13.301...
), and by attempts to induce MZ twins in cattle via a zona-perforation technique (Skrzyszowska et al., 1997Skrzyszowska M, Smorąg Z, Kątska L. Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts. Theriogenology. 1997;48(4):551-7. http://dx.doi.org/10.1016/S0093-691X(97)00272-0. PMid:16728151.
http://dx.doi.org/10.1016/S0093-691X(97)...
, 1999Skrzyszowska M, Smorąg Z, Kątska L, Bochenek M. Cattle twins after transfer of demi-embryos derived from zona-perforated blastocysts. J Anim Feed Sci. 1999;8(2):223-31. http://dx.doi.org/10.22358/jafs/68841/1999.
http://dx.doi.org/10.22358/jafs/68841/19...
). Linear apoptosis in the ICM might support the twinning process (Ménézo and Sakkas, 2002Ménézo YJR, Sakkas D. Monozygotic twinning: is it related to apoptosis in the embryo? Hum Reprod. 2002;17(1):247-8. http://dx.doi.org/10.1093/humrep/17.1.247. PMid:11756395.
http://dx.doi.org/10.1093/humrep/17.1.24...
).

DC/DA monozygotic twins associated with double blastocysts

Based on microsurgical experiments with early cleavage stages in small ruminants (Meinecke-Tillmann and Meinecke, 1984bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.) and on observations on in vivo collected D7 to D12 embryos in sheep (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.; D0 = day of estrus), it was possible to add some further evidence for the developmental mechanisms of MZ twinning.

Of special interest was the first hypothesis related to the induction of MZ twins during early cleavage but before reaching the compaction stage. This possibility has been questioned because of the easiness of common embryonic development after chimeric embryo aggregation and on the basis of DC/DA MZ twinning seen after single blastocyst transfers when MC/DA MZ twinning had been expected.

Nonetheless, a double blastocyst within a common zona pellucida had been observed which led to the authors’ question: “Monovular twin bovine blastocysts before hatching? Do identical twins sometimes separate this early …?” [ADRI photo unpublished, in Betteridge (1977,Betteridge KJ, editor. Embryo transfer in farm animals: a review of techniques and applications. Monograph no. 16. Ottawa: Agriculture Canada/Health of Animals Branch; 1977. p. 78). Unfortunately, the zona pellucida of this specimen was broken as well as partially inverted at the contact area of the two “blastocysts”, and for the smaller structure the presence of an ICM cannot be verified on the basis of the photo. Therefore, it cannot be excluded that a disturbed hatching process had been the origin of a blastocyst connected to a constricted trophoblastic vesicle, pseudo-blastocyst or small blastocyst. This might have occurred via a minor herniation and the subsequent collapse of the original blastocyst with retraction of the strangulated prolapse during the embryo collection procedure.

However, in own investigations on small ruminants, the presence of two separate blastocysts within an intact single zona pellucida was realized in one in vivo developed specimen after its collection on D6 of pregnancy (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.). After zona removal and separation of these blastocysts, their IVC with the intention to isolate embryonic stem cells resulted in outgrowths of both ICMs. Although the blastocysts had not been transferred into recipient ewes and therefore no twins were born, the observation of two blastocysts within one zona pellucida refutes the assumption of Herranz (2015, pHerranz G. The timing of monozygotic twinning: a criticism of the common model. Zygote. 2015;23(1):27-40. http://dx.doi.org/10.1017/S0967199413000257. PMid:23735171.
http://dx.doi.org/10.1017/S0967199413000...
. 5) that “the splitting and growth of twins within the pellucida has been never observed or live-recorded.”

Moreover, based on earlier microsurgical experiments in farm animals for the induction of intra- and interspecies chimeras in sheep and goats (precisely intergeneric chimeras), some further observations with regard to the possible mechanism of twinning were made (Meinecke-Tillmann and Meinecke, 1984bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.): When sheep blastomeres of developmentally asynchronous early cleavage stages were combined within a common zona pellucida - in this case a single blastomere of the 4-cell stage (1/4 embryo) with two blastomeres of the 8-cell stage (2/8 embryo) representing together 1/2 embryo - the developing cells formed a single composite blastocyst in 21% of the aggregates after transfer into an intermediate recipient. However, in several cases (39%) the regulation failed, and the parts of the original embryos remained separated and formed two small blastocysts or only one blastocyst without further cleavage of the other component(s) within their common host zona pellucida. The original embryos had been collected on D2 (4-cell stage; D0 = day of estrus) and D3 of pregnancy (8-cell stage), and therefore, the chronological difference between the aggregated blastomeres was about 24 h. A double-zona technique was used to prevent wastage of cells through the slit in the host zona (a small zona pellucida from porcine slaughterhouse material was used as blastomere host, whereas a larger pig zona served as a clamp in order to firmly close and cover the slit in the first one and to prevent blastomere loss; Meinecke-Tillmann and Meinecke, 1984aMeinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0. PMid:6694752.
http://dx.doi.org/10.1038/307637a0...
, bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.). After blastocyst transfer to the final recipients, some of the half- as well as quarter-embryo derived blastocysts were able to develop into lambs (11/28; 39.3%). On the basis of these results it was suggested that an asynchronous cleavage of the first blastomeres in non-manipulated embryos might lead to the formation of two separate blastocysts within a single zona pellucida, and finally to the development of DC/DA twins (Meinecke-Tillmann and Meinecke, 1984bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.). Nonetheless one limitation of the observation has to be mentioned retrospectively: Blastomeres of the original 4- and 8-cell embryos had been separated mechanically after a short treatment with Ca- and Mg-free medium. This might have influenced the aggregation readiness, although the blastomeres had been carefully washed after the separation procedure.

As a cause of a naturally occurring blastomere asynchrony, intra- or extrafollicular aging of oocytes had been discussed which might interfere with the quality of the developing embryo (Meinecke-Tillmann and Meinecke, 1984bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.), whereas superovulation, particularly in combination with ovulation induction, might induce precocious ovulation and extrafollicular aging of oocytes when timed artificial insemination takes place.

Other studies on the aggregation of asynchronous blastomeres also demonstrated difficulties with the regulation of a common embryonic development [rhesus monkeys: Schramm and Paprocki (2004)Schramm RD, Paprocki AM. In vitro development and cell allocation following aggregation of split embryos with tetraploid or developmentally asynchronous blastomeres in rhesus monkeys. Cloning Stem Cells. 2004;6(3):302-14. http://dx.doi.org/10.1089/clo.2004.6.302. PMid:15678605.
http://dx.doi.org/10.1089/clo.2004.6.302...
]. Already Mintz (1965)Mintz B. Experimental genetic mosaicism in the mouse. In: Wolstenholme GEW, O’Connor M, editors. Preimplantation stages of pregnancy. London: J & A Churchill; 1965. p. 194-216. advised against asynchronous blastomere combination in order to avoid such “parabiotic embryos” which had sporadically been observed by Stern and Wilson (1972)Stern MS, Wilson IB. Experimental studies on the organization of the preimplantation mouse embryo. I. Fusion of asynchronously cleaving eggs. J Embryol Exp Morphol. 1972;28(2):247-54. PMid:4674565. in mice. In this context it should be kept in mind that differences between species exist, particularly with regard to regulative and regenerative competency and capacities of the early embryo [e.g., Kohri et al. (2019)Kohri N, Akizawa H, Iisaka S, Bai H, Yanagawa Y, Takahashi M, Komatsu M, Kawai M, Nagano M, Kawahara M. Trophectoderm regeneration to support full-term development in the inner cell mass isolated from bovine blastocyst. J Biol Chem. 2019;294(50):19209-23. http://dx.doi.org/10.1074/jbc.RA119.010746. PMid:31704705.
http://dx.doi.org/10.1074/jbc.RA119.0107...
]. Furthermore, differences in adhesiveness of blastomeres might play a role in the possible formation of aggregates (Kimber et al., 1982Kimber SJ, Surani MAH, Barton SC. Interactions of blastomeres suggest changes in cell surface adhesiveness during the formation of inner cell mass and trophectoderm in the preimplantation mouse embryo. J Embryol Exp Morphol. 1982;70(1):133-52. http://dx.doi.org/10.1242/dev.70.1.133. PMid:7142894.
http://dx.doi.org/10.1242/dev.70.1.133...
).

Asynchronous blastomere cleavage after IVF was observed in humans and mice and was associated with lower ICM quality and higher abortion rates (Mashiko et al., 2022Mashiko D, Ikeda Z, Tokoro MM, Hatano Y, Yao T, Kobayashi TJ, Fukunaga N, Asada Y, Yamagata K. Asynchronous division at 4-8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Sci Rep. 2022;12(1):9411. http://dx.doi.org/10.1038/s41598-022-13646-8. PMid:35672442.
http://dx.doi.org/10.1038/s41598-022-136...
). A safe cryopreservation of “synchronous” as well as “asynchronous” embryos (cryopreserved 2 or 3 days after oocyte aspiration) was possible in women, but, unfortunately, detailed information is missing, although twins had been born (Wiener-Megnazi et al., 2014Wiener-Megnazi Z, Fridman M, Koifman M, Lahav-Baratz S, Stein N, Auslender R, Dirnfeld M. Synchronous and asynchronous blastomere cleavage at cryopreservation: effect on subsequent embryo survival, pregnancy and live birth rates. J Biomed Sci Eng. 2014;7(5):243-51. http://dx.doi.org/10.4236/jbise.2014.75027.
http://dx.doi.org/10.4236/jbise.2014.750...
).

Furthermore, Bomsel-Helmreich (1974)Bomsel-Helmreich O. Delayed ovulation and monozygotic twinning in the rabbit. Acta Genet Med Gemellol. 1974;23(Suppl 2):19. http://dx.doi.org/10.1017/S1120962300022538.
http://dx.doi.org/10.1017/S1120962300022...
and Bomsel-Helmreich and Papiernik-Berkhauer (1976)Bomsel-Helmreich O, Papiernik-Berkhauer E. Delayed ovulation and monozygotic twinning. Acta Genet Med Gemellol. 1976;25(1):73-6. http://dx.doi.org/10.1017/S000156600001388X. PMid:1031545.
http://dx.doi.org/10.1017/S0001566000013...
reported MZ twin blastocysts within the same zona pellucida after delayed ovulation in rabbits. Delayed ovulation results in intrafollicular aging of the oocytes. Their minor quality was associated with high embryonic mortality and chromosomal anomalies as well as the occurrence of monozygotic twins. On the basis of cytogenetic investigations the authors hypothesized that twins of the same sex must have their origin in the 2-blastomere-stage, i.e. at the same time when mixoploids arise.

MC/DA monozygotic twins

In MC/DA MZ twins other mechanisms must be active than in those with DC/DA membranes. It was suggested that two inner cell masses might occur within a single zona-enclosed blastocyst via ICM-splitting or -duplication. Accordingly, three in vivo developed normal sized sheep blastocysts, each with two separate inner cell masses at opposite poles of the zona-enclosed preimplantation embryos were collected from different superovulated ewes on D7 of pregnancy (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.).

The development of two separate ICMs might be induced by disturbances of blastocoel formation or purely mechanically. The latter had been suggested on the basis of blastocyst collapse and re-expansion in human embryos (Payne et al., 2007Payne D, Okuda A, Wakatsuki Y, Takeshita C, Iwata K, Shimura T, Yumoto K, Ueno Y, Flaherty S, Mio Y. Time-lapse recording identifies human blastocysts at risk of producing monzygotic twins. Hum Reprod. 2007;22(Suppl 1):i9-10.; Mio and Maeda, 2008Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660.e1-5. http://dx.doi.org/10.1016/j.ajog.2008.07.023. PMid:18823872.
http://dx.doi.org/10.1016/j.ajog.2008.07...
). Factors controlling cavity formation and the positioning of the eccentric fluid-accumulation are not completely understood. In mice, a hydraulic flux fractures cell-cell contact in a network of microlumina which empty themselves into larger ones until a single cavity results. Thus, blastocoel formation in mice and presumably in other species such as cattle or humans depends on functional ion transport through a polarized epithelium as well as hydraulic and osmotic phenomena as indicated by Dumortier et al. (2019)Dumortier JG, Verge-Serandour M, Tortorelli AF, Mielke A, Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365(6452):465-8. http://dx.doi.org/10.1126/science.aaw7709. PMid:31371608.
http://dx.doi.org/10.1126/science.aaw770...
and Le Verge-Serandour and Turlier (2022)Le Verge-Serandour M, Turlier H. Blastocoel morphogenesis: a biophysics perspective. Semin Cell Dev Biol. 2022;130:12-23. http://dx.doi.org/10.1016/j.semcdb.2021.10.005. PMid:34756494.
http://dx.doi.org/10.1016/j.semcdb.2021....
. Usually, trophectoderm cells flatten under increased pressure which is believed to ensure that there are no asymmetric divisions or additional ICM cells formed after the blastocyst cavity reaches a certain size (Chan et al., 2019Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ, Bergert M, Diz-Muñoz A, Mahadevan L, Hiiragi T. Hydraulic control of mammalian embryo size and cell fate. Nature. 2019;571(7763):112-6. http://dx.doi.org/10.1038/s41586-019-1309-x. PMid:31189957.
http://dx.doi.org/10.1038/s41586-019-130...
). This stresses the importance of mechanical influences during early development.

The formation of multiple blastocoelic cavities was considered to be abnormal (Alikani et al., 2000Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634-43. http://dx.doi.org/10.1093/humrep/15.12.2634. PMid:11098037.
http://dx.doi.org/10.1093/humrep/15.12.2...
). It is unknown if such a situation can result in an altered positioning of prospective ICM cells. The development of strings and bridges between ICM and trophoblast during human blastocyst growth [summarized by Hardarson et al. (2012)Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012;27(Suppl 1):i72-91. http://dx.doi.org/10.1093/humrep/des230. PMid:22763375.
http://dx.doi.org/10.1093/humrep/des230...
] might influence blastocyst quality and might further be involved in the shaping of the ICM and therefore in the process of twinning. Mechanical influences on blastocyst shaping are gaining increasing interest (Özgüç and Maître, 2020Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol. 2020;66:123-9. http://dx.doi.org/10.1016/j.ceb.2020.05.002. PMid:32711300.
http://dx.doi.org/10.1016/j.ceb.2020.05....
; Firmin and Maître, 2021Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol. 2021;120:22-31. http://dx.doi.org/10.1016/j.semcdb.2021.07.005. PMid:34253437.
http://dx.doi.org/10.1016/j.semcdb.2021....
), and their actions should also be considered during the peri-implantation period.

Monozygotic double ICMs have been reported in mouse blastocysts, too. They were recognized after in vivo or in vitro fertilization and subsequent in vitro culture from the 2-cell up to the blastocyst stage (Chida, 1990Chida S. Monozygous double inner cell masses in mouse blastocysts following fertilization in vitro and in vivo. J In Vitro Fert Embryo Transf. 1990;7(3):177-9. http://dx.doi.org/10.1007/BF01135685. PMid:2380625.
http://dx.doi.org/10.1007/BF01135685...
), or after in vivo fertilization and subsequent in vitro culture of blastocysts up to the egg cylinder stage (Hsu and Gonda, 1980Hsu YC, Gonda MA. Monozygotic twin formation in mouse embryos in vitro. Science. 1980;209(4456):605-6. http://dx.doi.org/10.1126/science.7190325. PMid:7190325.
http://dx.doi.org/10.1126/science.719032...
). In the latter example the double ICMs were induced purely mechanically. In this context it should be kept in mind that in vitro situations are prone for artifacts, although it cannot be excluded that a disturbed intrauterine embryo-orientation might also be involved in monozygotic twinning processes in vivo.

Furthermore, Otsuki et al. (2016)Otsuki J, Iwasaki T, Katada Y, Sato H, Furuhashi K, Tsuji Y, Matsumoto Y, Shiotani M. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil Steril. 2016;106(3):640-4. http://dx.doi.org/10.1016/j.fertnstert.2016.05.007. PMid:27264045.
http://dx.doi.org/10.1016/j.fertnstert.2...
recommended the exclusion of in vitro produced blastocysts that contain decompacting ICMs from transfer in order to avoid monozygotic MC/DA twinning via a doubling of the ICM. On the basis of time-lapse photography, it was possible to ascribe one case of human MC/DA twins to the transfer of a blastocyst with a decompacted ICM of at least eight cells (Otsuki et al., 2016Otsuki J, Iwasaki T, Katada Y, Sato H, Furuhashi K, Tsuji Y, Matsumoto Y, Shiotani M. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil Steril. 2016;106(3):640-4. http://dx.doi.org/10.1016/j.fertnstert.2016.05.007. PMid:27264045.
http://dx.doi.org/10.1016/j.fertnstert.2...
). Inner cell mass morphology is associated with embryo quality and ET success (Subira et al., 2016Subira J, Craig J, Turner K, Bevan A, Ohuma E, McVeigh E, Child T, Fatum M. Grade of the inner cell mass, but not trophectoderm, predicts live birth in fresh blastocyst single transfers. Hum Fertil. 2016;19(4):254-61. http://dx.doi.org/10.1080/14647273.2016.1223357. PMid:27624529.
http://dx.doi.org/10.1080/14647273.2016....
; Ai et al., 2021Ai J, Jin L, Zheng Y, Yang P, Huang B, Dong X. The morphology of inner cell mass is the strongest predictor of live birth after a frozen-thawed single embryo transfer. Front Endocrinol. 2021;12:621221. http://dx.doi.org/10.3389/fendo.2021.621221. PMid:33716973.
http://dx.doi.org/10.3389/fendo.2021.621...
; Yaacobi-Artzi et al., 2022Yaacobi-Artzi S, Kalo D, Roth Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS One. 2022;17(10):e0276642. http://dx.doi.org/10.1371/journal.pone.0276642. PMid:36288350.
http://dx.doi.org/10.1371/journal.pone.0...
), and the appearance of blastocysts with “loosely arranged” inner cell mass cells and tightly packed trophectoderm (Shi et al., 2021Shi W, Jin L, Liu J, Zhang C, Mi Y, Shi J, Wang H, Liang X. Blastocyst morphology is associated with the incidence of monozygotic twinning in assisted reproductive technology. Am J Obstet Gynecol. 2021;225(6):654.e1-16. http://dx.doi.org/10.1016/j.ajog.2021.06.101. PMid:34245681.
http://dx.doi.org/10.1016/j.ajog.2021.06...
), or with tightly packed trophectoderm (Ge et al., 2022Ge X, Zhang J, Shi H, Bu Z, Sun Y. Effect of blastocyst morphology on the incidence of monozygotic twinning pregnancy after single blastocyst transfer: a retrospective cohort study. Research Square. Forthcoming 2022. https://doi.org/10.21203/rs.3.rs-1512842/v1.
https://doi.org/10.21203/rs.3.rs-1512842...
) is related to the development of human monozygotic twins. Even though an assessment of the latter studies is difficult since relevant data is missing, both investigations indicate that the fate of the ICM in in vitro produced preimplantation blastocysts remains labile, thus making a reorganization and development into singletons or twins possible. Interestingly, in humans the extremely rare event of familial MZ twinning was reported which seems to be associated with cell junction-signaling pathways (Liu et al., 2018Liu S, Hong Y, Cui K, Guan J, Han L, Chen W, Xu Z, Gong K, Ou Y, Zeng C, Li S, Zhang D, Hu D. Four-generation pedigree of monozygotic female twins reveals genetic factors in twinning process by whole-genome sequencing. Twin Res Hum Genet. 2018;21(5):361-8. http://dx.doi.org/10.1017/thg.2018.41. PMid:30064533.
http://dx.doi.org/10.1017/thg.2018.41...
).

In a further human blastocyst, the presence of two ICMs was recognized, both differing in the stage of development (Noli et al., 2015aNoli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D. Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports. 2015a;5(6):946-53. http://dx.doi.org/10.1016/j.stemcr.2015.10.006. PMid:26584541.
http://dx.doi.org/10.1016/j.stemcr.2015....
). This indicates a certain autonomy of a group of pluripotent inner cells with the growth of a second ICM rather than the splitting of the first one. In this context it is known that the trophectoderm of human (Paepe et al., 2013Paepe C, Cauffman G, Verloes A, Sterckx J, Devroey P, Tournaye H, Liebaers I, Van de Velde H. Human trophectoderm cells are not yet committed. Hum Reprod. 2013;28(3):740-9. http://dx.doi.org/10.1093/humrep/des432. PMid:23257394.
http://dx.doi.org/10.1093/humrep/des432...
) and cattle embryos (Berg et al., 2011Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. Trophectoderm lineage determination in cattle. Dev Cell. 2011;20(2):244-55. http://dx.doi.org/10.1016/j.devcel.2011.01.003. PMid:21316591.
http://dx.doi.org/10.1016/j.devcel.2011....
) can under special conditions still contribute to the ICM. Despite these observations, Herranz (2014)Herranz G. Response: the timing of monozygotic twinning: a pro-life challenge to conventional scientific wisdom. Reprod Biomed Online. 2014;28(6):789. http://dx.doi.org/10.1016/j.rbmo.2014.04.004. PMid:24899086.
http://dx.doi.org/10.1016/j.rbmo.2014.04...
postulated that all human MZ twins start as dichorionic twins and may become monochorionic via trophectoderm fusion.

Interestingly, even a monochorionic triamniotic pregnancy resulted after transfer of an 8-shaped hatching blastocyst with two ICM structures (Sutherland et al., 2019Sutherland K, Leitch J, Lyall H, Woodward BJ. Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: a case report. Reprod Biomed Online. 2019;38(4):491-6. http://dx.doi.org/10.1016/j.rbmo.2018.12.017. PMid:30850321.
http://dx.doi.org/10.1016/j.rbmo.2018.12...
). In contrast to the above mentioned publications, Gu et al. (2018)Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Tan YQ, Lu GX, Lin G. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One. 2018;13(1):e0190776. http://dx.doi.org/10.1371/journal.pone.0190776. PMid:29315321.
http://dx.doi.org/10.1371/journal.pone.0...
stated that an ICM incarceration in 8-shaped blastocysts does not increase the incidence of MZ twins in humans. This might indicate that the duration of an ICM incarceration is a relevant factor.

It should be emphasized that MZ human twins carry a robust DNA methylation signature in adult somatic tissues at genes involved in processes including cell adhesion, WNT signaling and cell fate (Van Dongen et al., 2021Van Dongen J, Gordon SD, McRae AF, Odintsova VV, Mbarek H, Breeze CE, Sugden K, Lundgren S, Castillo-Fernandez JE, Hannon E, Moffitt TE, Hagenbeek FA, van Beijsterveldt CEM, Jan Hottenga J, Tsai PC, Min JL, Hemani G, Ehli EA, Paul F, Stern CD, Heijmans BT, Slagboom PE, Daxinger L, van der Maarel SM, Geus EJC, Willemsen G, Montgomery GW, Reversade B, Ollikainen M, Kaprio J, Spector TD, Bell JT, Mill J, Caspi A, Martin NG, Boomsma DI. Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun. 2021;12(1):5618. http://dx.doi.org/10.1038/s41467-021-25583-7. PMid:34584077.
http://dx.doi.org/10.1038/s41467-021-255...
). As indicated above, cell adhesion might also play a role in the development of either DC/DA MZ twins derived from early cleavage stages or of MC/DA MZ twins derived from blastocysts with double ICMs. The Wnt/ß-catenin pathway plays a role during early development and maintenance of pluripotency (Denicol et al., 2013Denicol AC, Dobbs KB, McLean KM, Carambula SF, Loureiro B, Hansen PJ. Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci Rep. 2013;3(1):1266. http://dx.doi.org/10.1038/srep01266. PMid:23405280.
http://dx.doi.org/10.1038/srep01266...
; Sidrat et al., 2020Sidrat T, Khan AA, Idrees M, Joo MD, Xu L, Lee KL, Kong IK. Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells. 2020;9(4):923. http://dx.doi.org/10.3390/cells9040923. PMid:32283810.
http://dx.doi.org/10.3390/cells9040923...
; Kinoshita et al., 2021Kinoshita M, Kobayashi T, Planells B, Klisch D, Spindlow D, Masaki H, Bornelöv S, Stirparo GG, Matsunari H, Uchikura A, Lamas-Toranzo I, Nichols J, Nakauchi H, Nagashima H, Alberio R, Smith A. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development. 2021;148(23):dev199901. http://dx.doi.org/10.1242/dev.199901. PMid:34874452.
http://dx.doi.org/10.1242/dev.199901...
; Liu et al., 2021Liu M, Zhao L, Wang Z, Su H, Wang T, Yang G, Chen L, Wu B, Zhao G, Guo J, Yang Z, Zhang J, Hao C, Ma T, Song Y, Bao S, Zuo Y, Li X, Cao G. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition. Front Cell Dev Biol. 2021;9:785055. http://dx.doi.org/10.3389/fcell.2021.785055. PMid:34977028.
http://dx.doi.org/10.3389/fcell.2021.785...
; Xiao et al., 2021Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells. Biol Reprod. 2021;105(1):52-63. http://dx.doi.org/10.1093/biolre/ioab075. PMid:33899086.
http://dx.doi.org/10.1093/biolre/ioab075...
).

A human blastocyst with two ICMs, atypically resulting in DC/DA MZ twin embryos, was described by Meintjes et al. (2001)Meintjes M, Guerami AR, Rodriguez JA, Crider-Pirkle SS, Madden JD. Prospective identification of an in-vitro-assisted monozygotic pregnancy based on a double-inner-cell-mass blastocyst. Fertil Steril. 2001;76(3):S172-3. http://dx.doi.org/10.1016/S0015-0282(01)02509-2.
http://dx.doi.org/10.1016/S0015-0282(01)...
. Although the authors stated that “[...] this case of monozygotic twinning can not be explained by in vitro zona alteration” Meintjes et al. (2001, pMeintjes M, Guerami AR, Rodriguez JA, Crider-Pirkle SS, Madden JD. Prospective identification of an in-vitro-assisted monozygotic pregnancy based on a double-inner-cell-mass blastocyst. Fertil Steril. 2001;76(3):S172-3. http://dx.doi.org/10.1016/S0015-0282(01)02509-2.
http://dx.doi.org/10.1016/S0015-0282(01)...
. S173), a disturbed hatching process with sequestration of a trophoblastic vesicle containing ICM cells is the most obvious cause for this atypical dichorionicity.

In addtion to the above mentioned pre-hatching sheep blastocysts with two ICMs, one in vivo developed elongating ovine blastocyst with two embryonic discs was collected from a superovulated donor ewe on D11 of pregnancy (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.). Such specimens which theoretically might result in MC/DA monozygotic twins were already described by Assheton (1898)Assheton R. An account of a blastodermic vesicle of the sheep of the seventh day, with twin germinal areas. J Anat Physiol. 1898;32(Pt 3):362-72.2. PMid:17232315. in an elongating sheep embryo which can be estimated to be about 10 to 11 days old [Bindon, 1971Bindon BM. Systematic study of preimplantation stages of pregnancy in the sheep. Aust J Biol Sci. 1971;24(1):131-47. http://dx.doi.org/10.1071/BI9710131. PMid:5553665.
http://dx.doi.org/10.1071/BI9710131...
; Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.; although an age of D7 had been published by Assheton (1898)Assheton R. An account of a blastodermic vesicle of the sheep of the seventh day, with twin germinal areas. J Anat Physiol. 1898;32(Pt 3):362-72.2. PMid:17232315.], and by Rowson and Moor (1964)Rowson LE, Moor R. Occurrence and development of identical twins in sheep. Nature. 1964;201(4918):521-2. http://dx.doi.org/10.1038/201521a0. PMid:14164644.
http://dx.doi.org/10.1038/201521a0...
in four sheep embryos collected between D6/7 and D14 of gestation. In our D11 embryo it cannot be completely ascertained whether the twin embryonic discs originated from ICM duplication or fission, or from a fusion of two zona-free blastocysts. Regarding the position of the embryonic discs and the absence of any trophoblastic strictures in the D11 conceptus, a previous ICM duplication within a single blastocyst is most likely, and MZ twins would result.

Blastocyst fusion and twinning

In the case of blastocyst fusion MC/DA DZ twins instead of MZ twins would be expected, as long as the ICMs remain separated. This event results in a temporary primary chimerism and must be extremely rare in in-vivo grown developmental stages since pre-hatching embryos are preferred for commercial ET in ruminants. Even after the transfer of two embryos, fusion cannot be expected because the blastocysts are usually transferred into different uterine horns, avoiding a close contact to each other. Likewise we never observed fusion of hatching or early post-hatching blastocyst stages during IVC of ruminant embryos.

The readiness for aggregation and development of firm interconnections might be dependent on the species, the physiological time of embryo-attachment to the endometrium, and the type of implantation. Mouse and human blastocysts show very little expansion before early implantation soon after zona shedding. In contrast, implantation in ungulate species is superficial and delayed. Therefore, an early fixation of the conceptus would hamper further development. Accordingly, we recognized conjoined blastocysts which were flushed from the uteri of three superovulated ewes not before D10/D11 of pregnancy. In two pairs of these still spherical D11-blastocysts obtained from two of these ewes, respectively, a large superficial attachment zone between the trophoblasts was present, including about one sixth of their surface and resulting in a local flattening of the connected spheres. Both blastocyst pairs could be pulled apart without any tissue loss with the help of two microtools. In contrast, a separation without severe tissue damage was not possible in a group of five spherical D10-blastocysts recovered from the third ewe. They were conjoined via cell projections at punctuated trophectodermal contact areas. The central one was interconnected with every other blastocyst, whereas the lateral ones showed firm connections with the central one as well as with their direct neighbor. Confluence of blastocoels was absent in every entity, and each of the involved blastocysts contained a normal sized ICM. It is realistic to assume that both of the more loosely interconnected and otherwise normal blastocyst pairs might have resulted in physiological pregnancies, although the growth into a filamentous conceptus and the orientation of the embryo in relation to the uterine luminal epithelial layer might have been hampered if the conjunction between the two blastocysts would have stabilized.

The group of five firmly interconnected zona-free blastocysts resembled the above mentioned embryo with atypical hatching in different small areas of the thinned zona pellucida (see 3.3.1). Possibly such a zona entrapment is not permanent as long as the embryo is viable and proceeds in development. However, each of these five equal sized spheres possessed a normally developed ICM and trophoblast which suggests secondary fusions of blastocysts during the post-hatching period. It is difficult to speculate on a possible further development of these firmly interconnected zona-free structures. Trophoblast fusion might have a negative influence on embryo attachment, implantation and placentation. Furthermore, permanent interconnection might disturb embryo spacing and result in a crowding-effect in one uterine horn with negative consequences for embryonic survival.

Only few reports on early blastocyst fusion are available in the international literature. In mice, fusions during in vitro culture were induced with fusogenic viruses (Tarkowski and Wojewodzka, 1982Tarkowski AK, Wojewodzka M. A method for obtaining chimaeric mouse blastocysts with two separate inner cell masses: a preliminary report. J Embryol Exp Morphol. 1982;71(1):215-21. http://dx.doi.org/10.1242/dev.71.1.215. PMid:6296260.
http://dx.doi.org/10.1242/dev.71.1.215...
: inactivated Sendai virus) or electrofusion (Ozdzeński et al., 1997Ozdzeński W, Szczesny EAK, Tarkowski AK. Postimplantation development of mouse blastocysts with two separate inner cell masses. Anat Embryol. 1997;195(5):467-71. PMid:9176669.; Tarkowski et al., 2005Tarkowski AK, Jagiello K, Czolowska R, Ozdzenski W. Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass. Int J Dev Biol. 2005;49(8):909-14. http://dx.doi.org/10.1387/ijdb.052017at. PMid:16281168.
http://dx.doi.org/10.1387/ijdb.052017at...
). In this context it should be noted that the electrofusion of zona-free mouse blastocysts allowed the development of common trophoblastic vesicles containing either one aggregated or two separate ICMs which was dependent on the prior orientation of the inner cell masses (Tarkowski et al., 2005Tarkowski AK, Jagiello K, Czolowska R, Ozdzenski W. Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass. Int J Dev Biol. 2005;49(8):909-14. http://dx.doi.org/10.1387/ijdb.052017at. PMid:16281168.
http://dx.doi.org/10.1387/ijdb.052017at...
). Thus, fusion of blastocysts might be a mechanism of twinning but - as mentioned above - of MC/DA DZ twins. This rare event had also been recognized in group-cultured human blastocysts after laser dissection of the zona pellucida (Schiewe et al., 2015Schiewe MC, Whitney JB, Anderson RE. Potential risk of monochorionic dizygotic twin blastocyst formation associated with early laser zona dissection of group cultured embryos. Fertil Steril. 2015;103(2):417-21. http://dx.doi.org/10.1016/j.fertnstert.2014.11.009. PMid:25516079.
http://dx.doi.org/10.1016/j.fertnstert.2...
), and spontaneous trophectoderm amalgamation was observed twice between two hatching blastocysts, respectively. Spontaneous fusions of group-cultured human blastocysts were further described by Swain (2021)Swain JE. Fused blastocysts as a consequence of group embryo culture: observations, complications, and potential solutions. F&S Reports. 2021;2(1):133-5. http://dx.doi.org/10.1016/j.xfre.2020.10.010. PMid:34223285.
http://dx.doi.org/10.1016/j.xfre.2020.10...
. Thus, it would be advantageous to avoid group-culture systems which allow a close contact between the individual embryos.

Moreover, fusion of blastomeres occurred after freezing and thawing of early human cleavage stages through membrane destabilization induced by cryoprotectants (Balakier et al., 2000Balakier H, Cabaca O, Bouman D, Shewchuk AB, Laskin C, Squire JA. Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum Reprod. 2000;15(11):2404-10. http://dx.doi.org/10.1093/humrep/15.11.2404. PMid:11056142.
http://dx.doi.org/10.1093/humrep/15.11.2...
).

Interestingly, the development of human MC/DA MZ twin pregnancies had also been reported after zona-free blastocyst transfer (Frankfurter et al., 2004Frankfurter D, Trimarchi J, Hackett R, Meng L, Keefe D. Monozygotic pregnancies from transfers of zona-free blastocysts. Fertil Steril. 2004;82(2):483-5. http://dx.doi.org/10.1016/j.fertnstert.2004.02.105. PMid:15302309.
http://dx.doi.org/10.1016/j.fertnstert.2...
) but, unfortunately, the data presented are incomplete and do not allow a final interpretation. Although Frankfurter et al. (2004)Frankfurter D, Trimarchi J, Hackett R, Meng L, Keefe D. Monozygotic pregnancies from transfers of zona-free blastocysts. Fertil Steril. 2004;82(2):483-5. http://dx.doi.org/10.1016/j.fertnstert.2004.02.105. PMid:15302309.
http://dx.doi.org/10.1016/j.fertnstert.2...
stated that monozygotic twins resulted from zona-free blastocysts, they disregarded the possibility of blastocyst fusion which may result in temporary or permanent chimerism and DZ twinning. Data are missing which are related to the number of blastocysts that had been transferred to the individual women getting pregnant with twins (presumably two blastocysts since “normal” DZ multiples were also reported). Furthermore, the possible monozygosity had only been determined on the basis of ultrasonic scans during early pregnancy, whereas monozygosity at birth or pathology was only confirmed “when possible”, and the report of appropriate criteria is also missing.

From conjoined oocytes which have occasionally been seen after oocyte retrieval in humans and which can result in successful pregnancies (Magdi, 2020Magdi Y. Dizygotic twin from conjoined oocytes: a case report. J Assist Reprod Genet. 2020;37(6):1367-70. http://dx.doi.org/10.1007/s10815-020-01772-z. PMid:32285296.
http://dx.doi.org/10.1007/s10815-020-017...
; Wang et al., 2022Wang Q, Ulker A, Wang H, Wu B, Yang A, Attia GR. Single live birth derived from conjoined oocytes using laser cutting technique: a case report. Zygote. 2022;30(2):217-20. http://dx.doi.org/10.1017/S0967199421000526. PMid:34313206.
http://dx.doi.org/10.1017/S0967199421000...
), only singletons, DZ twins or chimeras would be expected after fertilization, unless other mechanisms which have been reported above contribute to twin formation

Artificially induced monozygotic twins or multiples

Splitting of early preimplantation embryos

As could be demonstrated, the early mammalian embryo exhibits a remarkable plasticity, and its cells are able to respond rapidly to damaging conditions. Interest in the tremendous regulative capacities of early embryos led to investigations including experimental blastomere isolation, blastomere isolation and aggregation, embryo halving, quartering, or separation into eights, and trials related to the artificial induction of monozygotic twins or multiples. This has been accomplished in a variety of species, such as humans (experiments not further than up to preimplantation stages: Hall et al., 1993Hall JL, Engel D, Gindoff PR, Mottla GL, Stillman RJ. Experimental cloning of human polyploid embryos using an artificial zona pellucida. Fertil Steril. 1993;60(S1):O-001.; Van de Velde et al., 2008Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod. 2008;23(8):1742-7. http://dx.doi.org/10.1093/humrep/den190. PMid:18503052.
http://dx.doi.org/10.1093/humrep/den190...
; Illmensee et al., 2010Illmensee K, Levanduski M, Vidali A, Husami N, Goudas VT. Human embryo twinning with applications in reproductive medicine. Fertil Steril. 2010;93(2):423-7. http://dx.doi.org/10.1016/j.fertnstert.2008.12.098. PMid:19217091.
http://dx.doi.org/10.1016/j.fertnstert.2...
; Noli et al., 2015bNoli L, Dajani Y, Capalbo A, Bvumbe J, Rienzi L, Ubaldi FM, Ogilvie C, Khalaf Y, Ilic D. Developmental clock compromises human twin model created by embryo splitting. Hum Reprod. 2015b;30(12):2774-84. http://dx.doi.org/10.1093/humrep/dev252. PMid:26489438.
http://dx.doi.org/10.1093/humrep/dev252...
; Omidi et al., 2020Omidi M, Khalili MA, Halvaei I, Montazeri F, Kalantar SM. Quality of blastocysts created by embryo splitting: a time-lapse monitoring and chromosomal aneuploidy study. Cell J. 2020;22(3):367-74. PMid:31863663.), monkeys (Mitalipov et al., 2002Mitalipov SM, Yeoman RR, Kuo HC, Wolf DP. Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol Reprod. 2002;66(5):1449-55. http://dx.doi.org/10.1095/biolreprod66.5.1449. PMid:11967209.
http://dx.doi.org/10.1095/biolreprod66.5...
), horses (Allen and Pashen, 1984Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607. PMid:6747968.
http://dx.doi.org/10.1530/jrf.0.0710607...
; Skidmore et al., 1989Skidmore J, Boyle MS, Cran D, Allen WR. Micromanipulation of equine embryos to produce monozygotic twins. Equine Vet J. 1989;21(Suppl 8):126-8. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04696.x.
http://dx.doi.org/10.1111/j.2042-3306.19...
), cattle (Willadsen et al., 1981Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R. The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 1981;15(1):23-9. http://dx.doi.org/10.1016/S0093-691X(81)80015-5. PMid:16725537.
http://dx.doi.org/10.1016/S0093-691X(81)...
; Willadsen and Polge, 1981Willadsen SM, Polge C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec. 1981;108(10):211-3. http://dx.doi.org/10.1136/vr.108.10.211. PMid:6939169.
http://dx.doi.org/10.1136/vr.108.10.211...
; Ozil et al., 1982Ozil JP, Heyman Y, Renard JP. Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet Rec. 1982;110(6):126-7. http://dx.doi.org/10.1136/vr.110.6.126. PMid:6892266.
http://dx.doi.org/10.1136/vr.110.6.126...
; Voelkel et al., 1985Voelkel SA, Viker SD, Johnson CA, Hill KJ, Humes PE, Godke RA. Multiple embryotransplant offspring produced from quartering a bovine embryo at the morula stage. Vet Rec. 1985;117(20):528-30. http://dx.doi.org/10.1136/vr.117.20.528. PMid:4082414.
http://dx.doi.org/10.1136/vr.117.20.528...
; Warfield et al., 1987Warfield SJ, Seidel GE Jr, Elsden RP. Transfer of bovine demi-embryos with and without the zona pellucida. J Anim Sci. 1987;65(3):756-61. http://dx.doi.org/10.2527/jas1987.653756x. PMid:3667439.
http://dx.doi.org/10.2527/jas1987.653756...
; Johnson et al., 1995Johnson WH, Loskutoff NM, Plante Y, Betteridge KJ. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec. 1995;137(1):15-6. http://dx.doi.org/10.1136/vr.137.1.15. PMid:7483226.
http://dx.doi.org/10.1136/vr.137.1.15...
; Rho et al., 1998Rho GJ, Johnson WH, Betteridge KJ. Cellular composition and viability of demi- and quarter-embryos made from bisected bovine morulae and blastocysts produced in vitro. Theriogenology. 1998;50(6):885-95. http://dx.doi.org/10.1016/S0093-691X(98)00193-9. PMid:10734461.
http://dx.doi.org/10.1016/S0093-691X(98)...
; Skrzyszowska et al., 1999Skrzyszowska M, Smorąg Z, Kątska L, Bochenek M. Cattle twins after transfer of demi-embryos derived from zona-perforated blastocysts. J Anim Feed Sci. 1999;8(2):223-31. http://dx.doi.org/10.22358/jafs/68841/1999.
http://dx.doi.org/10.22358/jafs/68841/19...
; Hashiyada, 2017Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-38. http://dx.doi.org/10.1262/jrd.2017-096. PMid:29033399.
http://dx.doi.org/10.1262/jrd.2017-096...
), sheep (Trounson and Moore, 1974Trounson AO, Moore NW. Attempts to produce identical offspring in sheep by mechanical division of the ovum. Aust J Biol Sci. 1974;27(5):505-10. http://dx.doi.org/10.1071/BI9740505. PMid:4447494.
http://dx.doi.org/10.1071/BI9740505...
; Meinecke-Tillmann et al., 1979Meinecke-Tillmann S, Meinecke B, Wassmuth R. Experimentelle Untersuchungen zur Erforschung der regulativen Kapazitäten von Schafembryonen in vivo und in vitro. Reprod Dom Anim. 1979;14(4):165-9. http://dx.doi.org/10.1111/j.1439-0531.1979.tb00935.x. German.
http://dx.doi.org/10.1111/j.1439-0531.19...
; Willadsen, 1979Willadsen SM. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature. 1979;277(5694):298-300. http://dx.doi.org/10.1038/277298a0. PMid:570249.
http://dx.doi.org/10.1038/277298a0...
, 1980Willadsen SM. The viability of early cleavage stages containing half the normal number of blastomeres in the sheep. J Reprod Fertil. 1980;59(2):357-62. http://dx.doi.org/10.1530/jrf.0.0590357. PMid:7431292.
http://dx.doi.org/10.1530/jrf.0.0590357...
, 1981Willadsen SM. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J Embryol Exp Morphol. 1981;65:165-72. PMid:6895911.; Meinecke-Tillmann, 1980Meinecke-Tillmann S. Künstlich erzeugte eineiige Schafzwillinge. Umsch Wiss Tech. 1980;80:248-9. German., 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.; Meinecke-Tillmann and Meinecke, 1981Meinecke-Tillmann S, Meinecke B. Microsurgical treatment of cleavage stages in farm animals. In: Proceedings of the III World Congress of Human Reproduction; 1981 Mar 20-26; Berlin, Germany. Berlin, Germany. The Netherlands: Excerpta Medica; 1981. p. 22.3-6.3., 1983bMeinecke-Tillmann S, Meinecke B. Möglichkeiten und Grenzen der Mikromanipulation embryonaler Furchungsstadien landwirtschaftlicher Nutztiere dargestellt am Modell artifiziell monozygoter Zwillinge beim Schaf. Zbl. Vet Med A. 1983b;30:146-53. German., 1987Meinecke-Tillmann S, Meinecke B. Microsurgical experiments on embryos in farm animals - basic and applied aspects. In: Feichtinger W, Kemeter P, editors. Future aspects in human in vitro fertilization. Berlin: Springer Verlag; 1987. p. 217-24. http://dx.doi.org/10.1007/978-3-642-71412-2_30.
http://dx.doi.org/10.1007/978-3-642-7141...
), goats (Meinecke-Tillmann and Meinecke, 1983aMeinecke-Tillmann S, Meinecke B. Mikrochirurgische Eingriffe am Embryo - Biologische Bedeutung und Konsequenzen für Forschung und Praxis. In: 32 Int. Fachtagung Fortpflanzung und Besamun; 1983; Wels, Österreich. Außenstelle Wels, Áustria: Institut für biologische Landwirtschaft und Biodiversität der Nutztiere; 1983a. German., 1987Meinecke-Tillmann S, Meinecke B. Microsurgical experiments on embryos in farm animals - basic and applied aspects. In: Feichtinger W, Kemeter P, editors. Future aspects in human in vitro fertilization. Berlin: Springer Verlag; 1987. p. 217-24. http://dx.doi.org/10.1007/978-3-642-71412-2_30.
http://dx.doi.org/10.1007/978-3-642-7141...
; Tsunoda et al., 1985Tsunoda Y, Tokunaga T, Sugie T, Katsumata M. Production of monozygotic twins following the transfer of bisected embryos in the goats. Theriogenology. 1985;24(3):337-43. http://dx.doi.org/10.1016/0093-691X(85)90225-0. PMid:16726087.
http://dx.doi.org/10.1016/0093-691X(85)9...
; Udy, 1987Udy GB. Commercial splitting of goat embryos. Theriogenology. 1987;28(6):837-47. http://dx.doi.org/10.1016/0093-691X(87)90035-5.
http://dx.doi.org/10.1016/0093-691X(87)9...
; Nowshari and Holtz, 1993Nowshari MA, Holtz W. Transfer of split goat embryos without zonae pellucidae either fresh or after freezing. J Anim Sci. 1993;71(12):3403-8. http://dx.doi.org/10.2527/1993.71123403x. PMid:8294294.
http://dx.doi.org/10.2527/1993.71123403x...
), pigs (Nagashima et al., 1989Nagashima H, Kato Y, Ogawa S. Microsurgical bisection of porcine morulae and blastocysts to produce monozygotic twin pregnancy. Gamete Res. 1989;23(1):1-9. http://dx.doi.org/10.1002/mrd.1120230102. PMid:2501204.
http://dx.doi.org/10.1002/mrd.1120230102...
; Reichelt and Niemann, 1994Reichelt B, Niemann H. Generation of identical twin piglets following bisection of embryos at the morula and blastocyst stage. J Reprod Fertil. 1994;100(1):163-72. http://dx.doi.org/10.1530/jrf.0.1000163. PMid:8182585.
http://dx.doi.org/10.1530/jrf.0.1000163...
; Dang-Nguyen et al., 2011Dang-Nguyen TQ, Kaneda M, Somfai T, Haraguchi S, Matsukawa K, Akagi S, Kikuchi K, Nakai M, Nguyen BX, Tajima A, Kanai Y, Nagai T. Development of single blastomeres derived from two-cell embryos produced in vitro in pigs. Theriogenology. 2011;76(1):88-96. http://dx.doi.org/10.1016/j.theriogenology.2011.01.021. PMid:21396700.
http://dx.doi.org/10.1016/j.theriogenolo...
), rabbits (Yang and Foote, 1987Yang X, Foote RH. Production of identical twin rabbits by micromanipulation of embryos. Biol Reprod. 1987;37(4):1007-14. http://dx.doi.org/10.1095/biolreprod37.4.1007. PMid:3689843.
http://dx.doi.org/10.1095/biolreprod37.4...
), rats (Matsumoto et al., 1989Matsumoto K, Miyake M, Utsumi K, Iritani A. Production of identical twins by separating two-cell rat embryos. Gamete Res. 1989;22(3):257-63. http://dx.doi.org/10.1002/mrd.1120220303. PMid:2707729.
http://dx.doi.org/10.1002/mrd.1120220303...
), and mice (Mullen, 1971Mullen RJ. Transplantation of mouse embryos, sex ratios of chimeric mice, and monzygotic twins [dissertation]. Durham: University of New Hampshire; 1971.; Moustafa and Hahn, 1978Moustafa LA, Hahn J. Experimentelle Erzeugung von identischen Mäusezwillingen. Dtsch Tierarztl Wochenschr. 1978;85(6):242-4. German. PMid:350548.; Gärtner and Baunack, 1981Gärtner K, Baunack E. Is the similarity of monozygotic twins due to genetic factors alone? Nature. 1981;292(5824):646-7. http://dx.doi.org/10.1038/292646a0. PMid:7254360.
http://dx.doi.org/10.1038/292646a0...
; Tsunoda and McLaren, 1983Tsunoda Y, McLaren A. Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J Reprod Fertil. 1983;69(1):315-22. http://dx.doi.org/10.1530/jrf.0.0690315. PMid:6887141.
http://dx.doi.org/10.1530/jrf.0.0690315...
; Nagashima et al., 1984Nagashima H, Matsui K, Sawasaki T, Kano Y. Production of monozygotic mouse twins from microsurgically bisected morulae. J Reprod Fertil. 1984;70(1):357-62. http://dx.doi.org/10.1530/jrf.0.0700357. PMid:6363694.
http://dx.doi.org/10.1530/jrf.0.0700357...
; Tsunoda et al., 1987Tsunoda Y, Yasui T, Okubo Y, Nakamura K, Sugie T. Development of one or two blastomeres from eight-cell mouse embryos to term in the presence of parthenogenetic eggs. Theriogenology. 1987;28(5):615-23. http://dx.doi.org/10.1016/0093-691X(87)90278-0. PMid:16726344.
http://dx.doi.org/10.1016/0093-691X(87)9...
; Carstea et al., 2007Carstea BV, Lemos APC, Ilie ED, Varga L, Bodó S, Kovács A, Bösze Z, Gócza E. Production of identical mouse twins and a triplet with predicted gender. Cloning Stem Cells. 2007;9(2):247-56. http://dx.doi.org/10.1089/clo.2006.0055. PMid:17579557.
http://dx.doi.org/10.1089/clo.2006.0055...
; Katayama et al., 2010Katayama M, Ellersieck MR, Roberts RM. Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol Reprod. 2010;82(6):1237-47. http://dx.doi.org/10.1095/biolreprod.109.082982. PMid:20181620.
http://dx.doi.org/10.1095/biolreprod.109...
; Tarkowski et al., 2010Tarkowski AK, Suwińska A, Czołowska R, Ożdżeński W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol. 2010;348(2):190-8. http://dx.doi.org/10.1016/j.ydbio.2010.09.022. PMid:20932967.
http://dx.doi.org/10.1016/j.ydbio.2010.0...
; Zhang et al., 2018Zhang X, Li T, Zhang L, Jiang L, Cui T, Yuan X, Wang C, Liu Z, Zhang Y, Li W, Zhou Q. Individual blastomeres of 4- and 8-cell embryos have ability to develop into a full organism in mouse. J Genet Genomics. 2018;45(12):677-80. http://dx.doi.org/10.1016/j.jgg.2018.07.012. PMid:30581076.
http://dx.doi.org/10.1016/j.jgg.2018.07....
; Krawczyk et al., 2021Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep. 2021;11(1):21422. http://dx.doi.org/10.1038/s41598-021-00834-1. PMid:34728646.
http://dx.doi.org/10.1038/s41598-021-008...
; Maemura et al., 2021Maemura M, Taketsuru H, Nakajima Y, Shao R, Kakihara A, Nogami J, Ohkawa Y, Tsukada YI. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep. 2021;11(1):11167. http://dx.doi.org/10.1038/s41598-021-90653-1. PMid:34045607.
http://dx.doi.org/10.1038/s41598-021-906...
). Success rates differed according to species, manipulated developmental stages and manual skills of the operator.

In farm animals the first artificially induced monozygotic twins were reported in sheep after separation of blastomeres of very early cleavage stages (Willadsen, 1979Willadsen SM. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature. 1979;277(5694):298-300. http://dx.doi.org/10.1038/277298a0. PMid:570249.
http://dx.doi.org/10.1038/277298a0...
), or after bisection (splitting) of morulae and blastocysts (Meinecke-Tillmann, 1980Meinecke-Tillmann S. Künstlich erzeugte eineiige Schafzwillinge. Umsch Wiss Tech. 1980;80:248-9. German.; Meinecke-Tillmann and Meinecke, 1981Meinecke-Tillmann S, Meinecke B. Microsurgical treatment of cleavage stages in farm animals. In: Proceedings of the III World Congress of Human Reproduction; 1981 Mar 20-26; Berlin, Germany. Berlin, Germany. The Netherlands: Excerpta Medica; 1981. p. 22.3-6.3.).

Although, at least in farm animals, demi-embryos are nearly as suitable for the establishment of pregnancies as intact embryos, the developmental potential of single blastomeres of the 4- or 8-cell stage is more limited than that of the 2-cell stage (Willadsen, 1981Willadsen SM. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J Embryol Exp Morphol. 1981;65:165-72. PMid:6895911.; Krawczyk et al., 2021Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep. 2021;11(1):21422. http://dx.doi.org/10.1038/s41598-021-00834-1. PMid:34728646.
http://dx.doi.org/10.1038/s41598-021-008...
).

Whereas simple division of preimplantation embryos has occasionally been successful for producing up to monozygotic quadruplets, serial splitting was introduced in the hope to create higher order multiples, and in vitro trials on serial splitting of mouse or bovine cleavage stages were reported (Illmensee et al., 2006Illmensee K, Kaskar K, Zavos PM. In vitro blastocyst development from serially split mouse embryos and future implications for human assisted reproductive technologies. Fertil Steril. 2006;86(4, Suppl):1112-20. http://dx.doi.org/10.1016/j.fertnstert.2006.02.103. PMid:16962118.
http://dx.doi.org/10.1016/j.fertnstert.2...
; Silvestri et al., 2022Silvestri G, Turner KJ, Silcock JL, Sinclair KD, Griffin DK. Effects of single or serial embryo splitting on the development and morphokinetics of in vitro produced bovine embryos. Eur Zool J. 2022;89(1):680-9. http://dx.doi.org/10.1080/24750263.2022.2077994.
http://dx.doi.org/10.1080/24750263.2022....
). In this context it might have been overlooked that, despite of the impressive regulative capacities, a developmental clock regulating polarization and blastocyst formation is present in preimplantation embryos. This was already indicated, for example, by Tarkowski (1959)Tarkowski AK. Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol. 1959;3:191-267 plate 12-27. http://dx.doi.org/10.4098/AT.arch.59-11.
http://dx.doi.org/10.4098/AT.arch.59-11...
and Tarkowski and Wroblewska (1967)Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol. 1967;18(1):155-80. http://dx.doi.org/10.1242/dev.18.1.155. PMid:6048976.
http://dx.doi.org/10.1242/dev.18.1.155...
, and demonstrated by other authors (Pratt et al., 1981Pratt HPM, Chakraborty J, Surani MAH. Molecular and morphological differentiation of the mouse blastocyst after manipulations of compaction with cytochalasin D. Cell. 1981;26(2):P279-92. http://dx.doi.org/10.1016/0092-8674(81)90310-X. PMid:7332931.
http://dx.doi.org/10.1016/0092-8674(81)9...
; Johnson et al., 1984Johnson MH, McConnell J, Van Blerkom J. Programmed development in the mouse embryo. J Embryol Exp Morphol. 1984;83(Suppl):197-231. PMid:6085344.; Dean and Rossant, 1984Dean WL, Rossant J. Effect of delaying DNA replication on blastocyst formation in the mouse. Differentiation. 1984;26(1-3):134-7. http://dx.doi.org/10.1111/j.1432-0436.1984.tb01386.x. PMid:6428955.
http://dx.doi.org/10.1111/j.1432-0436.19...
; Prather and First, 1986Prather RS, First NL. Reprograming of murine blastocoele formation. J Exp Zool. 1986;237(3):347-50. http://dx.doi.org/10.1002/jez.1402370307. PMid:3701291.
http://dx.doi.org/10.1002/jez.1402370307...
; Modliński et al., 2002Modliński JA, Ozil JP, Modlińska MK, Szarska A, Reed MA, Wagner TE, Karasiewicz J. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo-cytoplasmic synchrony. Zygote. 2002;10(4):283-90. http://dx.doi.org/10.1017/S096719940200401X. PMid:12463523.
http://dx.doi.org/10.1017/S0967199402004...
; Lorthongpanich et al., 2012Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development. 2012;139(20):3722-31. http://dx.doi.org/10.1242/dev.086454. PMid:22991438.
http://dx.doi.org/10.1242/dev.086454...
; Noli et al., 2015bNoli L, Dajani Y, Capalbo A, Bvumbe J, Rienzi L, Ubaldi FM, Ogilvie C, Khalaf Y, Ilic D. Developmental clock compromises human twin model created by embryo splitting. Hum Reprod. 2015b;30(12):2774-84. http://dx.doi.org/10.1093/humrep/dev252. PMid:26489438.
http://dx.doi.org/10.1093/humrep/dev252...
; Zhu et al., 2020Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science. 2020;370(6522):eabd2703. http://dx.doi.org/10.1126/science.abd2703. PMid:33303584.
http://dx.doi.org/10.1126/science.abd270...
; Maemura et al., 2021Maemura M, Taketsuru H, Nakajima Y, Shao R, Kakihara A, Nogami J, Ohkawa Y, Tsukada YI. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep. 2021;11(1):11167. http://dx.doi.org/10.1038/s41598-021-90653-1. PMid:34045607.
http://dx.doi.org/10.1038/s41598-021-906...
). Until now, this developmental clock prevents the multiplication of animals via serial splitting of cleavage stages.

Monozygotic multiples via chimeric cloning

The only theoretical possibility to produce monozygotic multiples of higher order is “chimeric cloning”. This can be performed either via blastomere complementation (sheep quintuplets: Fehilly and Willadsen, 1986Fehilly CB, Willadsen SM. Embryo manipulation in farm animals. Oxf Rev Reprod Biol. 1986;8:379-413. PMid:3540807.; sheep triplets: Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.), or via stem cell complementation. In mice, embryonic (ESC), parthenogenetic or induced pluripotent stem cells (iPSC) were successfully combined with blastomeres, tetraploid blastomeres, tetraploid blastocysts, or trophoblastic vesicles (Nagy et al., 1990Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110(3):815-21. http://dx.doi.org/10.1242/dev.110.3.815. PMid:2088722.
http://dx.doi.org/10.1242/dev.110.3.815...
, 1993Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993;90(18):8424-8. http://dx.doi.org/10.1073/pnas.90.18.8424. PMid:8378314.
http://dx.doi.org/10.1073/pnas.90.18.842...
; Modliński et al., 2004Modliński JA, Stefański G, Górniewska M, Korwin-Kossakowski M, Reed MA, Guszkiewicz A, Karasiewicz J. Trophoblastic vesicles as carriers of embryonic cells for mammalian cloning. J Anim Feed Sci. 2004;13(1):197-204. http://dx.doi.org/10.22358/jafs/67404/2004.
http://dx.doi.org/10.22358/jafs/67404/20...
; Huang et al., 2008Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L. Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells. 2008;26(7):1883-90. http://dx.doi.org/10.1634/stemcells.2008-0164. PMid:18467666.
http://dx.doi.org/10.1634/stemcells.2008...
; Boland et al., 2009Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461(7260):91-4. http://dx.doi.org/10.1038/nature08310. PMid:19672243.
http://dx.doi.org/10.1038/nature08310...
, 2012Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Martin G, Kupriyanov S, Baldwin KK. Generation of mice derived from induced pluripotent stem cells. J Vis Exp. 2012;69(69):e4003. PMid:23222420.; Chen et al., 2009Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells. 2009;27(9):2136-45. http://dx.doi.org/10.1002/stem.158. PMid:19544532.
http://dx.doi.org/10.1002/stem.158...
; Zhao et al., 2009Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86-90. http://dx.doi.org/10.1038/nature08267. PMid:19672241.
http://dx.doi.org/10.1038/nature08267...
, 2010Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev Rep. 2010;6(3):390-7. http://dx.doi.org/10.1007/s12015-010-9160-3. PMid:20549390.
http://dx.doi.org/10.1007/s12015-010-916...
; Sumiyama et al., 2018Sumiyama K, Matsumoto N, Garçon-Yoshida J, Ukai H, Ueda HR, Tanaka Y. Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS One. 2018;13(9):e0203056. http://dx.doi.org/10.1371/journal.pone.0203056. PMid:30231034.
http://dx.doi.org/10.1371/journal.pone.0...
), whereas in cattle only low-grade chimeric progeny resulted after aggregation of ESC-like cells with presumably tetraploid embryos (Iwasaki et al., 2000Iwasaki S, Campbell KHS, Galli C, Akiyama K, Iwasaki S. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod. 2000;62(2):470-5. http://dx.doi.org/10.1095/biolreprod62.2.470. PMid:10642589.
http://dx.doi.org/10.1095/biolreprod62.2...
). Unfortunately, in contrast to mice, a high grade of mosaicism between diploid and tetraploid cells occurred after electrofusion of blastomeres in cattle (Curnow et al., 2000Curnow EC, Gunn LM, Trounson AO. Electrofusion of 2-cell bovine embryos for the production of tetraploid blastocysts in vitro. Mol Reprod Dev. 2000;56(3):372-7. http://dx.doi.org/10.1002/1098-2795(200007)56:3<372::AID-MRD7>3.0.CO;2-W. PMid:10862004.
http://dx.doi.org/10.1002/1098-2795(2000...
).

Our experimental approaches with regard to embryonic stem cells, for example in sheep and goats, dated back to 1991 (Meinecke-Tillmann and Meinecke, 1991Meinecke-Tillmann S, Meinecke B. Experiments on the establishment in culture of pluripotential cell lines from sheep, goat and pig embryos. In Proceedings of the 7th Scientific Meeting AETE; 1991 Sep 12-13; Cambridge. Cambridge, UK: AETE; 1991. p. 178., 1996Meinecke-Tillmann S, Meinecke B. Isolation of ES-like cell lines from ovine and caprine preimplantation embryos. J Anim Breed Genet. 1996;113(1-6):413-26. http://dx.doi.org/10.1111/j.1439-0388.1996.tb00632.x.
http://dx.doi.org/10.1111/j.1439-0388.19...
; Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.), but trials to establish ESC-lines from farm animals posed technical problems. Nowadays, some breakthroughs have also been achieved in farm animals [see reviews of Navarro et al. (2019)Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev. 2019;32(2):11-39. http://dx.doi.org/10.1071/RD19272. PMid:32188555.
http://dx.doi.org/10.1071/RD19272...
; Kim and Roh (2021)Kim D, Roh S. Strategy to establish embryo-derived pluripotent stem cells in cattle. Int J Mol Sci. 2021;22(9):5011. http://dx.doi.org/10.3390/ijms22095011. PMid:34065074.
http://dx.doi.org/10.3390/ijms22095011...
; Kumar et al. (2021)Kumar D, Talluri TR, Selokar NL, Hyder I, Kues W. Perspectives of pluripotent stem cells in livestock. World J Stem Cells. 2021;13(1):1-29. http://dx.doi.org/10.4252/wjsc.v13.i1.1. PMid:33584977.
http://dx.doi.org/10.4252/wjsc.v13.i1.1...
; Aguila et al. (2022)Aguila L, Osycka-Salut C, Treulen F, Felmer R. Pluripotent core in bovine embryos: a review. Animals. 2022;12(8):1010. http://dx.doi.org/10.3390/ani12081010. PMid:35454256.
http://dx.doi.org/10.3390/ani12081010...
]. This might enhance the technique of chimeric cloning.

Meanwhile, the suitability of trophoblastic vesicles with ICM-exchange (i.e. the induction of a temporary chimerism) was demonstrated as a promising approach for endangered species conservation, although until now, in contrast to earlier experiments with asynchronous blastomere aggregation (Meinecke-Tillmann and Meinecke, 1984aMeinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0. PMid:6694752.
http://dx.doi.org/10.1038/307637a0...
) only intraspecies progeny has been born (Loi et al., 2018Loi P, Galli C, Lazzari G, Matsukawa K, Fulka J Jr, Goeritz F, Hildebrandt TB. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange. J Reprod Dev. 2018;64(2):187-91. http://dx.doi.org/10.1262/jrd.2017-109. PMid:29445070.
http://dx.doi.org/10.1262/jrd.2017-109...
). Before, successful ICM-replacement was performed between differing mouse stains (Bi et al., 2003Bi C, Wen D, Xu Y, Sun Q, Chen D. Replacement of inner cell mass in mouse. Chin Sci Bull. 2003;48(13):1347-51. http://dx.doi.org/10.1007/BF03184177.
http://dx.doi.org/10.1007/BF03184177...
; Zheng et al., 2005Zheng YL, Jiang MX, OuYang YC, Sun QY, Chen DY. Production of mouse by inter-strain inner cell mass replacement. Zygote. 2005;13(1):73-7. http://dx.doi.org/10.1017/S0967199405003035. PMid:15984165.
http://dx.doi.org/10.1017/S0967199405003...
) and with ICMs derived from bovine nuclear transfer embryos and trophoblastic vesicles of bovine IVP-embryos (Murakami et al., 2006Murakami M, Ferguson CE, Perez O, Boediono A, Paccamonti D, Bondioli KR, Godke RA. Transfer of inner cell mass cells derived from bovine nuclear transfer embryos into the trophoblast of bovine in vitro-produced embryos. Cloning Stem Cells. 2006;8(1):51-60. http://dx.doi.org/10.1089/clo.2006.8.51. PMid:16571077.
http://dx.doi.org/10.1089/clo.2006.8.51...
). However, it might become possible to generate gametes from iPSC of endangered animals that can be used to create IVP-blastocysts and to transfer their isolated ICMs into trophoblastic vesicles derived from a suitable species which carries the interspecies chimeric blastocysts to term (Saragusty et al., 2020Saragusty J, Ajmone-Marsan P, Sampino S, Modlinski JA. Reproductive biotechnology and critically endangered species: merging in vitro gametogenesis with inner cell mass transfer. Theriogenology. 2020;155:176-84. http://dx.doi.org/10.1016/j.theriogenology.2020.06.009. PMid:32702562.
http://dx.doi.org/10.1016/j.theriogenolo...
). A similar approach is conceivable with ICMs from IVP-blastocysts after interspecies cloning with somatic cells or iPSC of an endangered species and oocytes from another closely related and compatible but unthreatened species. Unfortunately, in these cases mtDNA of a foreign species is undesirably transmitted.

Since ectogenesis is far from reality it is necessary to find suitable and common species that can serve as foster mothers for the interspecies approach in animals that are on the brink of extinction. In the context of endangered animals it should not be forgotten that non-mammalian species deserve attention, too (Lipke et al., 2009bLipke C, Meinecke-Tillmann S, Meinecke B. Induced spermiation and sperm morphology in a dendrobatid frog, Dendrobates auratus (Amphibia, Anura, Dendrobatidae). Salamandra. 2009b;45:65-74., aLipke C, Meinecke-Tillmann C, Meyer W, Meinecke B. Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal induced spermiation (Amphibia, Anura, Dendrobatidae). Anim Reprod Sci. 2009a;113(1-4):177-86. http://dx.doi.org/10.1016/j.anireprosci.2008.06.005. PMid:18657373.
http://dx.doi.org/10.1016/j.anireprosci....
; Strand et al., 2020Strand J, Thomsen H, Jensen JB, Marcussen C, Nicolajsen TB, Skriver MB, Søgaard IM, Ezaz T, Purup S, Callesen H, Pertoldi C. Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. Conserv Genet Resour. 2020;12(4):709-25. http://dx.doi.org/10.1007/s12686-020-01142-y.
http://dx.doi.org/10.1007/s12686-020-011...
; Bolton et al., 2022Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod Fertil. 2022;3(3):R121-46. http://dx.doi.org/10.1530/RAF-22-0005. PMid:35928671.
http://dx.doi.org/10.1530/RAF-22-0005...
).

The zona pellucida in micromanipulated embryos

The zona pellucida (Moros-Nicolás et al., 2021Moros-Nicolás C, Chevret P, Jiménez-Movilla M, Algarra B, Cots-Rodríguez P, González-Brusi L, Avilés M, Izquierdo-Rico MJ. New insights into the mammalian egg zona pellucida. Int J Mol Sci. 2021;22(6):3276. http://dx.doi.org/10.3390/ijms22063276. PMid:33806989.
http://dx.doi.org/10.3390/ijms22063276...
) protects pre-compaction embryos from lysis, immobilization, aggregation, disaggregation or loss of blastomeres, and also from contact with immune cells or infectious material (Modliński, 1970Modliński JA. The role of the zona pellucida in the development of mouse eggs in vivo. J Embryol Exp Morphol. 1970;23(3):539-47. PMid:5473304.; Nichols and Gardner, 1989Nichols J, Gardner RL. Effect of damage to the zona pellucida on development of preimplantation embryos in the mouse. Hum Reprod. 1989;4(2):180-7. http://dx.doi.org/10.1093/oxfordjournals.humrep.a136868. PMid:2918072.
http://dx.doi.org/10.1093/oxfordjournals...
; Ueno et al., 2007Ueno S, Kurome M, Tomii R, Hiruma K, Saitoh H, Nagashima H. Association between embryonic loss and damage to the zona pellucida by invasive micromanipulation during oviductal transfer of early-stage embryos in pigs. J Reprod Dev. 2007;53(5):1113-8. http://dx.doi.org/10.1262/jrd.19063. PMid:17598954.
http://dx.doi.org/10.1262/jrd.19063...
). Additionally, the zona is necessary for the establishment of a special microenvironment. Furthermore, it eases handling during ET procedures. Thus, for the protection of zona-injured cleavage stages before reaching the compacted morula stage, different methods were tested or established such as encapsulation in agar (Willadsen, 1979Willadsen SM. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature. 1979;277(5694):298-300. http://dx.doi.org/10.1038/277298a0. PMid:570249.
http://dx.doi.org/10.1038/277298a0...
; Willadsen et al., 1981Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R. The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 1981;15(1):23-9. http://dx.doi.org/10.1016/S0093-691X(81)80015-5. PMid:16725537.
http://dx.doi.org/10.1016/S0093-691X(81)...
; Tsunoda and McLaren, 1983Tsunoda Y, McLaren A. Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J Reprod Fertil. 1983;69(1):315-22. http://dx.doi.org/10.1530/jrf.0.0690315. PMid:6887141.
http://dx.doi.org/10.1530/jrf.0.0690315...
), agarose (Blakewood et al., 1989Blakewood EG, Jaynes HM, Johnson WA, Godke RA. Using the amniotic cavity of the developing chick embryo for the in vivo culture of early-stage mammalian embryos. Poult Sci. 1989;68(12):1695-702. http://dx.doi.org/10.3382/ps.0681695. PMid:2622823.
http://dx.doi.org/10.3382/ps.0681695...
), or agar/agarose cylinders (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.), sodium alginate (Adaniya et al., 1987Adaniya GK, Rawlins RG, Miller IF, Zaneveld LJ. Effect of sodium alginate encapsulation on the development of preimplantation mouse embryos. J In Vitro Fert Embryo Transf. 1987;4(6):343-5. http://dx.doi.org/10.1007/BF01555383. PMid:3437220.
http://dx.doi.org/10.1007/BF01555383...
; Cosby and Dukelow, 1990Cosby NC, Dukelow WR. Microencapsulation of single, multiple, and zona pellucida-free mouse preimplantation embryos in sodium alginate and their development in vitro. J Reprod Fertil. 1990;90(1):19-24. http://dx.doi.org/10.1530/jrf.0.0900019. PMid:2231540.
http://dx.doi.org/10.1530/jrf.0.0900019...
; Hall et al., 1993Hall JL, Engel D, Gindoff PR, Mottla GL, Stillman RJ. Experimental cloning of human polyploid embryos using an artificial zona pellucida. Fertil Steril. 1993;60(S1):O-001.; Watanabe et al., 1995Watanabe M, Hoshi K, Yazawa H, Yanagida K, Sato A. Use of the artificial zona pellucida made of calcium alginate in the development of preimplantation mouse embryo. J Mamm Ova Res. 1995;12(2):95-100. http://dx.doi.org/10.1274/jmor.12.95.
http://dx.doi.org/10.1274/jmor.12.95...
; Yániz et al., 2002Yániz JL, Santolaria P, López-Gatius F. In vitro development of bovine embryos encapsulated in sodium alginate. J Vet Med A Physiol Pathol Clin Med. 2002;49(8):393-5. http://dx.doi.org/10.1046/j.1439-0442.2002.00463.x. PMid:12450185.
http://dx.doi.org/10.1046/j.1439-0442.20...
), or poly-l-lysine (Krentz et al., 1993Krentz KJ, Nebel RL, Canseco RS, McGilliard ML. In vitro and in vivo development of mouse morulae encapsulated in 2% sodium alginate or 0.1% poly-l-lysine. Theriogenology. 1993;39(3):655-67. http://dx.doi.org/10.1016/0093-691X(93)90251-Y. PMid:16727243.
http://dx.doi.org/10.1016/0093-691X(93)9...
), protection with a double zona pellucida (Meinecke-Tillmann and Meinecke, 1984aMeinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0. PMid:6694752.
http://dx.doi.org/10.1038/307637a0...
, bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.; Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.), gelatin embedding (Warfield et al., 1987Warfield SJ, Seidel GE Jr, Elsden RP. Transfer of bovine demi-embryos with and without the zona pellucida. J Anim Sci. 1987;65(3):756-61. http://dx.doi.org/10.2527/jas1987.653756x. PMid:3667439.
http://dx.doi.org/10.2527/jas1987.653756...
), or zona substitution with special agarose capsules (Nagatomo et al., 2017Nagatomo H, Yao T, Araki Y, Mizutani E, Wakayama T. Agarose capsules as new tools for protecting denuded mouse oocytes/embryos during handling and freezing-thawing and supporting embryonic development in vivo. Sci Rep. 2017;7(1):17960. http://dx.doi.org/10.1038/s41598-017-18365-z. PMid:29263435.
http://dx.doi.org/10.1038/s41598-017-183...
) or sodium hyaluronate gel (Song et al., 2022Song J, Zhang J, Yuan X, Liu B, Tao W, Zhang C, Wu K. Functional substitution of zona pellucida with modified sodium hyaluronate gel in human embryos. J Assist Reprod Genet. 2022;39(11):2669-76. http://dx.doi.org/10.1007/s10815-022-02609-7. PMid:36094700.
http://dx.doi.org/10.1007/s10815-022-026...
). In the case of encapsulation with non-degradable material the embryos had to be freed in the late morula or early blastocyst stage.

Before embedding in foreign material, manipulated embryos / blastomeres normally were surrounded with a host zona pellucida. These host zonae were usually taken from unfertilized / degenerate oocytes or embryos that were recovered during embryo collection in vivo or during in vitro culture, or from oocytes collected from abattoir material. In our own studies fresh zonae pellucidae derived from oocytes of prepubertal pigs were preferred (Meinecke-Tillmann and Meinecke, 1983bMeinecke-Tillmann S, Meinecke B. Möglichkeiten und Grenzen der Mikromanipulation embryonaler Furchungsstadien landwirtschaftlicher Nutztiere dargestellt am Modell artifiziell monozygoter Zwillinge beim Schaf. Zbl. Vet Med A. 1983b;30:146-53. German., 1984aMeinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0. PMid:6694752.
http://dx.doi.org/10.1038/307637a0...
, bMeinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4., 1987Meinecke-Tillmann S, Meinecke B. Microsurgical experiments on embryos in farm animals - basic and applied aspects. In: Feichtinger W, Kemeter P, editors. Future aspects in human in vitro fertilization. Berlin: Springer Verlag; 1987. p. 217-24. http://dx.doi.org/10.1007/978-3-642-71412-2_30.
http://dx.doi.org/10.1007/978-3-642-7141...
; Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.) because of their smaller size which made them more suitable for splitted or otherwise treated embryos, and because of the absence of pre- and post-fertilization hardening which might unfavorably interfere with blastocyst hatching [zona hardening: see Coy et al. (2008)Coy P, Grullon L, Canovas S, Romar R, Matas C, Aviles M. Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction. 2008;135(1):19-27. http://dx.doi.org/10.1530/REP-07-0280. PMid:18159080.
http://dx.doi.org/10.1530/REP-07-0280...
]. The double zona technique allowed, if desired, the direct transfer into final recipients. Nevertheless, it cannot be excluded that the mechanics during hatching might have been of negative influence on pregnancy and embryo survival rates, since these were not as high as after agar/agarose embedding/removal and ET to intermediate recipients (Meinecke-Tillmann, 1993Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.). On the other hand it has to be taken into account that embedding in agar/agarose cylinders allowed a preselection of embryos and therefore higher success rates after ET.

Hygienic precautions had been taken into account since the pig zonae were derived from slaughterhouse material. Therefore, they were carefully denuded, evacuated and washed in order to remove possible contaminants. In contrast to former observations (Moore et al., 1969Moore NW, Polge C, Rowson LEA. The survival of single blastomeres of pig eggs transferred to recipient gilts. Aust J Biol Sci. 1969;22(4):979-82. http://dx.doi.org/10.1071/BI9690979.
http://dx.doi.org/10.1071/BI9690979...
), a foreign zona pellucida does not negatively influence the pre-hatching development.

The necessity of zona-envelopment had been questioned by Feltrin et al. (2014)Feltrin C, Cooper CA, Mohamad-Fauzi N, Rodrigues V, Aguiar LH, Gaudencio-Neto S, Martins LT, Calderón C, Morais AS, Carneiro IS, Almeida TM, Silva I, Rodrigues JL, Maga EA, Murray JD, Libório AB, Bertolini LR, Bertolini M. Systemic immunosuppression by methylprednisolone and pregnancy rates in goats undergoing the transfer of cloned embryos. Reprod Domest Anim. 2014;49(4):648-56. http://dx.doi.org/10.1111/rda.12342. PMid:24943879.
http://dx.doi.org/10.1111/rda.12342...
since low embryonic survival rates were observed after oviductal transfers of both zona-free and zona-enclosed cloned goat D1- to D2-embryos on D30 of pregnancy (presence of an embryo proper: 5.6% vs. 5.8%; with heartbeat: 0.7% vs. 0.6%). In this context it should be kept in mind that cloned embryos are a suboptimal approach to investigate the problem of a missing or injured zona pellucida. Even when advanced IVC- methods are used (Park et al., 2015Park CH, Jeong YH, Lee DK, Hwang JY, Uh KJ, Yeom SC, Ahn C, Lee CK. Availability of empty zona pellucida for generating embryonic chimeras. PLoS One. 2015;10(4):e0123178. http://dx.doi.org/10.1371/journal.pone.0123178. PMid:25919298.
http://dx.doi.org/10.1371/journal.pone.0...
), the enclosing in a host zona pellucida might still be of interest, depending on the species, the preimplantation stage, and the type of manipulation. In general, however, zona-free embryos develop in vitro at a similar rate to blastocysts as zona-enclosed embryos (Lagutina et al., 2007Lagutina I, Lazzari G, Duchi R, Turini P, Tessaro I, Brunetti D, Colleoni S, Crotti G, Galli C. Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology. 2007;67(1):90-8. http://dx.doi.org/10.1016/j.theriogenology.2006.09.011. PMid:17081599.
http://dx.doi.org/10.1016/j.theriogenolo...
), and zona-hardening in vitro and its consequences are undesirable (Madani et al., 2022Madani S, Machaty Z, Vajta G. An alternative way to improve mammalian embryo development in vitro: culture of zona pellucida-free embryos. Cell Reprogram. 2022;24(3):111-7. http://dx.doi.org/10.1089/cell.2022.0012. PMid:35506897.
http://dx.doi.org/10.1089/cell.2022.0012...
). Thus, the necessity of the presence of the zona pellucida in modern embryo culture systems (Hashiyada, 2017Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-38. http://dx.doi.org/10.1262/jrd.2017-096. PMid:29033399.
http://dx.doi.org/10.1262/jrd.2017-096...
; Fan et al., 2022Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode’s solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod. 2022;107(5):1228-41. http://dx.doi.org/10.1093/biolre/ioac155. PMid:35948000.
http://dx.doi.org/10.1093/biolre/ioac155...
) has to be questioned. Nonetheless, further investigations are required, since it had been shown that zona removal affects, for instance, blastomere conformation (Katayama et al., 2010Katayama M, Ellersieck MR, Roberts RM. Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol Reprod. 2010;82(6):1237-47. http://dx.doi.org/10.1095/biolreprod.109.082982. PMid:20181620.
http://dx.doi.org/10.1095/biolreprod.109...
) and gene expression as well as pre- and postimplantation development in mice (Fan et al., 2022Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode’s solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod. 2022;107(5):1228-41. http://dx.doi.org/10.1093/biolre/ioac155. PMid:35948000.
http://dx.doi.org/10.1093/biolre/ioac155...
), although influences might again be species specific (cattle: Velásquez et al., 2013Velásquez AE, Manriquez JR, Castro FO, Rodriguez-Alvarez LI. Effect of zona pellucida removal on early development of in vitro produced bovine embryos. Arch Med Vet. 2013;45(1):7-15. http://dx.doi.org/10.4067/S0301-732X2013000100003.
http://dx.doi.org/10.4067/S0301-732X2013...
).

Stickiness of zona-free blastocysts can be overcome by proper handling of the embryos, and, thus, ET of micromanipulated zona-free post-compaction stages did not lower pregnancy rates in comparison to the control group (Warfield et al., 1987Warfield SJ, Seidel GE Jr, Elsden RP. Transfer of bovine demi-embryos with and without the zona pellucida. J Anim Sci. 1987;65(3):756-61. http://dx.doi.org/10.2527/jas1987.653756x. PMid:3667439.
http://dx.doi.org/10.2527/jas1987.653756...
).

Maternal effects

Embryo technologies per se (Betteridge, 1977Betteridge KJ, editor. Embryo transfer in farm animals: a review of techniques and applications. Monograph no. 16. Ottawa: Agriculture Canada/Health of Animals Branch; 1977., 1981Betteridge KJ. An historical look at embryo transfer. J Reprod Fertil. 1981;62(1):1-13. http://dx.doi.org/10.1530/jrf.0.0620001. PMid:7014855.
http://dx.doi.org/10.1530/jrf.0.0620001...
; Biggers, 2012Biggers JD. IVF and embryo transfer: historical origin and development. Reprod Biomed Online. 2012;25(2):118-27. http://dx.doi.org/10.1016/j.rbmo.2012.04.011. PMid:22695311.
http://dx.doi.org/10.1016/j.rbmo.2012.04...
; Hansen, 2020aHansen PJ. Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci. 2020a;8(1):395-413. http://dx.doi.org/10.1146/annurev-animal-021419-084010. PMid:32069434.
http://dx.doi.org/10.1146/annurev-animal...
, bHansen PJ. The incompletely fulfilled promise of embryo transfer in cattle: why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020b;98(11):skaa288. http://dx.doi.org/10.1093/jas/skaa288. PMid:33141879.
http://dx.doi.org/10.1093/jas/skaa288...
) and artificial production of monozygotic twins can be involved in breeding programs or in comparative experiments (e.g. Wassmuth and Meinecke-Tillmann, 1980Wassmuth R, Meinecke-Tillmann S. Einsatzmöglichkeiten identischer Zwillinge in der Forschung und Ergebnisse über gezielte Erzeugung beim Schaf. Der Tierzüchter. 1980;32:329-30. German.; Biggers, 1986Biggers JD. The potential use of artificially produced monozygotic twins for comparative experiments. Theriogenology. 1986;26(1):1-25. http://dx.doi.org/10.1016/0093-691X(86)90108-1. PMid:16726166.
http://dx.doi.org/10.1016/0093-691X(86)9...
; Kippax et al., 1991Kippax I, Christie W, Rowan T. Effects of method of splitting, stage of development and presence or absence of zone pellucida on foetal survival in commercial bovine embryo transfer of bisected embryos. Theriogenology. 1991;35(1):25-35. http://dx.doi.org/10.1016/0093-691X(91)90145-4.
http://dx.doi.org/10.1016/0093-691X(91)9...
; Weppert, 2006Weppert M. Untersuchungen zur Nutzung genetisch identischer Zwillinge aus mikrochirurgischer Embryoteilung und von Klongruppen aus Kerntransfer in der Rinderzucht [dissertation]. Munich: Veterinary Faculty, Ludwig-Maximilians-Universität München; 2006. German.; Hashiyada, 2017Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-38. http://dx.doi.org/10.1262/jrd.2017-096. PMid:29033399.
http://dx.doi.org/10.1262/jrd.2017-096...
; Casser et al., 2019aCasser E, Israel S, Boiani M. Multiplying embryos: experimental monozygotic polyembryony in mammals and its uses. Int J Dev Biol. 2019a;63(3-4-5):143-55. http://dx.doi.org/10.1387/ijdb.190016mb. PMid:31058293.
http://dx.doi.org/10.1387/ijdb.190016mb...
; Mueller and Van Eenennaam, 2022Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3(1):13. http://dx.doi.org/10.1186/s43170-022-00080-z.
http://dx.doi.org/10.1186/s43170-022-000...
).

One aspect that shall be discussed here in some more detail is the influence of the maternal genotype or phenotype on the phenotype of the offspring (Wolf and Wade, 2009Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci. 2009;364(1520):1107-15. http://dx.doi.org/10.1098/rstb.2008.0238. PMid:19324615.
http://dx.doi.org/10.1098/rstb.2008.0238...
) since birth weight is a relevant factor for progeny survival and health.

Studies on maternal effects initially involved ET between large and small breeds or reciprocal exchange of embryos between strains or breeds in different species, including sheep (Hunter, 1956Hunter GL. The maternal influence on size in sheep. J Agric Sci. 1956;48(1):36-60. http://dx.doi.org/10.1017/S0021859600030318.
http://dx.doi.org/10.1017/S0021859600030...
; Karihaloo and Combs, 1971Karihaloo AK, Combs W. Some prenatal effects on birth size in Lincoln and Southdown lambs produced by reciprocal ovum transfers. Can J Anim Sci. 1971;51(3):729-34. http://dx.doi.org/10.4141/cjas71-098.
http://dx.doi.org/10.4141/cjas71-098...
; Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.; Hinkelman et al., 1979Hinkelman LA, Bradford GE, Pollak EJ, Anderson GB, Cupps PT. An embryo transfer study of birth weight in Finnish landrace and Targee sheep. J Anim Sci. 1979;48(2):298-306. http://dx.doi.org/10.2527/jas1979.482298x. PMid:528403.
http://dx.doi.org/10.2527/jas1979.482298...
; Anderson et al., 1981Anderson GB, Bradford GE, Cupps PT. Length of gestation in ewes carrying lambs of two different breeds. Theriogenology. 1981;16(1):119-29. http://dx.doi.org/10.1016/0093-691X(81)90120-5. PMid:16725626.
http://dx.doi.org/10.1016/0093-691X(81)9...
; Naqvi et al., 2006Naqvi SMK, Joshi A, Gulyani R, Kumar D, Kolte AP, Kumar S, Maurya VP, Saha S, Mittal JP, Singh VK. Production of prolific microsheep by embryo transfer into large non-prolific sheep. Vet Rec. 2006;159(16):522-6. http://dx.doi.org/10.1136/vr.159.16.522. PMid:17041066.
http://dx.doi.org/10.1136/vr.159.16.522...
; Emsen et al., 2012Emsen E, Diaz CAG, Yaprak M, Koycegiz F, Kutluca M, Emsen H. Effect of inter-breed embryo transfer on lamb growing performance and survival. Reprod Domest Anim. 2012;47(1):8-11. http://dx.doi.org/10.1111/j.1439-0531.2008.01200.x. PMid:19144018.
http://dx.doi.org/10.1111/j.1439-0531.20...
; Sharma et al., 2012Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs. J Anim Sci. 2012;90(4):1338-48. http://dx.doi.org/10.2527/jas.2010-3800. PMid:22079991.
http://dx.doi.org/10.2527/jas.2010-3800...
; Oliver et al., 2015Oliver MH, Jaquiery AL, Kenyon PR, Pain SJ, Jenkinson CM, Blair HT, Derraik JG, Bloomfield FH. Maternal insulin sensitivity in midpregnancy does not determine birth weight after embryo transfer between large and small breed sheep. Domest Anim Endocrinol. 2015;50:50-4. http://dx.doi.org/10.1016/j.domaniend.2014.08.001. PMid:25254312.
http://dx.doi.org/10.1016/j.domaniend.20...
), pigs (Smidt et al., 1966Smidt D, Steinbach J, Scheven B. Reziproke Eitransplantationen zwischen deutschen veredelten Landschweinen und Zwergschweinen. Reprod Dom Anim. 1966;1(4):156-66. http://dx.doi.org/10.1111/j.1439-0531.1966.tb00031.x. German.
http://dx.doi.org/10.1111/j.1439-0531.19...
; Steinbach et al., 1967Steinbach J, Smidt D, Scheven B. Untersuchungen über den mütterlichen Einfluß auf die prä- und postnatale Entwicklung von Schweinen extrem unterschiedlicher Größe. II. Das Wachstum von Deutschen veredelten Landschweinen nach reziproker Transplantation befruchteter Eier. J Anim Breed Genet. 1967;83:312-30. German.), and mice (McLaren and Michie, 1958McLaren A, Michie D. Factors affecting vertebral variation in mice. IV. Experimental proof of the uterine basis of a maternal effect. J Embryol Exp Morphol. 1958;6(4):645-59. PMid:13611143.; Brumby, 1960Brumby PJ. The influence of the maternal environment on growth in mice. Heredity. 1960;14(1-2):1-18. http://dx.doi.org/10.1038/hdy.1960.1.
http://dx.doi.org/10.1038/hdy.1960.1...
; Cowley et al., 1989Cowley DE, Pomp D, Atchley WR, Eisen EJ, Hawkins-Brown D. The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics. 1989;122(1):193-203. http://dx.doi.org/10.1093/genetics/122.1.193. PMid:2731729.
http://dx.doi.org/10.1093/genetics/122.1...
) which were later followed by experiments on horses (Allen and Pashen, 1984Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607. PMid:6747968.
http://dx.doi.org/10.1530/jrf.0.0710607...
; Tischner, 1987Tischner M. Development of Polish-pony foals born after embryo transfer to large mares. J Reprod Fertil. 1987;35:705-9.; Tischner and Klimczak, 1989Tischner M, Klimczak M. The development of Polish ponies born after embryo transfer to large recipients. Equine Vet J. 1989;21(S8):62-3. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04676.x.
http://dx.doi.org/10.1111/j.2042-3306.19...
; Allen et al., 2002Allen WR, Wilsher S, Turnbull C, Stewart F, Ousey J, Rossdale PD, Fowden A. Influence of maternal size on placental, fetal and postnatal growth in the horse: I development in utero. Reproduction. 2002;123(3):445-53. http://dx.doi.org/10.1530/rep.0.1230445. PMid:11882022.
http://dx.doi.org/10.1530/rep.0.1230445...
; Peugnet et al., 2017Peugnet P, Wimel L, Duchamp G, Sandersen C, Camous S, Guillaume D, Dahirel M, Dubois C, Reigner F, Berthelot V, Chaffaux S, Tarrade A, Serteyn D, Chavatte-Palmer P. Enhanced or reduced fetal growth induced by embryo transfer into smaller or larger breeds alters postnatal growth and metabolism in weaned horses. J Equine Vet Sci. 2017;48:143-53.e2. http://dx.doi.org/10.1016/j.jevs.2016.03.016.
http://dx.doi.org/10.1016/j.jevs.2016.03...
) and cattle (Guilbault et al., 1990Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X. PMid:2283407.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Gregory and Maurer, 1991Gregory KE, Maurer RR. Prenatal and postnatal maternal contributions to reproductive, maternal, and size-related traits of beef cattle. J Anim Sci. 1991;69(3):961-76. http://dx.doi.org/10.2527/1991.693961x. PMid:2061266.
http://dx.doi.org/10.2527/1991.693961x...
). They were mainly performed to investigate the impact of a more “comfortable” uterine environment in comparison to a restricted one on the pre- and postnatal development of body weight and size of the fetus/newborn, and on the duration of pregnancy. In contrast, studies related to birth weight in cattle primarily concentrated on the effects of artificial reproductive techniques (King et al., 1985King KK, Seidel GE Jr, Elsden RP. Bovine embryo transfer pregnancies. 1. Abortion rates and characteristics of calves. J Anim Sci. 1985;61(4):747-57. http://dx.doi.org/10.2527/jas1985.614747x. PMid:4066533.
http://dx.doi.org/10.2527/jas1985.614747...
; Lopes et al., 2022Lopes JS, Soriano-Úbeda C, París-Oller E, Navarro-Serna S, Canha-Gouveia A, Sarrias-Gil L, Cerón JJ, Coy P. Year-long phenotypical study of calves derived from different assisted-reproduction technologies. Front Vet Sci. 2022;8:739041. http://dx.doi.org/10.3389/fvets.2021.739041. PMid:35083305.
http://dx.doi.org/10.3389/fvets.2021.739...
).

Although Emsen et al. (2012)Emsen E, Diaz CAG, Yaprak M, Koycegiz F, Kutluca M, Emsen H. Effect of inter-breed embryo transfer on lamb growing performance and survival. Reprod Domest Anim. 2012;47(1):8-11. http://dx.doi.org/10.1111/j.1439-0531.2008.01200.x. PMid:19144018.
http://dx.doi.org/10.1111/j.1439-0531.20...
observed no recipient breed effect in sheep, significant influences were recognized in most of the investigations and reflected the regulatory effects of the uterine environment on either birth weight or weaning weight of lambs.

Depending on the breed, larger/heavier genotype lambs were smaller/lighter when born to smaller/lighter genotype dams (e.g., Hunter, 1956Hunter GL. The maternal influence on size in sheep. J Agric Sci. 1956;48(1):36-60. http://dx.doi.org/10.1017/S0021859600030318.
http://dx.doi.org/10.1017/S0021859600030...
; Karihaloo and Combs, 1971Karihaloo AK, Combs W. Some prenatal effects on birth size in Lincoln and Southdown lambs produced by reciprocal ovum transfers. Can J Anim Sci. 1971;51(3):729-34. http://dx.doi.org/10.4141/cjas71-098.
http://dx.doi.org/10.4141/cjas71-098...
; Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.; Sharma et al., 2012Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs. J Anim Sci. 2012;90(4):1338-48. http://dx.doi.org/10.2527/jas.2010-3800. PMid:22079991.
http://dx.doi.org/10.2527/jas.2010-3800...
). However, contradicting results had been obtained with regard to birth weight or body dimensions of small genotype lambs that were born to larger embryo recipients. Whereas significant differences were seen in comparison to the controls when smaller/lighter genotype lambs were delivered by larger/heavier genotype foster mothers (e.g., Karihaloo and Combs, 1971Karihaloo AK, Combs W. Some prenatal effects on birth size in Lincoln and Southdown lambs produced by reciprocal ovum transfers. Can J Anim Sci. 1971;51(3):729-34. http://dx.doi.org/10.4141/cjas71-098.
http://dx.doi.org/10.4141/cjas71-098...
; Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.), this was not the case in another study (Sharma et al., 2012Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs. J Anim Sci. 2012;90(4):1338-48. http://dx.doi.org/10.2527/jas.2010-3800. PMid:22079991.
http://dx.doi.org/10.2527/jas.2010-3800...
). Similar to sheep, birth weight of calves was higher in Ayrshire dams bearing Limousin fetuses than in those bearing Ayrshire fetuses (Guilbault et al., 1990Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X. PMid:2283407.
http://dx.doi.org/10.3168/jds.S0022-0302...
) which was compensated within 5 months of postnatal development. Dependent on the breed, differences between control lambs and lambs that were delivered by foster mothers were compensated between 14 d and 8 weeks of age (Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.) or after 8 months (Hunter, 1956Hunter GL. The maternal influence on size in sheep. J Agric Sci. 1956;48(1):36-60. http://dx.doi.org/10.1017/S0021859600030318.
http://dx.doi.org/10.1017/S0021859600030...
), whereas in horse fillies (Pony and Thoroughbred), differences in birth weight as well as in other parameters resulting from transfer to host mothers were still obvious at 3 years of age (Allen et al., 2004Allen WR, Wilsher S, Tiplady C, Butterfield RM. The influence of maternal size on pre- and postnatal growth in the horse: III postnatal growth. Reproduction. 2004;127(1):67-77. http://dx.doi.org/10.1530/rep.1.00024. PMid:15056771.
http://dx.doi.org/10.1530/rep.1.00024...
). Similar to sheep, compensation of the influence of the intrauterine environment on prenatal development of piglets already took place during the first 4 to 5 weeks of life (Smidt et al., 1966Smidt D, Steinbach J, Scheven B. Reziproke Eitransplantationen zwischen deutschen veredelten Landschweinen und Zwergschweinen. Reprod Dom Anim. 1966;1(4):156-66. http://dx.doi.org/10.1111/j.1439-0531.1966.tb00031.x. German.
http://dx.doi.org/10.1111/j.1439-0531.19...
).

Since postnatal growth of progeny is influenced by milk production of the individual dams, and since milk production itself depends on the breed, birth type and sex of the newborn (Guilbault et al., 1990Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X. PMid:2283407.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Hinde et al., 2014Hinde K, Carpenter AJ, Clay JS, Bradford BJ. Holsteins favor heifers, not bulls: biased milk production programmed during pregnancy as a function of fetal sex. PLoS One. 2014;9(2):e86169. http://dx.doi.org/10.1371/journal.pone.0086169. PMid:24498270.
http://dx.doi.org/10.1371/journal.pone.0...
; Abecia and Palacios, 2018Abecia JA, Palacios C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital J Anim Sci. 2018;17(3):736-9. http://dx.doi.org/10.1080/1828051X.2017.1415705.
http://dx.doi.org/10.1080/1828051X.2017....
) as well as the breed of the dam, it was sought to objectify the results obtained during the time period from birth until weaning in a few studies. This was achieved by artificial rearing of the lambs (Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.), or by uniform foster mothers and a defined number of pups per female in mice (Cowley et al., 1989Cowley DE, Pomp D, Atchley WR, Eisen EJ, Hawkins-Brown D. The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics. 1989;122(1):193-203. http://dx.doi.org/10.1093/genetics/122.1.193. PMid:2731729.
http://dx.doi.org/10.1093/genetics/122.1...
).

Pregnancy duration was longer in dams bearing progeny with higher birth weight (e.g. sheep: Meinecke-Tillmann and Wassmuth, 1977Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.; cattle: Guilbault et al., 1990Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X. PMid:2283407.
http://dx.doi.org/10.3168/jds.S0022-0302...
). In this context, it should be kept in mind that in contrast to several other mammals the strategy of timing of parturition in sheep depends solely on the fetal hypothalamic-pituitary-adrenal axis (Liggins, 1974Liggins GC. Parturition in the sheep and the human. In: Coutinho EM, Fuchs F, editors. Physiology and genetics of reproduction. Part B. Boston: Springer; 1974. p. 423-43. http://dx.doi.org/10.1007/978-1-4684-2892-6_28.
http://dx.doi.org/10.1007/978-1-4684-289...
; Rokas et al., 2020Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife. 2020;9:e58343. http://dx.doi.org/10.7554/eLife.58343. PMid:33380346.
http://dx.doi.org/10.7554/eLife.58343...
). Thus, in other species differing results might be expected.

In order to specify effects of the maternal environment, matching MZ demi-embryos had been transferred into a single or into two different foster mothers (sheep: Meinecke-Tillmann, 1980Meinecke-Tillmann S. Künstlich erzeugte eineiige Schafzwillinge. Umsch Wiss Tech. 1980;80:248-9. German., 1984Meinecke-Tillmann S. Die experimentelle Mikrochirurgie am Säugetier-Embryo in der Perspektive der reproduktionsphysiologischen Forschung. In: Schirren C, Semm K, editors. Fortschritte der Fertilitätsforschung. FDF 12. Berlin: Grosse Verlag; 1984. p. 426-9. German.; horse: Allen and Pashen, 1984Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607. PMid:6747968.
http://dx.doi.org/10.1530/jrf.0.0710607...
; Allen, 2005Allen WR. The development and application of the modern reproductive technologies to horse breeding. Reprod Domest Anim. 2005;40(4):310-29. http://dx.doi.org/10.1111/j.1439-0531.2005.00602.x. PMid:16008761.
http://dx.doi.org/10.1111/j.1439-0531.20...
) since a mere transfer of embryos between large and small breeds left questions open. Although only small groups of monozygotic twins were available in these studies, results indicated that lambs derived from demi-embryo pairs which had been transferred to two ewes of similar size were more similar to each other than after transfer to different uterine horns of a single mother. In the latter case, restricted growth of the smaller MZ twin was compensated within three month after delivery. Pregnancy duration was identical in MZ twin pairs born from two different but similar sized ewes (same day, difference of only few hours; Meinecke-Tillmann, 1984Meinecke-Tillmann S. Die experimentelle Mikrochirurgie am Säugetier-Embryo in der Perspektive der reproduktionsphysiologischen Forschung. In: Schirren C, Semm K, editors. Fortschritte der Fertilitätsforschung. FDF 12. Berlin: Grosse Verlag; 1984. p. 426-9. German.). In contrast, MZ fillies were born 23 d apart to two mares of different body size and showed a marked dissimilarity in birth weight which was not completely compensated in later life (Allen and Pashen, 1984Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607. PMid:6747968.
http://dx.doi.org/10.1530/jrf.0.0710607...
). In another group of MZ horse twins the growth rate was either enhanced or curbed depending on the genetic background of the foals in the first 6 months post partum, and a minor effect of the uterine environment persisted in the mature animals (Allen et al., 2004Allen WR, Wilsher S, Tiplady C, Butterfield RM. The influence of maternal size on pre- and postnatal growth in the horse: III postnatal growth. Reproduction. 2004;127(1):67-77. http://dx.doi.org/10.1530/rep.1.00024. PMid:15056771.
http://dx.doi.org/10.1530/rep.1.00024...
).

Since in sheep the size of each twin at birth might largely be determined during early gestation (Hancock et al., 2012Hancock SN, Oliver MH, McLean C, Jaquiery AL, Bloomfield FH. Size at birth and adult fat mass in twin sheep are determined in early gestation. J Physiol. 2012;590(5):1273-85. http://dx.doi.org/10.1113/jphysiol.2011.220699. PMid:22183720.
http://dx.doi.org/10.1113/jphysiol.2011....
), further investigations on monozygotic twins carried by a single or by different foster mothers are recommendable. Ultrasonography is suitable to follow the intrauterine development noninvasively (Meinecke-Tillmann and Meinecke, 2007Meinecke-Tillmann S, Meinecke B. Ultrasonography in small ruminant reproduction. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames: Blackwell Publishing; 2007. p. 349-76. http://dx.doi.org/10.1002/9780470390290.ch14.
http://dx.doi.org/10.1002/9780470390290....
; Elmetwally et al., 2016aElmetwally M, Rohn K, Meinecke-Tillmann S. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats. Theriogenology. 2016a;85(6):1070-9.e1. http://dx.doi.org/10.1016/j.theriogenology.2015.11.018. PMid:26768538.
http://dx.doi.org/10.1016/j.theriogenolo...
, bElmetwally MA, Rohn K, Meinecke-Tillmann S. Doppler sonography is a useful method to assess the effects of maternal anxiety on intrauterine fetal growth in pregnant sheep and goats. Qual Prim Care. 2016b;24:137-45.; Meinecke-Tillmann, 2017Meinecke-Tillmann S. Basics of ultrasonographic examination in sheep. Small Rumin Res. 2017;152:10-21. http://dx.doi.org/10.1016/j.smallrumres.2016.12.023.
http://dx.doi.org/10.1016/j.smallrumres....
). In this context it would be of particular interest that matching demi-embryos can successively be carried by the same or by different dams, such as in different seasons or under other differing environmental circumstances. With regard to animal behavior, reciprocal embryo transfers between anxious or non-anxious individuals or between breeds of different temperament would offer new perspectives, particularly when MZ twins would be investigated.

Monozygotic sheep and cattle twins of different age were already born after one demi-embryo had been transferred directly after collection and micromanipulation, whereas the other demi-embryo had been stored at -196°C for several weeks (Willadsen, 1980Willadsen SM. The viability of early cleavage stages containing half the normal number of blastomeres in the sheep. J Reprod Fertil. 1980;59(2):357-62. http://dx.doi.org/10.1530/jrf.0.0590357. PMid:7431292.
http://dx.doi.org/10.1530/jrf.0.0590357...
; Seike et al., 1991Seike N, Sakai M, Kanagawa H. Development of frozen-thawed demi-embryos and production of identical twin calves of different ages. J Vet Med Sci. 1991;53(1):37-42. http://dx.doi.org/10.1292/jvms.53.37. PMid:1830778.
http://dx.doi.org/10.1292/jvms.53.37...
). This approach also allowed successful pregnancies in goats carrying their MZ twin conceptus (Oppenheim et al., 2000Oppenheim SM, Moyer AL, BonDurant RH, Rowe JD, Anderson GB. Successful pregnancy in goats carrying their genetically identical conceptus. Theriogenology. 2000;54(4):629-39. http://dx.doi.org/10.1016/S0093-691X(00)00378-2. PMid:11071137.
http://dx.doi.org/10.1016/S0093-691X(00)...
). Similar to goats, a syngeneic pregnancy was also successful in horses, although in cloned individuals (Galli et al., 2003Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G. A cloned horse born to its dam twin. Nature. 2003;424(6949):635. http://dx.doi.org/10.1038/424635a. PMid:12904778.
http://dx.doi.org/10.1038/424635a...
). The MZ twin model has further been used for investigating the embryo-maternal dialogue in cattle (Klein et al., 2006Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach HD, Vermehren M, Sinowatz F, Blum H, Wolf E. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol Reprod. 2006;74(2):253-64. http://dx.doi.org/10.1095/biolreprod.105.046748. PMid:16207835.
http://dx.doi.org/10.1095/biolreprod.105...
).

Artificial monozygotic twinning would be helpful for the differentiation between true maternal effects [see Wolf and Wade (2009)Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci. 2009;364(1520):1107-15. http://dx.doi.org/10.1098/rstb.2008.0238. PMid:19324615.
http://dx.doi.org/10.1098/rstb.2008.0238...
] and other factors such as maternal inheritance or genomic imprinting. That maternal effects can override any genetic control was impressively demonstrated with regard to the development of endometrial cups in a mare and a jenny donkey, each pregnant from one of two matching MZ mule embryo halves (Allen et al., 1993Allen WR, Skidmore JA, Stewart F, Antczak DF. Effects of fetal genotype and uterine environment on placental development in equids. J Reprod Fertil. 1993;98(1):55-60. http://dx.doi.org/10.1530/jrf.0.0980055. PMid:8345479.
http://dx.doi.org/10.1530/jrf.0.0980055...
).

Blastocysts/conceptus derived from demi-embryos might differ from each other, for instance since dissimilarities between cleavage products [Casser et al. (2019b)Casser E, Wdowik S, Israel S, Witten A, Schlatt S, Nordhoff V, Boiani M. Differences in blastomere totipotency in 2-cell mouse embryos are a maternal trait mediated by asymmetric mRNA distribution. Mol Hum Reprod. 2019b;25(11):729-44. http://dx.doi.org/10.1093/molehr/gaz051. PMid:31504820.
http://dx.doi.org/10.1093/molehr/gaz051...
, discussed by Denker (2020)Denker HW. Recent embryo twinning data prompt reconsideration of theories on a crucial role of segregation of oocyte cytoplasmic constituents in mammals. Mol Hum Reprod. 2020;26(3):193-8. http://dx.doi.org/10.1093/molehr/gaaa005. PMid:31977027.
http://dx.doi.org/10.1093/molehr/gaaa005...
] or universal epigenetic inter-individual dissimilarities (Planterose Jiménez et al., 2021Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol. 2021;22(1):18. http://dx.doi.org/10.1186/s13059-020-02223-9. PMid:33402197.
http://dx.doi.org/10.1186/s13059-020-022...
) may exist, the maternal environment (Ollikainen et al., 2010Ollikainen M, Smith KR, Joo EJH, Ng HK, Andronikos R, Novakovic B, Aziz NKA, Carlin JB, Morley R, Saffery R, Craig JM. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010;19(21):4176-88. http://dx.doi.org/10.1093/hmg/ddq336. PMid:20699328.
http://dx.doi.org/10.1093/hmg/ddq336...
) or assisted reproductive technologies may influence DNA methylation/gene expression (Urrego et al., 2014Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics. 2014;9(6):803-15. http://dx.doi.org/10.4161/epi.28711. PMid:24709985.
http://dx.doi.org/10.4161/epi.28711...
; Velásquez et al., 2016, 2017Velásquez AE, Manríquez J, Castro FO, Cox JF, Rodriguez-Alvarez L. Embryo splitting affects the transcriptome during elongation stage of in vitro-produced bovine blastocysts. Theriogenology. 2017;87:124-34. http://dx.doi.org/10.1016/j.theriogenology.2016.08.014. PMid:27641677.
http://dx.doi.org/10.1016/j.theriogenolo...
; Barberet et al., 2022Barberet J, Ducreux B, Guilleman M, Simon E, Bruno C, Fauque P. DNA methylation profiles after ART during human lifespan: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(5):629-55. http://dx.doi.org/10.1093/humupd/dmac010. PMid:35259267.
http://dx.doi.org/10.1093/humupd/dmac010...
; Håberg et al., 2022Håberg SE, Page CM, Lee Y, Nustad HE, Magnus MC, Haftorn KL, Carlsen EØ, Denault WRP, Bohlin J, Jugessur A, Magnus P, Gjessing HK, Lyle R. DNA methylation in newborns conceived by assisted reproductive technology. Nat Commun. 2022;13(1):1896. http://dx.doi.org/10.1038/s41467-022-29540-w. PMid:35393427.
http://dx.doi.org/10.1038/s41467-022-295...
), or postzygotic mutations may occur in somatic cells as well as germ cells (Jonsson et al., 2021Jonsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson O, Zink F, Helgason EA, Jonsdottir I, Gylfason A, Jonasdottir A, Jonasdottir A, Beyter D, Steingrimsdottir T, Norddahl GL, Magnusson OT, Masson G, Halldorsson BV, Thorsteinsdottir U, Helgason A, Sulem P, Gudbjartsson DF, Stefansson K. Differences between germline genomes of monozygotic twins. Nat Genet. 2021;53(1):27-34. http://dx.doi.org/10.1038/s41588-020-00755-1. PMid:33414551.
http://dx.doi.org/10.1038/s41588-020-007...
).

In this context, the transfer of MZ demi-embryos into MZ twin mothers might be of special interest for further investigations.

Conclusion

The mammalian preimplantation embryo is equipped with amazing regulative capacities which seem to be both species and stage specific. This reproductive strategy allows the compensation of a loss of defective blastomeres even at two-cell stages or the regulation of ploidy without endangering the whole pregnancy, especially in uniparous species with their long generation intervals. Therefore, the cellular and embryological basis for twinning might vary between species. The high regulative capacity also allows the artificial splitting of preimplantation embryos in order to increase the number of transferable embryos per donor animal.

Regarding the process of spontaneous monozygotic twinning in association with natural pregnancies as well as artificial reproductive technologies, hypotheses on the development of dichorionic/diamniotic and monochorionic/diamniotic twins are discussed on the basis of selected international publications and of own observations of in vivo developed or in vitro manipulated embryos in small ruminants. Contrary to the general view that twin blastocysts cannot occur within a common zona pellucida, we describe such cases in native and in manipulated embryos. Furthermore, possible mono- or dizygotic twinning related to blastocysts with double ICMs or to fused blastocysts are reported. MZ twins offer the possibility to perform comparative studies in which one twin serves as the control. This is of special interest with regard to maternal influences on the developing conceptus.

Acknowledgements

We would like to thank our teachers, mentors, co-workers, and students who accompanied us during our scientific life. These are, just to name a few of them, Rudolf Wassmuth, to whom this review is dedicated on the occasion of his 95th birthday, Harry Tillmann, Emmanuel C. Amoroso, Wolfgang Jöchle, Diedrich Smidt, Edita Podhajsky and Heidrun Lewalski.

  • Financial support: None.
  • How to cite: Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod. 2023;20(2):e20230049. https://doi.org/10.1590/1984-3143-AR2023-0049

References

  • Abecia JA, Palacios C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital J Anim Sci. 2018;17(3):736-9. http://dx.doi.org/10.1080/1828051X.2017.1415705
    » http://dx.doi.org/10.1080/1828051X.2017.1415705
  • Adaniya GK, Rawlins RG, Miller IF, Zaneveld LJ. Effect of sodium alginate encapsulation on the development of preimplantation mouse embryos. J In Vitro Fert Embryo Transf. 1987;4(6):343-5. http://dx.doi.org/10.1007/BF01555383 PMid:3437220.
    » http://dx.doi.org/10.1007/BF01555383
  • Aguila L, Osycka-Salut C, Treulen F, Felmer R. Pluripotent core in bovine embryos: a review. Animals. 2022;12(8):1010. http://dx.doi.org/10.3390/ani12081010 PMid:35454256.
    » http://dx.doi.org/10.3390/ani12081010
  • Ahmad I, Chafe UM, Umar AA, Salisu MD. Conjoined twins in Red Sokoto goat. J Hell Vet Med Soc. 2020;70(4):1919-24. http://dx.doi.org/10.12681/jhvms.22245
    » http://dx.doi.org/10.12681/jhvms.22245
  • Ai J, Jin L, Zheng Y, Yang P, Huang B, Dong X. The morphology of inner cell mass is the strongest predictor of live birth after a frozen-thawed single embryo transfer. Front Endocrinol. 2021;12:621221. http://dx.doi.org/10.3389/fendo.2021.621221 PMid:33716973.
    » http://dx.doi.org/10.3389/fendo.2021.621221
  • Ainsworth L, Tsang BK, Downey BR, Marcus GJ, Armstrong DT. Interrelationships between follicular fluid steroid levels, gonadotropic stimuli, and oocyte maturation during preovulatory development of porcine follicles. Biol Reprod. 1980;23(3):621-7. http://dx.doi.org/10.1095/biolreprod23.3.621 PMid:7448265.
    » http://dx.doi.org/10.1095/biolreprod23.3.621
  • Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634-43. http://dx.doi.org/10.1093/humrep/15.12.2634 PMid:11098037.
    » http://dx.doi.org/10.1093/humrep/15.12.2634
  • Allen WR, Pashen RL. Production of monozygotic (identical) horse twins by embryo micromanipulation. J Reprod Fertil. 1984;71(2):607-13. http://dx.doi.org/10.1530/jrf.0.0710607 PMid:6747968.
    » http://dx.doi.org/10.1530/jrf.0.0710607
  • Allen WR, Skidmore JA, Stewart F, Antczak DF. Effects of fetal genotype and uterine environment on placental development in equids. J Reprod Fertil. 1993;98(1):55-60. http://dx.doi.org/10.1530/jrf.0.0980055 PMid:8345479.
    » http://dx.doi.org/10.1530/jrf.0.0980055
  • Allen WR, Wilsher S, Tiplady C, Butterfield RM. The influence of maternal size on pre- and postnatal growth in the horse: III postnatal growth. Reproduction. 2004;127(1):67-77. http://dx.doi.org/10.1530/rep.1.00024 PMid:15056771.
    » http://dx.doi.org/10.1530/rep.1.00024
  • Allen WR, Wilsher S, Turnbull C, Stewart F, Ousey J, Rossdale PD, Fowden A. Influence of maternal size on placental, fetal and postnatal growth in the horse: I development in utero. Reproduction. 2002;123(3):445-53. http://dx.doi.org/10.1530/rep.0.1230445 PMid:11882022.
    » http://dx.doi.org/10.1530/rep.0.1230445
  • Allen WR. The development and application of the modern reproductive technologies to horse breeding. Reprod Domest Anim. 2005;40(4):310-29. http://dx.doi.org/10.1111/j.1439-0531.2005.00602.x PMid:16008761.
    » http://dx.doi.org/10.1111/j.1439-0531.2005.00602.x
  • Alteri A, Viganò P, Maizar AA, Jovine L, Giacomini E, Rubino P. Revisiting embryo assisted hatching approaches: a systematic review of the current protocols. J Assist Reprod Genet. 2018;35(3):367-91. http://dx.doi.org/10.1007/s10815-018-1118-4 PMid:29350315.
    » http://dx.doi.org/10.1007/s10815-018-1118-4
  • Anderson GB, Bradford GE, Cupps PT. Length of gestation in ewes carrying lambs of two different breeds. Theriogenology. 1981;16(1):119-29. http://dx.doi.org/10.1016/0093-691X(81)90120-5 PMid:16725626.
    » http://dx.doi.org/10.1016/0093-691X(81)90120-5
  • Asami M, Lam YHB, Ma MK, Rainbow K, Braun S, VerMilyea MD, Yeo GS, Perry ACF. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29(2):209-16.e4. http://dx.doi.org/10.1016/j.stem.2021.11.012 PMid:34936886.
    » http://dx.doi.org/10.1016/j.stem.2021.11.012
  • Ashworth CJ, Ross AW, Barrett P. The use of DNA fingerprinting to assess monozygotic twinning in Meishan and Landrace × Large White pigs. Reprod Fertil Dev. 1998;10(6):487-90. http://dx.doi.org/10.1071/RD99010 PMid:10588379.
    » http://dx.doi.org/10.1071/RD99010
  • Assheton R. An account of a blastodermic vesicle of the sheep of the seventh day, with twin germinal areas. J Anat Physiol. 1898;32(Pt 3):362-72.2. PMid:17232315.
  • Bagg MA, Nottle MB, Armstrong DT, Grupen CG. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod Fertil Dev. 2007;19(7):797-803. http://dx.doi.org/10.1071/RD07018 PMid:17897582.
    » http://dx.doi.org/10.1071/RD07018
  • Bagg MA, Vassena R, Papasso-Brambilla E, Grupen CG, Armstrong DT, Gandolfi F. Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig. Theriogenology. 2004;62(6):1003-11. http://dx.doi.org/10.1016/j.theriogenology.2003.12.028 PMid:15289043.
    » http://dx.doi.org/10.1016/j.theriogenology.2003.12.028
  • Balakier H, Cabaca O, Bouman D, Shewchuk AB, Laskin C, Squire JA. Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum Reprod. 2000;15(11):2404-10. http://dx.doi.org/10.1093/humrep/15.11.2404 PMid:11056142.
    » http://dx.doi.org/10.1093/humrep/15.11.2404
  • Barberet J, Ducreux B, Guilleman M, Simon E, Bruno C, Fauque P. DNA methylation profiles after ART during human lifespan: a systematic review and meta-analysis. Hum Reprod Update. 2022;28(5):629-55. http://dx.doi.org/10.1093/humupd/dmac010 PMid:35259267.
    » http://dx.doi.org/10.1093/humupd/dmac010
  • Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. Trophectoderm lineage determination in cattle. Dev Cell. 2011;20(2):244-55. http://dx.doi.org/10.1016/j.devcel.2011.01.003 PMid:21316591.
    » http://dx.doi.org/10.1016/j.devcel.2011.01.003
  • Betteridge KJ, editor. Embryo transfer in farm animals: a review of techniques and applications. Monograph no. 16. Ottawa: Agriculture Canada/Health of Animals Branch; 1977.
  • Betteridge KJ. An historical look at embryo transfer. J Reprod Fertil. 1981;62(1):1-13. http://dx.doi.org/10.1530/jrf.0.0620001 PMid:7014855.
    » http://dx.doi.org/10.1530/jrf.0.0620001
  • Bi C, Wen D, Xu Y, Sun Q, Chen D. Replacement of inner cell mass in mouse. Chin Sci Bull. 2003;48(13):1347-51. http://dx.doi.org/10.1007/BF03184177
    » http://dx.doi.org/10.1007/BF03184177
  • Biggers JD. IVF and embryo transfer: historical origin and development. Reprod Biomed Online. 2012;25(2):118-27. http://dx.doi.org/10.1016/j.rbmo.2012.04.011 PMid:22695311.
    » http://dx.doi.org/10.1016/j.rbmo.2012.04.011
  • Biggers JD. The potential use of artificially produced monozygotic twins for comparative experiments. Theriogenology. 1986;26(1):1-25. http://dx.doi.org/10.1016/0093-691X(86)90108-1 PMid:16726166.
    » http://dx.doi.org/10.1016/0093-691X(86)90108-1
  • Bindon BM. Systematic study of preimplantation stages of pregnancy in the sheep. Aust J Biol Sci. 1971;24(1):131-47. http://dx.doi.org/10.1071/BI9710131 PMid:5553665.
    » http://dx.doi.org/10.1071/BI9710131
  • Bjerre D, Thorup F, Jørgensen CB, Vejlsted M, Fredholm M. A study of the occurrence of monochorionic and monozygotic twinning in the pig. Anim Genet. 2009;40(1):53-6. http://dx.doi.org/10.1111/j.1365-2052.2008.01801.x PMid:19016673.
    » http://dx.doi.org/10.1111/j.1365-2052.2008.01801.x
  • Bjerregaard B, Wrenzycki C, Philimonenko VV, Hozak P, Laurincik J, Niemann H, Motlik J, Maddox-Hyttel P. Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol Reprod. 2004;70(4):925-35. http://dx.doi.org/10.1095/biolreprod.103.020941 PMid:14627545.
    » http://dx.doi.org/10.1095/biolreprod.103.020941
  • Blakewood EG, Jaynes HM, Johnson WA, Godke RA. Using the amniotic cavity of the developing chick embryo for the in vivo culture of early-stage mammalian embryos. Poult Sci. 1989;68(12):1695-702. http://dx.doi.org/10.3382/ps.0681695 PMid:2622823.
    » http://dx.doi.org/10.3382/ps.0681695
  • Blickstein I, Jones C, Keith LG. Zygotic-splitting rates after single-embryo transfers in in vitro fertilization. N Engl J Med. 2003;348(23):2366-7. http://dx.doi.org/10.1056/NEJMc026724 PMid:12789011.
    » http://dx.doi.org/10.1056/NEJMc026724
  • Blickstein I, Verhoeven HC, Keith LG. Zygotic splitting after assisted reproduction. N Engl J Med. 1999;340(9):738-9. http://dx.doi.org/10.1056/NEJM199903043400916 PMid:10068338.
    » http://dx.doi.org/10.1056/NEJM199903043400916
  • Boklage CE. On the timing of monozygotic twinning events. In: Gedda L, Parisi P, Nance WE, editors. Twin research 3: twin biology and multiple pregnancy. New York: Alan R. Liss; 1981. p. 155-65.
  • Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461(7260):91-4. http://dx.doi.org/10.1038/nature08310 PMid:19672243.
    » http://dx.doi.org/10.1038/nature08310
  • Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Martin G, Kupriyanov S, Baldwin KK. Generation of mice derived from induced pluripotent stem cells. J Vis Exp. 2012;69(69):e4003. PMid:23222420.
  • Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod Fertil. 2022;3(3):R121-46. http://dx.doi.org/10.1530/RAF-22-0005 PMid:35928671.
    » http://dx.doi.org/10.1530/RAF-22-0005
  • Bomsel-Helmreich O, Papiernik-Berkhauer E. Delayed ovulation and monozygotic twinning. Acta Genet Med Gemellol. 1976;25(1):73-6. http://dx.doi.org/10.1017/S000156600001388X PMid:1031545.
    » http://dx.doi.org/10.1017/S000156600001388X
  • Bomsel-Helmreich O. Delayed ovulation and monozygotic twinning in the rabbit. Acta Genet Med Gemellol. 1974;23(Suppl 2):19. http://dx.doi.org/10.1017/S1120962300022538
    » http://dx.doi.org/10.1017/S1120962300022538
  • Brouillet S, Mereuze S, Ranisavljevic N, Chauveau C, Hamamah S, Cattin J, Verebi C, Cabrol C, Ishmukhametova A, Girardet A, Anahory T, Willems M. Molecular characterization of a rare case of monozygotic dichorionic diamniotic twin pregnancy after single blastocyst transfer in preimplantation genetic testing (PGT). Int J Mol Sci. 2022;23(18):10835. http://dx.doi.org/10.3390/ijms231810835 PMid:36142745.
    » http://dx.doi.org/10.3390/ijms231810835
  • Brumby PJ. The influence of the maternal environment on growth in mice. Heredity. 1960;14(1-2):1-18. http://dx.doi.org/10.1038/hdy.1960.1
    » http://dx.doi.org/10.1038/hdy.1960.1
  • Bulmer MG. The biology of twinning in man. Oxford: Clarendon Press;1970.
  • Carstea BV, Lemos APC, Ilie ED, Varga L, Bodó S, Kovács A, Bösze Z, Gócza E. Production of identical mouse twins and a triplet with predicted gender. Cloning Stem Cells. 2007;9(2):247-56. http://dx.doi.org/10.1089/clo.2006.0055 PMid:17579557.
    » http://dx.doi.org/10.1089/clo.2006.0055
  • Casser E, Israel S, Boiani M. Multiplying embryos: experimental monozygotic polyembryony in mammals and its uses. Int J Dev Biol. 2019a;63(3-4-5):143-55. http://dx.doi.org/10.1387/ijdb.190016mb PMid:31058293.
    » http://dx.doi.org/10.1387/ijdb.190016mb
  • Casser E, Wdowik S, Israel S, Witten A, Schlatt S, Nordhoff V, Boiani M. Differences in blastomere totipotency in 2-cell mouse embryos are a maternal trait mediated by asymmetric mRNA distribution. Mol Hum Reprod. 2019b;25(11):729-44. http://dx.doi.org/10.1093/molehr/gaz051 PMid:31504820.
    » http://dx.doi.org/10.1093/molehr/gaz051
  • Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ, Bergert M, Diz-Muñoz A, Mahadevan L, Hiiragi T. Hydraulic control of mammalian embryo size and cell fate. Nature. 2019;571(7763):112-6. http://dx.doi.org/10.1038/s41586-019-1309-x PMid:31189957.
    » http://dx.doi.org/10.1038/s41586-019-1309-x
  • Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and considerations during in vitro production of porcine embryos. Cells. 2021;10(10):2770. http://dx.doi.org/10.3390/cells10102770 PMid:34685749.
    » http://dx.doi.org/10.3390/cells10102770
  • Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells. 2009;27(9):2136-45. http://dx.doi.org/10.1002/stem.158 PMid:19544532.
    » http://dx.doi.org/10.1002/stem.158
  • Chida S. Monozygous double inner cell masses in mouse blastocysts following fertilization in vitro and in vivo. J In Vitro Fert Embryo Transf. 1990;7(3):177-9. http://dx.doi.org/10.1007/BF01135685 PMid:2380625.
    » http://dx.doi.org/10.1007/BF01135685
  • Chitnis S, Derom C, Vlietinck R, Derom R, Monteiro J, Gregersen PK. X chromosome-inactivation patterns confirm the late timing of monoamniotic-MZ twinning. Am J Hum Genet. 1999;65(2):570-1. http://dx.doi.org/10.1086/302502 PMid:10417301.
    » http://dx.doi.org/10.1086/302502
  • Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: origins and difference. Mol Cell Endocrinol. 2014;383(1-2):203-13. http://dx.doi.org/10.1016/j.mce.2013.12.009 PMid:24365330.
    » http://dx.doi.org/10.1016/j.mce.2013.12.009
  • Christmann L, Jung T, Moor RM. MPF components and meiotic competence in growing pig oocytes. Mol Reprod Dev. 1994;38(1):85-90. http://dx.doi.org/10.1002/mrd.1080380114 PMid:8049069.
    » http://dx.doi.org/10.1002/mrd.1080380114
  • Chu CS, Li D, Olson-Chen C, Kawwass J, Vitek W. Recurrence risk and risk factors for monozygotic twin and triplet birth in over 65,000 single-embryo transfers. J Assist Reprod Genet. 2023;40(4):851-5. http://dx.doi.org/10.1007/s10815-023-02737-8 PMid:36746891.
    » http://dx.doi.org/10.1007/s10815-023-02737-8
  • Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933-51. http://dx.doi.org/10.1016/0002-9378(55)90001-6 PMid:13258680.
    » http://dx.doi.org/10.1016/0002-9378(55)90001-6
  • Cosby NC, Dukelow WR. Microencapsulation of single, multiple, and zona pellucida-free mouse preimplantation embryos in sodium alginate and their development in vitro. J Reprod Fertil. 1990;90(1):19-24. http://dx.doi.org/10.1530/jrf.0.0900019 PMid:2231540.
    » http://dx.doi.org/10.1530/jrf.0.0900019
  • Costa ALE, Abdelmassih S, Oliveira FG, Abdelmassih V, Abdelmassih R, Nagy ZP, Balmaceda JP. Monozygotic twins and transfer at the blastocyst stage after ICSI. Hum Reprod. 2001;16(2):333-6. http://dx.doi.org/10.1093/humrep/16.2.333 PMid:11157829.
    » http://dx.doi.org/10.1093/humrep/16.2.333
  • Cowley DE, Pomp D, Atchley WR, Eisen EJ, Hawkins-Brown D. The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics. 1989;122(1):193-203. http://dx.doi.org/10.1093/genetics/122.1.193 PMid:2731729.
    » http://dx.doi.org/10.1093/genetics/122.1.193
  • Coy P, Grullon L, Canovas S, Romar R, Matas C, Aviles M. Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction. 2008;135(1):19-27. http://dx.doi.org/10.1530/REP-07-0280 PMid:18159080.
    » http://dx.doi.org/10.1530/REP-07-0280
  • Crozet N, Motlik J, Szollosi D. Nucleolar fine structure and RNA synthesis in porcine oocytes during early stages of antrum formation. Biol Cell. 1981;41:35-42.
  • Curnow EC, Gunn LM, Trounson AO. Electrofusion of 2-cell bovine embryos for the production of tetraploid blastocysts in vitro. Mol Reprod Dev. 2000;56(3):372-7. http://dx.doi.org/10.1002/1098-2795(200007)56:3<372::AID-MRD7>3.0.CO;2-W PMid:10862004.
    » http://dx.doi.org/10.1002/1098-2795(200007)56:3<372::AID-MRD7>3.0.CO;2-W
  • Daguet MC. Increase of follicle cell LH binding and changes in the LH level of follicular fluid during the preovulatory period in the sow. Ann Biol Anim Biochim Biophys. 1979;19(6):1655-67. http://dx.doi.org/10.1051/rnd:19791003
    » http://dx.doi.org/10.1051/rnd:19791003
  • Dalbies-Tran R, Cadoret V, Desmarchais A, Elis S, Maillard V, Monget P, Monniaux D, Reynaud K, Saint-Dizier M, Uzbekova S. A comparative analysis of oocyte development in mammals. Cells. 2020;9(4):1002. http://dx.doi.org/10.3390/cells9041002 PMid:32316494.
    » http://dx.doi.org/10.3390/cells9041002
  • Dallagiovanna C, Vanni VS, Somigliana E, Busnelli A, Papaleo E, Villanacci R, Candiani M, Reschini M. Risk factors for monozygotic twins in IVF-ICSI cycles: a case-control study. Reprod Sci. 2021;28(5):1421-7. http://dx.doi.org/10.1007/s43032-020-00406-0 PMid:33258063.
    » http://dx.doi.org/10.1007/s43032-020-00406-0
  • Dang-Nguyen TQ, Kaneda M, Somfai T, Haraguchi S, Matsukawa K, Akagi S, Kikuchi K, Nakai M, Nguyen BX, Tajima A, Kanai Y, Nagai T. Development of single blastomeres derived from two-cell embryos produced in vitro in pigs. Theriogenology. 2011;76(1):88-96. http://dx.doi.org/10.1016/j.theriogenology.2011.01.021 PMid:21396700.
    » http://dx.doi.org/10.1016/j.theriogenology.2011.01.021
  • Dean WL, Rossant J. Effect of delaying DNA replication on blastocyst formation in the mouse. Differentiation. 1984;26(1-3):134-7. http://dx.doi.org/10.1111/j.1432-0436.1984.tb01386.x PMid:6428955.
    » http://dx.doi.org/10.1111/j.1432-0436.1984.tb01386.x
  • Denicol AC, Dobbs KB, McLean KM, Carambula SF, Loureiro B, Hansen PJ. Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci Rep. 2013;3(1):1266. http://dx.doi.org/10.1038/srep01266 PMid:23405280.
    » http://dx.doi.org/10.1038/srep01266
  • Denker HW. Recent embryo twinning data prompt reconsideration of theories on a crucial role of segregation of oocyte cytoplasmic constituents in mammals. Mol Hum Reprod. 2020;26(3):193-8. http://dx.doi.org/10.1093/molehr/gaaa005 PMid:31977027.
    » http://dx.doi.org/10.1093/molehr/gaaa005
  • Dennis SM. Embryonic duplications in sheep. Aust Vet J. 1975;51(2):83-7. http://dx.doi.org/10.1111/j.1751-0813.1975.tb09411.x PMid:1172431.
    » http://dx.doi.org/10.1111/j.1751-0813.1975.tb09411.x
  • Derom R, Derom C, Vlietinck R. Placentation. In: Keith LG, Papiernik E, Keith DM, Luke B, editors. Multiple pregnancy. New York: Parthenon Publishing Group; 1995. p. 113-28.
  • Dijkstra A, Cuervo‐Arango J, Stout TAE, Claes A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet J. 2020;52(2):258-61. http://dx.doi.org/10.1111/evj.13146 PMid:31232484.
    » http://dx.doi.org/10.1111/evj.13146
  • Dumortier JG, Verge-Serandour M, Tortorelli AF, Mielke A, Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365(6452):465-8. http://dx.doi.org/10.1126/science.aaw7709 PMid:31371608.
    » http://dx.doi.org/10.1126/science.aaw7709
  • Dunphy WG, Newport JW. Unraveling of mitotic control mechanisms. Cell. 1988;55(6):925-8. http://dx.doi.org/10.1016/0092-8674(88)90234-6 PMid:3060263.
    » http://dx.doi.org/10.1016/0092-8674(88)90234-6
  • Ebeling S, Labudda A, Meinecke B. In vitro aging of porcine oocytes: changes in phosphorylation of the mitogen-activated protein kinase (MAPK) and parthenogenetic activability. Reprod Domest Anim. 2010;45(6):e398-404. http://dx.doi.org/10.1111/j.1439-0531.2010.01588.x PMid:20210885.
    » http://dx.doi.org/10.1111/j.1439-0531.2010.01588.x
  • Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotropin-induced resumption of meiosis in vitro. Zygote. 2007;15(2):139-47. http://dx.doi.org/10.1017/S0967199406004011 PMid:17462106.
    » http://dx.doi.org/10.1017/S0967199406004011
  • Ebeling S, Töpfer D, Meinecke B. Steroidogenesis and the influence of MAPK activity during in vitro maturation of porcine cumulus oocyte complexes. Reprod Domest Anim. 2011;46(3):513-9. http://dx.doi.org/10.1111/j.1439-0531.2010.01699.x PMid:20946537.
    » http://dx.doi.org/10.1111/j.1439-0531.2010.01699.x
  • Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208(5008):349-51. http://dx.doi.org/10.1038/208349a0 PMid:4957259.
    » http://dx.doi.org/10.1038/208349a0
  • Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. Dephosphorylation and inactivation of NPR2 gyanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development. 2014;141(18):3594-604. http://dx.doi.org/10.1242/dev.112219 PMid:25183874.
    » http://dx.doi.org/10.1242/dev.112219
  • Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing hormone causes phosphorylation and activation of the cGMP phosphodiesterase PDE5 in rat ovarian follicles, contributing, together with PDE1 activity, to the resumption of meiosis. Biol Reprod. 2016;94(5):110. http://dx.doi.org/10.1095/biolreprod.115.135897 PMid:27009040.
    » http://dx.doi.org/10.1095/biolreprod.115.135897
  • Eiler H, Nalbandov AV. Sex steroids in follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology. 1977;100(2):331-8. http://dx.doi.org/10.1210/endo-100-2-331 PMid:556689.
    » http://dx.doi.org/10.1210/endo-100-2-331
  • Elmetwally M, Rohn K, Meinecke-Tillmann S. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats. Theriogenology. 2016a;85(6):1070-9.e1. http://dx.doi.org/10.1016/j.theriogenology.2015.11.018 PMid:26768538.
    » http://dx.doi.org/10.1016/j.theriogenology.2015.11.018
  • Elmetwally MA, Rohn K, Meinecke-Tillmann S. Doppler sonography is a useful method to assess the effects of maternal anxiety on intrauterine fetal growth in pregnant sheep and goats. Qual Prim Care. 2016b;24:137-45.
  • Emsen E, Diaz CAG, Yaprak M, Koycegiz F, Kutluca M, Emsen H. Effect of inter-breed embryo transfer on lamb growing performance and survival. Reprod Domest Anim. 2012;47(1):8-11. http://dx.doi.org/10.1111/j.1439-0531.2008.01200.x PMid:19144018.
    » http://dx.doi.org/10.1111/j.1439-0531.2008.01200.x
  • Enders AC. Implantation in the nine-banded armadillo: how does a single blastocyst form four embryos? Placenta. 2002;23(1):71-85. http://dx.doi.org/10.1053/plac.2001.0753 PMid:11869094.
    » http://dx.doi.org/10.1053/plac.2001.0753
  • Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode’s solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod. 2022;107(5):1228-41. http://dx.doi.org/10.1093/biolre/ioac155 PMid:35948000.
    » http://dx.doi.org/10.1093/biolre/ioac155
  • Fehilly CB, Willadsen SM. Embryo manipulation in farm animals. Oxf Rev Reprod Biol. 1986;8:379-413. PMid:3540807.
  • Feltrin C, Cooper CA, Mohamad-Fauzi N, Rodrigues V, Aguiar LH, Gaudencio-Neto S, Martins LT, Calderón C, Morais AS, Carneiro IS, Almeida TM, Silva I, Rodrigues JL, Maga EA, Murray JD, Libório AB, Bertolini LR, Bertolini M. Systemic immunosuppression by methylprednisolone and pregnancy rates in goats undergoing the transfer of cloned embryos. Reprod Domest Anim. 2014;49(4):648-56. http://dx.doi.org/10.1111/rda.12342 PMid:24943879.
    » http://dx.doi.org/10.1111/rda.12342
  • Fernandez M. Beitrag zur Embryologie der Gürteltiere. I. Zur Keimblätterinversion und spezifischen Polyembryonie der Mulita (Tatusia hybrida). Gegenbaurs Morphologisches Jahrbuch; eine Zeitschrift für Anatomie und Entwicklungsgeschichte. 1909;39:302-33. German.
  • Fernández M. Die Entwicklung der Mulita. Rev Museo de la Plata. 1915;21:1-519. German.
  • Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol. 2021;120:22-31. http://dx.doi.org/10.1016/j.semcdb.2021.07.005 PMid:34253437.
    » http://dx.doi.org/10.1016/j.semcdb.2021.07.005
  • Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19. PMid:3003359.
  • Frankfurter D, Trimarchi J, Hackett R, Meng L, Keefe D. Monozygotic pregnancies from transfers of zona-free blastocysts. Fertil Steril. 2004;82(2):483-5. http://dx.doi.org/10.1016/j.fertnstert.2004.02.105 PMid:15302309.
    » http://dx.doi.org/10.1016/j.fertnstert.2004.02.105
  • Fujii W, Nishimura T, Kano K, Sugiura K, Naito K. CDK7 and CCNH are components of CDK-activating kinase and are required for meiotic progression of pig oocytes. Biol Reprod. 2011;85(6):1124-32. http://dx.doi.org/10.1095/biolreprod.111.091801 PMid:21778139.
    » http://dx.doi.org/10.1095/biolreprod.111.091801
  • Fulka J Jr, Moor RM, Loi P, Fulka J. Enucleolation of porcine oocytes. Theriogenology. 2003;59(8):1879-85. http://dx.doi.org/10.1016/S0093-691X(02)01226-8 PMid:12566159.
    » http://dx.doi.org/10.1016/S0093-691X(02)01226-8
  • Fulka J Jr, Motlik J, Fulka J, Jílek F. Effect of cycloheximide on nuclear maturation of pig and mouse oocytes. J Reprod Fertil. 1986;77(1):281-5. http://dx.doi.org/10.1530/jrf.0.0770281 PMid:3723473.
    » http://dx.doi.org/10.1530/jrf.0.0770281
  • Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G. A cloned horse born to its dam twin. Nature. 2003;424(6949):635. http://dx.doi.org/10.1038/424635a PMid:12904778.
    » http://dx.doi.org/10.1038/424635a
  • Gärtner K, Baunack E. Is the similarity of monozygotic twins due to genetic factors alone? Nature. 1981;292(5824):646-7. http://dx.doi.org/10.1038/292646a0 PMid:7254360.
    » http://dx.doi.org/10.1038/292646a0
  • Ge X, Zhang J, Shi H, Bu Z, Sun Y. Effect of blastocyst morphology on the incidence of monozygotic twinning pregnancy after single blastocyst transfer: a retrospective cohort study. Research Square. Forthcoming 2022. https://doi.org/10.21203/rs.3.rs-1512842/v1
    » https://doi.org/10.21203/rs.3.rs-1512842/v1
  • Gérard M, Ménézo Y, Rombauts P, Szöllösi D, Thibault C. In vitro studies of oocyte maturation and follicular metabolism in the pig. Ann Biol Anim Biochim Biophys. 1979;19(5):1521-35. http://dx.doi.org/10.1051/rnd:19790914
    » http://dx.doi.org/10.1051/rnd:19790914
  • Govaere J, Hoogewijs M, Schauwer C, Van Zeveren A, Smits K, Cornillie P, Kruif A. An abortion of monozygotic twins in a warmblood mare. Reprod Domest Anim. 2009;44(5):852-4. http://dx.doi.org/10.1111/j.1439-0531.2008.01112.x PMid:19055562.
    » http://dx.doi.org/10.1111/j.1439-0531.2008.01112.x
  • Gregory KE, Maurer RR. Prenatal and postnatal maternal contributions to reproductive, maternal, and size-related traits of beef cattle. J Anim Sci. 1991;69(3):961-76. http://dx.doi.org/10.2527/1991.693961x PMid:2061266.
    » http://dx.doi.org/10.2527/1991.693961x
  • Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology. 2014;81(1):24-37. http://dx.doi.org/10.1016/j.theriogenology.2013.09.022 PMid:24274407.
    » http://dx.doi.org/10.1016/j.theriogenology.2013.09.022
  • Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Tan YQ, Lu GX, Lin G. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One. 2018;13(1):e0190776. http://dx.doi.org/10.1371/journal.pone.0190776 PMid:29315321.
    » http://dx.doi.org/10.1371/journal.pone.0190776
  • Guilbault LA, Roy GL, Beckers JF, Dufour JJ. Influence of breed of fetus on periparturient endocrine responses and subsequent milk production of Ayrshire dams. J Dairy Sci. 1990;73(10):2766-73. http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X PMid:2283407.
    » http://dx.doi.org/10.3168/jds.S0022-0302(90)78962-X
  • Guthrie HD, Garrett WM. Changes in porcine oocyte germinal vesicle development as follicles approach preovulatory maturity. Theriogenology. 2000;54(3):389-99. http://dx.doi.org/10.1016/S0093-691X(00)00356-3 PMid:11051322.
    » http://dx.doi.org/10.1016/S0093-691X(00)00356-3
  • Håberg SE, Page CM, Lee Y, Nustad HE, Magnus MC, Haftorn KL, Carlsen EØ, Denault WRP, Bohlin J, Jugessur A, Magnus P, Gjessing HK, Lyle R. DNA methylation in newborns conceived by assisted reproductive technology. Nat Commun. 2022;13(1):1896. http://dx.doi.org/10.1038/s41467-022-29540-w PMid:35393427.
    » http://dx.doi.org/10.1038/s41467-022-29540-w
  • Hall JL, Engel D, Gindoff PR, Mottla GL, Stillman RJ. Experimental cloning of human polyploid embryos using an artificial zona pellucida. Fertil Steril. 1993;60(S1):O-001.
  • Hancock J. Monozygotic twins in cattle. Adv Genet. 1954;6:141-81. http://dx.doi.org/10.1016/S0065-2660(08)60129-7 PMid:13180447.
    » http://dx.doi.org/10.1016/S0065-2660(08)60129-7
  • Hancock SN, Oliver MH, McLean C, Jaquiery AL, Bloomfield FH. Size at birth and adult fat mass in twin sheep are determined in early gestation. J Physiol. 2012;590(5):1273-85. http://dx.doi.org/10.1113/jphysiol.2011.220699 PMid:22183720.
    » http://dx.doi.org/10.1113/jphysiol.2011.220699
  • Hansen PJ. Implications of assisted reproductive technologies for pregnancy outcomes in mammals. Annu Rev Anim Biosci. 2020a;8(1):395-413. http://dx.doi.org/10.1146/annurev-animal-021419-084010 PMid:32069434.
    » http://dx.doi.org/10.1146/annurev-animal-021419-084010
  • Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle: why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020b;98(11):skaa288. http://dx.doi.org/10.1093/jas/skaa288 PMid:33141879.
    » http://dx.doi.org/10.1093/jas/skaa288
  • Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012;27(Suppl 1):i72-91. http://dx.doi.org/10.1093/humrep/des230 PMid:22763375.
    » http://dx.doi.org/10.1093/humrep/des230
  • Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev. 2017;63(6):527-38. http://dx.doi.org/10.1262/jrd.2017-096 PMid:29033399.
    » http://dx.doi.org/10.1262/jrd.2017-096
  • Herranz G. Response: the timing of monozygotic twinning: a pro-life challenge to conventional scientific wisdom. Reprod Biomed Online. 2014;28(6):789. http://dx.doi.org/10.1016/j.rbmo.2014.04.004 PMid:24899086.
    » http://dx.doi.org/10.1016/j.rbmo.2014.04.004
  • Herranz G. The timing of monozygotic twinning: a criticism of the common model. Zygote. 2015;23(1):27-40. http://dx.doi.org/10.1017/S0967199413000257 PMid:23735171.
    » http://dx.doi.org/10.1017/S0967199413000257
  • Hinde K, Carpenter AJ, Clay JS, Bradford BJ. Holsteins favor heifers, not bulls: biased milk production programmed during pregnancy as a function of fetal sex. PLoS One. 2014;9(2):e86169. http://dx.doi.org/10.1371/journal.pone.0086169 PMid:24498270.
    » http://dx.doi.org/10.1371/journal.pone.0086169
  • Hinkelman LA, Bradford GE, Pollak EJ, Anderson GB, Cupps PT. An embryo transfer study of birth weight in Finnish landrace and Targee sheep. J Anim Sci. 1979;48(2):298-306. http://dx.doi.org/10.2527/jas1979.482298x PMid:528403.
    » http://dx.doi.org/10.2527/jas1979.482298x
  • Hiradate Y, Hoshino Y, Tanemura K, Sato E. C-type natriuretic peptide inhibits porcine oocyte meiotic resumption. Zygote. 2014;22(3):372-7. http://dx.doi.org/10.1017/S0967199412000615 PMid:23331536.
    » http://dx.doi.org/10.1017/S0967199412000615
  • Hsu YC, Gonda MA. Monozygotic twin formation in mouse embryos in vitro. Science. 1980;209(4456):605-6. http://dx.doi.org/10.1126/science.7190325 PMid:7190325.
    » http://dx.doi.org/10.1126/science.7190325
  • Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L. Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells. 2008;26(7):1883-90. http://dx.doi.org/10.1634/stemcells.2008-0164 PMid:18467666.
    » http://dx.doi.org/10.1634/stemcells.2008-0164
  • Hunter GL. The maternal influence on size in sheep. J Agric Sci. 1956;48(1):36-60. http://dx.doi.org/10.1017/S0021859600030318
    » http://dx.doi.org/10.1017/S0021859600030318
  • Hunter MG. Oocyte maturation and ovum quality in pigs. Rev Reprod. 2000;5(2):122-30. http://dx.doi.org/10.1530/ror.0.0050122 PMid:10864857.
    » http://dx.doi.org/10.1530/ror.0.0050122
  • Hunter RHF, Polge C. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J Reprod Fertil. 1966;12(3):525-31. http://dx.doi.org/10.1530/jrf.0.0120525 PMid:5333204.
    » http://dx.doi.org/10.1530/jrf.0.0120525
  • Illmensee K, Kaskar K, Zavos PM. In vitro blastocyst development from serially split mouse embryos and future implications for human assisted reproductive technologies. Fertil Steril. 2006;86(4, Suppl):1112-20. http://dx.doi.org/10.1016/j.fertnstert.2006.02.103 PMid:16962118.
    » http://dx.doi.org/10.1016/j.fertnstert.2006.02.103
  • Illmensee K, Levanduski M, Vidali A, Husami N, Goudas VT. Human embryo twinning with applications in reproductive medicine. Fertil Steril. 2010;93(2):423-7. http://dx.doi.org/10.1016/j.fertnstert.2008.12.098 PMid:19217091.
    » http://dx.doi.org/10.1016/j.fertnstert.2008.12.098
  • Inoue M, Naito K, Aoki F, Toyoda Y, Sato Y. Activation of mitogen-activated protein kinase during meiotic maturation in porcine oocytes. Zygote. 1995;3(3):265-71. http://dx.doi.org/10.1017/S0967199400002665 PMid:8903796.
    » http://dx.doi.org/10.1017/S0967199400002665
  • Ivanova MD, Gregoraszczuk EL, Augustowska K, Kolodziejczyk J, Mollova MV, Kehayov IR. Localization of atrial natriuretic peptide in pig granulosa cells isolated from ovarian follicles of various size. Reprod Biol. 2003;3(2):173-81. PMid:14666140.
  • Iwasaki S, Campbell KHS, Galli C, Akiyama K, Iwasaki S. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod. 2000;62(2):470-5. http://dx.doi.org/10.1095/biolreprod62.2.470 PMid:10642589.
    » http://dx.doi.org/10.1095/biolreprod62.2.470
  • Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79(1):237-60. http://dx.doi.org/10.1146/annurev-physiol-022516-034102 PMid:27860834.
    » http://dx.doi.org/10.1146/annurev-physiol-022516-034102
  • Jöchle W. To our readers. Theriogenology. 1983;19:293.
  • Johansson I, Lindhé B, Pirchner F. Causes of variation in the frequency of monozygous and dizygous twinning in various breeds of cattle. Hereditas. 1974;78(2):201-34. http://dx.doi.org/10.1111/j.1601-5223.1974.tb01443.x PMid:4477988.
    » http://dx.doi.org/10.1111/j.1601-5223.1974.tb01443.x
  • Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol Reprod. 2020;102(4):773-83. http://dx.doi.org/10.1093/biolre/ioz228 PMid:31882999.
    » http://dx.doi.org/10.1093/biolre/ioz228
  • Johnson MH, McConnell J, Van Blerkom J. Programmed development in the mouse embryo. J Embryol Exp Morphol. 1984;83(Suppl):197-231. PMid:6085344.
  • Johnson WH, Loskutoff NM, Plante Y, Betteridge KJ. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec. 1995;137(1):15-6. http://dx.doi.org/10.1136/vr.137.1.15 PMid:7483226.
    » http://dx.doi.org/10.1136/vr.137.1.15
  • Jonsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson O, Zink F, Helgason EA, Jonsdottir I, Gylfason A, Jonasdottir A, Jonasdottir A, Beyter D, Steingrimsdottir T, Norddahl GL, Magnusson OT, Masson G, Halldorsson BV, Thorsteinsdottir U, Helgason A, Sulem P, Gudbjartsson DF, Stefansson K. Differences between germline genomes of monozygotic twins. Nat Genet. 2021;53(1):27-34. http://dx.doi.org/10.1038/s41588-020-00755-1 PMid:33414551.
    » http://dx.doi.org/10.1038/s41588-020-00755-1
  • Joonè CJ, Cramer KGM, Nöthling JO. The first case of genetically confirmed monozygotic twinning in the dog. Reprod Domest Anim. 2016;51(5):835-9. http://dx.doi.org/10.1111/rda.12746 PMid:27545903.
    » http://dx.doi.org/10.1111/rda.12746
  • Kalinowski RR, Berlot CH, Jones TL, Ross LF, Jaffe LA, Mehlmann LM. Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev Biol. 2004;267(1):1-13. http://dx.doi.org/10.1016/j.ydbio.2003.11.011 PMid:14975713.
    » http://dx.doi.org/10.1016/j.ydbio.2003.11.011
  • Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int J Mol Sci. 2018;19(3):698. http://dx.doi.org/10.3390/ijms19030698 PMid:29494492.
    » http://dx.doi.org/10.3390/ijms19030698
  • Kanayama N, Miyano T, Lee J. Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase. Zygote. 2002;10(3):261-70. http://dx.doi.org/10.1017/S0967199402002344 PMid:12214808.
    » http://dx.doi.org/10.1017/S0967199402002344
  • Karihaloo AK, Combs W. Some prenatal effects on birth size in Lincoln and Southdown lambs produced by reciprocal ovum transfers. Can J Anim Sci. 1971;51(3):729-34. http://dx.doi.org/10.4141/cjas71-098
    » http://dx.doi.org/10.4141/cjas71-098
  • Katayama M, Ellersieck MR, Roberts RM. Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol Reprod. 2010;82(6):1237-47. http://dx.doi.org/10.1095/biolreprod.109.082982 PMid:20181620.
    » http://dx.doi.org/10.1095/biolreprod.109.082982
  • Kim D, Roh S. Strategy to establish embryo-derived pluripotent stem cells in cattle. Int J Mol Sci. 2021;22(9):5011. http://dx.doi.org/10.3390/ijms22095011 PMid:34065074.
    » http://dx.doi.org/10.3390/ijms22095011
  • Kim SH, Cho KW, Lim SH, Hwang YH, Ryu H, Oh SH, Seul KH, Jeong GB, Yoon S. Presence and release of immunoreactive atrial natriuretic peptide in granulosa cells of the pig ovarian follicle. Regul Pept. 1992;42(3):153-62. http://dx.doi.org/10.1016/0167-0115(92)90095-C PMid:1289975.
    » http://dx.doi.org/10.1016/0167-0115(92)90095-C
  • Kimber SJ, Surani MAH, Barton SC. Interactions of blastomeres suggest changes in cell surface adhesiveness during the formation of inner cell mass and trophectoderm in the preimplantation mouse embryo. J Embryol Exp Morphol. 1982;70(1):133-52. http://dx.doi.org/10.1242/dev.70.1.133 PMid:7142894.
    » http://dx.doi.org/10.1242/dev.70.1.133
  • King KK, Seidel GE Jr, Elsden RP. Bovine embryo transfer pregnancies. 1. Abortion rates and characteristics of calves. J Anim Sci. 1985;61(4):747-57. http://dx.doi.org/10.2527/jas1985.614747x PMid:4066533.
    » http://dx.doi.org/10.2527/jas1985.614747x
  • Kinoshita M, Kobayashi T, Planells B, Klisch D, Spindlow D, Masaki H, Bornelöv S, Stirparo GG, Matsunari H, Uchikura A, Lamas-Toranzo I, Nichols J, Nakauchi H, Nagashima H, Alberio R, Smith A. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development. 2021;148(23):dev199901. http://dx.doi.org/10.1242/dev.199901 PMid:34874452.
    » http://dx.doi.org/10.1242/dev.199901
  • Kippax I, Christie W, Rowan T. Effects of method of splitting, stage of development and presence or absence of zone pellucida on foetal survival in commercial bovine embryo transfer of bisected embryos. Theriogenology. 1991;35(1):25-35. http://dx.doi.org/10.1016/0093-691X(91)90145-4
    » http://dx.doi.org/10.1016/0093-691X(91)90145-4
  • Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach HD, Vermehren M, Sinowatz F, Blum H, Wolf E. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol Reprod. 2006;74(2):253-64. http://dx.doi.org/10.1095/biolreprod.105.046748 PMid:16207835.
    » http://dx.doi.org/10.1095/biolreprod.105.046748
  • Knox RV. Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation. J Anim Sci. 2019;97(4):1433-45. http://dx.doi.org/10.1093/jas/skz036 PMid:30715326.
    » http://dx.doi.org/10.1093/jas/skz036
  • Kohri N, Akizawa H, Iisaka S, Bai H, Yanagawa Y, Takahashi M, Komatsu M, Kawai M, Nagano M, Kawahara M. Trophectoderm regeneration to support full-term development in the inner cell mass isolated from bovine blastocyst. J Biol Chem. 2019;294(50):19209-23. http://dx.doi.org/10.1074/jbc.RA119.010746 PMid:31704705.
    » http://dx.doi.org/10.1074/jbc.RA119.010746
  • Kölliker A. 27. Placenta, Nabelstrang. In: Kölliker A. Entwicklungsgeschichte des Menschen und den höheren Thiere. Leipzig: Engelmann; 1876. p. 331-363, 348-50, 362 German. http://dx.doi.org/10.5962/bhl.title.51250
    » http://dx.doi.org/10.5962/bhl.title.51250
  • Konno H, Murakoshi T, Miura K, Masuzaki H. The incidence of dichorionic diamniotic twin pregnancy after single blastocyst embryo transfer and zygosity: 8 years of single-center experience. Twin Res Hum Genet. 2020;23(1):51-4. http://dx.doi.org/10.1017/thg.2020.5 PMid:32209150.
    » http://dx.doi.org/10.1017/thg.2020.5
  • Kraay GJ, Menard DP, Bedoy M. Monozygous cattle twins as a result of transfer of a single embryo. Can Vet J. 1983;24(9):281-3. PMid:17422302.
  • Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep. 2021;11(1):21422. http://dx.doi.org/10.1038/s41598-021-00834-1 PMid:34728646.
    » http://dx.doi.org/10.1038/s41598-021-00834-1
  • Krek W, Nigg EA. Cell cycle regulation of vertebrate p34cdc2 activity: identification of Thr 161 as an essential in vivo phosphorylation site. New Biol. 1992;4(4):323-9. PMid:1622929.
  • Krentz KJ, Nebel RL, Canseco RS, McGilliard ML. In vitro and in vivo development of mouse morulae encapsulated in 2% sodium alginate or 0.1% poly-l-lysine. Theriogenology. 1993;39(3):655-67. http://dx.doi.org/10.1016/0093-691X(93)90251-Y PMid:16727243.
    » http://dx.doi.org/10.1016/0093-691X(93)90251-Y
  • Kubelka M, Anger M, Kalous J, Schultz RM, Motlik J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev. 2002;63(1):110-8. http://dx.doi.org/10.1002/mrd.10176 PMid:12211068.
    » http://dx.doi.org/10.1002/mrd.10176
  • Kumar D, Talluri TR, Selokar NL, Hyder I, Kues W. Perspectives of pluripotent stem cells in livestock. World J Stem Cells. 2021;13(1):1-29. http://dx.doi.org/10.4252/wjsc.v13.i1.1 PMid:33584977.
    » http://dx.doi.org/10.4252/wjsc.v13.i1.1
  • Kuroda T, Naito K, Sugiura K, Yamashita M, Takakura I, Tojo H. Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antsense RNA injection. Biol Reprod. 2004;70(1):154-9. http://dx.doi.org/10.1095/biolreprod.103.021519 PMid:12954723.
    » http://dx.doi.org/10.1095/biolreprod.103.021519
  • Kyono K. The precise timing of embryo splitting for monozygotic dichorionic diamniotic twins: when does embryo splitting for monozygotic dichorionic diamniotic twins occur? Evidence for splitting at the morula/blastocyst stage from studies of in vitro fertilization. Twin Res Hum Genet. 2013;16(4):827-32. http://dx.doi.org/10.1017/thg.2013.32 PMid:23702384.
    » http://dx.doi.org/10.1017/thg.2013.32
  • Laforest MF, Pouliot É, Guéguen L, Richard FJ. Fundamental significance of specific phophodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol Reprod Dev. 2005;70(3):361-72. http://dx.doi.org/10.1002/mrd.20203 PMid:15625697.
    » http://dx.doi.org/10.1002/mrd.20203
  • Lagutina I, Lazzari G, Duchi R, Turini P, Tessaro I, Brunetti D, Colleoni S, Crotti G, Galli C. Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology. 2007;67(1):90-8. http://dx.doi.org/10.1016/j.theriogenology.2006.09.011 PMid:17081599.
    » http://dx.doi.org/10.1016/j.theriogenology.2006.09.011
  • Le Verge-Serandour M, Turlier H. Blastocoel morphogenesis: a biophysics perspective. Semin Cell Dev Biol. 2022;130:12-23. http://dx.doi.org/10.1016/j.semcdb.2021.10.005 PMid:34756494.
    » http://dx.doi.org/10.1016/j.semcdb.2021.10.005
  • Lee CY. The porcine ovarian follicle: III. Development of chorionic gonadotropin receptors associated with increase in adenyl cyclase avtivity during follicle maturation. Endocrinology. 1976;99(1):42-8. http://dx.doi.org/10.1210/endo-99-1-42 PMid:181240.
    » http://dx.doi.org/10.1210/endo-99-1-42
  • Lee JB, Lee MG, Lin T, Shin HY, Lee EJ, Kang WJ, Jin DI. Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro. Asian-Australas J Anim Sci. 2019;32(7):956-65. http://dx.doi.org/10.5713/ajas.18.0739 PMid:30744366.
    » http://dx.doi.org/10.5713/ajas.18.0739
  • Leman AD, Dziuk PJ. Fertilization and development of pig follicular oocytes. J Reprod Fertil. 1971;26(3):387-9. http://dx.doi.org/10.1530/jrf.0.0260387 PMid:5569655.
    » http://dx.doi.org/10.1530/jrf.0.0260387
  • Li H, Shen T, Sun X. Monozygotic dichorionic-diamniotic pregnancies following single frozen-thawed blastocyst transfer: a retrospective case series. BMC Pregnancy Childbirth. 2020;20(1):768. http://dx.doi.org/10.1186/s12884-020-03450-5 PMid:33302917.
    » http://dx.doi.org/10.1186/s12884-020-03450-5
  • Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY. Cyclic adenosine 3′,5′-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology. 2005;146(10):4437-44. http://dx.doi.org/10.1210/en.2005-0309 PMid:16002524.
    » http://dx.doi.org/10.1210/en.2005-0309
  • Liggins GC. Parturition in the sheep and the human. In: Coutinho EM, Fuchs F, editors. Physiology and genetics of reproduction. Part B. Boston: Springer; 1974. p. 423-43. http://dx.doi.org/10.1007/978-1-4684-2892-6_28
    » http://dx.doi.org/10.1007/978-1-4684-2892-6_28
  • Lipke C, Meinecke-Tillmann C, Meyer W, Meinecke B. Preparation and ultrastructure of spermatozoa from green poison frogs, Dendrobates auratus, following hormonal induced spermiation (Amphibia, Anura, Dendrobatidae). Anim Reprod Sci. 2009a;113(1-4):177-86. http://dx.doi.org/10.1016/j.anireprosci.2008.06.005 PMid:18657373.
    » http://dx.doi.org/10.1016/j.anireprosci.2008.06.005
  • Lipke C, Meinecke-Tillmann S, Meinecke B. Induced spermiation and sperm morphology in a dendrobatid frog, Dendrobates auratus (Amphibia, Anura, Dendrobatidae). Salamandra. 2009b;45:65-74.
  • Liu J, Aronow BJ, Witte DP, Pope WF, La Barbera AR. Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biol Reprod. 1998;58(3):648-58. http://dx.doi.org/10.1095/biolreprod58.3.648 PMid:9510952.
    » http://dx.doi.org/10.1095/biolreprod58.3.648
  • Liu M, Zhao L, Wang Z, Su H, Wang T, Yang G, Chen L, Wu B, Zhao G, Guo J, Yang Z, Zhang J, Hao C, Ma T, Song Y, Bao S, Zuo Y, Li X, Cao G. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition. Front Cell Dev Biol. 2021;9:785055. http://dx.doi.org/10.3389/fcell.2021.785055 PMid:34977028.
    » http://dx.doi.org/10.3389/fcell.2021.785055
  • Liu S, Hong Y, Cui K, Guan J, Han L, Chen W, Xu Z, Gong K, Ou Y, Zeng C, Li S, Zhang D, Hu D. Four-generation pedigree of monozygotic female twins reveals genetic factors in twinning process by whole-genome sequencing. Twin Res Hum Genet. 2018;21(5):361-8. http://dx.doi.org/10.1017/thg.2018.41 PMid:30064533.
    » http://dx.doi.org/10.1017/thg.2018.41
  • Liu W, Xin Q, Wang X, Wang S, Wang H, Zhang W, Yang Y, Zhang Y, Zhang Z, Wang C, Xu Y, Duan E, Xia G. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals. Cell Death Dis. 2017;8(3):e2662. http://dx.doi.org/10.1038/cddis.2017.82 PMid:28277543.
    » http://dx.doi.org/10.1038/cddis.2017.82
  • Liu Y, Jones C, Coward K. The current practice of assisted hatching for embryos in fertility centres: a general survey. Reprod Sci. 2022;29(9):2664-73. http://dx.doi.org/10.1007/s43032-022-00931-0 PMid:35411451.
    » http://dx.doi.org/10.1007/s43032-022-00931-0
  • Loi P, Galli C, Lazzari G, Matsukawa K, Fulka J Jr, Goeritz F, Hildebrandt TB. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange. J Reprod Dev. 2018;64(2):187-91. http://dx.doi.org/10.1262/jrd.2017-109 PMid:29445070.
    » http://dx.doi.org/10.1262/jrd.2017-109
  • Lopes JS, Soriano-Úbeda C, París-Oller E, Navarro-Serna S, Canha-Gouveia A, Sarrias-Gil L, Cerón JJ, Coy P. Year-long phenotypical study of calves derived from different assisted-reproduction technologies. Front Vet Sci. 2022;8:739041. http://dx.doi.org/10.3389/fvets.2021.739041 PMid:35083305.
    » http://dx.doi.org/10.3389/fvets.2021.739041
  • López-Moratalla N, Cerezo M. The self-construction of a living organism. In: Terzis G, Arp R, editors. Information and living systems: philosophical and scientific perspectives. Massachussets: MIT Press; 2011. p. 177-204. http://dx.doi.org/10.7551/mitpress/7944.003.0012
    » http://dx.doi.org/10.7551/mitpress/7944.003.0012
  • Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development. 2012;139(20):3722-31. http://dx.doi.org/10.1242/dev.086454 PMid:22991438.
    » http://dx.doi.org/10.1242/dev.086454
  • Loughry WJ, Prodöhl PA, McDonough CM, Avise JC. Polyembryony in Armadillos. Am Sci. 1998;86:274-9. http://dx.doi.org/10.1511/1998.3.274
    » http://dx.doi.org/10.1511/1998.3.274
  • Ma W, Zhang D, Hou Y, Li Y-H, Sun Q, Sun X-F, Wang W-H. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol Reprod. 2005;72(2):373-83. http://dx.doi.org/10.1095/biolreprod.104.030999 PMid:15469999.
    » http://dx.doi.org/10.1095/biolreprod.104.030999
  • Madani S, Machaty Z, Vajta G. An alternative way to improve mammalian embryo development in vitro: culture of zona pellucida-free embryos. Cell Reprogram. 2022;24(3):111-7. http://dx.doi.org/10.1089/cell.2022.0012 PMid:35506897.
    » http://dx.doi.org/10.1089/cell.2022.0012
  • Maemura M, Taketsuru H, Nakajima Y, Shao R, Kakihara A, Nogami J, Ohkawa Y, Tsukada YI. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep. 2021;11(1):11167. http://dx.doi.org/10.1038/s41598-021-90653-1 PMid:34045607.
    » http://dx.doi.org/10.1038/s41598-021-90653-1
  • Magdi Y. Dizygotic twin from conjoined oocytes: a case report. J Assist Reprod Genet. 2020;37(6):1367-70. http://dx.doi.org/10.1007/s10815-020-01772-z PMid:32285296.
    » http://dx.doi.org/10.1007/s10815-020-01772-z
  • Malter HE, Cohen J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res. 1989;24(1):67-80. http://dx.doi.org/10.1002/mrd.1120240110 PMid:2591852.
    » http://dx.doi.org/10.1002/mrd.1120240110
  • Mancill SS, Blodgett G, Arnott RJ, Alvarenga M, Love CC, Hinrichs K. Description and genetic analysis of three sets of monozygotic twins resulting from transfers of single embryos to recipient mares. J Am Vet Med Assoc. 2011;238(8):1040-3. http://dx.doi.org/10.2460/javma.238.8.1040 PMid:21492048.
    » http://dx.doi.org/10.2460/javma.238.8.1040
  • Marchal R, Feugang JM, Perreau C, Venturi E, Terqui M, Mermillod P. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology. 2001;56(1):17-29. http://dx.doi.org/10.1016/S0093-691X(01)00539-8 PMid:11467513.
    » http://dx.doi.org/10.1016/S0093-691X(01)00539-8
  • Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology. 2002;57(5):1523-32. http://dx.doi.org/10.1016/S0093-691X(02)00655-6 PMid:12054210.
    » http://dx.doi.org/10.1016/S0093-691X(02)00655-6
  • Mashiko D, Ikeda Z, Tokoro MM, Hatano Y, Yao T, Kobayashi TJ, Fukunaga N, Asada Y, Yamagata K. Asynchronous division at 4-8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Sci Rep. 2022;12(1):9411. http://dx.doi.org/10.1038/s41598-022-13646-8 PMid:35672442.
    » http://dx.doi.org/10.1038/s41598-022-13646-8
  • Massip A, Vanderzwalmen P, Mulnard J, Zwijsen W. Atypical hatching of a cow blastocyst leading to separation of complete twin half blastocysts. Vet Rec. 1983;112(13):301. http://dx.doi.org/10.1136/vr.112.13.301 PMid:6682587.
    » http://dx.doi.org/10.1136/vr.112.13.301
  • Matsumoto K, Miyake M, Utsumi K, Iritani A. Production of identical twins by separating two-cell rat embryos. Gamete Res. 1989;22(3):257-63. http://dx.doi.org/10.1002/mrd.1120220303 PMid:2707729.
    » http://dx.doi.org/10.1002/mrd.1120220303
  • Mattioli M, Bacci ML, Galeati G, Seren E. Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology. 1989;31(6):1201-7. http://dx.doi.org/10.1016/0093-691X(89)90089-7 PMid:16726638.
    » http://dx.doi.org/10.1016/0093-691X(89)90089-7
  • Mattioli M, Barboni B. Signal transduction mechanism for LH in the cumulus-oocyte complex. Mol Cell Endocrinol. 2000;161(1-2):19-23. http://dx.doi.org/10.1016/S0303-7207(99)00218-X PMid:10773386.
    » http://dx.doi.org/10.1016/S0303-7207(99)00218-X
  • Mattioli M, Galeati B, Bacci ML, Barboni G. Changes in maturation-promoting activity in the cytoplasm of pig oocytes throughout maturation. Mol Reprod Dev. 1991;30(2):119-25. http://dx.doi.org/10.1002/mrd.1080300208 PMid:1954026.
    » http://dx.doi.org/10.1002/mrd.1080300208
  • Mattioli M, Galeati B, Barboni G, Seren E. Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J Reprod Fertil. 1994;100(2):403-9. http://dx.doi.org/10.1530/jrf.0.1000403 PMid:8021856.
    » http://dx.doi.org/10.1530/jrf.0.1000403
  • Mattioli M, Galeati G, Bacci ML, Seren E. Follicular factors influence oocyte fertilizability by modulating the intracellular cooperation between cumulus cells and oocyte. Gamete Res. 1988;21(3):223-32. PMid:3246367.
  • McCue PM, Thayer J, Squires EL, Brinsko SP, Vanderwall DK. Twin pregnancies following transfer of single embryos in three mares: a case report. J Equine Vet Sci. 1998;18(12):832-4. http://dx.doi.org/10.1016/S0737-0806(98)80333-X
    » http://dx.doi.org/10.1016/S0737-0806(98)80333-X
  • McGaughey RW, Montgomery DH, Richter JD. Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size, as related to their competency for spontaneous maturation. J Exp Zool. 1979;209(2):239-53. http://dx.doi.org/10.1002/jez.1402090206 PMid:512593.
    » http://dx.doi.org/10.1002/jez.1402090206
  • McLaren A, Michie D. Factors affecting vertebral variation in mice. IV. Experimental proof of the uterine basis of a maternal effect. J Embryol Exp Morphol. 1958;6(4):645-59. PMid:13611143.
  • Meadows SJ, Binns MM, Newcombe JR, Thompson CJ, Rossdale PD. Identical triplets in a thoroughbred mare. Equine Vet J. 1995;27(5):394-7. http://dx.doi.org/10.1111/j.2042-3306.1995.tb04076.x PMid:8654356.
    » http://dx.doi.org/10.1111/j.2042-3306.1995.tb04076.x
  • Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science. 2004;306(5703):1947-50. http://dx.doi.org/10.1126/science.1103974 PMid:15591206.
    » http://dx.doi.org/10.1126/science.1103974
  • Meinecke B, Gips H, Meinecke-Tillmann S. Steroid hormone content of the developing preovulatory porcine follicle. In: Roche JF, O’Callaghan D, editors. Follicular growth and ovulatory rate in farm animals. Dordrecht: Martinus Nijhoff Publishers; 1987. p. 207-13.
  • Meinecke B, Gips H, Meinecke-Tillmann S. Zur Dynamik der präovulatorischen intrafollikulären Steroidhormoninkretion beim Schwein. Zuchthygiene. 1984;19(4):193-204. http://dx.doi.org/10.1111/j.1439-0531.1984.tb00970.x German,
    » http://dx.doi.org/10.1111/j.1439-0531.1984.tb00970.x
  • Meinecke B, Meinecke-Tillmann S. Die Reifungs- und Befruchtungspotenz atretischer Schweineeizellen in vivo und in vitro. Zuchthyg. 1978a;13(1):5-14. http://dx.doi.org/10.1111/j.1439-0531.1978.tb00176.x German.
    » http://dx.doi.org/10.1111/j.1439-0531.1978.tb00176.x
  • Meinecke B, Meinecke-Tillmann S. Experimentelle Untersuchungen zur Funktion der Cumuluszellen während der extrakorporalen Eizellreifung beim Schwein. Zbl Vet Med C. 1978b;7(1):58-69. http://dx.doi.org/10.1111/j.1439-0264.1978.tb00494.x German.
    » http://dx.doi.org/10.1111/j.1439-0264.1978.tb00494.x
  • Meinecke B, Meinecke-Tillmann S. Effects of gonadotropins on oocyte maturation and progesterone production by porcine ovarian follicles cultured in vitro. Theriogenology. 1979;11(5):351-65. http://dx.doi.org/10.1016/0093-691X(79)90059-1 PMid:16725420.
    » http://dx.doi.org/10.1016/0093-691X(79)90059-1
  • Meinecke B, Meinecke-Tillmann S. Effects of α-amanitin on nuclear maturation of porcine oocytes in vitro. J Reprod Fertil. 1993;98(1):195-201. http://dx.doi.org/10.1530/jrf.0.0980195 PMid:8345464.
    » http://dx.doi.org/10.1530/jrf.0.0980195
  • Meinecke B, Meinecke-Tillmann S. Induction and inhibition of meiotic maturation of follicle-enclosed porcine oocytes in vitro. Theriogenology. 1981;15(6):581-9. http://dx.doi.org/10.1016/0093-691X(81)90061-3
    » http://dx.doi.org/10.1016/0093-691X(81)90061-3
  • Meinecke B, Meinecke-Tillmann S. Inhibition of hnRNA synthesis prevents chromatin condensation activity in pig oocytes during maturation in vitro. Arch Tierz Dummerstorf. 1998;41:89-98.
  • Meinecke B. Hormonal and cellular interactions during maturation of porcine follicular oocytes. In: Hafez ESE, Semm K, editors. In vitro fertilization and embryo transfer. Saarbruecken: MTP press; 1981. p. 103-9.
  • Meinecke-Tillmann S, Meinecke B, Wassmuth R. Experimentelle Untersuchungen zur Erforschung der regulativen Kapazitäten von Schafembryonen in vivo und in vitro. Reprod Dom Anim. 1979;14(4):165-9. http://dx.doi.org/10.1111/j.1439-0531.1979.tb00935.x German.
    » http://dx.doi.org/10.1111/j.1439-0531.1979.tb00935.x
  • Meinecke-Tillmann S, Meinecke B. Experimental chimeras: removal of reproductive barrier between sheep and goat. Nature. 1984a;307(5952):637-8. http://dx.doi.org/10.1038/307637a0 PMid:6694752.
    » http://dx.doi.org/10.1038/307637a0
  • Meinecke-Tillmann S, Meinecke B. Identical twin formation in mammals. Evidence for developmental mechanisms based on microsurgical experiments with early cleavage stages. In: Feichtinger W, Kemeter P, editors. Recent progress in human in vitro fertilization. Palermo: Cofese; 1984b. p. 341-4.
  • Meinecke-Tillmann S, Meinecke B. Experiments on the establishment in culture of pluripotential cell lines from sheep, goat and pig embryos. In Proceedings of the 7th Scientific Meeting AETE; 1991 Sep 12-13; Cambridge. Cambridge, UK: AETE; 1991. p. 178.
  • Meinecke-Tillmann S, Meinecke B. Isolation of ES-like cell lines from ovine and caprine preimplantation embryos. J Anim Breed Genet. 1996;113(1-6):413-26. http://dx.doi.org/10.1111/j.1439-0388.1996.tb00632.x
    » http://dx.doi.org/10.1111/j.1439-0388.1996.tb00632.x
  • Meinecke-Tillmann S, Meinecke B. Microsurgical experiments on embryos in farm animals - basic and applied aspects. In: Feichtinger W, Kemeter P, editors. Future aspects in human in vitro fertilization. Berlin: Springer Verlag; 1987. p. 217-24. http://dx.doi.org/10.1007/978-3-642-71412-2_30
    » http://dx.doi.org/10.1007/978-3-642-71412-2_30
  • Meinecke-Tillmann S, Meinecke B. Microsurgical treatment of cleavage stages in farm animals. In: Proceedings of the III World Congress of Human Reproduction; 1981 Mar 20-26; Berlin, Germany. Berlin, Germany. The Netherlands: Excerpta Medica; 1981. p. 22.3-6.3.
  • Meinecke-Tillmann S, Meinecke B. Mikrochirurgische Eingriffe am Embryo - Biologische Bedeutung und Konsequenzen für Forschung und Praxis. In: 32 Int. Fachtagung Fortpflanzung und Besamun; 1983; Wels, Österreich. Außenstelle Wels, Áustria: Institut für biologische Landwirtschaft und Biodiversität der Nutztiere; 1983a. German.
  • Meinecke-Tillmann S, Meinecke B. Möglichkeiten und Grenzen der Mikromanipulation embryonaler Furchungsstadien landwirtschaftlicher Nutztiere dargestellt am Modell artifiziell monozygoter Zwillinge beim Schaf. Zbl. Vet Med A. 1983b;30:146-53. German.
  • Meinecke-Tillmann S, Meinecke B. Ultrasonography in small ruminant reproduction. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames: Blackwell Publishing; 2007. p. 349-76. http://dx.doi.org/10.1002/9780470390290.ch14
    » http://dx.doi.org/10.1002/9780470390290.ch14
  • Meinecke-Tillmann S, Wassmuth R. Experimentelle Untersuchungen zur Embryonenübertragung beim Schaf unter tierzüchterischen Gesichtspunkten. II. Maternale Einflüsse auf das prä- und postnatale Wachstum von Lämmern. J Anim Breed Genet. 1977;94:217-25. German.
  • Meinecke-Tillmann S. Basics of ultrasonographic examination in sheep. Small Rumin Res. 2017;152:10-21. http://dx.doi.org/10.1016/j.smallrumres.2016.12.023
    » http://dx.doi.org/10.1016/j.smallrumres.2016.12.023
  • Meinecke-Tillmann S. Die experimentelle Mikrochirurgie am Säugetier-Embryo in der Perspektive der reproduktionsphysiologischen Forschung. In: Schirren C, Semm K, editors. Fortschritte der Fertilitätsforschung. FDF 12. Berlin: Grosse Verlag; 1984. p. 426-9. German.
  • Meinecke-Tillmann S. Experimentelle Untersuchungen zur Entwicklungskapazität von Präembryonalstadien kleiner Wiederkäuer in vivo und in vitro unter Berücksichtigung des Embryotransfers [thesis]. Giessen, Germany: Justus-Liebig-Universität Gießen; 1993.
  • Meinecke-Tillmann S. Künstlich erzeugte eineiige Schafzwillinge. Umsch Wiss Tech. 1980;80:248-9. German.
  • Meintjes M, Guerami AR, Rodriguez JA, Crider-Pirkle SS, Madden JD. Prospective identification of an in-vitro-assisted monozygotic pregnancy based on a double-inner-cell-mass blastocyst. Fertil Steril. 2001;76(3):S172-3. http://dx.doi.org/10.1016/S0015-0282(01)02509-2
    » http://dx.doi.org/10.1016/S0015-0282(01)02509-2
  • Ménézo YJR, Sakkas D. Monozygotic twinning: is it related to apoptosis in the embryo? Hum Reprod. 2002;17(1):247-8. http://dx.doi.org/10.1093/humrep/17.1.247 PMid:11756395.
    » http://dx.doi.org/10.1093/humrep/17.1.247
  • Mintz B. Experimental genetic mosaicism in the mouse. In: Wolstenholme GEW, O’Connor M, editors. Preimplantation stages of pregnancy. London: J & A Churchill; 1965. p. 194-216.
  • Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660.e1-5. http://dx.doi.org/10.1016/j.ajog.2008.07.023 PMid:18823872.
    » http://dx.doi.org/10.1016/j.ajog.2008.07.023
  • Mitalipov SM, Yeoman RR, Kuo HC, Wolf DP. Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol Reprod. 2002;66(5):1449-55. http://dx.doi.org/10.1095/biolreprod66.5.1449 PMid:11967209.
    » http://dx.doi.org/10.1095/biolreprod66.5.1449
  • Miyano T, Ogushi S, Bui H-T, Lee J. Meiotic resumption and spindle formation of pig oocytes. J Mamm Ova Res. 2007;24(3):92-8. http://dx.doi.org/10.1274/jmor.24.92
    » http://dx.doi.org/10.1274/jmor.24.92
  • Modliński JA, Ozil JP, Modlińska MK, Szarska A, Reed MA, Wagner TE, Karasiewicz J. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo-cytoplasmic synchrony. Zygote. 2002;10(4):283-90. http://dx.doi.org/10.1017/S096719940200401X PMid:12463523.
    » http://dx.doi.org/10.1017/S096719940200401X
  • Modliński JA, Stefański G, Górniewska M, Korwin-Kossakowski M, Reed MA, Guszkiewicz A, Karasiewicz J. Trophoblastic vesicles as carriers of embryonic cells for mammalian cloning. J Anim Feed Sci. 2004;13(1):197-204. http://dx.doi.org/10.22358/jafs/67404/2004
    » http://dx.doi.org/10.22358/jafs/67404/2004
  • Modliński JA. The role of the zona pellucida in the development of mouse eggs in vivo. J Embryol Exp Morphol. 1970;23(3):539-47. PMid:5473304.
  • Moor R, Dai Y. Maturation of pig oocytes in vivo and in vitro. Reprod Suppl. 2001;58:91-104. PMid:11980205.
  • Moore NW, Polge C, Rowson LEA. The survival of single blastomeres of pig eggs transferred to recipient gilts. Aust J Biol Sci. 1969;22(4):979-82. http://dx.doi.org/10.1071/BI9690979
    » http://dx.doi.org/10.1071/BI9690979
  • Moreira F, Corcini CD, Mondadori RG, Gevehr-Fernandes C, Mendes FF, Araújo EG, Lucia T Jr. Leptin and mitogen-activated protein kinase (MAPK) in oocytes of sows and gilts. Anim Reprod Sci. 2013;139(1-4):89-94. http://dx.doi.org/10.1016/j.anireprosci.2013.03.011 PMid:23602489.
    » http://dx.doi.org/10.1016/j.anireprosci.2013.03.011
  • Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K. Meiotic resumption of porcine immature oocytes is prevented by ooplasma Gsα functions. J Reprod Dev. 2007;53(6):1151-7. http://dx.doi.org/10.1262/jrd.19055 PMid:17693700.
    » http://dx.doi.org/10.1262/jrd.19055
  • Moros-Nicolás C, Chevret P, Jiménez-Movilla M, Algarra B, Cots-Rodríguez P, González-Brusi L, Avilés M, Izquierdo-Rico MJ. New insights into the mammalian egg zona pellucida. Int J Mol Sci. 2021;22(6):3276. http://dx.doi.org/10.3390/ijms22063276 PMid:33806989.
    » http://dx.doi.org/10.3390/ijms22063276
  • Motlik J, Crozet N, Fulka J. Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J Reprod Fertil. 1984;72(2):323-8. http://dx.doi.org/10.1530/jrf.0.0720323 PMid:6392543.
    » http://dx.doi.org/10.1530/jrf.0.0720323
  • Motlik J, Fulka J, Fléchon J-E. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod Fertil. 1986;76(1):31-7. http://dx.doi.org/10.1530/jrf.0.0760031 PMid:3080593.
    » http://dx.doi.org/10.1530/jrf.0.0760031
  • Motlík J, Fulka J. Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool. 1976;198(2):155-62. http://dx.doi.org/10.1002/jez.1401980205 PMid:978166.
    » http://dx.doi.org/10.1002/jez.1401980205
  • Motlík J, Fulka J. Factors affecting meiotic competenz in pig oocytes. Theriogenology. 1986;25(1):87-96. http://dx.doi.org/10.1016/0093-691X(86)90185-8
    » http://dx.doi.org/10.1016/0093-691X(86)90185-8
  • Motlik J, Nagai T, Kikuchi K. Resumption of meiosis in pig oocytes cultured with cumulus and parietal granulosa cells: the effect of protein synthesis inhibition. J Exp Zool. 1991;259(3):386-91. http://dx.doi.org/10.1002/jez.1402590314 PMid:1919466.
    » http://dx.doi.org/10.1002/jez.1402590314
  • Moustafa LA, Hahn J. Experimentelle Erzeugung von identischen Mäusezwillingen. Dtsch Tierarztl Wochenschr. 1978;85(6):242-4. German. PMid:350548.
  • Moyaert I, Bouters R, Bouquet Y. Birth of a monozygotic cattle twin following non surgical transfer of a single 7 day old embryo. Theriogenology. 1982;18(2):127-32. http://dx.doi.org/10.1016/0093-691X(82)90097-8 PMid:16725734.
    » http://dx.doi.org/10.1016/0093-691X(82)90097-8
  • Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3(1):13. http://dx.doi.org/10.1186/s43170-022-00080-z
    » http://dx.doi.org/10.1186/s43170-022-00080-z
  • Mullen RJ. Transplantation of mouse embryos, sex ratios of chimeric mice, and monzygotic twins [dissertation]. Durham: University of New Hampshire; 1971.
  • Murakami M, Ferguson CE, Perez O, Boediono A, Paccamonti D, Bondioli KR, Godke RA. Transfer of inner cell mass cells derived from bovine nuclear transfer embryos into the trophoblast of bovine in vitro-produced embryos. Cloning Stem Cells. 2006;8(1):51-60. http://dx.doi.org/10.1089/clo.2006.8.51 PMid:16571077.
    » http://dx.doi.org/10.1089/clo.2006.8.51
  • Nagashima H, Kato Y, Ogawa S. Microsurgical bisection of porcine morulae and blastocysts to produce monozygotic twin pregnancy. Gamete Res. 1989;23(1):1-9. http://dx.doi.org/10.1002/mrd.1120230102 PMid:2501204.
    » http://dx.doi.org/10.1002/mrd.1120230102
  • Nagashima H, Matsui K, Sawasaki T, Kano Y. Production of monozygotic mouse twins from microsurgically bisected morulae. J Reprod Fertil. 1984;70(1):357-62. http://dx.doi.org/10.1530/jrf.0.0700357 PMid:6363694.
    » http://dx.doi.org/10.1530/jrf.0.0700357
  • Nagatomo H, Yao T, Araki Y, Mizutani E, Wakayama T. Agarose capsules as new tools for protecting denuded mouse oocytes/embryos during handling and freezing-thawing and supporting embryonic development in vivo. Sci Rep. 2017;7(1):17960. http://dx.doi.org/10.1038/s41598-017-18365-z PMid:29263435.
    » http://dx.doi.org/10.1038/s41598-017-18365-z
  • Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110(3):815-21. http://dx.doi.org/10.1242/dev.110.3.815 PMid:2088722.
    » http://dx.doi.org/10.1242/dev.110.3.815
  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993;90(18):8424-8. http://dx.doi.org/10.1073/pnas.90.18.8424 PMid:8378314.
    » http://dx.doi.org/10.1073/pnas.90.18.8424
  • Naito K, Hawkins C, Yamashita M, Nagahama Y, Aoki F, Kohmoto K, Toyoda Y, Moor RM. Association of p34cdc2 and Cyclin B1 during meiotic maturation in porcine oocytes. Dev Biol. 1995;168(2):627-34. http://dx.doi.org/10.1006/dbio.1995.1107 PMid:7729593.
    » http://dx.doi.org/10.1006/dbio.1995.1107
  • Naito K, Toyoda Y. Fluctuation of histone HI kinase activity during meiotic maturation in porcine oocytes. J Reprod Fertil. 1991;93(2):467-73. http://dx.doi.org/10.1530/jrf.0.0930467 PMid:1787467.
    » http://dx.doi.org/10.1530/jrf.0.0930467
  • Nakano R, Akahori T, Katayama K, Tojo S. Binding of LH and FSH to porcine granulosa cells during follicular maturation. J Reprod Fertil. 1977;51(1):23-7. http://dx.doi.org/10.1530/jrf.0.0510023 PMid:199723.
    » http://dx.doi.org/10.1530/jrf.0.0510023
  • Nakasuji T, Saito H, Araki R, Nakaza A, Nakashima A, Kuwahara A, Ishihara O, Irahara M, Kubota T, Yoshimura Y, Sakumoto T. The incidence of monozygotic twinning in assisted reproductive technology: analysis based on results from the 2010 Japanese ART national registry. J Assist Reprod Genet. 2014;31(7):803-7. http://dx.doi.org/10.1007/s10815-014-0225-0 PMid:24722789.
    » http://dx.doi.org/10.1007/s10815-014-0225-0
  • Naqvi SMK, Joshi A, Gulyani R, Kumar D, Kolte AP, Kumar S, Maurya VP, Saha S, Mittal JP, Singh VK. Production of prolific microsheep by embryo transfer into large non-prolific sheep. Vet Rec. 2006;159(16):522-6. http://dx.doi.org/10.1136/vr.159.16.522 PMid:17041066.
    » http://dx.doi.org/10.1136/vr.159.16.522
  • Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev. 2019;32(2):11-39. http://dx.doi.org/10.1071/RD19272 PMid:32188555.
    » http://dx.doi.org/10.1071/RD19272
  • Nichols J, Gardner RL. Effect of damage to the zona pellucida on development of preimplantation embryos in the mouse. Hum Reprod. 1989;4(2):180-7. http://dx.doi.org/10.1093/oxfordjournals.humrep.a136868 PMid:2918072.
    » http://dx.doi.org/10.1093/oxfordjournals.humrep.a136868
  • Nishimura T, Fujii W, Kano K, Sugiura K, Naito K. Analyses of the involvement of PKA regulation mechanism in meiotic incompetence of porcine growing oocytes. Biol Reprod. 2012;87(3):53. http://dx.doi.org/10.1095/biolreprod.112.101279 PMid:22674394.
    » http://dx.doi.org/10.1095/biolreprod.112.101279
  • Nishimura T, Shimaoka T, Kano K, Naito K. Insufficient amount of Cdc2 and continous activation of Wee1 B are the cause of meiotic failure in porcine growing oocytes. J Reprod Dev. 2009;55(5):553-7. http://dx.doi.org/10.1262/jrd.09-072A PMid:19550110.
    » http://dx.doi.org/10.1262/jrd.09-072A
  • Noli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D. Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports. 2015a;5(6):946-53. http://dx.doi.org/10.1016/j.stemcr.2015.10.006 PMid:26584541.
    » http://dx.doi.org/10.1016/j.stemcr.2015.10.006
  • Noli L, Dajani Y, Capalbo A, Bvumbe J, Rienzi L, Ubaldi FM, Ogilvie C, Khalaf Y, Ilic D. Developmental clock compromises human twin model created by embryo splitting. Hum Reprod. 2015b;30(12):2774-84. http://dx.doi.org/10.1093/humrep/dev252 PMid:26489438.
    » http://dx.doi.org/10.1093/humrep/dev252
  • Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136(11):1869-78. http://dx.doi.org/10.1242/dev.035238 PMid:19429786.
    » http://dx.doi.org/10.1242/dev.035238
  • Nowshari MA, Holtz W. Transfer of split goat embryos without zonae pellucidae either fresh or after freezing. J Anim Sci. 1993;71(12):3403-8. http://dx.doi.org/10.2527/1993.71123403x PMid:8294294.
    » http://dx.doi.org/10.2527/1993.71123403x
  • Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990;344(6266):503-8. http://dx.doi.org/10.1038/344503a0 PMid:2138713.
    » http://dx.doi.org/10.1038/344503a0
  • Oliver MH, Jaquiery AL, Kenyon PR, Pain SJ, Jenkinson CM, Blair HT, Derraik JG, Bloomfield FH. Maternal insulin sensitivity in midpregnancy does not determine birth weight after embryo transfer between large and small breed sheep. Domest Anim Endocrinol. 2015;50:50-4. http://dx.doi.org/10.1016/j.domaniend.2014.08.001 PMid:25254312.
    » http://dx.doi.org/10.1016/j.domaniend.2014.08.001
  • Ollikainen M, Smith KR, Joo EJH, Ng HK, Andronikos R, Novakovic B, Aziz NKA, Carlin JB, Morley R, Saffery R, Craig JM. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010;19(21):4176-88. http://dx.doi.org/10.1093/hmg/ddq336 PMid:20699328.
    » http://dx.doi.org/10.1093/hmg/ddq336
  • Omidi M, Khalili MA, Halvaei I, Montazeri F, Kalantar SM. Quality of blastocysts created by embryo splitting: a time-lapse monitoring and chromosomal aneuploidy study. Cell J. 2020;22(3):367-74. PMid:31863663.
  • Oppenheim SM, Moyer AL, BonDurant RH, Rowe JD, Anderson GB. Successful pregnancy in goats carrying their genetically identical conceptus. Theriogenology. 2000;54(4):629-39. http://dx.doi.org/10.1016/S0093-691X(00)00378-2 PMid:11071137.
    » http://dx.doi.org/10.1016/S0093-691X(00)00378-2
  • Otsuki J, Iwasaki T, Katada Y, Sato H, Furuhashi K, Tsuji Y, Matsumoto Y, Shiotani M. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil Steril. 2016;106(3):640-4. http://dx.doi.org/10.1016/j.fertnstert.2016.05.007 PMid:27264045.
    » http://dx.doi.org/10.1016/j.fertnstert.2016.05.007
  • Ozawa M, Nagai T, Somfai T, Nakai M, Maedomari N, Fahrudin M, Karja NW, Kaneko H, Noguchi J, Ohnuma K, Yoshimi N, Miyazaki H, Kikuchi K. Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH receptor expression, and meiotic maturation in cumulus-oocyte complexes in pigs. Mol Reprod Dev. 2008;75(5):857-66. http://dx.doi.org/10.1002/mrd.20820 PMid:18022826.
    » http://dx.doi.org/10.1002/mrd.20820
  • Ozdzeński W, Szczesny EAK, Tarkowski AK. Postimplantation development of mouse blastocysts with two separate inner cell masses. Anat Embryol. 1997;195(5):467-71. PMid:9176669.
  • Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol. 2020;66:123-9. http://dx.doi.org/10.1016/j.ceb.2020.05.002 PMid:32711300.
    » http://dx.doi.org/10.1016/j.ceb.2020.05.002
  • Ozil JP, Heyman Y, Renard JP. Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet Rec. 1982;110(6):126-7. http://dx.doi.org/10.1136/vr.110.6.126 PMid:6892266.
    » http://dx.doi.org/10.1136/vr.110.6.126
  • Paepe C, Cauffman G, Verloes A, Sterckx J, Devroey P, Tournaye H, Liebaers I, Van de Velde H. Human trophectoderm cells are not yet committed. Hum Reprod. 2013;28(3):740-9. http://dx.doi.org/10.1093/humrep/des432 PMid:23257394.
    » http://dx.doi.org/10.1093/humrep/des432
  • Pan LZ, Zhu S, Zhang M, Sun MJ, Lin J, Chen F, Tan JH. A new classification of the germinal vesicle chromatin configurations in pig oocytes. Biol Reprod. 2018;99(6):1149-58. http://dx.doi.org/10.1093/biolre/ioy139 PMid:29912286.
    » http://dx.doi.org/10.1093/biolre/ioy139
  • Park CH, Jeong YH, Lee DK, Hwang JY, Uh KJ, Yeom SC, Ahn C, Lee CK. Availability of empty zona pellucida for generating embryonic chimeras. PLoS One. 2015;10(4):e0123178. http://dx.doi.org/10.1371/journal.pone.0123178 PMid:25919298.
    » http://dx.doi.org/10.1371/journal.pone.0123178
  • Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682-4. http://dx.doi.org/10.1126/science.1092463 PMid:14726596.
    » http://dx.doi.org/10.1126/science.1092463
  • Payne D, Okuda A, Wakatsuki Y, Takeshita C, Iwata K, Shimura T, Yumoto K, Ueno Y, Flaherty S, Mio Y. Time-lapse recording identifies human blastocysts at risk of producing monzygotic twins. Hum Reprod. 2007;22(Suppl 1):i9-10.
  • Peere S, Papas M, Gerits I, Van den Branden E, Smits K, Govaere J. Management of monozygotic twins in the mare. J Equine Vet Sci. 2022;113:103988. http://dx.doi.org/10.1016/j.jevs.2022.103988
    » http://dx.doi.org/10.1016/j.jevs.2022.103988
  • Peramo B, Ricciarelli E, Cuadros‐Fernandez JM, Huguet E, Hernandez ER. Blastocyst transfer and monozygotic twinning. Fertil Steril. 1999;72(6):1116-7. http://dx.doi.org/10.1016/S0015-0282(99)00412-4 PMid:10593392.
    » http://dx.doi.org/10.1016/S0015-0282(99)00412-4
  • Perry ACF, Asami M, Lam BYH, Yeo GSH. The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol. Forthcoming 2022. http://dx.doi.org/10.1016/j.tcb.2022.08.008 PMid:36182534.
    » http://dx.doi.org/10.1016/j.tcb.2022.08.008
  • Peugnet P, Wimel L, Duchamp G, Sandersen C, Camous S, Guillaume D, Dahirel M, Dubois C, Reigner F, Berthelot V, Chaffaux S, Tarrade A, Serteyn D, Chavatte-Palmer P. Enhanced or reduced fetal growth induced by embryo transfer into smaller or larger breeds alters postnatal growth and metabolism in weaned horses. J Equine Vet Sci. 2017;48:143-53.e2. http://dx.doi.org/10.1016/j.jevs.2016.03.016
    » http://dx.doi.org/10.1016/j.jevs.2016.03.016
  • Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro. 1. The activation of ovarian eggs. J Exp Med. 1935;62(5):665-75. http://dx.doi.org/10.1084/jem.62.5.665 PMid:19870440.
    » http://dx.doi.org/10.1084/jem.62.5.665
  • Pinkert CA, Kooyman DL, Baumgartner A, Keisler DH. In-vitro development of zygotes from superovulated prepubertal and mature gilts. J Reprod Fertil. 1989;87(1):63-6. http://dx.doi.org/10.1530/jrf.0.0870063 PMid:2621715.
    » http://dx.doi.org/10.1530/jrf.0.0870063
  • Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol. 2021;22(1):18. http://dx.doi.org/10.1186/s13059-020-02223-9 PMid:33402197.
    » http://dx.doi.org/10.1186/s13059-020-02223-9
  • Prather RS, First NL. Reprograming of murine blastocoele formation. J Exp Zool. 1986;237(3):347-50. http://dx.doi.org/10.1002/jez.1402370307 PMid:3701291.
    » http://dx.doi.org/10.1002/jez.1402370307
  • Pratt HPM, Chakraborty J, Surani MAH. Molecular and morphological differentiation of the mouse blastocyst after manipulations of compaction with cytochalasin D. Cell. 1981;26(2):P279-92. http://dx.doi.org/10.1016/0092-8674(81)90310-X PMid:7332931.
    » http://dx.doi.org/10.1016/0092-8674(81)90310-X
  • Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev. 2015;61(6):495-502. http://dx.doi.org/10.1262/jrd.2015-069 PMid:26688146.
    » http://dx.doi.org/10.1262/jrd.2015-069
  • Prochazka R, Kalab P, Nagyova E. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Biol Reprod. 2003;68(3):797-803. http://dx.doi.org/10.1095/biolreprod.102.005520 PMid:12604628.
    » http://dx.doi.org/10.1095/biolreprod.102.005520
  • Procházka R, Sršeň V, Nagyová E, Miyano T, Flechon JE. Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus complexes: nuclear maturation, expansion, and F-actin remodeling. Mol Reprod Dev. 2000;56(1):63-73. http://dx.doi.org/10.1002/(SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D PMid:10737968.
    » http://dx.doi.org/10.1002/(SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D
  • Prodöhl PA, Loughry WJ, McDonough CM, Nelson WS, Avise JC. Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc Biol Sci. 1996;263(1377):1643-9. http://dx.doi.org/10.1098/rspb.1996.0240 PMid:9025312.
    » http://dx.doi.org/10.1098/rspb.1996.0240
  • Reichelt B, Niemann H. Generation of identical twin piglets following bisection of embryos at the morula and blastocyst stage. J Reprod Fertil. 1994;100(1):163-72. http://dx.doi.org/10.1530/jrf.0.1000163 PMid:8182585.
    » http://dx.doi.org/10.1530/jrf.0.1000163
  • Rho GJ, Johnson WH, Betteridge KJ. Cellular composition and viability of demi- and quarter-embryos made from bisected bovine morulae and blastocysts produced in vitro. Theriogenology. 1998;50(6):885-95. http://dx.doi.org/10.1016/S0093-691X(98)00193-9 PMid:10734461.
    » http://dx.doi.org/10.1016/S0093-691X(98)00193-9
  • Rice C, McGaughey RW. Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes. J Reprod Fertil. 1981;62(1):245-56. http://dx.doi.org/10.1530/jrf.0.0620245 PMid:6262508.
    » http://dx.doi.org/10.1530/jrf.0.0620245
  • Ritter LJ, Sugimura S, Gilchrist B. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology. 2015;156(6):2299-312. http://dx.doi.org/10.1210/en.2014-1884 PMid:25849729.
    » http://dx.doi.org/10.1210/en.2014-1884
  • Roberts MA, London K, Campos-Chillón LF, Altermatt JL. Presumed monozygotic twins develop following transfer of an in vitro-produced equine embryo. J Equine Sci. 2015;26(3):89-94. http://dx.doi.org/10.1294/jes.26.89 PMid:26435682.
    » http://dx.doi.org/10.1294/jes.26.89
  • Robinson JW, Zhang M, Shuhaibar LC, Norris RP, Geerts A, Wunder F, Eppig JJ, Potter LR, Jaffe LA. Luteinizing hormone reduces the activity of the NPR2 guanyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev Biol. 2012;366(2):308-16. http://dx.doi.org/10.1016/j.ydbio.2012.04.019 PMid:22546688.
    » http://dx.doi.org/10.1016/j.ydbio.2012.04.019
  • Rogberg-Muñoz A, Castillo NS, Zappa ME, Crespi JA, Villegas-Castagnasso EE, Gómez PM, Peral-García P, Giovambattista G. Naturally monozygotic quadruplets in a Braford cow confirmed by DNA analysis: a case report. Reprod Domest Anim. 2020;55(9):1267-70. http://dx.doi.org/10.1111/rda.13778 PMid:32688438.
    » http://dx.doi.org/10.1111/rda.13778
  • Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife. 2020;9:e58343. http://dx.doi.org/10.7554/eLife.58343 PMid:33380346.
    » http://dx.doi.org/10.7554/eLife.58343
  • Rowson LE, Moor R. Occurrence and development of identical twins in sheep. Nature. 1964;201(4918):521-2. http://dx.doi.org/10.1038/201521a0 PMid:14164644.
    » http://dx.doi.org/10.1038/201521a0
  • Rüther M, Meinecke-Tillmann S, Gehring M, Hausschulte H, Meinecke B. Assisted hatching in bovine embryos in commercial embryo transfer programs with respect to embryo quality and thickness of zona pellucida. Am Embryo Transfer Assoc [Internet]. 2002 [cited 2023 Jun 12];17(4):5-6. Available from: https://www.aeta.org/newsletters/fall_2002.pdf
    » https://www.aeta.org/newsletters/fall_2002.pdf
  • Rüther M. Experimental investigation on assisted hatching of bovine embryos in commercial embryo transfer [dissertation]. Hannover: University of Veterinary Medicine Hannover; 2005. German.
  • Sadler TW. Langman’s medical embryology. 12th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. Chapter 8, Third month to birth: The fetus and placenta; p. 96-116.
  • Santiquet N, Papillon-Dion É, Djender N, Guillemette C, Richard FJ. New elements in the c-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol Reprod. 2014;91(1):16. http://dx.doi.org/10.1095/biolreprod.113.114132 PMid:24899572.
    » http://dx.doi.org/10.1095/biolreprod.113.114132
  • Santiquet N, Robert C, Richard J. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes. PLoS One. 2013;8(7):e68456. http://dx.doi.org/10.1371/journal.pone.0068456 PMid:23861906.
    » http://dx.doi.org/10.1371/journal.pone.0068456
  • Santiquet NW, Develle Y, Laroche A, Robert C, Richard FJ. Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine, a gap-FRAP study. Biol Reprod. 2012;87(2):46. http://dx.doi.org/10.1095/biolreprod.112.099754 PMid:22649071.
    » http://dx.doi.org/10.1095/biolreprod.112.099754
  • Saragusty J, Ajmone-Marsan P, Sampino S, Modlinski JA. Reproductive biotechnology and critically endangered species: merging in vitro gametogenesis with inner cell mass transfer. Theriogenology. 2020;155:176-84. http://dx.doi.org/10.1016/j.theriogenology.2020.06.009 PMid:32702562.
    » http://dx.doi.org/10.1016/j.theriogenology.2020.06.009
  • Sasseville M, Côté N, Guillemette C, Richard FJ. New insight into the role of phophodiesterase 3A in porcine oocyte maturation. BMC Dev Biol. 2006;6(1):47. http://dx.doi.org/10.1186/1471-213X-6-47 PMid:17038172.
    » http://dx.doi.org/10.1186/1471-213X-6-47
  • Sasseville M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard F. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins and lipid rafts. Mol Endocrinol. 2009;23(5):700-10. http://dx.doi.org/10.1210/me.2008-0320 PMid:19228792.
    » http://dx.doi.org/10.1210/me.2008-0320
  • Scaravelli G, Pisaturo V, Setti PEL, Ubaldi FM, Livi C, Borini A, Greco E, Villani MT, Coccia ME, Revelli A, Ricci G, Fusi F, Costa M, Migliorati E, Luca R, Vigiliano V, Bolli S, Reschini M. Monozygotic twin rate among ART centers: a multicenter analysis of data from 18 Italian units. J Assist Reprod Genet. 2022;39(10):2349-54. http://dx.doi.org/10.1007/s10815-022-02603-z PMid:36053372.
    » http://dx.doi.org/10.1007/s10815-022-02603-z
  • Schiewe MC, Araujo E Jr, Asch RH, Balmaceda JP. Enzymatic characterization of zona pellucida hardening in human eggs and embryos. J Assist Reprod Genet. 1995;12(1):2-7. http://dx.doi.org/10.1007/BF02214120 PMid:7580004.
    » http://dx.doi.org/10.1007/BF02214120
  • Schiewe MC, Whitney JB, Anderson RE. Potential risk of monochorionic dizygotic twin blastocyst formation associated with early laser zona dissection of group cultured embryos. Fertil Steril. 2015;103(2):417-21. http://dx.doi.org/10.1016/j.fertnstert.2014.11.009 PMid:25516079.
    » http://dx.doi.org/10.1016/j.fertnstert.2014.11.009
  • Schmoll F, Schneider H, Montag M, Wimmers K, Rink K, Schellander K. Effects of different laser-drilled openings in the zona pellucida on hatching of in vitro produced cattle blastocysts. Fertil Steril. 2003;80(Suppl 2):714-9. http://dx.doi.org/10.1016/S0015-0282(03)00989-0 PMid:14505744.
    » http://dx.doi.org/10.1016/S0015-0282(03)00989-0
  • Schramm RD, Paprocki AM. In vitro development and cell allocation following aggregation of split embryos with tetraploid or developmentally asynchronous blastomeres in rhesus monkeys. Cloning Stem Cells. 2004;6(3):302-14. http://dx.doi.org/10.1089/clo.2004.6.302 PMid:15678605.
    » http://dx.doi.org/10.1089/clo.2004.6.302
  • Seike N, Sakai M, Kanagawa H. Development of frozen-thawed demi-embryos and production of identical twin calves of different ages. J Vet Med Sci. 1991;53(1):37-42. http://dx.doi.org/10.1292/jvms.53.37 PMid:1830778.
    » http://dx.doi.org/10.1292/jvms.53.37
  • Setiadi MA, Trumpa M, Rath D, Meinecke B. Elevated histone H1 (MPF) and mitogenn-activated protein kinase activities in pig oocytes following in vitro maturation do not indicate cytoplasmic maturation. Reprod Domest Anim. 2009;44(2):235-40. http://dx.doi.org/10.1111/j.1439-0531.2007.01041.x PMid:19323796.
    » http://dx.doi.org/10.1111/j.1439-0531.2007.01041.x
  • Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs. J Anim Sci. 2012;90(4):1338-48. http://dx.doi.org/10.2527/jas.2010-3800 PMid:22079991.
    » http://dx.doi.org/10.2527/jas.2010-3800
  • Shi W, Jin L, Liu J, Zhang C, Mi Y, Shi J, Wang H, Liang X. Blastocyst morphology is associated with the incidence of monozygotic twinning in assisted reproductive technology. Am J Obstet Gynecol. 2021;225(6):654.e1-16. http://dx.doi.org/10.1016/j.ajog.2021.06.101 PMid:34245681.
    » http://dx.doi.org/10.1016/j.ajog.2021.06.101
  • Shimada M, Maeda T, Terada T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001;64(4):1255-63. http://dx.doi.org/10.1095/biolreprod64.4.1255 PMid:11259274.
    » http://dx.doi.org/10.1095/biolreprod64.4.1255
  • Shimada M, Nishibori M, Isobe N, Kawano N, Terada T. Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod. 2003;68(4):1142-9. http://dx.doi.org/10.1095/biolreprod.102.010082 PMid:12606491.
    » http://dx.doi.org/10.1095/biolreprod.102.010082
  • Shimaoka T, Nishimura T, Kano K, Naito K. Critical effect of pigWee1B on the regulation of meiotic resumption in porcine immature oocytes. Cell Cycle. 2009;8(15):2375-84. http://dx.doi.org/10.4161/cc.8.15.9073 PMid:19633431.
    » http://dx.doi.org/10.4161/cc.8.15.9073
  • Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, Wen L, Feil R, Jaffe LA. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci USA. 2015;112(17):5527-32. http://dx.doi.org/10.1073/pnas.1423598112 PMid:25775542.
    » http://dx.doi.org/10.1073/pnas.1423598112
  • Sidrat T, Khan AA, Idrees M, Joo MD, Xu L, Lee KL, Kong IK. Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells. 2020;9(4):923. http://dx.doi.org/10.3390/cells9040923 PMid:32283810.
    » http://dx.doi.org/10.3390/cells9040923
  • Sills ES, Tucker MJ, Palermo GD. Assisted reproductive technologies and monozygous twins: implications for future study and clinical practice. Twin Res. 2000;3(4):217-23. http://dx.doi.org/10.1375/twin.3.4.217 PMid:11463142.
    » http://dx.doi.org/10.1375/twin.3.4.217
  • Silva del Río N, Kirkpatrick BW, Fricke PM. Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology. 2006;66(5):1292-9. http://dx.doi.org/10.1016/j.theriogenology.2006.04.013 PMid:16766024.
    » http://dx.doi.org/10.1016/j.theriogenology.2006.04.013
  • Silvestri G, Turner KJ, Silcock JL, Sinclair KD, Griffin DK. Effects of single or serial embryo splitting on the development and morphokinetics of in vitro produced bovine embryos. Eur Zool J. 2022;89(1):680-9. http://dx.doi.org/10.1080/24750263.2022.2077994
    » http://dx.doi.org/10.1080/24750263.2022.2077994
  • Skidmore J, Boyle MS, Cran D, Allen WR. Micromanipulation of equine embryos to produce monozygotic twins. Equine Vet J. 1989;21(Suppl 8):126-8. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04696.x
    » http://dx.doi.org/10.1111/j.2042-3306.1989.tb04696.x
  • Skrzyszowska M, Smorąg Z, Kątska L, Bochenek M. Cattle twins after transfer of demi-embryos derived from zona-perforated blastocysts. J Anim Feed Sci. 1999;8(2):223-31. http://dx.doi.org/10.22358/jafs/68841/1999
    » http://dx.doi.org/10.22358/jafs/68841/1999
  • Skrzyszowska M, Smorąg Z, Kątska L. Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts. Theriogenology. 1997;48(4):551-7. http://dx.doi.org/10.1016/S0093-691X(97)00272-0 PMid:16728151.
    » http://dx.doi.org/10.1016/S0093-691X(97)00272-0
  • Smidt D, Steinbach J, Scheven B. Reziproke Eitransplantationen zwischen deutschen veredelten Landschweinen und Zwergschweinen. Reprod Dom Anim. 1966;1(4):156-66. http://dx.doi.org/10.1111/j.1439-0531.1966.tb00031.x German.
    » http://dx.doi.org/10.1111/j.1439-0531.1966.tb00031.x
  • Smith SD, Schmidt M, Greve T. Transfer of bisected cattle embryos within the same zona pellucida. Reprod Domest Anim. 1991;26(2):91-3. http://dx.doi.org/10.1111/j.1439-0531.1991.tb01523.x
    » http://dx.doi.org/10.1111/j.1439-0531.1991.tb01523.x
  • Soede NM, Hazeleger W, Kemp B. Follicle size and the process of ovulation in sows as studied with ultrasound. Reprod Domest Anim. 1998;33(3-4):239-44. http://dx.doi.org/10.1111/j.1439-0531.1998.tb01350.x
    » http://dx.doi.org/10.1111/j.1439-0531.1998.tb01350.x
  • Soede NM, Helmond FA, Kemp B. Periovulatory profiles of oestradiol, LH and progesterone in relation to oestrus and embryo mortality in multiparous sows using transrectal ultrasonography to detect ovulation. J Reprod Fertil. 1994;101(3):633-41. http://dx.doi.org/10.1530/jrf.0.1010633 PMid:7966019.
    » http://dx.doi.org/10.1530/jrf.0.1010633
  • Soede NM, Langendijk P, Kemp B. Reproductive cycles in pigs. Anim Reprod Sci. 2011;124(3-4):251-8. http://dx.doi.org/10.1016/j.anireprosci.2011.02.025 PMid:21397415.
    » http://dx.doi.org/10.1016/j.anireprosci.2011.02.025
  • Solomon MJ, Lee T, Kirschner MW. Role of phosphorylation in p34cdc2 activation: identification of activating kinase. Mol Biol Cell. 1992;3(1):13-27. http://dx.doi.org/10.1091/mbc.3.1.13 PMid:1532335.
    » http://dx.doi.org/10.1091/mbc.3.1.13
  • Song J, Zhang J, Yuan X, Liu B, Tao W, Zhang C, Wu K. Functional substitution of zona pellucida with modified sodium hyaluronate gel in human embryos. J Assist Reprod Genet. 2022;39(11):2669-76. http://dx.doi.org/10.1007/s10815-022-02609-7 PMid:36094700.
    » http://dx.doi.org/10.1007/s10815-022-02609-7
  • Spalding JF, Berry RO, Moffit JG. The maturation process of the ovum of swine during normal and induced ovulations. J Anim Sci. 1955;14(3):609-20. http://dx.doi.org/10.1093/ansci/14.3.609
    » http://dx.doi.org/10.1093/ansci/14.3.609
  • Steinbach J, Smidt D, Scheven B. Untersuchungen über den mütterlichen Einfluß auf die prä- und postnatale Entwicklung von Schweinen extrem unterschiedlicher Größe. II. Das Wachstum von Deutschen veredelten Landschweinen nach reziproker Transplantation befruchteter Eier. J Anim Breed Genet. 1967;83:312-30. German.
  • Steinman G. Mechanism of twinning IV. Sex preference and lactation. J Reprod Med. 2001;46(11):1003-7. PMid:11762143.
  • Stern MS, Wilson IB. Experimental studies on the organization of the preimplantation mouse embryo. I. Fusion of asynchronously cleaving eggs. J Embryol Exp Morphol. 1972;28(2):247-54. PMid:4674565.
  • Strand J, Thomsen H, Jensen JB, Marcussen C, Nicolajsen TB, Skriver MB, Søgaard IM, Ezaz T, Purup S, Callesen H, Pertoldi C. Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. Conserv Genet Resour. 2020;12(4):709-25. http://dx.doi.org/10.1007/s12686-020-01142-y
    » http://dx.doi.org/10.1007/s12686-020-01142-y
  • Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cell of mouse preovulatory follicles. Biol Reprod. 2006;75(6):859-67. http://dx.doi.org/10.1095/biolreprod.106.052613 PMid:16943367.
    » http://dx.doi.org/10.1095/biolreprod.106.052613
  • Subira J, Craig J, Turner K, Bevan A, Ohuma E, McVeigh E, Child T, Fatum M. Grade of the inner cell mass, but not trophectoderm, predicts live birth in fresh blastocyst single transfers. Hum Fertil. 2016;19(4):254-61. http://dx.doi.org/10.1080/14647273.2016.1223357 PMid:27624529.
    » http://dx.doi.org/10.1080/14647273.2016.1223357
  • Sumiyama K, Matsumoto N, Garçon-Yoshida J, Ukai H, Ueda HR, Tanaka Y. Easy and efficient production of completely embryonic-stem-cell-derived mice using a micro-aggregation device. PLoS One. 2018;13(9):e0203056. http://dx.doi.org/10.1371/journal.pone.0203056 PMid:30231034.
    » http://dx.doi.org/10.1371/journal.pone.0203056
  • Sun M-J, Zhu S, Li Y-W, Lin J, Gong S, Jiao GZ, Chen F, Tan JH. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6(1):23555. http://dx.doi.org/10.1038/srep23555 PMid:27009903.
    » http://dx.doi.org/10.1038/srep23555
  • Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev. 2004;69(2):228-34. http://dx.doi.org/10.1002/mrd.20123 PMid:15293225.
    » http://dx.doi.org/10.1002/mrd.20123
  • Sundaram V, Ribeiro S, Noel M. Multi-chorionic pregnancies following single embryo transfer at the blastocyst stage: a case series and review of the literature. J Assist Reprod Genet. 2018;35(12):2109-17. http://dx.doi.org/10.1007/s10815-018-1329-8 PMid:30362060.
    » http://dx.doi.org/10.1007/s10815-018-1329-8
  • Sutherland K, Leitch J, Lyall H, Woodward BJ. Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: a case report. Reprod Biomed Online. 2019;38(4):491-6. http://dx.doi.org/10.1016/j.rbmo.2018.12.017 PMid:30850321.
    » http://dx.doi.org/10.1016/j.rbmo.2018.12.017
  • Swain JE. Fused blastocysts as a consequence of group embryo culture: observations, complications, and potential solutions. F&S Reports. 2021;2(1):133-5. http://dx.doi.org/10.1016/j.xfre.2020.10.010 PMid:34223285.
    » http://dx.doi.org/10.1016/j.xfre.2020.10.010
  • Tarkowski AK, Jagiello K, Czolowska R, Ozdzenski W. Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass. Int J Dev Biol. 2005;49(8):909-14. http://dx.doi.org/10.1387/ijdb.052017at PMid:16281168.
    » http://dx.doi.org/10.1387/ijdb.052017at
  • Tarkowski AK, Suwińska A, Czołowska R, Ożdżeński W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol. 2010;348(2):190-8. http://dx.doi.org/10.1016/j.ydbio.2010.09.022 PMid:20932967.
    » http://dx.doi.org/10.1016/j.ydbio.2010.09.022
  • Tarkowski AK, Wojewodzka M. A method for obtaining chimaeric mouse blastocysts with two separate inner cell masses: a preliminary report. J Embryol Exp Morphol. 1982;71(1):215-21. http://dx.doi.org/10.1242/dev.71.1.215 PMid:6296260.
    » http://dx.doi.org/10.1242/dev.71.1.215
  • Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol. 1967;18(1):155-80. http://dx.doi.org/10.1242/dev.18.1.155 PMid:6048976.
    » http://dx.doi.org/10.1242/dev.18.1.155
  • Tarkowski AK. Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol. 1959;3:191-267 plate 12-27. http://dx.doi.org/10.4098/AT.arch.59-11
    » http://dx.doi.org/10.4098/AT.arch.59-11
  • Tischner M, Klimczak M. The development of Polish ponies born after embryo transfer to large recipients. Equine Vet J. 1989;21(S8):62-3. http://dx.doi.org/10.1111/j.2042-3306.1989.tb04676.x
    » http://dx.doi.org/10.1111/j.2042-3306.1989.tb04676.x
  • Tischner M. Development of Polish-pony foals born after embryo transfer to large mares. J Reprod Fertil. 1987;35:705-9.
  • Trounson AO, Moore NW. Attempts to produce identical offspring in sheep by mechanical division of the ovum. Aust J Biol Sci. 1974;27(5):505-10. http://dx.doi.org/10.1071/BI9740505 PMid:4447494.
    » http://dx.doi.org/10.1071/BI9740505
  • Tsafriri A, Channing CP. Influence of follicular maturation and culture conditions on the meiosis of pig oocytes in vitro. J Reprod Fertil. 1975;43(1):149-52. http://dx.doi.org/10.1530/jrf.0.0430149 PMid:1127632.
    » http://dx.doi.org/10.1530/jrf.0.0430149
  • Tsafriri A, Motola S. Are steroids dispensable for meiotic resumption in mammals? Trends Endocrinol Metab. 2007;18(8):321-7. http://dx.doi.org/10.1016/j.tem.2007.08.005 PMid:17826173.
    » http://dx.doi.org/10.1016/j.tem.2007.08.005
  • Tsunoda Y, McLaren A. Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J Reprod Fertil. 1983;69(1):315-22. http://dx.doi.org/10.1530/jrf.0.0690315 PMid:6887141.
    » http://dx.doi.org/10.1530/jrf.0.0690315
  • Tsunoda Y, Tokunaga T, Sugie T, Katsumata M. Production of monozygotic twins following the transfer of bisected embryos in the goats. Theriogenology. 1985;24(3):337-43. http://dx.doi.org/10.1016/0093-691X(85)90225-0 PMid:16726087.
    » http://dx.doi.org/10.1016/0093-691X(85)90225-0
  • Tsunoda Y, Yasui T, Okubo Y, Nakamura K, Sugie T. Development of one or two blastomeres from eight-cell mouse embryos to term in the presence of parthenogenetic eggs. Theriogenology. 1987;28(5):615-23. http://dx.doi.org/10.1016/0093-691X(87)90278-0 PMid:16726344.
    » http://dx.doi.org/10.1016/0093-691X(87)90278-0
  • Udy GB. Commercial splitting of goat embryos. Theriogenology. 1987;28(6):837-47. http://dx.doi.org/10.1016/0093-691X(87)90035-5
    » http://dx.doi.org/10.1016/0093-691X(87)90035-5
  • Ueno S, Kurome M, Tomii R, Hiruma K, Saitoh H, Nagashima H. Association between embryonic loss and damage to the zona pellucida by invasive micromanipulation during oviductal transfer of early-stage embryos in pigs. J Reprod Dev. 2007;53(5):1113-8. http://dx.doi.org/10.1262/jrd.19063 PMid:17598954.
    » http://dx.doi.org/10.1262/jrd.19063
  • Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics. 2014;9(6):803-15. http://dx.doi.org/10.4161/epi.28711 PMid:24709985.
    » http://dx.doi.org/10.4161/epi.28711
  • Vaccari S, Horner K, Mehlmann LM, Conti M. Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev Biol. 2008;316(1):124-34. http://dx.doi.org/10.1016/j.ydbio.2008.01.018 PMid:18280465.
    » http://dx.doi.org/10.1016/j.ydbio.2008.01.018
  • Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod. 2008;23(8):1742-7. http://dx.doi.org/10.1093/humrep/den190 PMid:18503052.
    » http://dx.doi.org/10.1093/humrep/den190
  • Van Dongen J, Gordon SD, McRae AF, Odintsova VV, Mbarek H, Breeze CE, Sugden K, Lundgren S, Castillo-Fernandez JE, Hannon E, Moffitt TE, Hagenbeek FA, van Beijsterveldt CEM, Jan Hottenga J, Tsai PC, Min JL, Hemani G, Ehli EA, Paul F, Stern CD, Heijmans BT, Slagboom PE, Daxinger L, van der Maarel SM, Geus EJC, Willemsen G, Montgomery GW, Reversade B, Ollikainen M, Kaprio J, Spector TD, Bell JT, Mill J, Caspi A, Martin NG, Boomsma DI. Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun. 2021;12(1):5618. http://dx.doi.org/10.1038/s41467-021-25583-7 PMid:34584077.
    » http://dx.doi.org/10.1038/s41467-021-25583-7
  • Van Langendonckt A, Wyns C, Godin PA, Toussaint-Demylle D, Donnez J. Atypical hatching of a human blastocyst leading to monozygotic twinning: a case report. Fertil Steril. 2000;74(5):1047-50. http://dx.doi.org/10.1016/S0015-0282(00)01554-5 PMid:11056259.
    » http://dx.doi.org/10.1016/S0015-0282(00)01554-5
  • Velasquez AE, Castro FO, Veraguas D, Cox JF, Lara E, Briones M, Rodriguez-Alvarez L. Splitting of IVP bovine blastocyst affects morphology and gene expression of resulting demi-embryos during in vitro culture and in vivo elongation. Zygote. 2016;24(1):18-30. http://dx.doi.org/10.1017/S0967199414000677 PMid:25496989.
    » http://dx.doi.org/10.1017/S0967199414000677
  • Velásquez AE, Manríquez J, Castro FO, Cox JF, Rodriguez-Alvarez L. Embryo splitting affects the transcriptome during elongation stage of in vitro-produced bovine blastocysts. Theriogenology. 2017;87:124-34. http://dx.doi.org/10.1016/j.theriogenology.2016.08.014 PMid:27641677.
    » http://dx.doi.org/10.1016/j.theriogenology.2016.08.014
  • Velásquez AE, Manriquez JR, Castro FO, Rodriguez-Alvarez LI. Effect of zona pellucida removal on early development of in vitro produced bovine embryos. Arch Med Vet. 2013;45(1):7-15. http://dx.doi.org/10.4067/S0301-732X2013000100003
    » http://dx.doi.org/10.4067/S0301-732X2013000100003
  • Voelkel SA, Viker SD, Johnson CA, Hill KJ, Humes PE, Godke RA. Multiple embryotransplant offspring produced from quartering a bovine embryo at the morula stage. Vet Rec. 1985;117(20):528-30. http://dx.doi.org/10.1136/vr.117.20.528 PMid:4082414.
    » http://dx.doi.org/10.1136/vr.117.20.528
  • Wang Q, Ulker A, Wang H, Wu B, Yang A, Attia GR. Single live birth derived from conjoined oocytes using laser cutting technique: a case report. Zygote. 2022;30(2):217-20. http://dx.doi.org/10.1017/S0967199421000526 PMid:34313206.
    » http://dx.doi.org/10.1017/S0967199421000526
  • Warfield SJ, Seidel GE Jr, Elsden RP. Transfer of bovine demi-embryos with and without the zona pellucida. J Anim Sci. 1987;65(3):756-61. http://dx.doi.org/10.2527/jas1987.653756x PMid:3667439.
    » http://dx.doi.org/10.2527/jas1987.653756x
  • Wassmuth R, Meinecke-Tillmann S. Einsatzmöglichkeiten identischer Zwillinge in der Forschung und Ergebnisse über gezielte Erzeugung beim Schaf. Der Tierzüchter. 1980;32:329-30. German.
  • Watanabe M, Hoshi K, Yazawa H, Yanagida K, Sato A. Use of the artificial zona pellucida made of calcium alginate in the development of preimplantation mouse embryo. J Mamm Ova Res. 1995;12(2):95-100. http://dx.doi.org/10.1274/jmor.12.95
    » http://dx.doi.org/10.1274/jmor.12.95
  • Wehrend A, Meinecke B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the lenth of the meiotic stages. Anim Reprod Sci. 2001;66(3-4):175-84. http://dx.doi.org/10.1016/S0378-4320(01)00094-X PMid:11348780.
    » http://dx.doi.org/10.1016/S0378-4320(01)00094-X
  • Weppert M. Untersuchungen zur Nutzung genetisch identischer Zwillinge aus mikrochirurgischer Embryoteilung und von Klongruppen aus Kerntransfer in der Rinderzucht [dissertation]. Munich: Veterinary Faculty, Ludwig-Maximilians-Universität München; 2006. German.
  • Wiener-Megnazi Z, Fridman M, Koifman M, Lahav-Baratz S, Stein N, Auslender R, Dirnfeld M. Synchronous and asynchronous blastomere cleavage at cryopreservation: effect on subsequent embryo survival, pregnancy and live birth rates. J Biomed Sci Eng. 2014;7(5):243-51. http://dx.doi.org/10.4236/jbise.2014.75027
    » http://dx.doi.org/10.4236/jbise.2014.75027
  • Wiesak T, Hunter MG, Foxcroft GR. Differences in follicular morphology, steroidogenesis and oocyte maturation in naturally cyclic and PMSG/hCG-treated prepubertal gilts. J Reprod Fertil. 1990;89(2):633-41. http://dx.doi.org/10.1530/jrf.0.0890633 PMid:2401990.
    » http://dx.doi.org/10.1530/jrf.0.0890633
  • Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R. The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology. 1981;15(1):23-9. http://dx.doi.org/10.1016/S0093-691X(81)80015-5 PMid:16725537.
    » http://dx.doi.org/10.1016/S0093-691X(81)80015-5
  • Willadsen SM, Polge C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec. 1981;108(10):211-3. http://dx.doi.org/10.1136/vr.108.10.211 PMid:6939169.
    » http://dx.doi.org/10.1136/vr.108.10.211
  • Willadsen SM. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature. 1979;277(5694):298-300. http://dx.doi.org/10.1038/277298a0 PMid:570249.
    » http://dx.doi.org/10.1038/277298a0
  • Willadsen SM. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J Embryol Exp Morphol. 1981;65:165-72. PMid:6895911.
  • Willadsen SM. The viability of early cleavage stages containing half the normal number of blastomeres in the sheep. J Reprod Fertil. 1980;59(2):357-62. http://dx.doi.org/10.1530/jrf.0.0590357 PMid:7431292.
    » http://dx.doi.org/10.1530/jrf.0.0590357
  • Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci. 2009;364(1520):1107-15. http://dx.doi.org/10.1098/rstb.2008.0238 PMid:19324615.
    » http://dx.doi.org/10.1098/rstb.2008.0238
  • Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells. Biol Reprod. 2021;105(1):52-63. http://dx.doi.org/10.1093/biolre/ioab075 PMid:33899086.
    » http://dx.doi.org/10.1093/biolre/ioab075
  • Yaacobi-Artzi S, Kalo D, Roth Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS One. 2022;17(10):e0276642. http://dx.doi.org/10.1371/journal.pone.0276642 PMid:36288350.
    » http://dx.doi.org/10.1371/journal.pone.0276642
  • Yamashita Y, Kawashima I, Gunji Y, Hishinuma M, Shimada M. Progesterone is essential for maintenance of Tace/Adam17 mRNA expression, but not EGF-like factor, in cumulus cells, which enhances the EGF receptor signaling pathway during in vitro maturation of porcine COCs. J Reprod Dev. 2010;56(3):315-23. http://dx.doi.org/10.1262/jrd.09-199H PMid:20168049.
    » http://dx.doi.org/10.1262/jrd.09-199H
  • Yan Z, Liang H, Deng L, Long H, Chen H, Chai W, Suo L, Xu C, Kuang Y, Wu L, Lu S, Lyu Q. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS One. 2015;10(12):e0145172. http://dx.doi.org/10.1371/journal.pone.0145172 PMid:26680631.
    » http://dx.doi.org/10.1371/journal.pone.0145172
  • Yang CR, Wei Y, Qi ST, Chen L, Zhang QH, Ma JY, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun QY. The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One. 2012;7(6):e38807. http://dx.doi.org/10.1371/journal.pone.0038807 PMid:22685609.
    » http://dx.doi.org/10.1371/journal.pone.0038807
  • Yang X, Foote RH. Production of identical twin rabbits by micromanipulation of embryos. Biol Reprod. 1987;37(4):1007-14. http://dx.doi.org/10.1095/biolreprod37.4.1007 PMid:3689843.
    » http://dx.doi.org/10.1095/biolreprod37.4.1007
  • Yániz JL, Santolaria P, López-Gatius F. In vitro development of bovine embryos encapsulated in sodium alginate. J Vet Med A Physiol Pathol Clin Med. 2002;49(8):393-5. http://dx.doi.org/10.1046/j.1439-0442.2002.00463.x PMid:12450185.
    » http://dx.doi.org/10.1046/j.1439-0442.2002.00463.x
  • Ye J, Flint APF, Luck MR, Campbell KHS. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes. Reproduction. 2003;125(5):645-56. http://dx.doi.org/10.1530/rep.0.1250645 PMid:12713427.
    » http://dx.doi.org/10.1530/rep.0.1250645
  • Zhang B, Ding J, Li Y, Wang J, Zhao Y, Wang W, Shi S, Dong F, Zhang Z, Shi F, Xu Y. The porcine Gpr3 gene: molecular cloning, characterization and expression level in tissues and cumulus-oocyte complexes during in vitro maturation. Mol Biol Rep. 2012;39(5):5831-9. http://dx.doi.org/10.1007/s11033-011-1393-y PMid:22207171.
    » http://dx.doi.org/10.1007/s11033-011-1393-y
  • Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330(6002):366-9. http://dx.doi.org/10.1126/science.1193573 PMid:20947764.
    » http://dx.doi.org/10.1126/science.1193573
  • Zhang W, Chen Q, Yang Y, Liu W, Zhang M, Xia G, Wang C. Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BND and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol Reprod Dev. 2014;81(11):1030-41. http://dx.doi.org/10.1002/mrd.22424 PMid:25348585.
    » http://dx.doi.org/10.1002/mrd.22424
  • Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, Zhang Y, Zhang M, Xia G. Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol. 2015;230(1):71-81. PMid:24912131.
  • Zhang X, Li T, Zhang L, Jiang L, Cui T, Yuan X, Wang C, Liu Z, Zhang Y, Li W, Zhou Q. Individual blastomeres of 4- and 8-cell embryos have ability to develop into a full organism in mouse. J Genet Genomics. 2018;45(12):677-80. http://dx.doi.org/10.1016/j.jgg.2018.07.012 PMid:30581076.
    » http://dx.doi.org/10.1016/j.jgg.2018.07.012
  • Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L, Zeng F, Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86-90. http://dx.doi.org/10.1038/nature08267 PMid:19672241.
    » http://dx.doi.org/10.1038/nature08267
  • Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev Rep. 2010;6(3):390-7. http://dx.doi.org/10.1007/s12015-010-9160-3 PMid:20549390.
    » http://dx.doi.org/10.1007/s12015-010-9160-3
  • Zheng YL, Jiang MX, OuYang YC, Sun QY, Chen DY. Production of mouse by inter-strain inner cell mass replacement. Zygote. 2005;13(1):73-7. http://dx.doi.org/10.1017/S0967199405003035 PMid:15984165.
    » http://dx.doi.org/10.1017/S0967199405003035
  • Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science. 2020;370(6522):eabd2703. http://dx.doi.org/10.1126/science.abd2703 PMid:33303584.
    » http://dx.doi.org/10.1126/science.abd2703

Publication Dates

  • Publication in this collection
    24 July 2023
  • Date of issue
    2023

History

  • Received
    31 Mar 2023
  • Accepted
    12 June 2023
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com