Acessibilidade / Reportar erro

New sedimentary unit with subaqueous facies of Curitiba Sedimentary Basin, Southern Brazil

Abstract

The Curitiba Sedimentary Basin (CSB) is a small and shallow sedimentary basin, which is part of the Continental Rift of Southeastern Brazil. New exposures allowed for the identification of a subaqueous facies association, named Guatupê Unit, within the Guabirotuba Formation. For the first time in the CSB, sedimentary facies clearly deposited within a subaqueous environment, probably a swamp, are described and consists of wavy heterolithic and massive mud with linsen. In addition, mudflow deposits entering the water body are also identified and documented by massive sand facies with organic matter and load structures at their base. The latter indicates that the underlying sediments were plastic and contemporary. These sedimentary features, associated with palynoflora and a fossil trunk tree, indicate that the climate was humid enough to maintain permanent water bodies, like swamps, and vegetation, including trees. Other facies of the Guatupê Unit document mudflows and channelized tractive fluxes, whose association indicates that they were probably deposited in an alluvial fan environment. The facies, facies association, depositional processes, environment, and Miocene age of the Guatupê deposit are quite different from the previous sedimentary units reported for CSB sedimentary infill and the original definition of the formations.

KEYWORDS:
Guatupê; Guabirotuba Formation; Curitiba Basin; Cenozoic; South America

INTRODUCTION

The Curitiba Sedimentary Basin (CSB) is a small and shallow sedimentary basin developed over the Curitiba Plateau (Salamuni 1998Salamuni E. 1998. Tectônica da Bacia Sedimentar de Curitiba (PR). PhD Thesis, Pós-graduação em Geociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro.). Its average sedimentary thickness is about 40 m, and its maximum thickness is 80 m (Salamuni et al. 2003Salamuni E., Ebert H.D., Borges M.S., Hasui Y., Costa J.B.S., Salamuni R. 2003. Tectonics and sedimentation in the Curitiba Basin, South of Brazil. Journal of South American Earth Sciences, 15(8):901-910. https://doi.org/10.1016/S0895-9811(03)00013-0
https://doi.org/10.1016/S0895-9811(03)00...
). Its original extension was estimated at around 3,000 km2 (Salamuni 1998Salamuni E. 1998. Tectônica da Bacia Sedimentar de Curitiba (PR). PhD Thesis, Pós-graduação em Geociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro.), and the remaining area after fluvial dissection is estimated at 1,150 km2 (Riccomini et al. 2004Riccomini C., Sant’Anna L.G., Ferrari A.L. 2004. Evolução Geológica do Rift Continental do Sudeste do Brasil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito-Neves B.B. (eds.). Geologia do Continente Sul Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Beca. p. 383-405., Fig. 1).

Figure 1
Area covered by CSB sedimentary deposits (after Salamuni et al. 2004Salamuni E., Ebert H.D., Hasui Y. 2004. Morfotectônica da Bacia Sedimentar de Curitiba. Revista Brasileira de Geociências, 34(4):469-478. https://doi.org/10.25249/0375-7536.2004344469478
https://doi.org/10.25249/0375-7536.20043...
). Note the large alluvial plains and the underfit modern meandering river channels.

The first reference to CSB was at the end of the nineteenth century by Siemiradzki (1898)Siemiradzki J. 1898. Geologische Reisebeobachtungen in Süd-Brasilien. Kaiserlich-königlichen hof-und Staatsdruckerei, 107(1):23-40.. Several mentions were made until the 1960s (Oliveira 1927Oliveira E. 1927. Geologia e recursos minereis do Estado do Paraná. Rio de Janeiro: Serviço Geológico e Mineralógico, Monografia (7)., Carvalho 1934Carvalho P.F. 1934. Geologia do Município de Curytiba. Rio de Janeiro: Serviço Geológico e Mineralógico DNPM, Boletim 82., Oliveira and Leonardos 1943Oliveira A.I., Leonardos O.H. 1943. Geologia do Brasil. Brazil: Ministério de Agricultura., Maack 1947Maack R. 1947. Breves notícias sobre a geologia do Estados do Paraná e Santa Catarina. Arquivos de Biologia e Tecnologia, 2:63-154., 1948Maack R. 1948. Notas preliminares sobre climas, solos e vegetação do Estado do Paraná. Arquivos de Biologia e Tecnologia, 3(12):103-200., Almeida 1952Almeida F.F.M. 1952. Novas ocorrências de camadas supostas pliocênicas nos estados de São Paulo e Paraná. Boletim da Sociedade Brasileira de Geologia, 1(1):53-58., 1955Almeida F.F.M. 1955. As camadas de São Paulo e a tectônica da Serra da Cantareira. Boletim da Sociedade Brasileira de Geologia, 4(2):23-40., Coutinho 1955Coutinho J.M.V. 1955. Lantanita de Curitiba, Paraná. Boletim da Faculdade de Filosofia, Ciências e Letras da USP, Mineralogia, 13:119-126., Ab'Saber 1957aAb’Saber N.A. 1957a. Geomorfologia do Sítio Urbano de São Paulo. São Paulo: Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras, 219(12)., 1957bAb’Saber N.A. 1957b. O problema das conexões antigas e da separação da drenagem do Paraíba e do Tietê. Boletim Paulista de Geografia, 26:38-49.), but specific works on the sedimentary infill of CSB were performed between the end of the 1950s and the beginning of 1960s (Bigarella 1956Bigarella J.J. 1956. Planta geológica provisória da cidade de Curitiba e arredores. Instituto de Biologia e Pesquisas Tecnológicas., Bigarella and Salamuni 1957Bigarella J.J., Salamuni R. 1957. Aspectos geográficos e geológicos da cidade de Curitiba e arredores. Faculdade Católica de Filosofia de Curitiba., 1958Bigarella J.J., Salamuni R. 1958. Considerações sobre o paleoclima da bacia de Curitiba. Boletim do Instituto de História Natural, Geologia, 1:1-10., 1959Bigarella J.J., Salamuni R. 1959. Notas complementares à planta geológica de Curitiba e arredores. Boletim do Instituto de Biologia e Pesquisas Tecnológicas, 40:1-14, and map., 1962Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64., Bigarella et al. 1961Bigarella J.J., Salamuni R., Ab’Saber N.A. 1961. Origem e ambiente de deposição da Bacia de Curitiba. Boletim Paranaense de Geografia, 4-5:71-81.). Since that, several works have been performed on tectonic (Almeida 1976Almeida F.F.M. 1976. The system of continental rifts bordering the Santos Basin, Brazil. Anais da Academia Brasileira de Ciências, 48(Suppl.):15-26., Melo et al. 1985Melo M.S., Riccomini C., Hasui Y., Almeida F.F.M., Coimbra A.M. 1985. Geologia e evolução do sistema de bacias tafrogênicas continentais do sudeste do Brasil. Revista Brasileira de Geociências, 15(3):194-199. https://doi.org/10.25249/0375-7536.1985193201
https://doi.org/10.25249/0375-7536.19851...
, Salamuni 1998Salamuni E. 1998. Tectônica da Bacia Sedimentar de Curitiba (PR). PhD Thesis, Pós-graduação em Geociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro., Salamuni et al. 1999Salamuni E., Salamuni R., Ebert H.D. 1999. Contribuição à geologia da Bacia Sedimentar de Curitiba. Boletim Paranaense de Geociências, (47):123-142., 2003Salamuni E., Ebert H.D., Borges M.S., Hasui Y., Costa J.B.S., Salamuni R. 2003. Tectonics and sedimentation in the Curitiba Basin, South of Brazil. Journal of South American Earth Sciences, 15(8):901-910. https://doi.org/10.1016/S0895-9811(03)00013-0
https://doi.org/10.1016/S0895-9811(03)00...
, 2004Salamuni E., Ebert H.D., Hasui Y. 2004. Morfotectônica da Bacia Sedimentar de Curitiba. Revista Brasileira de Geociências, 34(4):469-478. https://doi.org/10.25249/0375-7536.2004344469478
https://doi.org/10.25249/0375-7536.20043...
, Riccomini 1989Riccomini C., Pellogia A.U.G., Saloni J.C.L., Kohnke M.W., Figueira R.M. 1989. Neotectonic activity in the Serra do Mar rift systems (Southeastern Brazil). Journal of South America Earth Science, 2(2):191-197. https://doi.org/10.1016/0895-9811(89)90046-1
https://doi.org/10.1016/0895-9811(89)900...
, Riccomini et al. 1989Riccomini C. 1989. O Rift Continental do Sudeste do Brasil. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo., 2004Riccomini C., Sant’Anna L.G., Ferrari A.L. 2004. Evolução Geológica do Rift Continental do Sudeste do Brasil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito-Neves B.B. (eds.). Geologia do Continente Sul Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Beca. p. 383-405., Zalán and Oliveira 2005Zalán P.V., Oliveira, J.A.B. 2005. Origem e evolução do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras, 13(2):269-300.), stratigraphy and sedimentology (Becker 1982Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre., Coimbra et al. 1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137., Sant'Anna 1999Sant’Anna L.G. 1999. Geologia, mineralogia e gênese das esmectitas dos depósitos paleogênicos do rift continental do sudeste do Brasil. PhD Thesis, Programa de Pós-graduação em Mineralogia e Petrologia, Universidade de São Paulo, São Paulo., Machado 2009Machado D.A.M. 2009. Proveniência de sedimentos da Bacia de Curitiba por estudos de minerais pesados. Master Dissertation, Universidade Federal do Paraná, Curitiba., Lima 2010Lima F.M. 2010. Faciologia e ambientes deposicionais da Formação Guabirotuba, Bacia de Curitiba-PR. Master Dissertation, Universidade Federal do Paraná, Curitiba., Cunha 2011Cunha P.V.C. 2011. Gênese de calcretes da Formação Guabirotuba, Bacia de Curitiba, Paraná. Dissertação, Universidade Federal do Paraná, Curitiba., Lima et al. 2013Lima F.M., Fernandes L.A., Melo M.S., Góes A.M., Machado D.A.M. 2013. Faciologia e contexto deposicional da Formação Guabirotuba, Bacia de Curitiba (PR). Brazilian Journal of Geology, 43(1):168-184. https://doi.org/10.5327/Z2317-48892013000100014
https://doi.org/10.5327/Z2317-4889201300...
, Vieira and Fernandes 2020Vieira K.T.P., Fernandes L.A. 2020. Análise faciológica e contexto deposicional do geossítio Bacia Sedimentar de Curitiba, nova seção-tipo para a Formação Guabirotuba. Revista Geologia USP. Série Científica, 20(2):87-104. https://doi.org/10.11606/issn.2316-9095.v20-165568
https://doi.org/10.11606/issn.2316-9095....
, Vieira 2022Vieira K.T.P. 2022. Revisitando o registro do preenchimento da Bacia de Curitiba. Master Dissertation, Pós-Graduação em Geologia, Universidade Federal do Paraná, Curitiba.), paleontology (Liccardo and Weinschütz 2010Liccardo A., Weinschütz L.C. 2010. Registro inédito de fósseis de vertebrados na bacia sedimentar de Curitiba. Revista Brasileira de Geociências, 40(3):330-338. https://doi.org/10.25249/0375-7536.2010403330338
https://doi.org/10.25249/0375-7536.20104...
, Rogério et al. 2012Rogério D.W., Dias E.V., Sedor F.A., Weinschütz L.C., Mouro L.D., Waichel B.L. 2012. Primeira ocorrência de Pleurodira (Testudines) para a Formação Guabirotuba, Bacia de Curitiba, Paraná, Brasilian Journal of Geoscience, 8(2):42-46. https://doi.org/10.4013/gaea.2012.82.01
https://doi.org/10.4013/gaea.2012.82.01...
, Garcia et al. 2013Garcia M.J., Lima F.M., Fernandes L.A., Melo M.S., Dino R., Antonioli L., Menezes J.B. 2013. Idade e palinologia da Formação Guabirotuba, Bacia de Curitiba, PR, Brasil. XXIII Congresso Brasileiro de Paleontologia/I Simpósio de Paleontologia Brasil-Portugal, 2013, Gramado. Sociedade Brasileira de Paleontologia, 1, p. 125-125., Dias et al. 2014Dias E.V., Oliveira E.V., Silva D.D., Sedor F.A. 2014. Paleogene Metatheria from the Guabirotuba Formation, Curitiba Basin, Paraná, Brazil: taxonomy and fauna correlation. IV International Paleontological Congress, Mendoza, Argentina. p. 380., Sedor et al. 2014Sedor F.A., Oliveira E.V., Silva D.D., Fernandes L.A., Cunha, R.F., Ribeiro A.M., Dias E.V. 2014. A new South American Paleogene fauna, Guabirotuba Formation (Curitiba, Paraná State, South of Brazil). IV International Paleontological Congress, Mendoza, Argentina. p. 614., 2017Sedor F.A., Oliveira É.V., Silva D.D., Fernandes L.A., Cunha R.F., Ribeiro A.M., Dias E.V. 2017. A new South American Paleogene land mammal fauna, Guabirotuba Formation (Southern Brazil). Journal of Mammal Evolution, 24:39-55. https://doi.org/10.1007/s10914-016-9364-7
https://doi.org/10.1007/s10914-016-9364-...
, 2022Sedor F.A., Klimeck T.D.F., Dias E.V., Oliveira E.V., Ciancio M.R., Vieira K.T.P., Fernandes L.A., Angulo R.J. 2022. The Eocene armadillo Utaetus buccatus (Euphractinae) in the Guabirotuba Formation (Curitiba Basin) and carapace morphological implications. Journal of South American Earth Sciences, 114:103694. https://doi.org/10.1016/j.jsames.2021.103694
https://doi.org/10.1016/j.jsames.2021.10...
, 2023aSedor F.A., Dias E.V., Kramarz A.G., Angulo R. J., Silva D.D. 2023a. On the Pyrotheria from Guabirotuba Formation (Middle Eocene), Curitiba Basin, Paraná, Brazil. Journal of Mammalian Evolution. In press., 2023bSedor F.A., Dias E.V., Silva D.D. 2023b. Fauna da Formação Guabirotuba (Bacia de Curitiba – Paleógeno). In: Straube F.C. (ed.). Inventário da Fauna de Curitiba. Curitiba: Prefeitura de Curitiba. p. 266-270., 2023cSedor F.A., Guimarães B.M.G., Oliveira É.V., Silva D.D., Angulo R.J., Dias E.V. 2023c. A new basal Sparassodonta (Mammalia, Metatheria) from Eocene of South America, Guabirotuba Formation, Curitiba Basin, Brazil. Journal of Mammalian Evolution., Cunha 2016Cunha R.F. 2016. Contexto paleoambiental e tafonomia da assembleia fóssil da Formação Guabirotuba, Bacia de Curitiba, Paraná. Master Dissertation, Universidade Federal do Paraná, Curitiba.), palynology (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.), and geoconservation aspects (Fernandes et al. 2016Fernandes L.A., Lima F.F., Sedor F.A., Vargas J.C., Dias E.V. 2016. Geossítio Bacia Sedimentar de Curitiba: conservação de patrimônio geológico de excepcional relevância científica em área urbana. XLVIII Congresso Brasileiro de Geologia. Porto Alegre: SBG, p. 1860. Available at: http://cbg2017anais.siteoficial.ws/anais48cbgcompleto.pdf. Accessed on: Aug. 5, 2023.
http://cbg2017anais.siteoficial.ws/anais...
).

In 2021, road works provided new ephemeral exposures of the CSB where facies with abundant organic matter, and plant debris, including a tree trunk, were observed for the first time. A rich Miocene palynoflora was also therein identified (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.). The occurrence of new facies undoubtedly deposited in a water body, probably a pond and swamp not previously identified in the CSB, prompted us to study this new sedimentary unit of CSB, named Guatupê Unit of Guabirotuba Formation (GF), whose characterization and interpretation are objective of this paper.

REGIONAL SETTING

The CSB is part of the Continental Rift of Southeastern Brazil (Melo et al. 1985Melo M.S., Riccomini C., Hasui Y., Almeida F.F.M., Coimbra A.M. 1985. Geologia e evolução do sistema de bacias tafrogênicas continentais do sudeste do Brasil. Revista Brasileira de Geociências, 15(3):194-199. https://doi.org/10.25249/0375-7536.1985193201
https://doi.org/10.25249/0375-7536.19851...
, Riccomini et al. 1989Riccomini C. 1989. O Rift Continental do Sudeste do Brasil. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo., 2004Riccomini C., Sant’Anna L.G., Ferrari A.L. 2004. Evolução Geológica do Rift Continental do Sudeste do Brasil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito-Neves B.B. (eds.). Geologia do Continente Sul Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Beca. p. 383-405.). In contrast to the other basins of this rift system, consisting of grabens, the CBS is not clearly related to any structural feature at the regional scale (Zalán and Oliveira 2005Zalán P.V., Oliveira, J.A.B. 2005. Origem e evolução do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras, 13(2):269-300.), although Salamuni et al. (2003Salamuni E., Ebert H.D., Borges M.S., Hasui Y., Costa J.B.S., Salamuni R. 2003. Tectonics and sedimentation in the Curitiba Basin, South of Brazil. Journal of South American Earth Sciences, 15(8):901-910. https://doi.org/10.1016/S0895-9811(03)00013-0
https://doi.org/10.1016/S0895-9811(03)00...
) proposed that nucleation and initial filling of the basin could have been provided by an aborted semi-graben.

The CSB sediments lie over the Proterozoic basement of the Atuba Complex (Siga Jr. et al. 1995Siga Jr. O., Basei M.A.S., Reis Neto J.M., Machiavelli A., Harara O.M. 1995. O Complexo Atuba: um cinturão Paleoproterozóico intensamente retalhado no Neoproterozóico. Boletim IG-USP. Série Científica, 26:69-98. https://doi.org/10.11606/issn.2316-8986.v26i0p69-98
https://doi.org/10.11606/issn.2316-8986....
), which consists of granites, gneisses, and migmatites intruded by Mesozoic diabase dikes related to the opening of the South Atlantic Ocean (Coutinho 2008Coutinho J.M.V. 2008. Dyke swarms of the Paraná Triple Junction, Southern Brazil. Geologia USP, Série Científica, 8(2):29-52. https://doi.org/10.5327/z1519-874x2008000200003
https://doi.org/10.5327/z1519-874x200800...
). At present time, the preserved margin of the CSB is erosional (Fig. 1). A large paleo-fluvial network later dissected the CSB sedimentary cover and generated large alluvial plains (Fig. 1). The modern fluvial network, which corresponds to the Iguaçu River, shows underfit meandering river channels (Fig. 1).

In the CSB region, the climate is mesothermic and very humid without a dry season (Klein 1975Klein R.M. 1975. Southern Brazilian phytogeographic features and the probable influence of upper Quaternary climatic changes in the floristic distribution. Boletim Paranaense de Geociências, 33:67-88.). The mean annual temperature is between 15 and 20°C, and the mean annual rainfall spans 1,500–2,500 mm (Klein 1975Klein R.M. 1975. Southern Brazilian phytogeographic features and the probable influence of upper Quaternary climatic changes in the floristic distribution. Boletim Paranaense de Geociências, 33:67-88.). Predominant soils are Latosol and Cambisol (Fasolo et al. 2002Fasolo P.J., Bognola I.A., Carvalho A.P., Potter R.O., Bhering S.B. 2002. Levantamento de reconhecimento dos solos da região Sudeste do Estado do Paraná (áreas 4, 5 e 6). Boletim de Pesquisa e Desenvolvimento, (13).). The CSB area was originally covered by meadows and Araucaria forest (Klein 1975Klein R.M. 1975. Southern Brazilian phytogeographic features and the probable influence of upper Quaternary climatic changes in the floristic distribution. Boletim Paranaense de Geociências, 33:67-88.), although nowadays most of the area is urbanized by the Curitiba Metropolitan Region.

Sedimentary deposits and stratigraphy

Bigarella and Salamuni (1962)Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64. identified two sedimentary "sequences" within the CSB, one corresponding to the GF and the other one to the modern fluvial deposits (Fig. 1). Later, three lithostratigraphic units were proposed: the Tinguis and Boqueirão Formations (Fms) by Becker (1982)Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre. and the Piraquara Formation (Fm) by Coimbra et al. (1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137.). The definition of these units is controversial because of the lack of data and different interpretations. The Tinguis and Boqueirão Fms are reported in an unpublished thesis, and the Piraquara Fm was just described in a congress abstract. In her Ph.D. thesis, Becker (1982)Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre. proposed the Tinguis Fm, which consists of feldspar-rich sand and fine-grained sediments overlying the GF. The Tinguis Fm layers were previously considered part of the GF (Bigarella and Salamuni 1962Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64.). A 1.2–1.5-m-thick bed of pink gravelly sand with incipient stratification composes the type-section in Tinguis Street, Curitiba (Becker 1982Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre.). Becker (1982)Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre. also used the denomination Boqueirão Formation to identify floodplain sand deposits attributed to the Late Pleistocene.

Coimbra et al. (1996)Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137. proposed the Piraquara Fm for reddish and whitish sands and clays with plane-parallel horizontal lamination and fining-upward trend, alternated with sigmoidal cross-stratified sand. These sediments occur with 3–5 m of thickness at the tops of the hills in the CSB area, laying above the GF with a transitional lower boundary. The Piraquara Fm is attributed to a meandering fluvial system, where clay was deposited in floodplains and sand in crevasse splay, respectively (Coimbra et al. 1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137.). The authors pointed out that the Piraquara Fm sediments are not correlative of the Guabirotuba Fm, because the latter pertains to a braided fluvial system, and neither to the Tinguis Fm, which is interpreted as the weathered part of Guabirotuba Fm (Coimbra et al. 1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137.).

According to Bigarella and Salamuni (1962)Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64., GF is the main stratigraphic unit of the CSB, with a thickness of around 60–80 m, and is mainly composed of claystone, feldspar-rich sand, and local conglomerates. The sediments are coarse-grained along the basin margin and finer in the central part. Because of the occurrence of abundant calcretes, the depositional environment was interpreted as alluvial fans and playa-lakes deposited under a semi-arid climate. Due to the lack of fossils, GF was tentatively considered Plio-Pleistocene (Bigarella et al. 1961Bigarella J.J., Salamuni R., Ab’Saber N.A. 1961. Origem e ambiente de deposição da Bacia de Curitiba. Boletim Paranaense de Geografia, 4-5:71-81.).

Because the former type section of GF has been hidden by urbanization, a new one has been proposed at the fossiliferous site named CSB Geosite (Fig. 1; Vieira and Fernandes 2020Vieira K.T.P., Fernandes L.A. 2020. Análise faciológica e contexto deposicional do geossítio Bacia Sedimentar de Curitiba, nova seção-tipo para a Formação Guabirotuba. Revista Geologia USP. Série Científica, 20(2):87-104. https://doi.org/10.11606/issn.2316-9095.v20-165568
https://doi.org/10.11606/issn.2316-9095....
), where the depositional environment is interpreted as "shallow channel deposits and floodplains of braided rivers in distributary fluvial systems" (Vieira and Fernandes 2020Vieira K.T.P., Fernandes L.A. 2020. Análise faciológica e contexto deposicional do geossítio Bacia Sedimentar de Curitiba, nova seção-tipo para a Formação Guabirotuba. Revista Geologia USP. Série Científica, 20(2):87-104. https://doi.org/10.11606/issn.2316-9095.v20-165568
https://doi.org/10.11606/issn.2316-9095....
).

METHODS

At the Guatupê outcrop (25°30’09"S, 49°08’56"W; Fig. 1), we described six profiles named C1.SE, C1.NE, C2.SE, C2.NE, C3.SE, and C3.NE (Fig. 2). Facies description and interpretation were performed according to Walker and James (1992)Walker R.G., James N.P. (Eds.). 1992. Facies Models: Response to Sea Level Change. Canada: Geological Association of Canada. with facies codes adapted from Miall (1978Miall A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (ed.). Fluvial Sedimentology. Canadian Society of Petroleum Geology, Memoires, 5:597-604., 1996Miall A.D. 1996. The Geology of Fluvial Deposits. Berlin: Springer-Verlag.). The erosional surfaces were classified according to Miall (1996)Miall A.D. 1996. The Geology of Fluvial Deposits. Berlin: Springer-Verlag.. Granulometric and X-ray diffraction (XRD) analyses were performed at the Minerals and Rocks Laboratory (LAMIR) of the Universidade Federal do Paraná (UFPR). The granulometric analysis was performed by wet laser diffraction with a Microtac S3500 particle size analyzer, and the XRD determination was performed according to Moore and Reynolds Jr. (1989Moore D.M., Reynolds Jr. R.C. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press.). Palynological results are discussed elsewhere (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.).

Figure 2
Guatupê outcrop profile localization.

RESULTS

Sedimentary units

At the Guatupê outcrop, three sedimentary units were recognized, respectively, named Unit A, B, and C. Units A and B are superimposed and bounded by third-order erosional surfaces, and Unit C occurs isolated. Unit A has been named Guatupê Unit of GF.

Eight sedimentary facies bounded by second-order surfaces are recognized in the Guatupê Unit, two in Unit B, and one in Unit C (Table 1). The sedimentary succession lies above a strongly weathered basement composed of Lower Proterozoic Atuba migmatites complex and Early Cretaceous diabase dikes. All the unstable minerals have been transformed into clay minerals, and the basement surface is erosional and irregular.

Table 1
Sedimentary units and facies recognized at the Guatupê outcrop.

Unit A (Guatupê Unit)

Surfaces and boundaries

Unit A, here named Guatupê Unit, shows erosional surfaces spanning three different orders. The first one corresponds to the internal lamination of sedimentary beds, the second one corresponds to the boundary of the sedimentary beds, and the third one corresponds to the unit boundary. The Guatupê Unit uncomfortably lies above the bedrock with an irregular erosional surface. The upper boundary is also erosional and characterized by the occurrence of a dark gray paleosoil. The maximum thickness observed is ca. 8 m (Fig. 3).

Figure 3
(A) Overview and (B) facies interpretation of Guatupê Unit (GU) and Unit B (Ub) at C1.SE/NE profile (see Fig. 2 for location). Massive mud (Fm); massive sand (Sm); trough cross-stratified sand (St); massive sandy mud with organic matter and plant debris (Fm(o)); wavy heterolithic (Hw); massive mud with sand linsen (Fm(l)); clast-supported gravel (Gh); bedrock (b); and hidden (E). Unit boundaries: nonconformity (red line), third-order erosional surface (black bold line). Second-order erosional surfaces correspond to facies limits (black lines) and hidden limits (dashed lines).

Sedimentary facies

In the Guatupê Unit, eight sedimentary facies were identified, respectively, named (Table 1): through cross-stratified sand (St), massive sand (Sm), massive sandy mud with organic matter and plant debris (Fm(o)), clast-supported gravel (Gh), wavy heterolithic (Hw), massive mud (Fm), massive mud with sand linsen (Fm(l)), and laminated clay (Fl). At the top, the Guatupê Unit shows pedogenetic features ascribed to a dark gray paleosoil (Ps) (Fig. 3).

Trough cross-stratified sand

Trough cross-stratified sand facies (St) is characterized by 0.3–1.0-m-thick lensoidal beds (Fig. 4). The basal contact is erosional (second-order surface). Sediment texture consists of poorly sorted gravelly sand with immature mineralogical petrography, frequently arranged in a fining-upward trend. This facies is interpreted as lunate or linguoid (3-D) subaqueous dunes.

Figure 4
Trough cross-stratified sand (St), massive sand (Sm), clast-supported gravel (Gh), and bedrock (b).

Massive sand

The massive sand facies (Sm) is characterized by 0.3–1.5-m-thick lensoidal beds with erosional lower boundary (Fig. 3). The beds can be overlapped or alternated with cross-stratified sand beds. Sediment texture consists of poorly sorted gravelly sand with immature composition and variable content of mud. The clasts can reach boulder size. The beds frequently show a fining-upward trend. This facies also contains deformed muddy-sand clasts (Fig. 5). The clay fraction is composed of smectite (montmorillonite), kaolinite, and probably chlorite and vermiculite (Tables 2 and 3, Sample 4.1). This facies is attributed to be produced by mudflow and debris flow.

Figure 5
Deformed mud clast (c) within the massive sand facies (Sm). Trough cross-stratified sand facies (St) and bedrock (b) are also shown.
Table 2
Grain size classes and Folk and Ward statistical parameters of the Guatupê outcrop facies.
Table 3
Mineral composition of the Guatupê outcrop facies by XRD analysis.

Massive sandy mud with organic matter and plant debris

The massive sandy mud with organic matter and plant debris facies (Fm(o)) is characterized by 0.3–0.5-m-thick irregular beds with erosional basal contact (Fig. 3). The texture consists of poorly sorted, organic-rich gravelly sand with immature petrography and plant debris, including tree trunks. Overall, the amount of gravel, sand, and fines is variable: excluding the gravel content, the sand can reach 36% and the fines 81% (Tables 2 and 3, Samples 1.1 and 2.1). Load structures are observed when this facies occurs above the Hw and Fm(l) facies. This facies is attributed to be produced by mudflow and debris flow.

Clast-supported gravel

The clast-supported gravel facies (Gh) is characterized by 0.1–0.2-m-thick tabular or irregular beds with erosional base. The texture is constituted by polymictic gravel, with dominant migmatite clasts that are strongly weathered and the clasts could present chemical bands (Fig. 6). One weathered clast granulometric analysis gave 9% of sand and 91% of fines (Table 2, Sample 7.1). This facies is interpreted as basal gravel produced by high-energy tractive flux.

Figure 6
Highly weathered clast-supported gravel facies (Gh) with chemical bands, overtopped by a massive sand facies (Sm). The shadow areas correspond to sectors where the gravels cannot be distinguished in the picture because they are weathering or hidden by recent sand falling from the higher parts of the outcrops and not to the syngenetic matrix.

Wavy heterolithic

The wavy heterolithic facies (Hw) is characterized by massive mud wavy drapes alternated with fine-grained, very well sorted quartzose sand wavy laminae (Fig. 7, Table 2, Samples 5.1, 6.1, and 8.1). The laminae thickness is 1–5 cm. Contorted laminae and deformation structures are frequent (Fig. 7). This facies changes laterally and vertically to Fm(l). Hw facies was generated by intermittent tractive fluxes. The sand planar laminae indicate high-regime planar bedforms, and the sand wavy laminae are ascribed to low-regime ripple bedforms. The clay laminae are drapes generated by the decantation process during calm-water periods.

Figure 7
Wavy heterolithic (Hw), massive mud with sand linsen (Fm(l)), and massive mud (Fm) facies, corresponding to the facies association (FAL), overlaid by massive sandy mud with organic matter and plant debris (Fm(o)). Note the load structures at the base of Fm(o) and the deformation structures within the wavy heterolithic (Hw) and massive mud with sand linsen facies (Fm(l)) facies. (E) Covered.

Massive mud

Massive mud (Fm) is characterized by 0.1–0.3-m-thick tabular to irregular beds with a transitional lower boundary to massive mud with linsen (Fm(l) facies) (Fig. 7). The beds can change laterally to massive sand (Sm). Sediment texture consists of mud with a variable content of fine-grained sand. This facies is interpreted as produced by the decantation process alternating to weak tractive fluxes.

Massive mud with sand linsen

The massive mud with sand linsen facies (Fm(l)) is characterized by massive mud drapes alternated with planar and rippled sand laminae (Fig. 7). The mud laminae are 5–15 cm thick, and the sand laminae are 0.5–2 cm thick. This facies changes laterally and vertically to Hw (Fig. 7). This facies was produced by similar processes to Hw facies and has been differentiated because of a higher fine/sand ratio.

Laminated clay

The laminated clay facies (Fl) is characterized by finely laminated clay (Fig. 8 and Table 2, Sample A8). The basal contact could not be observed, being accessible only the upper 0.4 m of the facies. This facies was produced by the decantation process in a water body.

Figure 8
Laminated clay facies (Fl).

Facies Association

Facies Association of wavy heterolithic, massive mud, and massive mud with sand linsen

The facies association of wavy heterolithic, massive mud, and massive mud with sand linsen (FAL) lies over a clast-supported gravel Gh and below the dark gray massive sandy mud with organic matter and plant debris facies (Fm(o)) (Fig. 7). The laminae of this facies association show micro-faults and deformed laminae and can dip 10–15o (Fig. 7). The lower and upper contacts are abrupt and irregular, and the lower one presents load structures, which indicates that sediment was plastic at the time of their depositions. Therefore, there was no significant time lap between the depositions of the sediments of the different facies of this facies association. The FAL is interpreted as the bottom sediment of a water body, probably a swamp, where intermittent tractive fluxes occur.

Facies Association of massive sand and cross-stratified sand

The facies association of massive sand and cross-stratified sand (FAC) constitutes most of the Guatupê Unit. The observed maximum thickness is around 7 m. The massive sand facies was generated by mudflows and debris flows. Locally the massive sand with organic matter and plant debris was deposited over the FAL, producing load structures (Fig. 7). This relationship is interpreted as mudflows and debris flows entering a swamp and depositing over the water body floor sediments. In some places, the sediments of the FAC were directly deposited over the bedrock. The cross-stratified sand of this facies association was generated by tractive fluxes in unconfined or shallow channels. At the top, FAC presents a paleosoil horizon.

Unit B

Reddish and gray tabular and lensoidal massive sand beds (Sm) and dark gray tabular massive mud (Fm), interpreted as paleosoil horizons, form the Guatupê-B unit (Fig. 3). The observed maximum thickness is 2 m. Because of the reduced thickness, no facies association was interpreted.

Unit C

Unit C occurs at the profile C3.NE (Fig. 2), at a topographic level higher than the Guatupê Unit and Unit B. The contact between Unit C and the others was not observed because it is covered by a road; locally, Unit C directly lies on the bedrock. Unit C is composed of a set of trough cross-stratified sand lensoidal beds (Fig. 9). The facies shows a reddish color because of weathering (Fig. 9). The bed thickness is 0.2–0.6 m, and the base is erosional. The beds frequently show a fining-upward trend. The St facies is constituted by poorly sorted and petrographically immature gravelly sand. The unstable minerals, such as feldspar, are weathered and transformed into clay minerals. The sand content ranges from 33 to 52% and the fines from 48 to 67% (Table 2, Samples 01, 02, and 9.1). This facies is interpreted as lunate or linguoid subaqueous dunes generated by the tractive flux in shallow channels, likely in a braided fluvial system. The average paleo-current directions are from east to west.

Figure 9
Lensoidal beds with trough cross-stratified sand facies (St) in Unit C, lying over the bedrock (b), at profile C3.NE (see Fig. 2 for location).

DISCUSSION

Depositional processes and environments

The facies and facies association indicate that the three sedimentary units recognized at the Guatupê outcrop were deposited under different environmental conditions and probably at different times.

The Guatupê Unit (Unit A) has the largest exposure (Fig. 3). It bears spores, pollen grains, phytoliths, plant debris, and a tree trunk (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.). The unit lies above the bedrock, starting with a basal clast-supported gravel (Gh) generated by a high-energy tractive flux. Above Gh, the FAL facies association occurs, which was deposited within a water body, probably a pond (Figs. 3 and 7). Intermittent weak currents entered the pond, transporting and sorting the sand grains and generating the sand lamina, of the Hw facies. During quiet periods, the fine-grained particles were settling down and generating the massive mud and the mud laminae (drapes) of Hw and Fm(l) facies. Above the FAL facies association, a dark-gray massive muddy sand with organic matter and plant debris (Fm(o)) occurs. Its basal contact is abrupt with load structures, which indicates that underlying sediments were plastic during sedimentation and that the facies are contemporary. The FAL facies association also shows deformed laminae, which suggests that the massive muddy sand was transported by mudflow and deposited in a shallow water body, probably a swamp, where anoxic conditions prevailed. The FAL facies association is tilted (10–15°) and presents deformational structures, such as micro-faults and deformed laminae, which are interpreted as generated by gravitational movements (Fig. 7). The middle and upper parts of the Guatupê Unit are mainly composed of lensoidal beds of cross-stratified sand (St), which indicate deposition in shallow fluvial channels by tractive fluxes. This facies laterally switches to massive sand (Sm) and massive sandy mud (Fm(o)) facies generated by mudflows and debris flow deposits. This facies association is the characteristic of alluvial fan deposits. After the deposition, of the Guatupê Unit sediments, a soil developed at the top (Fig. 3).

Unit B overlies the Guatupê Unit and corresponds to pulses of mudflow events alternating with periods of no deposition when soils developed (Fig. 3).

Lensoidal beds 0.3–1.0-m-thick with trough cross-stratified sand facies (St) constitute Unit C, which corresponds to lunate or linguoid subaqueous dunes, probably deposited in shallow channels of a braided fluvial system (Fig. 9). This unit is altimetrically higher than Guatupê Unit and Unit B, but because their contact is hidden, their relative stratigraphy cannot be established.

The high content of fine-grained sediments in the St Facies

The high content of fine-grained sediment in the St Facies of Guatupê Unit and Unit C is incompatible with the original deposition in subaqueous dunes by tractive fluxes. By considering the overall immature petrography we observed, our interpretation is that the fine particles, mainly clay, were produced in situ by post-depositional weathering of unstable minerals, such as feldspar. Evidence of this is the presence of 90% of fine-grained particles and clay minerals, mainly kaolinite, in the weathered migmatite clasts of the basal gravel facies (Gh) of the Guatupê Unit (Sample 7.1, Tables 2 and 3, and Fig. 5).

Chronology and paleoclimate

Sedimentary deposits of the CSB are mostly non-fossiliferous, and the GF was tentatively ascribed to different Cenozoic series (e.g., Bigarella and Salamuni 1962Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64.). According to Garcia et al. (2013), the palynological assemblage identified in few outcrops of GF would suggest a Late Miocene-Pliocene age. Vertebrate fossils found at the CSB Geosite (Fig. 1) indicate a middle Eocene fauna (Sedor et al., 2022Sedor F.A., Klimeck T.D.F., Dias E.V., Oliveira E.V., Ciancio M.R., Vieira K.T.P., Fernandes L.A., Angulo R.J. 2022. The Eocene armadillo Utaetus buccatus (Euphractinae) in the Guabirotuba Formation (Curitiba Basin) and carapace morphological implications. Journal of South American Earth Sciences, 114:103694. https://doi.org/10.1016/j.jsames.2021.103694
https://doi.org/10.1016/j.jsames.2021.10...
, 2023aSedor F.A., Dias E.V., Kramarz A.G., Angulo R. J., Silva D.D. 2023a. On the Pyrotheria from Guabirotuba Formation (Middle Eocene), Curitiba Basin, Paraná, Brazil. Journal of Mammalian Evolution. In press., 2023bSedor F.A., Dias E.V., Silva D.D. 2023b. Fauna da Formação Guabirotuba (Bacia de Curitiba – Paleógeno). In: Straube F.C. (ed.). Inventário da Fauna de Curitiba. Curitiba: Prefeitura de Curitiba. p. 266-270., 2023cSedor F.A., Guimarães B.M.G., Oliveira É.V., Silva D.D., Angulo R.J., Dias E.V. 2023c. A new basal Sparassodonta (Mammalia, Metatheria) from Eocene of South America, Guabirotuba Formation, Curitiba Basin, Brazil. Journal of Mammalian Evolution.). The abundant palynological assemblage retrieved within the Guatupê Unit indicates the Miocene age (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.).

Paleoclimate during the Guabirotuba Fm was considered semi-arid because of the abundant occurrence of calcretes (Bigarella and Salamuni 1962Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64.), which also occurred at the CSB Geosite (Vieira and Fernandes 2020Vieira K.T.P., Fernandes L.A. 2020. Análise faciológica e contexto deposicional do geossítio Bacia Sedimentar de Curitiba, nova seção-tipo para a Formação Guabirotuba. Revista Geologia USP. Série Científica, 20(2):87-104. https://doi.org/10.11606/issn.2316-9095.v20-165568
https://doi.org/10.11606/issn.2316-9095....
). In contrast, no calcareous concretions were observed in the Guatupê deposit suggesting deposition under different paleoclimate or paleoenvironmental settings. The occurrence of water bodies and anoxic conditions indicate a humid climate. Therefore, it is possible that CSB was infilled during different episodes and different climates during the Cenozoic Era.

The Guatupê Unit and the CSB stratigraphy

The sedimentary description and facies interpretation presented in this study highlight for the first time the occurrence of water body depositional environment within the CSB. As reported at the beginning, the previous studies mostly documented facies related to high-energy rivers of a distributary system. In the case of the Guatupê outcrop, the occurrence of ponds and swamps is supported by the abundance of low-energy, organic-rich sediments, and water-logged soils. This remarkably different depositional environmental identity, defined by the third-order erosional boundary, justifies in our opinion the definition of a new sedimentary unit within the Guabirotuba Fm, named Guatupê Unit. Due to the unique occurrence and the unmappable size at 1:25,000 scale, the Guatupê unit is not currently formalized as a lithostratigraphic unit and must be considered informal.

Correlation between different stratigraphic units of CSB is hampered by the lack of lateral continuity and superposition, as pointed out by Becker (1982)Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre.. In addition, the fossiliferous deposit at the CSB Geosite, with a well-defined middle Eocene age, is thin, isolated, and located at the basin margin. Two other problems complicate the stratigraphic framework of the CSB: the first one is that it is not possible to reassess some sites where the units were defined because they have been destroyed or hidden by urbanization (e.g., GF according to Bigarella and Salamuni (1962)Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64., and Tinguis Formation according to Becker 1982Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre.). The second one is that sites where the Piraquara Formation was defined (Coimbra et al. 1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137.) were not localized in the study (congress abstract).

CONCLUSION

For the first time in the CSB, we described facies which clearly deposited within a subaqueous environment, probably a pond, where intermittent tractive fluxes occurred. In the Guatupê Unit, the subaqueous facies consists of wavy heterolithic (Hw) and massive mud with linsen (Fm(l)) of the Facies Association FAL. In addition, mudflow deposits entering the water body were also identified, which are documented by the massive sand facies with organic matter (Sm(o)), overlying the facies association FAL with load structure at their base. This points out that the underlying sediments were plastic and that the facies are contemporary. These sedimentary characteristics associated with palynoflora (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.) and a fossil trunk tree indicate that the climate was humid enough to maintain permanent water bodies, like ponds, and vegetation, including trees. The other facies of the Guatupê Unit indicates mudflows (Sm and Fm(o)) and channelized tractive fluxes (St and Gh), which association (FAC) indicates that they were probably deposited in an alluvial fan environment. Therefore, we proposed here the name Guatupê Unit of GF for Unit A of the Miocene age, based on palynology (Arai et al. 2023Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.).

We stress that facies, facies association, and the inferred depositional processes and environment of Guatupê Unit are quite different from the previous ones reported for CSB sedimentary infill and original definition of the formations (e.g., Bigarella and Salamuni 1962Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64. for GF; Becker 1982Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre. for Tinguis and Boqueirão Formations; and Coimbra et al. 1996Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia. SBG, p. 135-137. for Piraquara Formation). The facies, facies association, depositional processes, environment, and age (Miocene) of the Guatupê Unit are also quite different from sedimentary deposits of CSB Geosite (middle Eocene).

ACKNOWLEDGMENTS

RJA, GS, and ES are sponsored by CNPq fellowships (311837/2022-0, 313923/2021-3, and 07738/2019-1). We are grateful to Manuel F. Isla and the anonymous reviewer for improving the manuscript and for the useful comments.

REFERENCES

  • Ab’Saber N.A. 1957a. Geomorfologia do Sítio Urbano de São Paulo São Paulo: Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras, 219(12).
  • Ab’Saber N.A. 1957b. O problema das conexões antigas e da separação da drenagem do Paraíba e do Tietê. Boletim Paulista de Geografia, 26:38-49.
  • Almeida F.F.M. 1952. Novas ocorrências de camadas supostas pliocênicas nos estados de São Paulo e Paraná. Boletim da Sociedade Brasileira de Geologia, 1(1):53-58.
  • Almeida F.F.M. 1955. As camadas de São Paulo e a tectônica da Serra da Cantareira. Boletim da Sociedade Brasileira de Geologia, 4(2):23-40.
  • Almeida F.F.M. 1976. The system of continental rifts bordering the Santos Basin, Brazil. Anais da Academia Brasileira de Ciências, 48(Suppl.):15-26.
  • Arai M., Angulo R.J., Salamuni E., Parenti F., Scardia G., Veiga, L.A.K., Souza M.C. 2023. Palinoflora miocênica do afloramento Guatupê, Bacia de Curitiba, Paraná. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología, 23:50.
  • Becker R.D. 1982. Distribuição dos sedimentos cenozóicos na região metropolitana de Curitiba e sua relação com a estrutura geológica e morfológica regional. Doctoral thesis, Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre.
  • Bigarella J.J. 1956. Planta geológica provisória da cidade de Curitiba e arredores Instituto de Biologia e Pesquisas Tecnológicas.
  • Bigarella J.J., Salamuni R. 1957. Aspectos geográficos e geológicos da cidade de Curitiba e arredores Faculdade Católica de Filosofia de Curitiba.
  • Bigarella J.J., Salamuni R. 1958. Considerações sobre o paleoclima da bacia de Curitiba. Boletim do Instituto de História Natural, Geologia, 1:1-10.
  • Bigarella J.J., Salamuni R. 1959. Notas complementares à planta geológica de Curitiba e arredores. Boletim do Instituto de Biologia e Pesquisas Tecnológicas, 40:1-14, and map.
  • Bigarella J.J., Salamuni R. 1962. Caracteres texturais dos sedimentos da Bacia de Curitiba. Boletim da Universidade Federal do Paraná, 7:1-64.
  • Bigarella J.J., Salamuni R., Ab’Saber N.A. 1961. Origem e ambiente de deposição da Bacia de Curitiba. Boletim Paranaense de Geografia, 4-5:71-81.
  • Carvalho P.F. 1934. Geologia do Município de Curytiba Rio de Janeiro: Serviço Geológico e Mineralógico DNPM, Boletim 82
  • Coimbra A.M., Riccomini C., Sant'Anna L.G., Valarelli J.V. 1996. Bacia de Curitiba: estratigrafia e correlações regionais. 39º Congresso Brasileiro de Geologia SBG, p. 135-137.
  • Coutinho J.M.V. 1955. Lantanita de Curitiba, Paraná. Boletim da Faculdade de Filosofia, Ciências e Letras da USP, Mineralogia, 13:119-126.
  • Coutinho J.M.V. 2008. Dyke swarms of the Paraná Triple Junction, Southern Brazil. Geologia USP, Série Científica, 8(2):29-52. https://doi.org/10.5327/z1519-874x2008000200003
    » https://doi.org/10.5327/z1519-874x2008000200003
  • Cunha P.V.C. 2011. Gênese de calcretes da Formação Guabirotuba, Bacia de Curitiba, Paraná Dissertação, Universidade Federal do Paraná, Curitiba.
  • Cunha R.F. 2016. Contexto paleoambiental e tafonomia da assembleia fóssil da Formação Guabirotuba, Bacia de Curitiba, Paraná Master Dissertation, Universidade Federal do Paraná, Curitiba.
  • Dias E.V., Oliveira E.V., Silva D.D., Sedor F.A. 2014. Paleogene Metatheria from the Guabirotuba Formation, Curitiba Basin, Paraná, Brazil: taxonomy and fauna correlation. IV International Paleontological Congress, Mendoza, Argentina. p. 380.
  • Fasolo P.J., Bognola I.A., Carvalho A.P., Potter R.O., Bhering S.B. 2002. Levantamento de reconhecimento dos solos da região Sudeste do Estado do Paraná (áreas 4, 5 e 6). Boletim de Pesquisa e Desenvolvimento, (13).
  • Fernandes L.A., Lima F.F., Sedor F.A., Vargas J.C., Dias E.V. 2016. Geossítio Bacia Sedimentar de Curitiba: conservação de patrimônio geológico de excepcional relevância científica em área urbana. XLVIII Congresso Brasileiro de Geologia Porto Alegre: SBG, p. 1860. Available at: http://cbg2017anais.siteoficial.ws/anais48cbgcompleto.pdf Accessed on: Aug. 5, 2023.
    » http://cbg2017anais.siteoficial.ws/anais48cbgcompleto.pdf
  • Garcia M.J., Lima F.M., Fernandes L.A., Melo M.S., Dino R., Antonioli L., Menezes J.B. 2013. Idade e palinologia da Formação Guabirotuba, Bacia de Curitiba, PR, Brasil. XXIII Congresso Brasileiro de Paleontologia/I Simpósio de Paleontologia Brasil-Portugal, 2013, Gramado. Sociedade Brasileira de Paleontologia, 1, p. 125-125.
  • Klein R.M. 1975. Southern Brazilian phytogeographic features and the probable influence of upper Quaternary climatic changes in the floristic distribution. Boletim Paranaense de Geociências, 33:67-88.
  • Liccardo A., Weinschütz L.C. 2010. Registro inédito de fósseis de vertebrados na bacia sedimentar de Curitiba. Revista Brasileira de Geociências, 40(3):330-338. https://doi.org/10.25249/0375-7536.2010403330338
    » https://doi.org/10.25249/0375-7536.2010403330338
  • Lima F.M. 2010. Faciologia e ambientes deposicionais da Formação Guabirotuba, Bacia de Curitiba-PR Master Dissertation, Universidade Federal do Paraná, Curitiba.
  • Lima F.M., Fernandes L.A., Melo M.S., Góes A.M., Machado D.A.M. 2013. Faciologia e contexto deposicional da Formação Guabirotuba, Bacia de Curitiba (PR). Brazilian Journal of Geology, 43(1):168-184. https://doi.org/10.5327/Z2317-48892013000100014
    » https://doi.org/10.5327/Z2317-48892013000100014
  • Maack R. 1947. Breves notícias sobre a geologia do Estados do Paraná e Santa Catarina. Arquivos de Biologia e Tecnologia, 2:63-154.
  • Maack R. 1948. Notas preliminares sobre climas, solos e vegetação do Estado do Paraná. Arquivos de Biologia e Tecnologia, 3(12):103-200.
  • Machado D.A.M. 2009. Proveniência de sedimentos da Bacia de Curitiba por estudos de minerais pesados. Master Dissertation, Universidade Federal do Paraná, Curitiba.
  • Melo M.S., Riccomini C., Hasui Y., Almeida F.F.M., Coimbra A.M. 1985. Geologia e evolução do sistema de bacias tafrogênicas continentais do sudeste do Brasil. Revista Brasileira de Geociências, 15(3):194-199. https://doi.org/10.25249/0375-7536.1985193201
    » https://doi.org/10.25249/0375-7536.1985193201
  • Miall A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (ed.). Fluvial Sedimentology Canadian Society of Petroleum Geology, Memoires, 5:597-604.
  • Miall A.D. 1996. The Geology of Fluvial Deposits Berlin: Springer-Verlag.
  • Moore D.M., Reynolds Jr. R.C. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford: Oxford University Press.
  • Oliveira A.I., Leonardos O.H. 1943. Geologia do Brasil Brazil: Ministério de Agricultura.
  • Oliveira E. 1927. Geologia e recursos minereis do Estado do Paraná Rio de Janeiro: Serviço Geológico e Mineralógico, Monografia (7).
  • Riccomini C. 1989. O Rift Continental do Sudeste do Brasil. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo.
  • Riccomini C., Pellogia A.U.G., Saloni J.C.L., Kohnke M.W., Figueira R.M. 1989. Neotectonic activity in the Serra do Mar rift systems (Southeastern Brazil). Journal of South America Earth Science, 2(2):191-197. https://doi.org/10.1016/0895-9811(89)90046-1
    » https://doi.org/10.1016/0895-9811(89)90046-1
  • Riccomini C., Sant’Anna L.G., Ferrari A.L. 2004. Evolução Geológica do Rift Continental do Sudeste do Brasil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito-Neves B.B. (eds.). Geologia do Continente Sul Americano: evolução da obra de Fernando Flávio Marques de Almeida São Paulo, Beca. p. 383-405.
  • Rogério D.W., Dias E.V., Sedor F.A., Weinschütz L.C., Mouro L.D., Waichel B.L. 2012. Primeira ocorrência de Pleurodira (Testudines) para a Formação Guabirotuba, Bacia de Curitiba, Paraná, Brasilian Journal of Geoscience, 8(2):42-46. https://doi.org/10.4013/gaea.2012.82.01
    » https://doi.org/10.4013/gaea.2012.82.01
  • Salamuni E. 1998. Tectônica da Bacia Sedimentar de Curitiba (PR) PhD Thesis, Pós-graduação em Geociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro.
  • Salamuni E., Ebert H.D., Borges M.S., Hasui Y., Costa J.B.S., Salamuni R. 2003. Tectonics and sedimentation in the Curitiba Basin, South of Brazil. Journal of South American Earth Sciences, 15(8):901-910. https://doi.org/10.1016/S0895-9811(03)00013-0
    » https://doi.org/10.1016/S0895-9811(03)00013-0
  • Salamuni E., Ebert H.D., Hasui Y. 2004. Morfotectônica da Bacia Sedimentar de Curitiba. Revista Brasileira de Geociências, 34(4):469-478. https://doi.org/10.25249/0375-7536.2004344469478
    » https://doi.org/10.25249/0375-7536.2004344469478
  • Salamuni E., Salamuni R., Ebert H.D. 1999. Contribuição à geologia da Bacia Sedimentar de Curitiba. Boletim Paranaense de Geociências, (47):123-142.
  • Sant’Anna L.G. 1999. Geologia, mineralogia e gênese das esmectitas dos depósitos paleogênicos do rift continental do sudeste do Brasil PhD Thesis, Programa de Pós-graduação em Mineralogia e Petrologia, Universidade de São Paulo, São Paulo.
  • Sedor F.A., Dias E.V., Kramarz A.G., Angulo R. J., Silva D.D. 2023a. On the Pyrotheria from Guabirotuba Formation (Middle Eocene), Curitiba Basin, Paraná, Brazil. Journal of Mammalian Evolution In press.
  • Sedor F.A., Dias E.V., Silva D.D. 2023b. Fauna da Formação Guabirotuba (Bacia de Curitiba – Paleógeno). In: Straube F.C. (ed.). Inventário da Fauna de Curitiba Curitiba: Prefeitura de Curitiba. p. 266-270.
  • Sedor F.A., Guimarães B.M.G., Oliveira É.V., Silva D.D., Angulo R.J., Dias E.V. 2023c. A new basal Sparassodonta (Mammalia, Metatheria) from Eocene of South America, Guabirotuba Formation, Curitiba Basin, Brazil. Journal of Mammalian Evolution
  • Sedor F.A., Klimeck T.D.F., Dias E.V., Oliveira E.V., Ciancio M.R., Vieira K.T.P., Fernandes L.A., Angulo R.J. 2022. The Eocene armadillo Utaetus buccatus (Euphractinae) in the Guabirotuba Formation (Curitiba Basin) and carapace morphological implications. Journal of South American Earth Sciences, 114:103694. https://doi.org/10.1016/j.jsames.2021.103694
    » https://doi.org/10.1016/j.jsames.2021.103694
  • Sedor F.A., Oliveira E.V., Silva D.D., Fernandes L.A., Cunha, R.F., Ribeiro A.M., Dias E.V. 2014. A new South American Paleogene fauna, Guabirotuba Formation (Curitiba, Paraná State, South of Brazil). IV International Paleontological Congress, Mendoza, Argentina. p. 614.
  • Sedor F.A., Oliveira É.V., Silva D.D., Fernandes L.A., Cunha R.F., Ribeiro A.M., Dias E.V. 2017. A new South American Paleogene land mammal fauna, Guabirotuba Formation (Southern Brazil). Journal of Mammal Evolution, 24:39-55. https://doi.org/10.1007/s10914-016-9364-7
    » https://doi.org/10.1007/s10914-016-9364-7
  • Siemiradzki J. 1898. Geologische Reisebeobachtungen in Süd-Brasilien. Kaiserlich-königlichen hof-und Staatsdruckerei, 107(1):23-40.
  • Siga Jr. O., Basei M.A.S., Reis Neto J.M., Machiavelli A., Harara O.M. 1995. O Complexo Atuba: um cinturão Paleoproterozóico intensamente retalhado no Neoproterozóico. Boletim IG-USP. Série Científica, 26:69-98. https://doi.org/10.11606/issn.2316-8986.v26i0p69-98
    » https://doi.org/10.11606/issn.2316-8986.v26i0p69-98
  • Vieira K.T.P. 2022. Revisitando o registro do preenchimento da Bacia de Curitiba Master Dissertation, Pós-Graduação em Geologia, Universidade Federal do Paraná, Curitiba.
  • Vieira K.T.P., Fernandes L.A. 2020. Análise faciológica e contexto deposicional do geossítio Bacia Sedimentar de Curitiba, nova seção-tipo para a Formação Guabirotuba. Revista Geologia USP. Série Científica, 20(2):87-104. https://doi.org/10.11606/issn.2316-9095.v20-165568
    » https://doi.org/10.11606/issn.2316-9095.v20-165568
  • Walker R.G., James N.P. (Eds.). 1992. Facies Models: Response to Sea Level Change Canada: Geological Association of Canada.
  • Zalán P.V., Oliveira, J.A.B. 2005. Origem e evolução do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras, 13(2):269-300.

Publication Dates

  • Publication in this collection
    30 Aug 2024
  • Date of issue
    2024

History

  • Received
    23 Oct 2023
  • Accepted
    24 Apr 2024
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br